clean SI MC

This commit is contained in:
Pierre-Francois Loos 2019-12-04 16:58:15 +01:00
parent 6cd3194756
commit 5b27ae1ecf
2 changed files with 69 additions and 74 deletions

View File

@ -173,10 +173,10 @@ Benzene &$^1B_{2u} (\Val; \pi \ra \pis)$ &5.32$^a$,5.32$^b$ \\
\end{tabularx} \end{tabularx}
\begin{flushleft} \begin{flushleft}
\begin{footnotesize} \begin{footnotesize}
$^a$Using reference (6e,6o) active space including valence $\pis$ orbitals. $^a$Using reference (6e,6o) active space including valence $\pi$ orbitals.
$^b$Using reference (6e,9o) active space including valence $\pis$ and three $3p_z$ orbitals. $^b$Using reference (6e,9o) active space including valence $\pi$ and three $3p_z$ orbitals.
$^c$Using reference (6e,7o) active space including valence $\pis$ and 3s orbitals. $^c$Using reference (6e,7o) active space including valence $\pi$ and 3s orbitals.
$^d$Using reference (6e,8o) active space including valence $\pis$, $3p_x$ and $3p_y$ orbitals. $^d$Using reference (6e,8o) active space including valence $\pi$, $3p_x$ and $3p_y$ orbitals.
\end{footnotesize} \end{footnotesize}
\end{flushleft} \end{flushleft}
\end{table} \end{table}
@ -216,18 +216,18 @@ $^e$Using reference (10e,12o) active space including valence $\pi$, $\si_\text{C
\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of cyanoacetylene.} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of cyanoacetylene.}
\begin{tabularx}{\textwidth}{XXX} \begin{tabularx}{\textwidth}{XXX}
\hline \hline
Molecule & State & NEVPT2 \\ Molecule & State & NEVPT2$^a$ \\
\hline \hline
Cyanoacetylene &$^1\Sigma^- (\Val; \pi \ra \pis)$ & \\ Cyanoacetylene &$^1\Sigma^- (\Val; \pi \ra \pis)$ & 5.78 \\
&$^1\Delta (\Val; \pi \ra \pis)$ & \\ &$^1\Delta (\Val; \pi \ra \pis)$ & 6.10 \\
&$^3\Sigma^+ (\Val; \pi \ra \pis)$ & \\ &$^3\Sigma^+ (\Val; \pi \ra \pis)$ & 4.45 \\
&$^3\Delta (\Val; \pi \ra \pis)$ & \\ &$^3\Delta (\Val; \pi \ra \pis)$ & 5.19 \\
&$^1A'' [\mathrm{F}] (\Val; \pi \ra \pis)$ & \\ &$^1A'' [\mathrm{F}] (\Val; \pi \ra \pis)$ & 3.50 \\
\hline \hline
\end{tabularx} \end{tabularx}
\begin{flushleft} \begin{flushleft}
\begin{footnotesize} \begin{footnotesize}
$^a$All calculations using a full valence $\pi$ active space of (8e,8o).
\end{footnotesize} \end{footnotesize}
\end{flushleft} \end{flushleft}
\end{table} \end{table}
@ -258,17 +258,17 @@ $^b$ Using reference (6e,6o) active space including valence $\pi$ orbitals.
\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of cyanogen.} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of cyanogen.}
\begin{tabularx}{\textwidth}{XXX} \begin{tabularx}{\textwidth}{XXX}
\hline \hline
Molecule & State & NEVPT2 \\ Molecule & State & NEVPT2$^a$ \\
\hline \hline
Cyanogen & $^1\Sigma_u^- (\Val; \pi \ra \pis)$ & \\ Cyanogen & $^1\Sigma_u^- (\Val; \pi \ra \pis)$ & 6.32 \\
& $^1\Delta_u (\Val; \pi \ra \pis)$ & \\ & $^1\Delta_u (\Val; \pi \ra \pis)$ & 6.66 \\
& $^3\Sigma_u^+ (\Val; \pi \ra \pis)$ & \\ & $^3\Sigma_u^+ (\Val; \pi \ra \pis)$ & 4.88 \\
& $^1\Sigma_u^- [\mathrm{F}] (\Val; \pi \ra \pis)$ & \\ & $^1\Sigma_u^- [\mathrm{F}] (\Val; \pi \ra \pis)$ & 4.97 \\
\hline \hline
\end{tabularx} \end{tabularx}
\begin{flushleft} \begin{flushleft}
\begin{footnotesize} \begin{footnotesize}
$^a$All calculations using a full valence $\pi$ active space of (8e,8o).
