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Triplet excitation energies are calculated from the response eigenvalue equation for the coupled
cluster singles and doubles~CCSD! model using an integral direct approach and an explicit spin
coupled triplet excitation space. The cost of one linear transformation for the triplet excitation
energy is about two times the cost of one linear transformation for the singlet excitation energy. The
triplet excitation spectrum of benzene is calculated using from 147 to 432 basis functions. The
calculated triplet excitation energies are compared with experimental and other theoretical values.
© 2000 American Institute of Physics.@S0021-9606~00!30742-5#

I. INTRODUCTION

Excitation energies may be calculated using two differ-
ent strategies. One approach is to calculate the total energies
of each individual state and obtain the excitation energy as
the energy difference between two states. Models that use
this approach are i.e., multireference configuration interac-
tion ~MRCI!1 and multireference perturbation theory
~MRMP!, i.e., CASPT2.2–4 The other approach is to use
response-function methods where excitation energies are cal-
culated directly from a response eigenvalue equation. Ex-
amples of this approach are the response eigenvalue equation
for self-consistent field~SCF!,5 also known as the random
phase approximation~RPA!, and coupled cluster~CC! wave
functions.

CC response theory was originally introduced by
Monkhorst and later generalized by many authors.6–15 In CC
response theory the ground state energy is obtained by solv-
ing a nonlinear set of equations, while the excitation energies
are obtained by solving a linear response eigenvalue prob-
lem. In order to obtain accurate excitation energies, a bal-
anced description is required of the ground and excited
states. In coupled cluster theory the accuracy of excitation
energies therefore depends on how accurate the single-
determinant reference function describes the ground state,
how well the ground state is described by the truncation in
the coupled cluster operator, and how accurate the excitation
manifold can describe the excitation process to the state of
interest.

Since the coupled cluster approach was introduced in
quantum chemistry,16–18 the method has gained increasing
popularity, offering an efficient treatment of the dynamical
correlation.19 The coupled cluster singles and doubles
~CCSD! model has been implemented using different

formulations.20–26This work describes a CCSD implementa-
tion of triplet excitation energies using the integral-direct
technique of Kochet al.25,26

Triplet excitation energies at the CCSD level have pre-
viously been presented by Stanton and Bartlett12 using a
spin-orbital basis formulation. We explicitly spin couple the
operators of the excitation space to triplet spin. The param-
etrization we use constitutes a generalization of the one used
in the singlet case27,28 and leads to working equations of
similar structure.27 The explicit spin coupling leads to a sig-
nificantly more efficient formulation than using the spin-
orbital basis.

After introducing the coupled cluster response eigen-
value equation in Sec. II we describe the explicit parametri-
zation of the triplet excitation space and its use to obtain an
efficient implementation of the linear transformation that is
required for the calculation of triplet excitation energies. In
Sec. III we outline the implementation and in Sec. IV we
report calculations of triplet excitation energies for benzene.
The last section contains some concluding remarks.

II. TRIPLET EXCITATION ENERGIES IN THE
INTEGRAL-DIRECT CCSD MODEL

A. Coupled cluster theory

The single-reference coupled cluster ansatz for a closed
shell system is

uCC&5exp~T!uHF&, ~1!

where the reference state is taken to be the Hartree–Fock
uHF& state. For aN-electron state the cluster operatorT trun-
cates at excitation levelN,

T5T11T21•••1TN , ~2!

where for example the one- and two-electron cluster opera-
tors area!Electronic mail: khald@kemi.aau.dk
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T15(
ai

t i
aEai , ~3!

T25 (
(ai)>(b j)

t i j
abEaiEb j5

1

2 (
abi j

t̃ i j
abEaiEb j , ~4!

with

t̃ i j
ab5~11dai,b j! t i j

ab . ~5!

Indicesi,j,k,l anda,b,c,drefer, respectively, to the occupied
and unoccupied orbitals in the reference state. A shorthand
notation for the cluster operators are

T5(
m

tmtm , ~6!

where tm are the cluster amplitude andtm are the corre-
sponding excitation operator. Inserting the CC ansatz into the
Schrödinger equation and multiplying from the left with
exp(2T), we obtain the similarity transformed Schro¨dinger
equation

exp~2T!H exp~T!uHF&5EuHF&. ~7!

