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The linear and quadratic response functions have been determined for a coupled cluster 
reference state. From the response functions, computationally tractable expressions have been 
derived for excitation energies, first- and second-order matrix transition elements, transition 
matrix elements between excited states, and second- and third-order frequency-dependent 
molecular properties. 

I. INTRODUCTION 

During the last decade, the coupled cluster approach 1 

has evolved to become one of the most promising methods 
in ab initio quantum chemistry.2 The development of effi
cient methods for the calculation of analytic coupled clus
ter energy derivatives and static molecular properties has 
stressed the potential of the method.3

,4 Applications of the 
coupled cluster approach to excited states have been lim
ited, due to the difficulties in converging the coupled clus
ter equations for excited states.5 Multireference coupled 
cluster approaches (MRCC)6 have also been used to de
termine excited states, but these methods are at the mo
ment far from competitive compared to more conventional 
methods. Some fundamental problems arise when coupled 
cluster (CC) calculations on individual states are used to 
calculate excitation energies. The CC states are nonorthog
onal and interacting, and it is difficult to make them or
thogonal and noninteracting. The calculation of transition 
matrix elements are hampered for the same reason. 

Molecular properties, excitation energies, and transi
tion moments may alternatively be calculated from cou
pled cluster response functions. This has been investigated 
by Monkhorst7 and Dalgaard and Monkhorst7 who de
rived expressions for the coupled cluster linear response 
function by analyzing the time development of the phase 
factor. 7 In the phase factor approach to the linear response 
function, the first- and second-order correction to the clus
ter amplitudes enter the derivation and the second-order 
correction is eliminated afterwards using tedious algebra. 
Similar and even more tedious eliminations have to be per
formed if the phase factor approach is extended to higher 
response functions. 

In this paper, we present a formalism that determines 
CC response functions based on analyzing the time evolu
tion of a transition expectation value. The derivation con
stitutes a generalization of the Lagrangian technique intro
duced by Helgaker and J0rgensen8 for determining 
response functions for a static perturbation. When the La
grangian technique is used for CC wave functions, the 
Hellmann Feynmann theorem is generalized to a transition 
expectation value with respect to the CC state and a dual 
type state. The time evolution of this transition expectation 
value defines the response functions for a time-dependent 
perturbation. We derive expressions for the linear and qua
dratic response functions for a coupled cluster state and 

show that no elimination is required of higher-order cluster 
amplitude responses. The linear response function contains 
the first-order response of the cluster amplitudes and the 
first-order response of the dual type state. The quadratic 
response function contains, in addition, the second-order 
responses. From the linear response function, second-order 
molecular properties may be calculated, e.g., the frequency 
dependent polarizability. The poles of the linear response 
function determines the excitation energies, and the resi
dues determine the transition matrix elements, e.g., the 
one-photon absorption matrix element between the refer
ence state and an excited state. The quadratic response 
function determines third-order molecular properties, e.g., 
the first hyperpolarizability. The residues of the quadratic 
response function determine the second-order transition 
matrix elements between the reference state and an excited 
state (e.g., the two-photon absorption matrix element) and 
the transition matrix elements between two excited states. 
Expressions are derived for the above-mentioned molecular 
properties for a coupled cluster wave function. In the limit 
of a time-independent perturbation, the response functions 
become identical to the ones that are determined using the 
Lagrangian technique.4,8 The linear response function for 
the extended coupled cluster method has been derived by 
Arponen et al.9 In Ref. 10 more details can be found about 
the determination of molecular properties from the linear 
and quadratic response functions for various external as 
well as internal fields. It should be noted that the states 
entering response function calculations are orthogonal and 
noninteracting. 

In the following paper,11 we have shown that accurate 
excitation energies can be determined from the linear re
sponse eigenvalue equation for a coupled cluster single and 
double reference state. The excitation energies are shown 
to be size intensive. 11 

In the next section, we briefly discuss the development 
of response function theory for an exact state. Section III 
summarizes the development of response theory for a cou
pled cluster state when the perturbation is time indepen
dent. The time evolution of a coupled cluster state is dis
cussed for a time-dependent perturbation in Sec. IV, and in 
Sec. V the responses of the coupled cluster state is deter
mined. The linear and quadratic response functions de
rived in Secs. VI and VII contain some concluding re
marks. 
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II. RESPONSE THEORY FOR EXACT STATES 