\end{footnotesize} \end{footnotesize}
\end{flushleft} \end{flushleft}
\end{table} \end{table}
@ -284,10 +284,10 @@ Cyclopentadiene &$^1B_2 (\Val; \pi \ra \pis)$ &4.96$^a$,4.92$^b$,5.65$^c$ \\
&$^1A_2 (\Ryd; \pi \ra 3s)$ &5.92$^d$ \\ &$^1A_2 (\Ryd; \pi \ra 3s)$ &5.92$^d$ \\
&$^1B_1 (\Ryd; \pi \ra 3p)$ &6.42$^e$ \\ &$^1B_1 (\Ryd; \pi \ra 3p)$ &6.42$^e$ \\
&$^1A_2 (\Ryd; \pi \ra 3p)$ &6.59$^d$ \\ &$^1A_2 (\Ryd; \pi \ra 3p)$ &6.59$^d$ \\
&$^1B_2 (\Ryd; \pi \ra 3p)$ &6.58$^c$ \\ &$^1B_2 (\Ryd; \pi \ra 3p)$ &6.58$^b$,6.60$^c$ \\
&$^1A_1 (\Val; \pi \ra \pis)$ &6.75$^{a,f}$ \\ &$^1A_1 (\Val; \pi \ra \pis)$ &6.75$^{a,f}$ \\
&$^3B_2 (\Val; \pi \ra \pis)$ &3.41$^a$ \\ &$^3B_2 (\Val; \pi \ra \pis)$ &3.41$^a$ \\
&$^3A_1 (\Val; \pi \ra \pis)$ &5.36$^a$ \\ &$^3A_1 (\Val; \pi \ra \pis)$ &5.30$^a$ \\
&$^3A_2 (\Ryd; \pi \ra 3s)$ &5.73$^g$ \\ &$^3A_2 (\Ryd; \pi \ra 3s)$ &5.73$^g$ \\
&$^3B_1 (\Ryd; \pi \ra 3p)$ &6.40$^e$ \\ &$^3B_1 (\Ryd; \pi \ra 3p)$ &6.40$^e$ \\
\hline \hline
@ -311,26 +311,24 @@ $^g$Using reference (4e,5o) active space including valence $\pi$ and 3s orbitals
\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of cyclopropenone.} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of cyclopropenone.}
\begin{tabularx}{\textwidth}{XXX} \begin{tabularx}{\textwidth}{XXX}
\hline \hline
Molecule & State & NEVPT2 \\ Molecule & State & NEVPT2$^a$ \\
\hline \hline
Cyclopropenone &$^1B_1 (\Val; n \ra \pis)$ & 4.04$^a$,4.20$^b$,4.21$^c$ \\ Cyclopropenone &$^1B_1 (\Val; n \ra \pis)$ & 4.04 \\
&$^1A_2 (\Val; n \ra \pis)$ & 5.85$^a$,5.86$^b$,5.94$^c$ \\ &$^1A_2 (\Val; n \ra \pis)$ & 5.85 \\
&$^1B_2 (\Ryd; n \ra 3s)$ & 6.51$^a$,6.64$^b$,6.75$^c$ \\ &$^1B_2 (\Ryd; n \ra 3s)$ & 6.51 \\
&$^1B_2 (\Val; \pi \ra \pis$) & 6.82$^a$,6.93$^b$,7.06$^c$ \\ &$^1B_2 (\Val; \pi \ra \pis$) & 6.82 \\
&$^1B_2 (\Ryd; n \ra 3p)$ & 7.07$^a$,7.25$^b$,7.38$^c$ \\ &$^1B_2 (\Ryd; n \ra 3p)$ & 7.07 \\
&$^1A_1 (\Ryd; n \ra 3p)$ & 7.28$^a$,7.08$^b$,7.28$^c$ \\ &$^1A_1 (\Ryd; n \ra 3p)$ & 7.28 \\
&$^1A_1 (\Val; \pi \ra \pis)$ & 8.19$^a$,8.19$^c$ \\ &$^1A_1 (\Val; \pi \ra \pis)$ & 8.19 \\
&$^3B_1 (\Val; n \ra \pis)$ & 3.51$^a$,3.68$^b$,3.67$^c$ \\ &$^3B_1 (\Val; n \ra \pis)$ & 3.51 \\
&$^3B_2 (\Val; \pi \ra \pis)$ & 5.10$^a$,5.09$^b$,5.29$^c$ \\ &$^3B_2 (\Val; \pi \ra \pis)$ & 5.10 \\
&$^3A_2 (\Val; n \ra \pis)$ & 5.60$^a$,5.60$^b$,5.69$^c$ \\ &$^3A_2 (\Val; n \ra \pis)$ & 5.60 \\