In second quantization the electronic HamiltonianH can be
written as

H5(
pq

hpqEpq1
1

2 (
pqrs

~pqurs!epqrs , ~8!

whereEpq are the generators of the unitary group and

epqrs5EpqErs2dqrEps . ~9!

The cluster amplitudes are determined by projecting the
similarity transformed Schro¨dinger equation onto a manifold
of excitations out of the reference state:

um&5tmuHF&, ~10!

Vm5^muexp~2T!HuCC&50. ~11!

The CC energy is obtained by projection onto the reference
state

E5^HFuHuCC&. ~12!

Coupled cluster response functions have been derived
using different strategies.6,10,15 The excitation energies are
poles of the linear response function, and are determined as
the eigenvalues of the nonsymmetric coupled cluster Jaco-
bian

ARk5vkRk. ~13!

We have used that by choice of$m% the metric of the eigen-
value equation can be made diagonal:

Smn5^muexp~2T!tnuCC&5dmn . ~14!

The coupled cluster Jacobian is defined as

Amn5
]Vm

]tn
. ~15!

In standard CC theory, the Jacobian becomes

Amn5^muexp~2T!@H,tn#uCC&. ~16!

We describe the calculation of triplet excitation energies
where the excitation operatortn ~and consequently the pro-
jection manifold^HFutn

†) are explicit spin coupled to have
triplet spin.

B. Triplet excitations

From the annihilation and creation operators of second
quantization,a† anda, one can construct spin coupled single
excitation singlet and triplet excitation operators as

Spq
0,05

1

A2
~apa

† aqa1apb
† aqb!5

1

A2
Epq , ~17!

Tpq
1,05

1

A2
~apa

† aqa2apb
† aqb!5

1

A2
Tpq . ~18!

The operatorEaiTb j is a triplet tensor operator with zero
spin-projection on thez-axis, since it satisfies29

@Sz ,Sai
0,0Tb j

1,0#50 ~19!

and

@S6 ,Sai
0,0Tb j

1,0#5A2 ~Sai
0,0Tb j

1,61!. ~20!

There are three different ways to couple four different par-
ticles to triplet spin. Thus the triplet excitation space is
spanned by the operators

1

2
~Ta jEbi2TbiEa j!5 aaa

† aj aabb
† aib 2 aab

† aj baba
† aia ,

~21!

1

2
~TaiEb j2Tb jEai!5 aaa

† aiaabb
† aj b2aab

† aibaba
† aj a ,

~22!

1

2
~TaiEb j1Tb jEai!5 aaa

† aiaaba
† aj a2aab

† aibabb
† aj b ,

~23!

for a.b and i . j . As our triplet excitation operators we
choose

(1)Taib j5~TaiEb j1Tb jEai! a.b, i . j , ~24!

(2)Taib j5~TaiEb j2Tb jEai! ~ai !.~b j !. ~25!

We note that ifa5b andiÞ j or aÞb andi 5 j there is only
one way to obtain a triplet excitation operator in accordance
with Eqs.~24! and~25!. The diagonal elements vanish since
TaiEai50. The operator(1)Taib j has the symmetries

(1)Taib j5
~1 !Tb jai 52 (1)Ta jbi 52 (1)Tbia j , ~26!

while the operator(2)Taib j has the symmetries
(2)Taib j52 (2)Tb jai . ~27!

In our subsequent derivation it is convenient to be able to
write the two-electron triplet excitation operators both with
and without constraints in the summation indices similar to
the singlet operator in Eq.~4!. Introducing amplitudes(1)Ri j

ab

and(2)Ri j
ab which satisfy the same symmetries as the opera-

tors (1)Taib j and(2)Taib j, respectively, we obtain
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(1)R25 (
c.d,k. l

(1)Rkl
cd~TckEdl1TdlEck!

5
1

4 (
ckdl

(1)Rkl
cd~TckEdl 1 TdlEck!

5
1

2 (
ckdl

(1)Rkl
cd TckEdl , ~28!

(2)R25 (
ck.dl

(2)Rkl
cd~TckEdl2TdlEck!