In this section, we briefly summarize a few of the re
sults from response theory for exact states, which become 
important for identifying the response functions for a CC 
reference wave function. For details, the reader is referred 
to the work by Olsen and J0rgensen. IO Consider a molec
ular system described by the time-independent Hamil
tonian Ho, and apply the interaction operator vt to the 
molecular system. Assume Vt vanishes at t= - 00. The 
interaction operator is expressed in terms of its Fourier 
transform, 

vt= f: ~ dw VOl exp( - iw + a)t, (1) 

where a is a real positive infinitesimal. The representation 
of the interaction operator in Eq. (1) is often called an 
adiabatically switched on perturbation. Assume the eigen
values and eigenstates for Ho are known, and the system is 
in the state 1 0) at t= - 00, 

(2) 

The orthogonal complement to 1 0) is denoted { 1 n)! and 

(3) 

We now determine the time evolution of 10) and use the 
notation 10) for the time-dependent state. The time evo
lution of the system is governed by the time-dependent 
Schrodinger equation 

d _ _ 
i dt 1 O)=(Ho + vt)1 0). 

Following Ref. 8, we write 

10) = 1 0) exp(i2~), 

(4) 

(5) 

where exp(i2~) is the phase factor in Eq. (2.11) of Ref. 
10. The phase factor does not enter the calculation of the 
response functions and will not be discussed further. The 
state 1 0) may be expanded in orders of the perturbation 
vt, 

(6) 

and 100n» can be determined using Ehrenfest's theorem. 
The response functions are defined by the expansion coef
ficients of the expectation value of the time-independent 
operator A, 

(7) 

The explicit expression for the response functions up to the cubic response function are given in Ref. 10. We limit our 
discussion to the linear 

A'VOII . _ ~ {(0IA1k) (kl VOIqO) _ (01 VOIqk) (kIA10)j 
«, »"1 +Ia- t WI - Wk + ia WI + Wk + ia 

and quadratic response function 

+ I (01 VOI2In)«nl VOIqk) - «5kn (OI VOl 1 1 0) )(kIA 10) 

kn (WI + W2 + Wk + 2ia)(w2 + Wn + ia) 

I (01 VOIII k) «kiA 1 n) - «5kn (OIA 1 0» (n 1 VOI21 0) j 
kn (WI + Wk + ia)(w2 - Wn + ia) . 

The properties of the residues and poles of the linear 
and quadratic response functions have been discussed sev
eral places. We summarize the results needed for the anal
ysis of the coupled cluster response functions. The first
order poles { :I:: wk! of the linear response functions in Eq. 
(8) occur at the excitation and deexcitation energies of the 
unperturbed system. The corresponding transition matrix 
elements are obtained from the residues at { :I:: Wk!, which 
are given by 

lim (WI - Ct.lk) «A; VOII»"I 
"I-"k 

lim (WI + Wk) «A; V"I»"I 
"1- -"k 

J. Chern. Phys., Vol. 93, No.5, 1 September 1990 
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The second-order transition matrix elements between I 0) 
and 1m) are determined from the residues of the quadratic 
response function, 

lim (CU2 - cum) «A; V"'I; V"'2» - "'1."'2 
CtJ2-wm 

= L {(0IA1k)(k l V-"'llm) -lSkm(OI V-"'IIO» 

k - CUI + CUm - CUk 

_ (01 V-"'llk)«kIAlm) -lSkm(OIAIO» I 
- CUI + CUk 

X (m I V"'ml 0) =r:~:"'I(CUI)r::o' (12) 

The complex conjugate of the second-order transition ma
trix elements is determined from the residue, 

lim (CU2 + CUm)( (A; V"'I; V"'2» "'\,"'2 
iU2- -rom 

= L {( (m I V"'q k) -lSkm(OI V"'q 0» (kiA I 0) 

k - CUI + CUm - CUk 

_ «m IA I k) -lSkm(OIA I 0» (k I V"'q 0) I 
- CUI + CUk 

( 13) 

The transition matrix element between excited states 
I m) and I k) may be calculated from the residue, 

lim (CUI + CUk){ lim (CU2 - cum)( (A;V"'I;V"'2»"'I''''2} 
"'I--"'k "'2-"'m 

= - (OIV-"'klk) (kl (A - (OIA I 0» 1m) 

x(ml V"'mIO), (14) 

when the transition matrix element between the reference 
state and excited states I m) and I k) have been identified. 
The complex conjugate of the transition amplitude is ob
tained from the expression in Eq. (14) by making the sub
stitution k+-+m. 

