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An alternative derivation of many-body perturbation theory~MBPT! has been given, where a
coupled cluster parametrization is used for the wave function and the method of undetermined
Lagrange multipliers is applied to set up a variational coupled cluster energy expression. In this
variational formulation, thenth-order amplitudes determine the energy to order 2n11 and the
nth-order multipliers determine the energy to order 2n12. We have developed an iterative
approximate coupled cluster singles, doubles, and triples model CC3, where the triples amplitudes
are correct through second order and the singles amplitudes are treated without approximations due
to the unique role of singles as approximate orbital relaxation parameters. The compact energy
expressions obtained from the variational formulation exhibit in a simple way the relationship
between CC3, CCSDT-1a@Leeet al., J. Chem. Phys.81, 5906~1984!# CCSDT-1b models@Urban
et al., J. Chem. Phys.83, 4041~1985!#, and the CCSD~T! model@Raghavachariet al., Chem. Phys.
Lett. 157, 479 ~1989!#. Sample calculations of total energies are presented for the molecules H2O,
C2, CO, and C2H4. Comparisons are made with full CCSDT, CCSDT-1a, CCSDT-1b, CCSD~T!,
and full configuration interaction~FCI! results. These calculations demonstrate that CC3 and
CCSD~T! give total energies of a similar quality. If results obtained by CC3 and CCSD~T! differ
significantly, neither method can be trusted. In contrast to CCSD~T!, time-dependent response
functions can be obtained for CC3. ©1997 American Institute of Physics.
@S0021-9606~97!01747-3#

I. INTRODUCTION

The coupled cluster~CC! model was introduced in the
early 1960s and has since gained increasing popularity. The
coupled cluster model is size extensive and describes in an
efficient way the dynamical correlation. Today the CC
singles and doubles~CCSD! model is one of the most com-
monly used methods for obtaining an accurate correlated de-
scription of the electronic structure of single configuration
dominated systems.1 The CCSD scale asN6, whereN is the
number of orbitals. Extensions of CCSD to a singles,
doubles, and triples~CCSDT! model2,3 is desirable in order
to obtain a more accurate solution and also because triples
have shown some ability to recover static correlation contri-
butions. CCSDT calculations scale asN8 and triples ampli-
tudes must be stored. It is therefore desirable to develop
methods where triples are treated in an approximate fashion.
Two strategies have been advocated, both of which may
avoid the storage of triples amplitudes and reduce the com-
putational effort to that of anN7 algorithm. In the first ap-
proach, simplifications are introduced in the CCSDT ampli-
tudes equations, and iterative methods are used to solve the
amplitude equations.4–6 In the other and more popular ap-
proach, the lowest-order perturbation energy contributions
from connected triples are added to the CCSD energy.6–9

The CCSD energy is correct through fourth order except
for one fourth-order contribution from connected triples.
This contribution is added in all perturbation energy cor-
rected CCSD models. In the first of these CCSD1T~CCSD!,
only the fourth-order energy contribution was added, but
with CCSD cluster amplitudes replacing the doubles correla-
tion coefficients. The connected triples give one fifth-order
contribution involving singles amplitudes. If this contribu-
tion is added to the CCSD energy together with the con-
nected triples fourth-order contribution, but with the CCSD
single and double amplitudes replacing the single and double
correlation coefficients, then the CCSD~T! model is
obtained.8 This approach is the most widely used approxi-
mate triples model and is also observed to be the best be-
haved. However, the CCSD~T! model is unsatisfactory from
a pure perturbational point of view, in the sense that we
include two particular fifth-order triples contributions and
disregard all others, with no apparent justification. The effect
of considering all fifth-order contributions has been consid-
ered by Bartlettet al.10

The CCSD~T! and all noniterative perturbation corrected
CCSD models are two-step procedures. First a CCSD calcu-
lation is carried out to determine the amplitudes and energy,
next the effect of connected triples is taken into account by
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adding low-order perturbation triples energy terms that are
absent in the CCSD model. Response functions cannot be
obtained in a consistent manner from such two-step ap-
proaches. For example, the CCSD~T! model has a pole struc-
ture corresponding to that of the CCSD wave function.
Therefore, excitation energies and frequency-dependent mo-
lecular properties cannot be obtained that are consistent with
the CCSD~T! model. The CCSD~T! model can thus only be
applied to ground state energies and static molecular proper-
ties. Response functions with a well-defined pole structure,
i.e., with only one set of poles obtained at the level of ap-
proximation of the reference wave function, can only be ob-
tained in models where the determination of parameters and
energy can be viewed as a one-step approach. This is the
case for the CC3 model and for the models where approxi-
mate triples amplitude equations are solved iteratively.

If the triples equation is approximated according to
second-order perturbation theory, the cluster amplitude equa-
tions of the CCSDT-1b model of Urbanet al. are obtained.6

The CCSDT-1b model is one of the many models proposed
by Urbanet al., where approximations are introduced in the
CCSDT amplitude equations to arrive at models that scale as
N7. The CCSDT-1a model is obtained from CCSDT-1b by
neglecting the singles in the connected triples contributions
to the doubles equations. CCSDT-1a appears to be the most
popular iterative approximation to CCSDT.

Perturbation analysis based on the Hartree–Fock energy
shows that singles occur to second order in the wave func-
tion and to fourth order in the energy. They therefore appear
to be much less important than the doubles, which occur to
first order in the wave function and second order in the en-
ergy. However, if an external perturbation is applied to the
system, the singles are first order in the external perturbation
and zeroth order in the fluctuation potential. Singles are thus
more important than suggested by the energy. The singles
have the unique role of being approximate orbital relaxation
parameters. We therefore require that the CC3 model intro-
duces no approximations in the treatment of singles. Thus,
the singles amplitudes are treated as zeroth order in the fluc-
tuation potential. We further require CC3 to treat triples cor-
rect to second order. In this way we obtain an iterative ap-
proximate triples model that is well suited for describing
molecular properties. In a separate paper we have derived the
CC3 linear response function. This includes a pole and resi-
due analysis to determine CC3 excitation energies and tran-
sition matrix elements. The CC3 linear response function has
also been compared to the ones of the CCSDT-1a and
CCSDT-1b models. The special treatment of singles in CC3
has been demonstrated to be extremely important in molecu-
lar property calculations, for example, single replacement
dominated excitation energies are correct through third order
in CC3 and only through second order in CCSDT-1a and
CCSDT-1b. The use of the CCSDT-1 ground state wave
function was first presented by Watts and Bartlett. Bench-
mark calculations have demonstrated that little or no im-
provement are obtained in CCSDT-1 for single replacement
dominated excitation energies compared to CCSD while sig-
nificant improvement is obtained in CC3. We refer to Ref. 11

for a detailed derivation and discussion of the properties of
the CC3 linear response function.