5
1

2 (
ckdl

(2)Rkl
cd~TckEdl2TdlEck!

5(
ckdl

(2)Rkl
cdTckEdl . ~29!

The triplet double excitation operators may therefore be ex-
pressed both with and without constraints in the summation
indices. Alternative spin-coupling schemes for the triplet
double excitation operators have been given in Ref. 30.

C. Triplet basis

The triplet excitation manifold is defined by the excita-
tion operators

TaiuHF&5u~3!
a
i &, ~30!

~TaiEb j1Tb jEai!uHF&5u~1 !
ab
i j & a.b, i . j , ~31!

~TaiEb j2Tb jEai!uHF&5u~2 !
ab
i j & ~ai !.~b j !, ~32!

and forms together with the projection manifold,

^ i
a~3! u5

1

2
^HFu Tia , ~33!

^ i j
ab~1 !u5

1

8
^HFu ~EjbTia1EiaTjb!, ~34!

^ i j
ab~2 !u5

1

8
^HFu ~EjbTia2EiaTjb!, ~35!

an orthonormal basis. It is convenient to note that

^ i j
ab~1 !uEckTdluHF&5

1

2
P̃i j Pi j

ab daib j ,ckdl , ~36!

^ i j
ab~2 !uEckTdluHF&5

1

2
P̃i j

ab daib j ,ckdl , ~37!

where the permutation operatorsPi j
ab , P̃i j

ab , and P̃i j are de-
fined as

Pi j
ab~Ai j

ab!5Ai j
ab1Aji

ba , ~38!

P̃i j
ab~Ai j

ab!5Ai j
ab2Aji

ba , ~39!

P̃i j ~Ai j
ab!5Ai j

ab2Aji
ab . ~40!

D. The CCSD model

Following Ref. 25, the CCSD amplitude equations can
be written as

Vm5^muexp~2T12T2!H exp~T11T2!uHF&

5 ^muexp~2T2! Ĥ exp~T2!uHF&50, ~41!

where we have introduced theT1 similarity transformed
Hamiltonian

Ĥ5exp~2T1!H exp~T1!. ~42!

Since theT1 operator is a one-particle operator, the transfor-
mation of the Hamiltonian conserves the particle rank and
can be expressed as

Ĥ5ĥ1ĝ5(
pq

ĥpqEpq1
1

2 (
pqrs

ĝpqrsepqrs , ~43!

where the integralsĥpq and ĝpqrs are calculated as

ĥpq5(
mn

Lmp
p Lnq

h hmn , ~44!

ĝpqrs5 (
mnrs

Lmp
p Lrr

p Lnq
h Lss

h ~mnurs!. ~45!

Lp andLh are effective molecular orbital~MO! transforma-
tion matrices~particle and hole! defined as

Lp5C@12t1
T#, ~46!

Lh5C@11t1#. ~47!

In the last equations,

t15F 0 0

tai 0G , ~48!

where the orbitals are ordered with the occupied orbitals pre-
ceding the unoccupied orbitals.

Using theT1-transformed Hamiltonian, the CCSD Jaco-
bian can be expressed in the coupled cluster doubles~CCD!
form

Amn5^muexp~2T2!@Ĥ,tn#exp~T2!uHF&

5^mu@Ĥ,tn#uHF&1^mu@@Ĥ,tn#,T2#uHF&. ~49!

This enables us to write the CCSD triplet Jacobian in matrix
form as
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Amn5S ^ (3)m1uĤ1uHF& ^ (3)m1uĤ21
(1)uHF& ^ (3)m1uĤ22

(1)uHF&

^ (3)m21uĤ1uHF& ^ (3)m21uĤ21
(1)1Ĥ21

(2)uHF& ^ (3)m21uĤ22
(1)1Ĥ22

(2)uHF&

^ (3)m22uĤ1uHF& ^ (3)m22uĤ21
(1)1Ĥ21

(2)uHF& ^ (3)m22uĤ22
(1)1Ĥ22

(2)uHF&
D , ~50!

where

Ĥ15@Ĥ1@Ĥ,T2#,tn1
#, ~51!

Ĥ26
(1)5@Ĥ,tn26

#, ~52!