&$^3A_1 (\Val; \pi \ra \pis)$ & 7.16$^a$,7.21$^b$,7.16$^c$ \\ &$^3A_1 (\Val; \pi \ra \pis)$ & 7.16 \\
\hline \hline
\end{tabularx} \end{tabularx}
\begin{flushleft} \begin{flushleft}
\begin{footnotesize} \begin{footnotesize}
$^a$Using reference (6e,7o) active space averaging with the ground state for each irreducible representation. $^a$All calculation using reference (6e,7o) active space averaging with the ground state for each irreducible representation.
$^b$Using reference (6e,7o) active space averaging between three states of the same irreducible representation.
$^c$Using reference (6e,7o) active space averaging between four states of the same irreducible representation.
\end{footnotesize} \end{footnotesize}
\end{flushleft} \end{flushleft}
\end{table} \end{table}
@ -369,17 +367,17 @@ $^c$Using reference (4e,4o) active space.
\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of diacetylene.} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of diacetylene.}
\begin{tabularx}{\textwidth}{XXX} \begin{tabularx}{\textwidth}{XXX}
\hline \hline
Molecule & State & NEVPT2 \\ Molecule & State & NEVPT2$^a$ \\
\hline \hline
Diacetylene &$^1\Sigma_u^- (\Val; \pi \ra \pis)$ & \\ Diacetylene &$^1\Sigma_u^- (\Val; \pi \ra \pis)$ & 5.33 \\
&$^1\Delta_u (\Val; \pi \ra \pis)$ & \\ &$^1\Delta_u (\Val; \pi \ra \pis)$ & 5.61 \\
&$^3\Sigma_u^+ (\Val; \pi \ra \pis)$ & \\ &$^3\Sigma_u^+ (\Val; \pi \ra \pis)$ & 4.08 \\
&$^3\Delta_u (\Val; \pi \ra \pis)$ & \\ &$^3\Delta_u (\Val; \pi \ra \pis)$ & 4.78 \\
\hline \hline
\end{tabularx} \end{tabularx}
\begin{flushleft} \begin{flushleft}
\begin{footnotesize} \begin{footnotesize}
$^a$All calculations using a full valence $\pi$ active space of (8e,8o).
\end{footnotesize} \end{footnotesize}
\end{flushleft} \end{flushleft}
\end{table} \end{table}
@ -436,10 +434,10 @@ Glyoxal &$^1A_u (\Val; n \ra \pis)$ & 2.90$^a$ \\
\end{tabularx} \end{tabularx}
\begin{flushleft} \begin{flushleft}
\begin{footnotesize} \begin{footnotesize}
$^a$Using reference (14e,12o) active space including valence $\pi$, two nO, $\si_\text{CC}$, $\si_\text{CO}$, $\si^*_\text{CC}$ and $\si^*_\text{CO}$ orbitals. $^a$Using reference (14e,12o) active space including valence $\pi$, two $n_\text{O}$, $\si_\text{CC}$, $\si_\text{CO}$, $\si^*_\text{CC}$ and $\si^*_\text{CO}$ orbitals.