To examine the structure of CC3 and other approximate
triples models we present an alternative and simple deriva-
tion of many-body perturbation theory~MBPT!. In this deri-
vation, we use a coupled cluster parametrization of the exact
wave function to ensure that only size-extensive contribu-
tions appear in the perturbation expansion. Perturbation
theory based on a coupled cluster parametrization of the
wave function has been considered by many authors; see
Kucharski and Bartlett12 for a recent reference. We further
introduce a variational coupled cluster energy expression. To
understand how this is done recall that the CC total energy is
calculated from amplitudes that are obtained by solving the
amplitude equations. Thus the total energy is formally ob-
tained from a constrained optimization. The CC energy can
therefore be viewed as obtained from an unconstrained opti-
mization of a variational energy expression where the cluster
amplitude equations are added as constraints using the
method of undetermined Lagrange multipliers. Clearly, this
gives no simplification in the calculation of the coupled clus-
ter total energy. However, when calculating perturbational
approximations to the coupled cluster~exact! energy, the
variational property of this CC Lagrangian becomes impor-
tant, as the energy through order 2n11 can be obtained from
the nth-order correction to the cluster amplitudes and
Lagrange multipliers. In fact, thenth-order Lagrange multi-
pliers determine the energy to order 2n12.13 The use of the
2n11 and 2n12 rules leads to compact energy expressions.
The coupled cluster parametrization ensures that only con-
nected contributions are contained in the energy expansion.

The Lagrangian method is a completely general method
for handling nonvariational energies. In the special case of
coupled cluster theory with fixed orbitals, as in this paper, it
becomes equivalent to the method of Arponen14 in the
framework of the ‘‘normal exp(S)’’ method. In the context
of obtaining an efficient evaluation of coupled cluster energy
gradient the derivative of the variational functional was ob-
tained by Bartlett.15 The functional itself was first used in
quantum chemistry by Helgaker and Jo”rgensen16 to derive
coupled cluster energy derivatives. The full strength of a
variational formulation, which included consideration of or-
bital relaxation, was first given by Kochet al.17 in their de-
scription of the first implementation of the CCSD molecular
Hessian. The variational property of the CC Lagrangian and
the use of the 2n11 and 2n12 rules gives a very compact
formulation of the MBPT energy expansion that we use to
identify the connected triples energy contributions in fourth
and fifth orders and therefore to characterize the CCSD~T!
model. CCSD~T! can be interpreted as an approximate triples
model where the important connected triples are projected
onto the single double space. The first iteration of
CCSDT-1a can be used to obtain CCSD~T!. In a similar way
the first iteration of CC3 can be used to obtain the perturba-
tive model CC~3!. Energetically CC~3! is very close to
CCSD~T!.
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II. THE APPROXIMATE COUPLED CLUSTER TRIPLES
MODEL CC3

A. Coupled cluster ansatz

The coupled cluster wave functionuCC& can be written
as an exponential of a cluster operatorT acting on a single-
determinant wave function of noninteracting electrons,

uCC&5exp~T!uHF&. ~1!

The reference wave function corresponds to the Hartree–
Fock stateuHF&. For anN-electron system, the cluster opera-
tor is a sum of electron excitations defined with respect to the
Hartree–Fock state,

T5T11T21T31•••1TN , ~2!

with

T15(
ai

t i
aaa

†ai , ~3!

T25
1
4 (
aib j

t i j
abaa

†aiab
†aj , ~4!

T35
1
36 (

aib jck
t i jk
abcaa

†aiab
†ajac

†ak . ~5!

The labelsi jk ••• andabc••• are used for occupied and un-
occupied spin orbitals in the Hartree–Fock reference deter-
minant andpqrs••• are used as labels for orbitals with un-
specified occupation. The cluster operator truncates at
excitation levelN, the number of electrons in the system. In
a shorthand notation, the cluster operator is written as

T5 (
i51,N

Ti5 (
i51,N

tm itm i , ~6!

where thetm i
are the cluster amplitudes of excitation leveli ,

and tm i
the associated excitation operators. The CC wave

function satisfies the Schro¨dinger equation

exp~2T!H exp~T!uHF&5EuHF&, ~7!

and the coupled cluster energy is obtained by projecting Eq.
~7! against̂ HFu,

E5^HFuH exp~T!uHF&. ~8!

The CC amplitudes are determined by projecting Eq.~7!
onto the excitation manifold̂mi u,

^m i uexp~2T!H exp~T!uHF&50, ~9!

where

^m i u5^HFutm i

† . ~10!

With no truncation in the cluster operator, Eqs.~8! and ~9!
give the full configuration interaction~FCI! solution. For
truncated manifolds, the Schro¨dinger equation is solved in
the projected space corresponding to the considered excita-
tion level. For example, in the CC singles and doubles
~CCSD! model, the wave function containsT1 and T2 and
the amplitudes are determined by projecting against the
singles and doubles space. The CCSDT model contains the

operatorsT1, T2, andT3, and the amplitudes are determined
by including triples in the projection manifold. Total ener-
gies are obtained from Eq.~8!.

B. Coupled-cluster derivation of many-body
perturbation theory

1. The coupled cluster Lagrangian

The CC energy is determined from Eq.~8! subject to the
constraint that the cluster amplitudes are obtained from the
amplitude equations, Eq.~9!. The CC energy may therefore
formally be determined by an unconstrained optimization of
the Lagrangian,

L~ t, t̄ !5^HFuH exp~T!uHF&

1(
m

t̄m^muexp~2T!H exp~T!uHF&, ~11!

where both the cluster amplitudestm and the associated
Lagrange multiplierst̄m are variational. There is no advan-
tage in using the CC Lagrangian to calculate the total energy.
For this purpose the simplest is to calculate the amplitudes
from Eq. ~9! first, and then obtain the energy from Eq.~8!.
However, the variational property of the parameters in Eq.
~11! makes the Lagrangian convenient for evaluating a per-
turbation expansion of the energy. A coupled cluster formu-
lation of many body perturbation theory has the advantage of
giving expressions that are size extensive term by term. This
is in contrast to Mo” ller–Plesset perturbation theory, where
the energy is size extensive order by order, but where the
energy to a given order contains spurious nonsize extensive
terms that cancel each other. The MBPT has been formulated
in terms of diagrammatic methods giving expressions that
are size extensive term by term. A coupled cluster formula-
tion of many body perturbation theory requires no additional
rules or theory.