Ĥ26
(2)5@@Ĥ,T2#,tn26

#. ~53!

E. Transformation of the trial vectors

When solving large eigenvalue equations, iterative tech-
niques are required. The key computational step is the linear
transformation of a trial vector with the Jacobian matrix. We
describe how to perform a linear transformation using an
atomic orbital~AO! integral driven approach.

The trial vector in the triplet case is

R5S (3)R1

(1)R2

(2)R2

D . ~54!

Here the different parts of the vector contain the independent
parameters. The transformed vector can be written

r5AR, ~55!

or in terms of the singles and doubles components,

S (3)r1

(1)r2

(2)r2

D 5S A11
(3)R11A12

(1)R21A13
(2)R2

A21
(3)R11A22

(1)R21A23
(2)R2

A31
(3)R11A32

(1)R21A33
(2)R2

D . ~56!

Explicit expressions for the transformed vectors are given in
Tables I and II. For convenience we have introduced some
notational simplifications. We use an over-bar to indicate
that the index has been transformed with the(3)R1 ampli-
tudes, and have introduced two different intermediates,

Ap̄qrs52(
k

(3)Rk
pAkqrs , ~57!

Bpq̄rs5(
a

(3)Rq
aBpars . ~58!

Likewise we have introduced the ‘‘barred’’ particle and hole
matrices,

L̄mr
p 52(

k

(3)Rk
r Lmk

p , ~59!

L̄mq
h 5(

a

(3)Rq
aLma

h . ~60!

III. IMPLEMENTATION

The AO integrals are calculated in distributions with
three free and one fixed AO index,

I ab,g
d 5ĝabgd with a>b. ~61!

All distributions with d belonging to the same shell are cal-
culated simultaneously and then written to disk. The distri-
butions are subsequently read back in one at a time in a loop
over thed index belonging to the shell in question. Inside the

TABLE I. The linear transformed vector components.

(3)rai
(1)5 (c

(3)Ri
c (1)Eac

(1)2(k
(3)Rk

a (1)Eki
(2)2(kĝak̄ki12 (ck~

(1)Rik
ac1 (2)Rik

ac!F̂kc

1(cklt li
acĝlk̄kc1 2 (cdk~

(1)Rik
cd1 (2)Rik

cd!ĝackd2 2 (ckl~
(1)Rkl

ac1 (2)Rkl
ac!ĝkilc

(3)raibj
(1) 5

1
2P̃ij@(abLaa

p Lbb
p (1)r̃aibj

BF 1(klt kl
ab (1)G̃kilj1(kl

(1)Rkl
ab Gkilj

1Pij
ab~(c

(1)Rij
ac (1)Ebc

(1)2(k
(1)Rik

ab (1)Ekj
(2)2(ckt ik

cb (1)C̃ckaj

22(ck
(1)Rjk

bc (1)Cckai1
(3)raibj

com!#

(3)raibj
(2) 5

1
2@(abLaa

p Lbb
p (2)r̃aibj

BF 1(klt kl
ab (2)G̃kilj 22(kl

(2)Rkl
ab Gkilj

1P̃ij
ab~22(c

(2)Rij
ac (1)Ebc

(1)12(k
(2)Rik

ab (1)Ekj
(2)1(ckt ik

cb (3)C̃ckaj

12(cl
(2)Rik

cb (1)Cckaj22(ck
(2)Rjk

bc (1)Cckai1
(3)raibj

com!#

(3)raibj
com5 (ab Laa

p L̄bb
p raibj

BF 2(ckt ik
ca (3)D̃ckbj1(ct ij

ac (3)Ẽbc
(1)2 (kt ik

ab (3)Ẽkj
(2)

1 (ckt ik
ac (1)D̃ckbj12(ck~

(1)Rjk
bc1(2)Rjk

bc! (3)Dckai

TABLE II. Intermediates in CCSD triplet linear transformation from the
right.