III. THE COUPLED CLUSTER ANSA TZ IN THE 
TIME-INDEPENDENT CASE 

The coupled cluster ansatz for the closed shell wave 
function is 

ICC) = exp(T) IHF), (15) 

where the cluster operator T for an N-electron system is 

(16) 

and 

(17) 

(18) 

are the one- and two-electron operators. The indices ijkl 
and abed refer to occupied and unoccupied orbitals in the 
reference state I HF), and pqrs are general orbital indices. 
Using a shorthand notation, the cluster operator is 

T=tT'= L t,.,.T'w (19) 
,.,. 

where t denotes the cluster amplitudes and T' the corre
sponding excitation operators, and ILvrlS denote single, 
double, and higher-order electron replacement operators. 
The following properties of the cluster operators T', 

T',.,.+ I HF) = 0, 

(HF I T': T',.,. I HF) =lSvw 

[T'",T',.,.l = 0, 

(20) 

(21) 

(22) 

will be used throughout this paper. The Hartree-Fock 
state I HF) in Eq. (15) is determined from the Brillouin 
condition 

(HFI [Eat ,HoIIHF) = 0, (23) 

where 

(24) 
q 

and Ho is the Born-Oppenheimer Hamiltonian. 
The coupled cluster state satisfies the time-independent 

Schrooinger equation 

exp( - T)HoICC) = Eoexp( - T)ICe), (25) 

where the total energy is determined from projecting Eq. 
(25) from the left with (HF I , 

Eo= (HFIHoICC), (26) 

and the cluster amplitudes are determined from the pro
jection 

(IL I exp( - T)HoICC) =0, (27) 

where 

(28) 

Using Eq. (27), the CC total energy in Eq. (26) may be 
written as 

(29) 

where 

(30) 
,.,. 

The parameters {~,.,.} are so far arbitrary and may be de
termined requiring (A I satisfy the time independent 
SchrOdinger equation 

J. Chem. Phys .• Vol. 93. No.5. 1 September 1990 
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(A I Ho exp( T) = (A I exp( T)Eo. (31) 

Right projecting this equation onto the subspace { I HF), 
I v) l gives the equation for the energy in (29) and 

L ~~Ilv= - (HFI [Ho,Tv] ICC), (32) 
Il 

where 

(33) 

which determines the {~Ill parameters. In deriving Eq. 
(32), we have used Eqs. (26), (27), and (30). Equation 
(32) may also be derived from the equations for the cluster 
amplitudes by viewing {~Il} as Lagrange mUltipliers; this 
derivation is described in detail by Koch et al.4 The A 
matrix in Eq. (33) is the coupled cluster Jacobian and is 
the first derivative of the coupled cluster equations with 
respect to the cluster amplitudes. 

From the above analysis, it is seen that (A I is a dual 
type vector to I CC) that satisfies the time-independent 
SchrOdinger equation and the normalization 

(A I CC) = 1. (34) 

When a perturbation described by the operator (3V «(3 is a 
strength parameter) is added to the molecular system, we 
obtain, using Eqs. (27), (30), and (32), 

d 
d(3 (A«(3) IHo + (3VICC(f3) 1f3=o 

" atlll - ~ ~v(vlexp( - T)TIl a(3 HoICC) 
• f3=O 

at I + (AI VICC) + ~ (A I HOTJL ae f3=oICC) 

=(AI VICC). (35) 

The Hellmann-Feynmann theorem can thus be generalized 
to a transition expectation value with respect to I CC) and 
(A I. Without truncation in the cluster operator, I CC) and 
(A I become the exact state with the normalization in Eq. 
(34). For a truncated cluster operator, (AI is not the ad
joint of ICC). The generalized Hellmann-Feynmann the
orem in Eq. (35) is still satisfied, and response functions 
may be identified from the time evolution of the transition 
expectation value (AI VICC). In the limit of a time
independent perturbation, the response functions become 
equal to the ones previously obtained for a time
independent perturbation (for example, using the Lagrang
ian technique4

•8 or using the relaxed density formalism of 
Refs. 12 and 13). 