We shall derive the perturbation expressions where the
zeroth-order HamiltonianF corresponds to the Fock operator
and the perturbation operatorU is the fluctuation potential:

H5F1U, ~12!

F5(
pq

~hpq1Vpq!ap
†aq5Sepap

†ap , ~13!

U5 (
pqrs

gprqsap
†aq

†asar2(
pq

Vpqap
†aq . ~14!

Here theep are the orbital energies andV the Fock potential.
The CC Lagrangian now reads as

L~ t, t̄ !5^HFuexp~2T!F exp~T!uHF&1^HFuUTuHF&

1^ t̄uexp~2T!F exp~T!uHF&1^ t̄uUTuHF&,

~15!

where we have introduced the notation

UT5exp~2T!U exp~T!, ~16!

^ t̄ u5(
m

t̄m^mu, ~17!
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assuming real parameters. We note that the commutators be-
tweenF andtm are particularly simple

@F,tm#5emtm . ~18!

Here em is a linear combination of orbital energies, for ex-
ample

@F,t i j
ab#5~ea1eb2e i2e j !t i j

ab . ~19!

Therefore, we obtain

@F,T#5(
m

emtmtm , ~20!

and all higher commutators vanish:

†@F,T#,T‡5@†@F,T#,T‡,T#5•••50. ~21!

We may thus write the transformed unperturbed Hamiltonian
in the form

exp~2T!F exp~T!5F1(
m

emtmtm , ~22!

and obtain the following~transition! expectation values:

^HFuexp~2T!F exp~T!uHF&5^HFuFuHF&5E0 , ~23!

^ t̄ uexp~2T!F exp~T!uHF&5(
m

emtm^ t̄ utmuHF&

5(
mn

emtm t̄n^num&

5(
m

emtm t̄m . ~24!

Inserting Eqs.~23! and ~24! in the Lagrangian, Eq.~15!, we
obtain the following expression:

L~ t, t̄ !5E01(
m

emtm t̄m1^HFuUTuHF&1^ t̄ uUTuHF&.

~25!

We shall use this expression for the Lagrangian in our per-
turbation analysis of the coupled-cluster energy.

2. The coupled-cluster variational conditions

Since the amplitudes and multipliers are variational in
the Lagrangian, they can be obtained from the variational
conditions

Lm5
]L

] t̄m
50, ~26!

L̄m5
]L

]tm
50, ~27!

which hold for all perturbational strengths. Before evaluating
these derivatives, we note that

]UT

]tm
5@UT ,tm#. ~28!

We now obtain the following expressions for the differenti-
ated Lagrangian:

Lm5emtm1^muUTuHF& ~29!

L̄m5em t̄m1^HFuUTum&1^ t̄ u@UT ,tm#uHF&. ~30!

Except for the last term in Eq.~30!, the variational condi-
tions for the amplitudes and the associated multipliers are
identical.

3. Perturbation expansion of the coupled-cluster
energy

We wish to determine an expansion of the coupled clus-
ter energy,

E5E~0!1E~1!1E~2!1••• , ~31!

by expanding the Lagrangian, Eq.~25!, in powers of the
perturbation. In addition to the linear and explicit depen-
dence onU, the Lagrangian, Eq.~25!, depends implicitly and
nonlinearly on the fluctuation potential through the ampli-
tudes and the associated multipliers:

t5t ~0!1t ~1!1t ~2!1••• , ~32!

t̄5 t̄ ~0!1 t̄ ~1!1 t̄ ~2!1••• . ~33!

The perturbation dependence of the amplitudes and their
multipliers is obtained by expanding the variational condi-
tions, Eqs.~26! and ~27!, in orders inU,

Lm5Lm
~0!1Lm

~1!1Lm
~2!1••• , ~34!

L̄m5L̄m
~0!1L̄m

~1!1L̄m
~2!1••• . ~35!

An order-by-order solution of the so-called response equa-
tions,

Lm
~0!5Lm

~1!5Lm
~2!5•••50, ~36!

L̄m
~0!5L̄m

~1!5L̄m
~2!5•••50, ~37!

yields the perturbed amplitudes and multipliers, Eqs.~32!
and ~33!. We are interested in the energy equation~31! to
fifth order. According to the 2n11 rule for the amplitudes
and the 2n12 rule for the multipliers, we must then deter-
mine the responses of the amplitudes and the multipliers to
second order. The 2n11 and 2n12 rules are illustrated in
Table I. For a proof of the 2n12 rule for the Lagrange
multipliers, see Ref. 13.

4. Coupled-cluster response equations

To calculate the energy to fifth order, we must solve the
response equations~36! and ~37! to second order. The
zeroth-order equations become

TABLE I. The 2n11 rule for the amplitudes and the 2n12 rules for the
Langrange multipliers.

E~0! E~1! E~2! E~3! E~4! E~5!

t ( i ) 0 0 1 1 2 2
t̄ ( i ) 0 0 0 1 1 2
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Lm
~0!50⇒emtm

~0!50, ~38!

L̄m
~0!50⇒em t̄ m

~0!50, ~39!

which means that the zeroth-order amplitudes and multipliers
vanish:

tm
~0!5 t̄ m

~0!50. ~40!

This fact will simplify higher-order expressions greatly. The
first-order response equations are given by

Lm
~1!50⇒emtm

~1!1^muUuHF&50, ~41!

L̄m
~1!50⇒em t̄ m

~1!1^HFuUum&50. ~42!

Since these equations are the complex conjugates of each
other and since real wave functions are assumed, we con-
clude that the first-order amplitudes and multipliers are iden-
tical:

t̄ m
~1!5tm

~1! . ~43!

Furthermore, since

^muUuHF&5^muHuHF& ~44!

and since the Brillouin conditions holds for the Hartree–
Fock state, we conclude that first-order amplitudes and mul-
tipliers involve double excitations only.