Global intermediates Local intermediates

ra ib j
BF 5ĝa ib j1(cdt i j

dcĝadbc
(1)r̃a ib j

BF 5ĝa ib ̄1ĝa ı̄b j1(cd
(1)Ri j

cdĝacbd
(2)r̃a ib j

BF 5ĝa ib ̄2ĝa ı̄b j22(cd
(2)Ri j

cdĝacbd

Gkil j 5ĝkil j 1(cdt i j
cdĝkcld

(1)G̃kil j 5ĝl ̄ki1ĝl jk ı̄ 1(cd
(1)Ri j

cdĝldkc
(2)G̃kil j 5ĝkil ̄2ĝk ı̄ l j 22(cd

(2)Ri j
cdĝkcld

(1)Ccka j5ĝkiac2(dlt l i
adĝlckd

(1)C̃cka j5ĝāck j1ĝack̄
(3)C̃cka j5ĝāck j2ĝack̄

(3)Dckai5ĝaikc1(dlt i l
adL̂kcld

(1)D̃ckai5L̂ āikc1L̂a ı̄kc

2(dlt i l
daĝldkc

(3)D̃ckai5ĝāikc1ĝa ı̄kc

(1)Ebc
(1)5F̂bc2(dkltkl

dbL̂ lckd
(3)Ẽbc

(1)5F̂ b̄c2(kĝbk̄kc12(dkl
(2)Rkl

dbĝlckd

1(dkl 2
(1)Rkl

dbĝldkc

(1)Ek j
(2)5F̂k j1(cdlt l j

cdL̂ lckd
(3)Ẽk j

(2)5F̂k̄2( l ĝk l̄ l j 12(cdl
(2)Rjl

cdĝldkc

1(cdl 2
(1)Rjl

cdĝkcld
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d loop, one integral distribution is kept in core together with
two packed result vectors and the twoR2 amplitudes in the
squared form as well as some small intermediates. The total
memory requirement for the triplet excitation energy calcu-
lation is thus of the order of 3V2O21 1

2N
3, whereV and O

are the number of virtual and occupied orbitals, respectively,
and N is the total number of orbitals. For comparison the
requirement for the ground state calculation is3

2V
2O2

1 1
2N

3.
To get an effective algorithm for the calculation of the

linear transformed vectors, we have considered the operation
count, the vectorization of the code, as well as the memory
and scratch-space requirements. The use of global and local
intermediates gives a significant reduction in the operation
count. The global intermediates do not depend on the trial
vector, and are therefore only constructed once. The local
intermediates on the other hand depend on the trial vector
and are recalculated in each linear transformation. The addi-
tional scratch-space requirements from the use of intermedi-
ates do not exceed a few timesV2O2.

For most contributions the implementation follows the
outlines described in Refs. 26 and 27, with straightforward
generalizations accounting for the antisymmetry of(2)Ri j

ab

with respect to permutation of (ai) and (b j). An exception
is theBF terms,

raib j
BF6 5

1

2 (
ab

Laa
p Lbb

p (6)r̃a ib j
BF , ~62!

where we employ the full symmetry of the(6)R2 to reduce
the operation count. Introducing intermediates similar to
those defined in Ref. 26,

(P/M )Nci, j
d 5(

d

(1/2)Rji
dcLdd

h , ~63!

(P/M )Mg,i j
d 5Lg i

h L̄d j
h 1(

c
~P/MNci, j

d Lgc
h !, ~64!

(P/M )Mg,i j
d6 5 (P/M )Mg,i j

d 6 (P/M )Mg, j i
d , ~65!

Jab,g
d6 5~~agubd!6~bguad!!~11dgd!21, ~66!

the BF terms can be computed as

(M )Vab,i j
B6 5

1

2 (
g>d

Jab,g
d6 (M )Mg,i j

d7 , ~67!

raib j
BF25(

ab
~ (M )Vab,i j

B1 1 (M )Vab,i j
B2 !Laa

p Lbb
p , ~68!

and

(P)Vab,i j
B2 5

1

2 (
g>d

Jab,g
d2 (P)Mg,i j

d2 , ~69!

raib j
BF15 P̃i j (

ab

(P)Vab,i j
B2 Laa

p Lbb
p . ~70!