IV. THE TIME EVOLUTION OF THE COUPLED 
CLUSTER STATE 

We now consider a time-dependent perturbation (1) 
and parametrize the time evolution of the coupled cluster 
state as 

I CC(t» exp( T(t» I HF)exp(i€(t», (36) 

where exp(i€(t» is a time-dependent phase factor and the 
cluster operator 

T(t) =t(t)T (37) 

contains time-dependent amplitudes. The Hartree--Fock 
state is determined from Eq. (23) and is not allowed to 
relax to the applied perturbation. An approximate descrip
tion of the orbital relaxation is obtained from T!. The time 
evolution of I CC(t» is determined from the coupled clus
ter time-dependent SchrOdinger equation 

d 
exp( - T(t»i dt ICC(t» 

= exp( - T(t) )(Ho + vt) I CC(t» (38) 

by projection onto the space { (HF I, (JL I }. The projection 
on (HFI determines the time evolution of the phase factor 

d€(t) 
-;[t= - (HFI(Ho + vt)exp(T(t»IHF), (39) 

and the projection on (JL I determines the time evolution of 
the cluster amplitUdes 

as 

dt (t) T= -1(JLlexp( - T(t»(Ho 

+ vt)exp(T(t» IHF). (40) 

The time evolution of the state (A(t) I is parametrized 

(A(t) I = I (HF I + ~ ~1l(t)(JL I exp( - T(t» ) 

xexp( - l€(t», (41) 

where the phase factor €(t), the cluster amplitudes t(t), 
and the ~(t) parameters depend on time. The time depen
dence of the cluster amplitUdes t(t) is determined from Eq. 
(40) and the time dependence of ~(t) and €(t) is deter
mined from the time-dependent Schrodinger equation for 
the (A(t) I state 

(:t (A(t) I )exP(o(t) =i(A(t) I (Ho + vt)exp( T(t». 

(42) 

J. Chem. Phys .• Vol. 93. No. 5.1 September 1990 
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Multiplying Eq. (42) by exp(iE(t» gives 

dE(t) d~ (I) 
-idt"«HFI + ~ ~~(t)(ILI)+ ~ +,(ILI 

d 
- L ~~(t)(1L1 d T(t) 

~ t 

=i< A (t) I (Ho + vt)exp( T(I», (43) 

where 

(A(t)I=(HFI + L ;jt(t)(lLlexp( - T(t». (44) 
~ 

Using Eqs. (21) and (40), the projection of Eq. (43) onto 
I HF) is seen to give the equation for the phase factor in 
Eq. (39). ProjectionofEq. (43) onto {Iv») gives 

dE(t) d d 
- i-

d
- ~v(t) + -d ;v(t) - L ;~(t)(1L1 dt T(t) Iv) 

t t ~ 

=i( A (t) I (Ho + vt)Tvl CC(t», (45) 

where 

ICC(t»=exp(T(t» IHF). (46) 

Using Eqs. (39) and (40), we may then write Eq. (45) as 

x (IL I 1'1/1 v) (11 lexp( - T(t) )(Ho+ vt) ICC(t» + i L ~~(t)(ILIT..eXp( - T(f) )(Ho + vt) ICC(t». 

Inserting a complete set of states, 

1 = IHF) (HFI + L TyIHF) (HFI 1'y+ , (48) 
v 

in the last term in Eq. (47) shows that the last three terms 
cancel and the time evolution of ;(t) is determined from 
the equation 

d~v(t) - -
~=i(A(t)I[Ho+ vt,Tv]ICC(t). (49) 

The states I CC( t» and (A (t) I satisfy the normalization 
condition 

(AU) I CC(t» < A (t) I CC(t» = 1. (SO) 

The time evolution of t(t), E(t), and ~(t) is thus deter
mined from left and right projections onto the space 
{ I HF), Ill) I of the time-dependent Schrodinger equations 
for the states I CC(t» and (A(t) I. Initially, the t{t) am
plitudes are determined from the time dependent 
Schrodinger equation for I CC(t}) and the ~(t) parameters 
are subsequently determined from the time-dependent 
Schrodinger equation for (A (t) I. The I CC (t) ) and 
(A(t) I time-dependent Schrodinger equations give both 
the equation for the phase factor E(t) when projected 
against the Hartree-Fock state. 

V. RESPONSE EQUATIONS 

In order to derive expressions for coupled cluster re
sponse functions, we need to solve Eq. (40) for the cluster 
amplitudes and Eq. (49) for the ~ parameters for each 
order in the perturbation. In this section, we derive the 
response equations necessary to obtain the linear and qua
dratic response function. 