According to the 2n11 rule, the first-order responses
determine the energy to third order. To calculate the fourth
and fifth order energies, we also need the second-order re-
sponses. We therefore collect terms to second order in the
variational conditions and obtain

Lm
~2!50⇒emtm

~2!1^mu@U,T~1!#uHF&50, ~45!

L̄m
~2!50⇒em t̄ m

~2!1^HFu@U,T~1!#um&

1^ t̄ ~1!u@U,tm#uHF&50, ~46!

where we use the notation

T~n!5(
m

tm
~n!tm . ~47!

We note that since@U,T~1!# is a rank-three operator,
^mu@U,T~1!#uHF& in Eq. ~45! can involve no higher than triple
excitations. Therefore, the second-order amplitudes contain
single, double, and triple excitations only. The second-order
multipliers, in contrast, involve single, double, triple, and
quadruple excitations. To see this, we note that in Eq.~46!
the second term vanishes for all excitations but the last term
gives nonvanishing contributions for singles, doubles, triples,
and quadruples. Quintuple and higher excitationstm make no
contribution in Eq.~46! since@U,tm#uHF& in such cases cor-
responds to excitations higher than doubles.

We now show that Eq.~45! and Eq.~46! are identical for
the single, double, and triple excitation components, differ-
ing only in the quadruple excitation component. Expanding
the commutators, we may write the second-order response
equations in the form

emtm
~2!52^muUut ~1!&1^muT~1!UuHF&, ~48!

em t̄ m
~2!52^ t̄ ~1!uUum&1^ t̄ ~1!utmUuHF&, ~49!

where

ut ~1!&5T~1!uHF&5(
m

tm
~1!um&. ~50!

Further simplifications are possible by invoking the resolu-
tion of identity. In Eq.~48! we thus write

^muT~1!UuHF&5^muT~1!uHF&^HFuUuHF&

5(
n

tn
~1!^mun&^HFuUuHF&

5tm
~1!^HFuUuHF&. ~51!

Note that only the Hartree–Fock state gives a nonvanishing
contribution in the resolution of identity. The Brillouin con-
dition eliminates all terms in the resolution of identity except
the Hartree–Fock state and the doubles, and doubles do not
contribute since thêmu in Eq. ~48! represent no higher than
triple excitations. We may also simplify Eq.~49! since for all
excitationstm we obtain

^ t̄ ~1!utmUuHF&5^ t̄ ~1!utmuHF&^HFuUuHF&

5 t̄ m
~1!^HFuUuHF&. ~52!

The second-order response equations may now be written in
the form

emt m
~2!52^muŪut ~1!&, ~53!

em t̄ m
~2!52^ t̄ ~1!uŪum&, ~54!

where

Ū5U2^HFuUuHF&. ~55!

These equations are the complex conjugate of each other
since t̄ m

(1)5tm
(1). Therefore, the second-order single, double,

and triple amplitudes and multipliers are identical to each
other. For quadruples, the situation is quite different since
the second-order quadruple amplitudes are zero while the
second-order multipliers are nonzero and are obtained from
Eq. ~54!. We point out that it is the form of the second-order
equations in Eq.~45! and ~46! in terms of commutators be-
tweenU and the excitation operator that is needed to have
each term in the energy expansion be connected. WhenŪ is
introduced in Eqs.~53!–~55!, disconnected energy terms will
occur that are cancelled out when Eqs.~45! and ~46! are
used.

5. Perturbed energies

Having derived the equations that determine the CC am-
plitudes and multipliers to second order, we turn to the en-
ergies. The contributions from the amplitudes and multipliers
to the energies~in terms of orders of perturbation! are listed
in Table I. Since the excitation levels contained in the first-
and second-order amplitudes and multipliers are now known,
we may list the contributions from the amplitudes and mul-
tipliers to the MBPT energies; see Table II. We note that
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singles and connected triples make their first appearance in
the fourth-order energy, and that connected quadruples make
a fifth-order contribution.

To determine the coupled-cluster energies to a given or-
der, we first expand the Lagrangian equation~25! to the same
order. Since the Lagrangian is variational, the resulting ex-
pansion may be simplified considerably by taking into ac-
count the variational conditions to first order Eqs.~41! and
~42! and to second order Eqs.~45! and ~46!. The zero- and
first-order energies are particularly simple, however, and
straightforward expansion of the Lagrangian Eq.~25! yields

E~0!5E05(
i

e i , ~56!

E~1!5^HFuUuHF&, ~57!

which means that the Hartree–Fock energy is recovered to
first-order in perturbation theory:

EHF5E~0!1E~1!. ~58!

In accordance with the 2n11 and 2n12 rules, there are no
first-order contributions from the amplitudes and multipliers
to the first-order energy.

We now consider the second-order energy. Expansion of
the Lagrangian equation~25! yields the following expres-
sion:

E~2!5(
m

emtm
~1! t̄ m

~1!1^HFu@U,T~1!#uHF&

1^ t̄ ~1!uUuHF&. ~59!

According to the 2n12 rule, the first-order multipliers make
no contribution to the second-order energy. We should there-
fore be able to eliminate from the energy all terms that in-
volve t̄ ~1!. Indeed, we note that Eq.~59! may be written in
the form

E~2!5(
m

Lm
~1! t̄ m

~1!1^HFuUut ~1!&, ~60!

and since the conditionLm
~1!50 holds@see Eq.~41!#, we ar-

rive at the simple expression

E~2!5^HFuUut ~1!&, ~61!

in agreement with the 2n11 and 2n12 rules. The second-
order energy thus depends on the connected doubles only.

We now turn to the third-order energy. Collecting all
terms to third order in the Lagrangian equation~25!, we ob-
tain

E~3!5(
m

emtm
~1! t̄ m

~2!1(
m

emtm
~2! t̄ m

~1!

1^HFu@U,T~2!#uHF&

1 1
2 ^HFu†@U,T~1!#,T~1!

‡uHF&

1^ t̄ ~1!u@U,T~1!#uHF&1^ t̄ ~2!uUuHF& ~62!

This expression may be simplified considerably. First we
note that the fourth term vanishes since the double commu-
tator is a rank four operator containing double or higher ex-
citations. Next, according to the 2n11 and 2n12 rules,E~3!

does not involve second-order amplitudes and mutlipliers.
Indeed, we find that Eq.~62! may be written in the form

E~3!5(
m

Lm
~1! t̄ m

~2!1(
m

L̄m
~1!tm

~2!1^ t̄ ~1!u@U,T~1!#uHF&,

~63!

which reduces to the expression

E~3!5^ t̄ ~1!u@U,T~1!#uHF&, ~64!

by invoking the first-order variational conditions, Eqs.~41!
and ~42!, in agreement with the 2n11 rule. Equation~64!
may be rewritten by expanding the commutator and intro-
ducing the resolution of identity, yielding

E~3!5^ t̄ ~1!uŪut ~1!&. ~65!