For the last equation we have used that the(1)R2 coefficients
are antisymmetric with respect to interchange of two occu-
pied indices, and thus(P)Mg,i j

d1 50.
The G intermediates can be calculated from theBF in-

termediates as in Ref. 27, where an outline of the algorithm

for calculating the integral-direct triplet excitation energies
also can be found. It should be noted that the terms
(abLaa

p L̄bb
p ra ib j

BF , (ckt ik
ca (3)D̃ckb j , (ct i j

ac (3)Ẽbc
(1) ,

(kt ik
ab (3)Ẽk j

(2) , (ckt ik
ac (1)D̃ckb j , and (ck(

(1)Rjk
bc

1 (2)Rjk
bc) (3)Dckai occur both in the calculation of(1)rTrans

and(2)rTrans. These terms are only calculated once and then
added to either(1)rTrans or (2)rTrans. The only difference is
due to the different permutation symmetries.

In Table III the operation count is listed term by term.
Furthermore the operation count for the implementation of
the singlet excitation energy is given. The scaling of the
triplet implementation is between 1.5 and 2 of the corre-
sponding singlet implementation. However the number of
singlet and triplet double excitation coefficients are not
equal. For four different indices we have 50% more param-
eters in the triplet case.

IV. BENZENE TRIPLET EXCITED STATES

In this section we report calculations of the lowest triplet
excitation energies of benzene using the CC2~Ref. 31!
and the CCSD model. We use the same geometry as in
older CASPT2~Ref. 32! and SOPPA~Ref. 33! calculations.
To understand the excitation spectrum recall that a Hu¨ckel
p electron calculation gives the molecular orbitals 1a2u ,
1e1g , 1e2u , and 1b2g and the p electron ground state
configuration 1a2u

2 1e1g
4 . The excitation spectrum contains

valence p electron states originating from the con-
figurations 1a2u

2 1e1g
3 1e2u

1 (1,3E1u ,1,3B1u ,1,3B2u) and
1a2u

1 1e1g
4 1e2u

1 (1,3E2g). The excitation spectrum also con-
tains Rydberg excitations. We consider here only then53
Rydberg series representing excitations out of the 1e1g or-
bital. The excitation (e1g→3p0,3d1) are classified as Ryd-
berg pp* excitations while excitations of the type (e1g

→3s,3p1,3d2,3d0) are classified as Rydbergps* excita-
tions.

To give a proper description of the Rydberg states the
standard aug-cc-pVDZ and aug-cc-pVTZ basis sets have
been augmented with two diffuse functions centered at the
center-of-mass~CM!. The saturation of diffuse CM functions
at the aug-cc-pVDZ level has previously been
investigated.34,31 We denote the basis sets used aug-cc-
pVDZ-CM2 and aug-cc-pVTZ-CM2, undestanding that two

TABLE III. Operation counts of the singlet and triplet excitation energy
implementations. The nomenclature refers to Tables II and III in Ref. 27 and
the corresponding triplet terms. The intermediates are restricted to have a
maximum size of the orderN2O2.

Term Singlet Triplet

G intermediate NO3(N1O) 2NO3(N1O)
A terms V2O4 2V2O4

BF terms 1/4N4O214N3O2 3/8N4O216N3O2

C terms 2V3O3 5V3O3

D terms 2V3O3 3V3O3

E terms N2VO2 2N2VO2

G terms N3O21N2VO 2N3O21N2VO
H terms NVO3 2NVO3

I terms V2O2 •••
J terms VO •••
Sum 1/4N4O214V3O31V2O4 3/8N4O218V3O312V2O4
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diffuse center-of-mass functions have been added. Calcula-
tions have also been carried out with the ANO basis supple-
mented with an optimized diffuse Rydberg CM function.
This basis is here referred to as the ANO1 basis.32