~ (47) 

A. The t amplitude response 

We consider initially the equation for the cluster am
plitudes in (40) and expand the cluster amplitUdes 

(51) 

in orders of the perturbation. In Eq. (51) we have sup
pressed the time dependence of t~l) and t~2). The response 
equations are obtained by inserting Eq. (51) into Eq. (40), 

drC°) 
i :t =(Ii IHoICC) =0, (52) 

dt(2) 

i :it =(Ii I [vt,T(I)] ICC) 

+ t( Ii I ((Ho,T(1) J,T(l)] 1 CC) 

+ (Ii I [HQJT(2)] ICC), (54) 

where we have used the shorthand notation 

(Ii 1 = <lLlexp( - T(O». (55) 

Introducing the Fourier transform of t~l) and t~2), 

t~l)= f:", dWIX~I)(WI +ia)exp( -iwi +a)t 

(56) 

t~2) = f: 00 dWI f: 00 dW2 X~2) (WI + ia,w2 + ia) 

Xexp( - iWI - iW2 + 2a)t (57) 

into Eqs. (52) and (53) determines the expressions for 
X~I)(WI) and X~2)(WI,W2) 

J. Chern. Phys., Vol. 93, No.5, 1 September 1990 
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= L (- A + (a>1 + a>2 + 2ia)I)IL~ I 
v 

XS~2)(a>1 + ia,a>2 + ia), 

where we have used the notation 

S~I)(a>I)=(V I vwqCC), 

S~2)(a>1 + ia,a>2 + ia) 

=~P( 1,2){ (v I [VW t,T(I)(a>2 + ia)] ICC) 

+ ~(v I [[HooT(I)(a>1 + ia)], 

T(I)(a>2 + ia)1iCC)}, 

T(I)(a>1 + ia)= L 7'vX~I)(a>1 + ia), 
v 

(59) 

(60) 

(61) 

and the definition of the A matrix in Eq. (33). We note 
that the last term in Eq. (61) is symmetric in interchang
ing indexes 1 and 2 and may be taken outside the P(1,2) 
permutation operator. 

In order to proceed, we assume that the nonsymmetric 
A matrix may be diagonalized 

(62) 

where a>n will be interpreted as the excitation energy from 
the reference state to the excited state. Inserting Eq. (62) 
into Eq. (58) gives 

X(I)( ) - ~ S-IX(I) n a>1 - ~ nv v 

J""t 
n 

(63) 
v 

where ~t is the element of the vector S~I)(WI) [Eq. (60)] 
in the diagonal basis 

(64) 
v 

Similarly, we may express X12) (WI + ia, a>2 + ia) in the 
diagonal basis as 

1 ('iii [[Hoo7'm],7'k]ICC)v;:,t VZ2 
} 

+ 2 ~ (a>1 + W2 - a>n + 2ia) (WI - Wm + ia) (W2 - Wk + ia) , 

where 

(lfl= L Sn~l(vl, (66) 
v 

(67) 

B. The, amplitude response 

The ("ILl parameters are expanded in orders of the 
perturbation: 

"IL = ,,~O) + ,,~I) + ,,~2) + ... (68) 

and response equations for these parameters are obtained 
by inserting Eq. (68) into Eq. (49). The zeroth equation, 

d,,(O) 
-d

v 
=i(HFI [Hoo7'v] ICC) +i L ,,~O)AILv=O, (69) 

t IL 

is identical to the equation for the " parameters in Eq. 
(32). The first-order equation reads 

d,,(I) 
d~ =i(AI([[H",7'v],T(I)] + [Vt,7'v]) ICC) 

(70) 

(65) 

I 
and the second-order equation becomes 

dr (2) 
~v .( I (2) [TTt (I) T=l A ([ [Ho,7'v],T ] + [ ",7'v],T ] 

+ ! [[ [Hoo7' v],T( I)] ,T(I)]) ICC) 

+i(A(I)I([J?l,7'v] + [[Hoo7'v],T(I)]) ICC) 

+ i L ,,~2) AILV' (71) 
IL 

where 

(A(I)I = L ,,~I)(JLlexp( - T(O». (72) 
IL 

Introducing the Fourier transform of "11) and "12
), 

,,~I)= f: '" dWI y~l)(wl + ia)exp( - iWI + a)t, 

(73) 

Xexp( - iWI - iW2 + 2a)t, (74) 

into Eqs. (70) and (71) determines the expressions fOI 
y11)(wl) and y12)(WI>W2)' We obtain 

J. Chern. Phys., Vol. 93, No.5, 1 September 1990 
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~I)(WI + ia) = - ~ (l1~I)(WI) 

+ ~ FvyX~I)(WI + ia) ) 

X (A + (WI + ia)I)'; \ (75) 

where 

l1~I)(wI)=(AI [VWt,'Ty] ICC), 

Fvy=(AI [[Ho,'Ty],'Ty] ICC). 