$^b$Using reference (14e,13o) active space including valence $\pi$, two nO, $\si_\text{CC}$, $\si_\text{CO}$, $\si^*_\text{CC}$, $\si^*_\text{CO}$ and $3p_z$ orbitals. $^b$Using reference (14e,13o) active space including valence $\pi$, two $n_\text{O}$, $\si_\text{CC}$, $\si_\text{CO}$, $\si^*_\text{CC}$, $\si^*_\text{CO}$ and $3p_z$ orbitals.
$^c$Non-negligible doubly-excited and Rydberg character. $^c$Non-negligible doubly-excited and Rydberg character.
$^d$Using reference (14e,13o) active space including valence $\pi$, two nO, $\si_\text{CC}$, $\si_\text{CO}$, $\si^*_\text{CC}$, $\si^*_\text{CO}$ and $3p_x$ orbitals. $^d$Using reference (14e,13o) active space including valence $\pi$, two $n_\text{O}$, $\si_\text{CC}$, $\si_\text{CO}$, $\si^*_\text{CC}$, $\si^*_\text{CO}$ and $3p_x$ orbitals.
\end{footnotesize} \end{footnotesize}
\end{flushleft} \end{flushleft}
\end{table} \end{table}
@ -505,7 +503,7 @@ Molecule & State & NEVPT2 \\
Methylenecyclopropene& $^1B_2 (\Val; \pi \ra \pis)$ &4.37$^a$ \\ Methylenecyclopropene& $^1B_2 (\Val; \pi \ra \pis)$ &4.37$^a$ \\
&$^1B_1 (\Ryd; \pi \ra 3s)$ &5.51$^b$,5.49$^c$ \\ &$^1B_1 (\Ryd; \pi \ra 3s)$ &5.51$^b$,5.49$^c$ \\
&$^1A_2 (\Ryd; \pi \ra 3p)$ &6.00$^c$ \\ &$^1A_2 (\Ryd; \pi \ra 3p)$ &6.00$^c$ \\
&$^1A_1(\Val; \pi \ra \pis)$ &7.55$^d$,7.95$^e$ \\ &$^1A_1(\Val; \pi \ra \pis)$ &6.33$^d$,6.36$^e$ \\
&$^3B_2 (\Val; \pi \ra \pis)$ &3.66$^a$ \\ &$^3B_2 (\Val; \pi \ra \pis)$ &3.66$^a$ \\
&$^3A_1 (\Val; \pi \ra \pis)$ &4.87$^d$ \\ &$^3A_1 (\Val; \pi \ra \pis)$ &4.87$^d$ \\
\hline \hline
@ -517,8 +515,6 @@ $^b$Using reference (6e,6o) active space.
$^c$Using reference (4e,5o) active space. $^c$Using reference (4e,5o) active space.
$^d$Using reference (4e,6o) active space. $^d$Using reference (4e,6o) active space.
$^e$Using reference (4e,7o) active space. $^e$Using reference (4e,7o) active space.
$^f$The $\pi^*$ orbital has some diffuse character, even in the case of natural orbitals.
$^g$Heavily mixed states.