Triplet excitation energies obtained at the CCS@for the
triplet excitation energies, this is equivalent to the configu-
ration interaction singles~CIS! also known as the Tamm
Dancoff approximation~TDA!#, CC2, and CCSD level with
the aug-cc-pVDZ-CM2, aug-cc-pVTZ-CM2, and ANO1 ba-
sis sets are given in Table IV. Comparing the results in Table
IV the change from aug-cc-pVDZ-CM2 to aug-cc-pVTZ-
CM2 for the valence states range from20.05–20.01 eV
excluding the 13E2g state at the CC2 level which increases
by 0.15 eV. The Rydberg excitations are increased in CCSD
by about 0.12 eV. Comparing the triplet excitation energies
for the CCS, CC2, and the CCSD model it is seen that for all
three basis sets the CC2 valence excitation energies are in
general closer to the CCSD excitation energies than are the
corresponding CCS excitation energies. On the contrary for
the Rydberg excitations in general the CCS excitation ener-
gies are closer to the CCSD excitation energies. The CCS
model thus gives a reasonable description for the Rydberg
states and here CC2 does not lead to any improvement due to
an overestimation of the double contribution. The above
findings are in accordance with previous observations for
singlet excitation energies.27,34

In Table V triplet excitation energies are given for dif-
ferent methods and using the ANO1 basis. The same geom-
etry was used in all the calculations. If we compare the
SOPPA~the second-order polarization propagator approach!,
CC2, and CASPT2 results in Table V with the CCSD results,
we observe a different behavior for the valence and the Ry-
dberg excitations and these are therefore discussed sepa-
rately. For the valence states the difference between the
CCSD results and the results obtained using the second-order
models are CASPT2:20.6–20.1 eV, SOPPA:20.4–20.2

eV, and CC2:20.1–10.4 eV. For the Rydberg states the
corresponding differences are CASPT2:20.2–20.1 eV,
SOPPA:20.4–20.2 eV, and20.2–20.1 eV for CC2 ex-
cept for the 23Eg that has a large valence contribution in
CC2. The different second-order methods thus give rather
different results and all differ significantly from the CCSD
results.

For comparison we have in Table VI given the CCSD/
aug-cc-pVTZ-CM2 singlet and triplet excitation energies to-
gether with the experimental excitation energies. As dis-
cussed previously the aug-cc-pVTZ-CM2 basis set may be
expected to give results close to the basis set limit. From the
percent single excitation contribution %T1 in the excitation
vectors it is seen that the triplet excitations are more domi-
nated by single excitation contributions than the correspond-
ing singlet excitation. For the singlet valence states %T1 is
85%–95% while it is 98%–99% for the valence triplet state.
For the singlet Rydberg states %T1 is 95%–96% while it is
98%–99% for the triplet Rydberg states. The larger %T1 in
the triplet excitations means that we may expect smaller cor-
relation errors in the CCSD triplet excitation energies than in
the corresponding singlet excitation energies.

For the singlet valence states the magnitude of the con-
tribution from triple excitations depends significantly on the
considered state. For example in CC3 calculations on the
valence singlet excitation energies the triple excitation con-
tribution to the 11B2u state was20.11 eV while it was
20.765 eV for the valence state 21E2g . It is therefore dif-
ficult to estimate the correlation error in the CCSD valence
triplet excitation energies based on a comparison with trends
in the singlet spectrum. However we note that the correlation
error for the triplet excitations may be expected to be smaller
than for the corresponding singlet excitations.35

The Rydberg singlet and triplet states originate from dif-
ferent spin couplings of the molecular cation and the electron
in the Rydberg orbital. The singlet and triplet Rydberg exci-

TABLE IV. C6H6 Coupled Cluster triplet excitation energies.

One electron basis:
CC Model:

ANO1 aug-pVDZ-CM2 aug-pVTZ-CM2

CCS CC2 CCSD CCS CC2 CCSD CCS CC2 CCSD %T1

Valence3pp*
1 3B1u 3.363 4.328 3.961 3.394 4.350 3.999 3.385 4.345 3.974 98.9
1 3E1u 4.878 5.079 4.920 4.893 5.083 4.930 4.881 5.058 4.903 97.9
1 3B2u 5.490 5.932 5.840 5.470 5.906 5.808 5.449 5.873 5.755 98.5
1 3E2g 7.596 7.637 7.712 7.605 7.628 7.727 7.595 7.782 7.719 97.9

Rydberg3pp*
2 3E1u 7.118 7.044 7.182 7.124 7.029 7.171 7.117 7.178 7.287 98.4
1 3A1g 7.652 7.601 7.782 7.659 7.591 7.775 7.655 7.750 7.897 98.5
2 3E2g 7.927 7.993 7.875 7.907 7.991 7.872 7.906 7.965 7.979 98.3
1 3A2g 7.856 7.684 7.880 7.605 7.670 7.879 7.872 7.833 8.009 98.4