Equation ~65! is the form that is obtained in conventional
Rayleigh Schro¨dinger perturbation theory. It contains discon-
nected energy contributions in contrast to Eq.~64! where the
commutator ensures that all energy contributions are con-
nected.

As indicated in Table II, the fourth-order energy should
involve contributions from singles, doubles, and triples. To
derive the detailed form of this energy, we expand the La-
grangian to fourth order:

E~4!5(
m

emtm
~1! t̄ m

~3!1(
m

emtm
~2! t̄ m

~2!1(
m

emtm
~3! t̄ m

~1!

1^HFu@U,T~3!#uHF&1^HFu†@U,T~2!#,T~1!
‡uHF&

1 1
6^HFu@†@U,T~1!#,T~1!

‡,T~1!#uHF&

1^ t̄ ~1!u@U,T~2!#uHF&

1 1
2^ t̄

~1!u@@U,T~1!#,T~1!#uHF&

1^ t̄ ~2!u@U,T~1!#uHF&1^ t̄ ~3!uUuHF&. ~66!

The fifth and sixth terms in this expression vanish since the
commutators involve too high excitation levels. The energy
may therefore be written in the simpler form:

E~4!5(
m

Lm
~1! t̄ m

~3!1(
m

Lm
~2! t̄ m

~2!1(
m

tm
~3!L̄m

~1!

1^ t̄ ~1!u@U,T~2!#uHF&

1 1
2^ t̄

~1!u†@U,T~1!#,T~1!
‡uHF&, ~67!

which yields~invoking the variational conditions!

TABLE II. Contributions from connected amplitudes and multipliers to
MBPT energies.

Energy E~1! E~2! E~3! E~4! E~5!

Excitations HF D D SDT SDTQ

1813Koch et al.: The CC3 model

J. Chem. Phys., Vol. 106, No. 5, 1 February 1997
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.59.171.71 On: Wed, 10 Dec 2014 01:37:51



E~4!5^ t̄ ~1!u@U,T~2!#uF&1 1
2 ^ t̄ ~1!u†@U,T~1!#,T~1!

‡uHF&,
~68!

in accordance with the 2n11 and 2n12 rules. Sincet̄ ~2!

does not have quadruple contributions, the fourth-order en-
ergy does not have contributions from connected quadruples.
The commutators in Eq.~68! ensure that all energy contribu-
tions are connected. Eq.~68! may be rewritten to the form
that is obtained in conventional Rayleigh Schro¨dinger pertur-
bation theory and that contains disconnected energy contri-
butions. To do this, we expand the ommutators, yielding

E~4!5^ t̄ ~1!uŪut ~2!2 1
2t

~1!t ~1!&2^ t̄ ~1!ut ~1!&E~2!, ~69!

where we use the notation

ut ~2!2 1
2t

~1!t ~1!&5~T~2!2 1
2T

~1!T~1!!uHF&. ~70!

The fourth-order energy in Eq.~69! arises from interactions
of connected doubles with singles, connected doubles, con-
nected triples, disconnected quadruples, and also the
Hartree–Fock state. There are no contributions from con-
nected quadruples. Also, there are no interactions that do not
involve connected doubles.

Proceeding finally to fifth order, we obtain the expres-
sion

E~5!5(
m

Lm
~1! t̄ m

~4!1(
m

Lm
~2! t̄ m

~3!1(
m

tm
~3!L̄m

~2!

1(
m

tm
~4!L̄m

~1!1 1
2^HFu†@U,T~2!#,T~2!

‡uHF&

1^ t̄ ~1!u†@U,T~2!#,T~1!
‡uHF&

1^ t̄ ~2!u@U,T~2!#uHF&

1 1
2^ t̄

~2!u@@U,T~1!#,T~1!#uHF&, ~71!

and by invoking the first and second-order variational condi-
tions we arrive at the expression

E~5!5 1
2^HFu@†U,T~2!#,T~2!

‡uHF&

1^ t̄ ~1!u†@U,T~2!#,T~1!
‡uHF&

1^ t̄ ~2!u@U,T~2!#uHF&

1 1
2^ t̄

~2!u†@U,T~1!#,T~1!
‡uHF&, ~72!

for the fifth-order energy, in agreement with the 2n11 rule.
Clearly, we have contributions from connected quadruples in
the terms involvingt̄ ~2!. Using the coupled cluster parametri-
zation of the wave function, we obtain directly that all en-
ergy contributions are connected.

C. The CCSD(T) model

Since the CCSD model contains singles and doubles
only, it is correct to third order in perturbation theory. To
higher orders connected triples make their appearance and
any improvement on the CCSD model must take into ac-
count the effect of these excitations. Let us identify all en-

ergy contributions from connected triples to fourth and fifth
orders in the perturbation. The connected triples give one
fourth-order contribution

ET
~4!5^ t̄ 2

~1!u@U,T3
~2!#uHF&, ~73!

where, for example,T3
~2! represents the part ofT~2! containing

triples. In fifth order, several contributions arise. From a con-
sideration of excitation levels, the first two terms in Eq.~72!
are seen not to contain contributions from connected triples.
The remaining two terms give rise to the following fifth-
order connected triples contributions:

ET
~5!5^ t̄ 1

~2!u@U,T3
~2!#uHF&1^ t̄ 2

~2!u@U,T3
~2!#uHF&

1^ t̄ 3
~2!u@U,T3

~2!#uHF&1^ t̄ 4
~2!u@U,T3

~2!#uHF&

1^ t̄ 3
~2!u@U,T2

~2!#uHF&

1 1
2^ t̄ 3

~2!u†@U,T2
~1!#,T2

~1!
‡uHF&. ~74!

Connected triples thus give a fourth-order contribution when
projected against the doubles space and fifth-order contribu-
tions when projected against the singles, doubles, triples, and
quadruples space.

TheET
(4) term in Eq.~73! and the first two terms inET

(5)

of Eq. ~74! are the only fourth- and fifth-order contributions
that result from the projection of connected triples onto the
singles and doubles space. For singles and doubles we may
write

^tCCSDu5^ t̄ 1
~2!u1^ t̄ 2

~1!u1^ t̄ 2
~2!u1O~ t1

~3! ,t2
~3!!. ~75!