\end{footnotesize} \end{footnotesize}
\end{flushleft} \end{flushleft}
\end{table} \end{table}
@ -592,14 +588,14 @@ Molecule & State & NEVPT2 \\
\hline \hline
Pyridazine &$^1B_1 (\Val; n \ra \pis)$ & 3.80$^a$ \\ Pyridazine &$^1B_1 (\Val; n \ra \pis)$ & 3.80$^a$ \\
&$^1A_2 (\Val; n \ra \pis)$ & 4.40$^a$ \\ &$^1A_2 (\Val; n \ra \pis)$ & 4.40$^a$ \\
&$^1A_1 (\Val; \pi \ra \pis)$ & 5.58b \\ &$^1A_1 (\Val; \pi \ra \pis)$ & 5.58$^b$ \\
&$^1A_2 (\Val; n \ra \pis)$ & 5.88$^a$ \\ &$^1A_2 (\Val; n \ra \pis)$ & 5.88$^a$ \\
&$^1B_2 (\Ryd; n \ra 3s)$ & 6.21c \\ &$^1B_2 (\Ryd; n \ra 3s)$ & 6.21$^c$ \\
&$^1B_1 (\Val; n \ra \pis)$ & 6.64$^a$ \\ &$^1B_1 (\Val; n \ra \pis)$ & 6.64$^a$ \\
&$^1B_2 (\Val; \pi \ra \pis)$ & 7.82b,7.19d,7.10e \\ &$^1B_2 (\Val; \pi \ra \pis)$ & 7.82$^b$,7.19$^d$,7.10$^e$ \\
&$^3B_1 (\Val; n \ra \pis)$ & 3.13$^a$ \\ &$^3B_1 (\Val; n \ra \pis)$ & 3.13$^a$ \\
&$^3A_2 (\Val; n \ra \pis)$ & 4.14$^a$ \\ &$^3A_2 (\Val; n \ra \pis)$ & 4.14$^a$ \\
&$^3B_2 (\Val; \pi \ra \pis)$ & 4.65b,4.55d,4.49e \\ &$^3B_2 (\Val; \pi \ra \pis)$ & 4.65$^b$,4.55$^d$,4.49$^e$ \\
&$^3A_1 (\Val; \pi \ra \pis)$ & 4.94$^a$ \\ &$^3A_1 (\Val; \pi \ra \pis)$ & 4.94$^a$ \\
\hline \hline
\end{tabularx} \end{tabularx}
@ -608,7 +604,7 @@ Pyridazine &$^1B_1 (\Val; n \ra \pis)$ & 3.80$^a$ \\
$^a$Using reference (10e,8o) active space including valence $\pi$ and $n_\text{N}$ orbitals. $^a$Using reference (10e,8o) active space including valence $\pi$ and $n_\text{N}$ orbitals.
$^b$Using reference (6e,6o) active space including valence $\pi$ orbitals. $^b$Using reference (6e,6o) active space including valence $\pi$ orbitals.
$^c$Using reference (10e,9o) active space including valence $\pi$, $n_\text{N}$ and 3s orbitals. $^c$Using reference (10e,9o) active space including valence $\pi$, $n_\text{N}$ and 3s orbitals.
$^d$Using reference (6e,9o) active space including valence $\pi$, $n_\text{N}$ and three $3p_X$ orbitals. $^d$Using reference (6e,9o) active space including valence $\pi$, $n_\text{N}$ and three $3p_x$ orbitals.
$^e$Using reference (6e,12o) active space including valence $\pi$, $n_\text{N}$ and six $3p_x$ orbitals. $^e$Using reference (6e,12o) active space including valence $\pi$, $n_\text{N}$ and six $3p_x$ orbitals.