In a similar way, we obtain 

(76) 

(77) 

~2)(WI + ia,w2 + ia) = - ~ !11~2)(WI + ia,w2 + ia) + ~ FvyX~2)(WI + ia,w2 + ia)} 

X (A + (WI + w2 + 2ia)I)'; I, (78) 

where 

11~2)(wl + ia,w2 + ia) =~ P(1,2) ( ~ (AI [[ VWt,'Ty],'Ty ] I CC)X~I)(W2 + ia) + ~ ~ (A I [[[Ho>'Ty],'Ty],'Tp] ICC) 

XX~I)(WI + ia)X~I)(W2 + ia) + L ~I)(WI + ia)(y I [[Ho>'Ty],'Tp] ICC)X~I)(W2 + ia) 
yp 

+ L ~1)(WI+ia)(YI[VW2''Ty]ICC)}. 
y 

(79) 

The Fourier transform in Eqs. (75) and (78) may now be 
written in the diagonal basis; we obtain for Y~ I) (WI 
+ ia), 

r,,1)(WI +ia)= L ~I)(WI +ia)SIL--;;1 
IL 

Fnkv'Zt - L ...,-------,--,-----,-
k (WI + Wn + ia) (WI - Wk + ia) , 

(80) 

where 

l1~I)(WI) = L l1~I)(wl)Syn (81) 
y 

(82) 

In a similar way, we get 

F y(2)( . . ) _ L n~m WI +la,w2+ la 

m WI + W2 + Wn + 2ia 

(83) 

VI. RESPONSE FUNCTIONS 

The identification of the coupled cluster response func
tions is obtained by analyzing the transition expectation 
value of the time-independent operator A, 

AAV(t) = (A(t) I A I CC(t» 

= (A (t) IA I cc(t». (84) 

We expand this expectation value in orders of the pertur
bation, 

AAv(t)=(AIAICC) + L ~~I)(/i IAICC) + (AI [A,T(I)] ICC) + L ~~2)(/i IAICC) + (AI [A,T(2)] ICC) 
IL IL 

(85) 
IL 

where we have used Eqs. (51) and (68). Comparing this expression with the expression from exact theory in Eq. (7), we 
determine the coupled cluster expectation value, 

(O/A/O)=(A/A/CC), (86) 
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the coupled cluster linear response function, 

f: 00 dWI«A; V"'I»"'I + ia exp( - iWI + a)t= ~ ~~l)('ji IA ICC) + (AI [A,T(1)] ICC), 

and the coupled cluster quadratic response function, 

1 

(87) 

= L ~~2)(jI IAICC) + (AI [A,T(2)] ICC) + L ~~l)(jLHA,T(l)]ICC) +2 (AI [[A,T(1)],T(l)] ICC). 
/-L /-L (88) 

Inserting the Fourier transform from Sec. V, Eqs. (56), (57), (73), and (74), the linear response function becomes 

«A;V"'I»"'I +ia= L ¥i.l)(WI + ia)(jI IA ICC) + L X~l)(WI + ia)(AI [A,'T/-L] ICC). 
/-L /-L 

The quadratic response function is defined to be symmetric in the integration variables, giving 

«A; V"'I; V"'2»"'1 + ia''''2+ ia=2 L y~2)(WI + ia,w2 + ia)(jI IA ICC) + 2 L X~2)(WI + ia,w2 + ia)(AI [A,'T/-L] ICC) 
/-L /-L 

+ P(1,2) {L y~l)(wl + ia)(jI I [A,'Tv] ICC)X~I)(W2 + ia) + ~ L X~I)(WI + ia) 
/-LV /-LV 

X~0~1)(W2 + ia») , 
where we have introduced the symmetric matrix 

~v=(AI [[A,'T/-L]''Tv] ICC). 

The linear response function in Eq. (89) becomes in the diagonal representation 

«A; V"'I» "'I + ia= L y~l) (WI + ia)( Ii' IA ICC) + L X~l) (WI + ia) (A I [A,'Tn] ICC). 
n n 

In the diagonal representation, the quadratic response function reads 

«A; V"'I; V"'2»"'1 + ia''''2 + ia=2 L ~2)(WI + ia,w2 + ia)( Ii' IA ICC) 
n 

+ 2 L X~2) (WI + ia,w2 + ia)(A I [A,'Tn] ICC) + L X~I) (WI + ia)~",x~) (W2 + ia) 
n ~ 

+ P(1,2) L ~l) (WI + ia) (ii'I [A,'T m] I CC)X~) (W2 + ia). 
nm 

(89) 

(90) 

(91) 

(92) 

(93) 

In the following two sections, we carry out a pole and residue analysis of the linear and quadratic response functions in 
order to determine the expressions for the molecular properties described in Sec. II. 