We may therefore account for the effects of the fourth- and
fifth-order triples projected against singles and doubles by
calculating the following correction to the CCSD energy:8

Ecorr
CCSD~T!5^tCCSDu@U,T3

~2!#uHF&. ~76!

The terms differing from the true MBPT expansion because
of the use of^tCCSDu rather than^ t̄ 1

(2)1 t̄ 2
(1)1 t̄ 2

(2)u are at
least of sixth order and are thus of little importance relative
to the remaining fifth-order terms in Eq.~74!.

D. The CC3 model

Approximate coupled cluster triples models may alterna-
tively be obtained by simplifying the cluster amplitude equa-
tions of the CCSDT model and iterating these until conver-
gence. Here we present one such approximate scheme,
referred to as the CC3 model, where approximations are
guided by the following requirements:~1! the triples ampli-
tudes should be correct to the first nonvanishing order in
perturbation theory; and~2! the singles amplitudes should be
treated as zeroth-order parameters because of their unique
role as orbital relaxation parameters. The CCSDT amplitude
equations may be written as

^m1uexp~2T12T22T3!H exp~T11T21T3!uHF&50,
~77!

^m2uexp~2T12T22T3!H exp~T11T21T3!uHF&50,
~78!
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^m3uexp~2T12T22T3!H exp~T11T21T3!uHF&50.
~79!

Introducing the modified two-electron Hamiltonian,

Ĥ5exp~2T1!H exp~T1!, ~80!

we may write the singles and doubles equations in the form

^m1uexp~2T2!Ĥ exp~T2!uHF&1^m1u@H,T3#uHF&50,
~81!

^m2uexp~2T2!Ĥ exp~T2!uHF&1^m2u@Ĥ,T3#uHF&50.
~82!

Expanding the triples equations~79!, we obtain

^m3u@F,T3#uHF&1^m3u@Û,T2#uHF&

1 1
2 ^m3u†@Û,T2#,T2‡uHF&1^m3u@Û,T3#uHF&

1^m3u†@U,T3#,T2‡uHF&50, ~83!

with H0 andU defined as in Eqs.~12!–~14! and

Û5exp~2T1!U exp~T1!. ~84!

The computational costs of the five terms in Eq.~83! scale as
N6, N7, N7, N8, andN8, respectively. When the transformed
operatorsĤ and Û are used in Eqs.~81!–~83!, the singles
amplitudes are treated as zeroth-order parameters. Also, use
of the first two terms in Eq.~83! ensures that the connected
triples are correct to second order in perturbation theory.
Thus, in the CC3 model we determine the wave function
from the singles and doubles equations Eqs.~81! and ~82!
together with the triples equation

^m3u@F,T3#uHF&1^m3u@Û,T2#uHF&50. ~85!

This equation ensures that the triples are correct to second
order and also treats orbital relaxation in an approximate
fashion. The simple form of Eq.~85! allows an explicit so-
lution for the triples in terms of the singles and doubles
amplitudes:

tm3
52em3

21^m3u@Û,T2#uHF&. ~86!

Introducing the notation

Q352(
m3

em3

21^m3u@Û,T2#HF&tm3
, ~87!

for the approximate triples amplitudes, we may write the
CC3 cluster amplitude equations as

^m1uexp~2T2!Ĥ exp~T2!uHF&1^m1u@H,Q3#uHF&50,
~88!

^m2uexp~2T2!Ĥ exp~T2!uHF&1^m2u@Ĥ,Q3#uHF&50.
~89!

The first term in Eqs.~88! and ~89! represents the contribu-
tions to the singles and doubles equations that appear in
CCSD. The second term represents the nonvanishing con-
nected triples contributions. The singles and doubles equa-
tions in Eqs.~88! and~89! are similar to the CCSDT singles
and doubles equations, whereT3 is replaced by the perturba-
tion correct formQ3.

The CC3 model is similar in spirit to the CCSDT-n mod-
els of Urbanet al.6 Thus CCSDT-1b is obtained from CC3 if
Û in Eq. ~87! is replaced byU. The CCSDT-1a model is
obtained if, in addition,Ĥ in the last term of the double
equations, Eq.~89!, is replaced byH. In the more elaborate
CCSDT-n models~n52,3,4!, various contributions from the
last three terms in Eq.~83! are retained in the triples equa-
tions. We note that such approximations may become unbal-
anced if the terms to be included are not carefully selected
according to perturbation theory:

emtm
~3!52^mu@U,T~2!#uHF&2 1

2^mu†@U,T~1!#,T~1!
‡uHF&.

~90!

If both terms are included, the model scales asN8 and it is
then probably better to resort to a full CCSDT treatment,
which also scales asN8. Indeed, the results obtained by Ur-
banet al.6 confirm that the CCSDT-2 and CCSDT-3 may be
unbalanced since they perform no better than CCSDT-1b.
The inclusion of the singles does not give similar problems
because of the unique role of singles as approximate orbital
relaxation parameters.

The CCSD(T) energy can be generated by carrying out a
CCSD calculation and multiplying the correction term of the
first CCSDT-1a iteration by the CCSD singles and doubles

TABLE III. Total energies~a.u.! in coupled cluster calculations and FCI calculations on H2O at various OH
bond length using the cc-pVDZ basis.WHF is the weight of the Hartree–Fock configuration in the FCI wave
function.

Ee 1.5Re 2Re 2.5Re 3Re

RHF 276.024 039 275.802 397 275.587 711 275.441 244 275.344 392
WHF 0.941 0.849 0.589 0.337 0.230
ECCSD 276.238 116 276.062 305 275.929 633 275.897 684 275.901 097
ECCSD~T! 276.241 202 276.070 717 275.955 485 275.960 555 276.002 458
ECC~3! 276.241 202 276.070 697 275.954 928 275.961 190 276.003 528
ECCSDT-1a 276.241 273 276.070 747 275.953 780 275.943 580 275.955 745
ECCSDT-1b 276.241 273 276.070 759 275.953 401 275.945 461 275.958 153
ECC3 276.241 274 276.070 726 275.952 809 275.943 671 •••
ECCSDT 276.241 367 276.070 925 275.953 070 275.942 743 275.952 072
EFCI 276.241 860 276.072 348 275.951 665 275.917 991 275.911 946~1!
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amplitudes. In a similar spirit, we introduce the CC~3!
model, where the total energy is obtained from the CCSD
energy by adding to it the term generated by multiplying the
correction term from the first CC3 iteration by the CCSD
amplitudes. Energetically, CC~3! does not differ much from
CCSD~T!.