\end{footnotesize} \end{footnotesize}
\end{flushleft} \end{flushleft}
@ -622,21 +618,21 @@ $^e$Using reference (6e,12o) active space including valence $\pi$, $n_\text{N}$
\hline \hline
Molecule & State & NEVPT2 \\ Molecule & State & NEVPT2 \\
\hline \hline
Pyridine &$^1B_1 (\Val; n \ra \pis)$ & 5.17$^a$,5.15b \\ Pyridine &$^1B_1 (\Val; n \ra \pis)$ & 5.17$^a$,5.15$^b$ \\
&$^1B_2 (\Val; \pi \ra \pis)$ & 5.44c,5.31d \\ &$^1B_2 (\Val; \pi \ra \pis)$ & 5.44$^c$,5.31$^d$ \\
&$^1A_2 (\Val; n \ra \pis)$ & 5.32$^a$,5.29e \\ &$^1A_2 (\Val; n \ra \pis)$ & 5.32$^a$,5.29$^e$ \\
&$^1A_1 (\Val; \pi \ra \pis)$ & 6.69c \\ &$^1A_1 (\Val; \pi \ra \pis)$ & 6.69$^c$ \\
&$^1A_1 (\Ryd; n \ra 3s)$ & 6.99e \\ &$^1A_1 (\Ryd; n \ra 3s)$ & 6.99$^e$ \\
&$^1A_2 (\Ryd; \pi \ra 3s)$ & 6.96f,6.86e\\ &$^1A_2 (\Ryd; \pi \ra 3s)$ & 6.96$^f$,6.86$^e$\\
&$^1B_2 (\Val; \pi \ra \pis)$ & 8.61$^a$,7.83d \\ &$^1B_2 (\Val; \pi \ra \pis)$ & 8.61$^a$,7.83$^d$ \\
&$^1B_1 (\Ryd; \pi \ra 3p)$ & 7.57g,7.45b \\ &$^1B_1 (\Ryd; \pi \ra 3p)$ & 7.57$^g$,7.45$^b$ \\
&$^1A_1 (\Val; \pi \ra \pis)$ & 6.97c \\ &$^1A_1 (\Val; \pi \ra \pis)$ & 6.97$^c$ \\
&$^3A_1 (\Val; \pi \ra \pis)$ & 4.60c \\ &$^3A_1 (\Val; \pi \ra \pis)$ & 4.60$^c$ \\
&$^3B_1 (\Val; n \ra \pis)$ & 4.58$^a$ \\ &$^3B_1 (\Val; n \ra \pis)$ & 4.58$^a$ \\
&$^3B_2 (\Val; \pi \ra \pis)$ & 4.90c,4.88d \\ &$^3B_2 (\Val; \pi \ra \pis)$ & 4.90$^c$,4.88$^d$ \\
&$^3A_1 (\Val; \pi \ra \pis)$ & 5.19c \\ &$^3A_1 (\Val; \pi \ra \pis)$ & 5.19$^c$ \\
&$^3A_2 (\Val; n \ra \pis)$ & 5.33$^a$ \\ &$^3A_2 (\Val; n \ra \pis)$ & 5.33$^a$ \\
&$^3B_2 (\Val; \pi \ra \pis)$ & 7.00c,6.29d \\ &$^3B_2 (\Val; \pi \ra \pis)$ & 7.00$^c$,6.29$^d$ \\
\hline \hline
\end{tabularx} \end{tabularx}
\begin{flushleft} \begin{flushleft}

View File

@ -120,6 +120,13 @@
\begin{document} \begin{document}
\begin{tocentry}
\begin{center}
\includegraphics[scale=.27]{TOC.pdf}
\end{center}
\end{tocentry}
\begin{abstract} \begin{abstract}
Following our previous work focussing on compounds containing up to 3 non-hydrogen atoms [\emph{J. Chem. Theory Comput.} {\bfseries 14} (2018) 4360--4379], we present here highly-accurate vertical transition energies Following our previous work focussing on compounds containing up to 3 non-hydrogen atoms [\emph{J. Chem. Theory Comput.} {\bfseries 14} (2018) 4360--4379], we present here highly-accurate vertical transition energies
obtained for 27 molecules encompassing 4, 5, and 6 non-hydrogen atoms: acetone, acrolein, benzene, butadiene, cyanoacetylene, cyanoformaldehyde, cyanogen, cyclopentadiene, cyclopropenone, cyclopropenethione, obtained for 27 molecules encompassing 4, 5, and 6 non-hydrogen atoms: acetone, acrolein, benzene, butadiene, cyanoacetylene, cyanoformaldehyde, cyanogen, cyclopentadiene, cyclopropenone, cyclopropenethione,
@ -1532,13 +1539,5 @@ This work has been supported through the EUR grant NanoX ANR-17-EURE-0009 in the
\end{acknowledgement} \end{acknowledgement}
\bibliography{biblio-new} \bibliography{biblio-new}
\clearpage
\begin{tocentry}
\begin{center}
\includegraphics[scale=.27]{TOC.pdf}
\end{center}
\end{tocentry}
\end{document} \end{document}