A. Linear response function 

1. Evaluation of the linear response function 

In order to determine the coupled cluster linear response function (CCLR) «A;B» "'I' we need to calculate the 
first-order response of the amplitudes. This is conveniently done in the elementary basis where the linear response function 
may be written as 

«A;B»"'I = L Y!(wI)(JLIAICC) + L (AI [A,'T/-L] ICC)X!(wI) 
/-L /-L 

=L (AI [A,'T/-L]ICC)X!(wI) + L (AI [B,'T/-L] ICC) + L F/-LyX~(W,)IX~(-W')' 
/-L /-L r 

(94) 
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where 

X!( ltJ l) = L (-A+ ltJI I )p-:lBy (95) 
y 

and 

By=(v IBICC). (96) 

The evaluation of the linear response function at frequency 
ltJl thus requires that we solve two sets of linear equations 
to obtain X~( - ltJl) and X!(ltJt). We note that for real 
operators and truncated excitation operator manifolds, 

(97) 

For exact and variational wave functions the inequality is 
replaced by an equality. Equation (97) is a result of the 
projection used to determine the cluster amplitudes. 

2. Excitation energies 

The simple poles of the coupled cluster linear response 
function occur at the eigenValues of the nonsymmetric cou
pled cluster Jacobian 

(98) 

In the subsequent paper, we have calculated the excitation 
energies using Eq. (98) for a CCSD reference wave func
tion. The excitation energies are size intensive, i.e., the 
excitation energies of noninteracting subsystems are the 
excitation energies of the combined system. 

3. Transition matrix elements 

The transition matrix elements may be identified from 
the residue in Eqs. (10) and (11) of the linear response 
function. Using 

lim (ltJt -ltJk)X~(ltJI) =<')n~k' 
"'I-"'k 

lim (ltJI + ltJk)X~(ltJt> =0, 
"'1- "'k 

we write the residue of Eq. (92) as 

(OIA I k) (kIBIO) 

= lim (ltJI -ltJk)«A;B»"'l 
"'I-"'t 

={(AI[A,TnJICc)- ~ (nIAICC) 

X (ltJn + ltJk) -IFnk)Bk. 

(99) 

(100) 

( 101) 

The transition matrix elements may thus be identified as 

r~_k=(OIAlk> 

= (A I [A,TkJ ICC) 

- L An(ltJn + ltJk) - IFnk (102) 
n 

and 

(103) 

except for an overall sign. The transition matrix element 
r~_k differs from rLo for a real operator A. This is so 
because a right or left projection of the time-dependent 
SchrOdinger equation has been carried out in order to de
termine the response parameters. The residue in Eq. (11), 

lim (ltJ l + ltJk) «A;B» "'I 
"'1- -"'k 

=-{<AI[B,TnJICc)- ~ (nIBICC) 

X (ltJn + ltJk) - IFnk}Ak' (104) 

leads to the same identification of the transition matrix 
elements as the residue in Eq. (10). When evaluating the 
'transition matrix element, the last term in Eq. (102) is 
calculated in the elementary basis 

L An(ltJn + ltJk) - IFnk= - L X~( - ltJk)Fyk· 
n y 

(lOS) 

The evaluation of 

(OIAlk) (kIBIO) 

thus requires that we solve one set of linear equations de
termining the response vector X~( - ltJk) and determine 
the eigenvector representing the excitation operator Tk' 

B. Quadratic response function 

t. Evaluation of the quadratic response function 

The coupled cluster quadratic response function 
(CCQR) in the diagonal basis is obtained using Eqs. (93), 
(78), (79), and (65): 
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( (A;B:C) ) "'1,"'2 

nm nm 

nm nm 

+ L Y~( -w,-(2)(n I [H",Tml,TJ I CC)x!(w,)xf(W2) 
nmk 

(107) 
nm n 

where 

+ L Y!(wI)(m I [[H",Tn],Tkl ICC)Xf(W2) + L ~(W2)(m I [[Ho,Tn],Tkl ICC)Xf(w,) 
mk mk 

+ L (AI [[ [Ho,Tnl,Tml,Tkl ICC) xX!(w,)xf(W2) + L Y!(wI)(m I [C,Tnl ICC) + L ~(W2) 
~ m m 

x (m I [B,Tnl ICC) ) . ( 108) 

In deriving Eqs. (107) and (108), we have eliminated X BC and yBC, which depend on two simultaneous perturbations. 
The evaluation of the quadratic response function is performed in the elementary basis and requires the solution of six 
first-order response amplitudes: X~( - WI - (2), X~(WI)' X~(W2)' Y~( - WI - (2), Y!(w,), and ~(W2)' 