E. Closed shell CC3

In the CC3 model, Eqs.~88! and ~89! are solved using
the triples amplitudes generated according to Eq.~87!. The
total energy is obtained from Eq.~8! using the converged
singles and doubles amplitudes. We now consider in greater
detail a closed-shell system. Since the nonlinear amplitude
equations are solved iteratively, the major computational
task is to construct the vector functions in Eqs.~88! and~89!
for a set of trial amplitudes. The right-hand sides in Eqs.~88!
and ~89! appear in standard CCSD theory for closed-shell
systems and are given in Ref. 18 using the notation of this
paper. The singles and doubles projection manifold is param-
etrized in terms of a biorthonormal basis:

K ai U5^HFuEia , ~91!

K a b

i j
U5 1

3
^HFu~2EjbEia1EibEja!, ~92!

The one- and two-electron cluster operators are

T15(
ai

t i
aEai ~93!

T25
1
2 (
abi j

t i j
abEaiEb j , ~94!

where t i j
ab is symmetric with respect to permutations

(ai)↔(b j). The three-electron cluster operator is param-
etrized as

T35
1
6 (
aib jck

t i jk
abcEaiEb jEck , ~95!

where the amplitudes are symmetric with respect to the per-
mutations (ai)↔(b j)↔(ck). Assuming that̂m3u refers to a
biorthonormal basis, the triples amplitudes can be deter-
mined from Eq.~84! as

t i jk
abc52

G i jk
abc

e i jk
abc , ~96!

where

e i jk
abc5ea1eb1ec2e i2e j2ek , ~97!

G i jk
abc5Pi jk

abcH(
d

t i j
ad~ck ûbd!2(

l
t i l
ab~ck û l j !J . ~98!

In Eq. ~99! Pi jk
abc is an operator that permutes the indices

Pi jk
abc5S abci jk D1S acbik j D1S bacj ik D1S cabki j D1S bcajki D

1S cbak j i D . ~99!

Using the triples amplitudes, Eq.~96!, the contributions that
are added to the standard CCSD amplitude equations@see
Eqs.~88! and ~89!# become

^ i
au@H,T3#uHF&52(

b jck
~ t i jk
abc2tk j i

abc!L jbkc , ~100!

^ i j
abu@Ĥ,T3#uHF&

52Pi j
abH(

ck
~ t i jk
abc2tk j i

abc!F̂kc1(
ckd

~2t j ik
bcd2tki j

bcd2t jki
bcd!

3~ac ûkd!2(
ckl

~2t jkl
bac2t lk j

bac2t j lk
bac!~ki û lc !J , ~101!

where

Pi j
ab5S abi j D1S baji D , ~102!

F̂pq5ĥpq1(
k
L̂kkpq, ~103!

L̂pqrs52~pq û rs!2~ps û rq !, ~104!

TABLE IV. Total energies~a.u.! for C2 at different internuclear distances using cc-pVDZ basis.

R ~a.u.! CCSD CCSD~T! CC~3! CCSDT-1a CC3 CCSDT

2.0 275.608 608 275.635 114 275.635 473 275.634 497 275.634 003 275.633 445
3.0 275.626 299 275.658 899 275.662 029 275.661 521 275.662 270 275.657 850
4.0 275.501 214 275.549 216 275.552 255 275.543 871 275.544 332 275.575 108
5.0 275.482 059 275.573 037 275.574 948 275.537 687 275.537 277 275.546 522
5.5 275.482 395 275.592 087 275.593 459 275.540 558 275.540 179 275.548 803

TABLE V. Error relative to CCSDT in mH for C2.

R ~a.u.! CCSD CCSD~T! CC~3! CCSDT-1a CC3

2.0 224.837 1.669 2.028 1.052 0.558
3.0 231.551 1.049 4.179 3.671 4.420
4.0 273.894 225.892 222.853 231.237 230.776
5.0 264.462 226.515 228.426 28.835 29.245
5.5 266.408 243.284 244.656 28.245 28.624

1816 Koch et al.: The CC3 model

J. Chem. Phys., Vol. 106, No. 5, 1 February 1997
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.59.171.71 On: Wed, 10 Dec 2014 01:37:51



and (pq û rs) denotes integrals for the modified Hamiltonian.
We refer to Ref. 18 for details about the integrals of the
modified Hamiltonian.

III. SAMPLE CALCULATIONS

The performance of the CC3 and CC~3! models has been
tested by carrying out calculations on H2O, C2, CO, and
C2H4. For all molecules except ethylene we stretch the bonds
to investigate how well the models describe the increasing
size of the static correlation contribution. For comparison we
give results of the approximate triples models CCSD~T!,
CCSDT-1a, CCSDT-1b and full CCSDT. For water we also
quote the full configuration interaction~FCI! results.19 The
CCSDT calculations were carried out using theACESII
program.20 CCSD~T!, CCSDT-1a, and CCSDT-1b results
have been checked againstACESII results.

The water calculations are carried out inC2v symmetry,
using geometries from previous FCI calculations. The HOH
bond angle is fixed as 110.6° and the OH distances are cho-
sen asRe , 1.5Re , 2.0Re , 2.5Re , and 3.0Re , with Re

51.84345 a.u. The Cartesian coordinates of these geometries
are given in Ref. 19. We have used the spherical cc-pVDZ
basis of Dunning21 and all ten electrons are correlated. FCI,
CCSD, CCSDT, and CCSD~T! results have previously been
reported for the same geometries and basis set. The weight of
the Hartree–Fock configuration in the FCI wave function
~WHF! and the FCI natural orbital occupation numbers were
also reported in Ref. 19. In Table III we list the results of the
approximate triples calculations CC3, CC~3!, CCSDT-1a,
and CCSDT-1b together with the above-mentioned results.

The approximate triples results can be divided in two
groups, the iterative results CC3, CCSDT-1a, and CCSDT-
1b, and the perturbative results CC~3! and CCSD~T!. Close
to the equilibrium geometry, the Hartree–Fock configuration
dominates and very small differences are observed between
the iterative and perturbative methods. Both the iterative and
the perturbation-based models approximate very well the full

CCSDT results. For example, at equilibrium the largest de-
viation between the approximate triples and full triples result
is 0.16 mH and occurs for CC~3! and CCSD~T!. At larger
internuclear distances the perturbation models show some
degradence, while the iterative approaches approximate the
full CCSDT result quite well. For example, at 2Re , where
the weight of the Hartree–Fock configuration is 0.589, the
CC3 energy is 0.26 mH above the full CCSDT energy, while
the CCSD~T! energy is 2.41 mH below CCSDT. At internu-
clear distances up to 2Re CCSDT is quite close to FCI,
whereas for larger OH distances significant degradence oc-
curs. Significantly, even for distances where full CCSDT be-
haves poorly compared to FCI do the iterative models ap-
proximate well CCSDT for example at 2.5Re CC3 is 0.93
mH below CCSDT, while CCSDT-1a and CCSDT-1b are
0.84 and 2.72 mH below, respectively. In water CC3 thus
approximates very well CCSDT, even when the static corre-
lation is so large that the performance of CCSDT deteriorates
compared to FCI.

In Table IV total energies are given for C2 in CCSD,
CCSD~T!, CC~3!, CCSDT-1a, CC3, and CCSDT. The inter-
nuclear distance varies between 2.0 and 5.5 a.u. The cc-
pVDZ basis set is used. In Table V, we list the errors in
CCSD and in the approximate triples models relative to
CCSDT. Close to equilibrium all triples methods reduce the
CCSD error by about 90%, with the error now being of op-
posite sign. At 3.0 a.u., CC3 is the triples method with the
largest error relative to CCSDT~4 mH!. In the region 4.0–
5.5 a.u. the errors increase significantly—the errors of the
triples methods are about half the error of CCSD relative to
CCSDT. For all geometries CC~3! is close to CCSD~T! and
CCSDT-1a is close to CC3. The perturbative approaches dif-
fer significantly from the iterative approaches at some dis-
tances. Since errors of the same size occur in the interval
4.0–5.5 a.u. for both iterative and not-iterative models, no
systematic trends can be identified.

For CO total energies have been calculated in the inter-
val 1.6–3.0 a.u. using the cc-pVDZ basis set. The energies of
the different approaches are given in Table VI, and in Table
VII the errors relative to CCSDT are listed. CCSD~T! is
within 0.7 mH of CCSDT at all geometries, while the other
methods show a significant degradence with increasing inter-
nuclear distance. Note that the behavior of CC~3! is quite
different from CCSD~T!. The iterative models are within 0.1
mH of CCSDT forR51.6–1.8 a.u.

The results for ethylene at equilibrium geometry using
the cc-pVDZ basis set are given in Table VIII. All approxi-

TABLE VI. Total energies~a.u.! for CO at different internuclear distances using cc-pVDZ basis.

R ~a.u.! CCSD CCSD~T! CC~3! CCSDT-1a CC3 CCSDT

1.6 2112.641 639 2112.647 129 2112.647 249 2112.647 327 2112.647390 2112.647390
1.8 2112.924 689 2112.931 696 2112.931 935 2112.932 086 2112.932015 2112.932015
2.0 2113.030 265 2113.039 292 2113.039 782 2113.040 113 2113.040685 2113.039685
2.5 2112.995 571 2113.012 957 2113.015 485 2113.018 147 2113.018608 2113.013608
3.0 2112.861 713 2112.894 160 2112.904 689 2112.923 328 2112.920757 2112.894757

TABLE VII. Error relative to CCSDT in mH for CO.

R ~a.u.! CCSD CCSD~T! CC~3! CCSDT-1a CC3

1.6 25.751 20.261 20.141 20.063 20.052
1.8 27.326 20.319 20.080 20.071 0.084
2.0 29.420 20.393 0.097 0.428 0.440
2.5 218.037 20.651 1.877 4.539 4.410
3.0 233.044 20.597 9.932 28.571 26.160
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mate triples methods account for more than 90% of the effect
of triples. The CCSD~T! and CC~3! results are very close
~0.01 mH! and the same holds for CC3 relative to CCSDT-
1a. The extra singles contributions in CC~3! and CC3 thus
seem to be insignificant.

IV. SUMMARY

We have developed an iterative approximate triples
model, CC3, where the triples amplitudes are correct through
second order, and where no approximations are made in the
treatment of the singles amplitudes because of their unique
role as orbital relaxation parameters.

To better understand the structure of the approximate
triples models, we have given an alternative deviation of
many-body perturbation theory, using the coupled cluster pa-
rametrization of the wave function and the method of unde-
termined Lagrange multipliers to set up a variational coupled
cluster energy. In this formulation, thenth-order cluster pa-
rameters and Lagrange multipliers determine the energy to
order 2n11. In fact, only thenth-order multipliers are
needed to obtain the energy to order 2n12. The compact
expressions obtained from the variational formulation reveal
in a simple manner the connection between the iterative
CC3. CCSDT-1a, and CCSDT-1b models and the perturba-
tive CCSD~T! model. It shows that the first iteration of
CCSDT-1a can in a simple manner be used to obtain the
CCSD~T! energy. From the first iteration of CC3, we obtain
in the same way the perturbative CC~3! energy.

We have performed a comparative analysis of CC3 and
CC~3! with CCSDT-1a and CCSD~T!, with benchmarks
against FCI and CCSDT for H2O, C2, CO, and C2H4. Close
to equilibrium, where the reference state is dominated by a
single configuration, they all give about 90%–95% of the
effect of triples. Far from equilibrium, where static correla-
tion is more important, they behave similarly—for one mol-
ecule some of the models work well whereas for other mol-
ecules it may be different models that work well.

In general, the iterative approximate triples methods can-
not be expected to be better than the noniterative models, and

vice versa. All models are constructed by perturbational ar-
guments and in this sense the numerical tests just confirm the
limitations of perturbation theory. Similarly, based on the
present study, there is no reason to believe that the special
treatment given to singles improves or degrades the accuracy
of the total energy. It therefore appears that CC3 for many
purposes can be viewed as a good approximation to CCSDT,
with an accuracy and a robustness with respect to static cor-
relation that is similar to that of CCSD~T!. However, the
advantage of CC3 is that it is well suited for calculations of
time-dependent properties in contrast to CCSD~T!. The re-
sponse properties of the CC3 model is the subject of a sub-
sequent publication.
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