2. Second-order transition matrix element 

In the previous subsection, we showed that the transition matrix element r:_ k differs from r~_o due to right and left 
projection used to determine the response parameters. The second-order transition matrix element r!~o(W,) differs from 
r:~m(wI) for the same reason. Equation (12) may be used to determine r:~m(wI) and Eq. (13) to determine 
r!~o(WI)' We initially identify r!~o(W,) from the residue in Eq. (13): 

r;_mr!~o(WI) = - lim (W2 + Wm) «A;B;C» "'1,"'2 
"'2--"'m 

= (AI [C,Tml ICC) - t Ck(Wm + Wk) -IFkm ) X (~ (m I [A,Td ICC) 

+ t (m I [[Ho,Tkl,Tnl ICC)xt(wm - WI) )X!(WI) + ~ (m I [B,Tnl ICC)X~(wm - WI») . 

In deriving Eq. (109), we have used the following residue of the first-order response amplitudes: 

"'I~~ "'k (WI + Wk) Y~(WI) = - c5nk ( (AI [A,Tlll ICC) - ~ Am(Wk + Wm) - IFmk) . 

The second-order transition matrix element r!~o(W,) is thus seen to be 

n n 

where we have introduced 

a~m(WI)=(n I [A,Tml ICC) + L Xt(wI)(n I [[Ho,Td,Tml ICC). 
k 

The second-order transition matrix element r:~m(wI) may be determined from Eq. (13): 
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~~m(rol)= L x!( -rol)~m+ L X~(rol-rom)F!m+ L Y!( -rol)A~m(rol-rom) + L Y!(rot-rom) 
n n n n 

XA!m( -rol) + L X~(rol-rom) L Pkm(rom+rok)-IAfn( -rot) - L X!( -rol){ L Pkm(rom 
n k n k 

In deriving Eq. (113), we have used the residue 

lim (ro, - rok) Y~(ro,) = - An(ron + rok) - IPnk. 

(114) 

3. Transition matrix element between excited states 

The transition matrix element between excited states 
may be identified taking the double residue in Eq. (14) of 
theCCQR: 

lim (rol + rok) { lim (roz - romH (A; )i""1; V"'2» WI'W2) 

WI- Wk .-u,.-Wm 

= - {(A I [B,'Tkll CC) - ~ Pkn(rok + ron) - IBn} 

X I (k I [A,T m] ICC) + ~ X~(rok - rom} 

X (k I [[Hoo'Tn],'TmllCC) )Cm. (115) 

Comparing with the exact result in Eq. (14) gives the 
coupled cluster transition matrix element between excited 
state k and m: 

(116) 

For k=m, Eq. (116) gives the dipole moment for the 
excited state. 

VII. CONCLUSIONS 

The linear and quadratic response functions have been 
determined for a molecular system described by a coupled 
cluster reference state. From the linear response function, 
computationally tractable expressions have been derived 
for excitation energies, transition matrix elements, and 
second-order frequency-dependent properties. From the 
quadratic response function, expressions are determined 
for second-order transition matrix elements, transition ma
trix elements between excited states, and third-order mo
lecular properties. The derivations are based on a coupled 
cluster generalization of the Hellmann-Feynman theorem, 
where the average value is replaced by a transition expec
tation value with respect to the coupled cluster state and a 
dual-type state. The first-order response of the coupled 

(113) 

cluster state and of the dual type state appear in the deri
vation of the linear response function. In the derivation of 
the quadratic response function, the second-order response 
appears. Previous derivations of the linear response func
tion required both the first- and second-order responses of 
the coupled cluster state. The second-order response was 
eliminated afterwards using difficult algebra.7 Generaliza
tion of the previous derivation to determine the quadratic 
response function would be rather tedious, as it would re
quire the third-order response of the coupled cluster state 
to be initially evaluated and eliminated afterwards. 

In the limit where no truncation is carried out in the 
coupled cluster operator, the derivation of this paper de
scribes an alternative derivation of the response functions 
for the exact case. For truncated manifolds and with time
independent perturbations, the response functions become 
identical to those which, for example, are obtained using 
the Lagrangian technique of Ref. 4. 

In the subsequent paper, excitation energies have been 
determined from the linear response eigenvalue equation 
for a coupled cluster single and double reference state. The 
results are very encouraging and indicate that it may be 
very tractable to use response functions to calculate other 
molecular properties. This is very important, as it would 
extend significantly the application range of the coupled 
cluster model. 
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