Rydberg3ps*
1 3E1g 6.535 6.370 6.501 6.430 6.275 6.385 6.437 6.416 6.510 98.4
1 3A2u 6.847 6.789 6.923 6.837 6.761 6.895 6.849 6.921 7.023 98.5
1 3E2u 7.092 6.882 7.041 7.089 6.857 7.019 7.101 7.018 7.152 98.3
1 3A1u 7.286 6.969 7.145 7.295 6.950 7.132 7.308 7.111 7.268 98.2
2 3E1g 7.534 7.439 7.607 7.480 7.391 7.530 7.444 7.508 7.595 98.4
1 3B2g 7.656 7.444 7.631 7.649 7.409 7.591 7.662 7.572 7.724 98.3
1 3B1g 7.691 7.461 7.657 7.681 7.426 7.615 7.692 7.588 7.748 98.3
3 3E1g 7.708 7.499 7.678 7.700 7.456 7.631 7.707 7.599 7.754 98.3
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TABLE V. Triplet excitation energies for benzene in the ANO1 basis set.

State

CASSCF CASPT2 RPA SOPPA CCS CC2 CCSD CCSD %T1

Expt.Ref. 32 Ref. 32 Ref. 33 Ref. 33 This work

Valence3pp*
1 3B1u 4.05 3.89 Instability 3.75 3.363 4.328 3.962 98.9 3.94a

1 3E1u 5.07 4.49 4.70 4.48 4.878 5.079 4.920 97.9 4.76a

1 3B2u 6.93 5.49 5.07 5.50 5.490 5.932 5.840 98.5 5.60a

1 3E2g 7.61 7.12 7.24 7.41 7.596 7.638 7.712 97.9 7.24–7.74b

Rydberg3pp*
2 3E1u 6.92 6.98 7.11 6.92 7.118 7.044 7.182 98.4
1 3A1g 7.42 7.62 7.64 7.50 7.652 7.601 7.782 98.5
2 3E2g 7.44 7.55 7.85 7.57 7.927 7.993 7.875 98.1
1 3A2g 7.50 7.70 7.85 7.59 7.856 7.685 7.880 98.3

Rydberg3ps*
1 3E1g 6.22 6.34 6.44 6.14 6.535 6.370 6.501 98.3
1 3A2u 6.61 6.80 6.82 6.64 6.847 6.789 6.923 98.5
1 3E2u 6.73 6.90 7.08 6.74 7.092 6.882 7.041 98.3
1 3A1u 6.83 7.00 7.28 6.84 7.286 6.969 7.145 98.2
2 3E1g 7.31 7.57 7.51 7.32 7.534 7.439 7.607 98.4
1 3B2g 7.27 7.53 7.65 7.33 7.656 7.444 7.632 98.3
1 3B1g 7.27 7.53 7.69 7.35 7.690 7.461 7.657 98.3
3 3E1g 7.36 7.56 7.71 7.38 7.708 7.499 7.678 98.4

aReference 36.
bReference 32.

TABLE VI. C6H6 CCSD singlet and triplet excitation energies in the aug-pVTZ-CM2 basis set.

Spin

Singlet Triplet

CCSD Exp.~Origin! %T1 CCSD Exp. %T1

Valencepp*
1 B1u(e1g→e2u) 6.481 6.0348a 95 3.974 3.95b 99
1 E1u(e1g→e2u) 7.227 6.8656a 95 4.903 4.75b 98
1 B2u(e1g→e2u) 5.180 4.7873,a 4.790c 91 5.755 5.60b 99
E2g

d 9.168 7.805e 87 7.719 7.24–7.74f 98

Rydbergpp*
2 E1u(e1g→3p0) 7.501 7.413g 95 7.287 ~7.20!h 98
A1g

i 7.984 7.807,e 7.808,j 7,819k 96 7.897 ~7.72!h 99
E2g

l 7.972 ••• 95 7.979 ••• 98
1 A2g(e1g→3d1) 8.009 ••• 95 8.009 ••• 98

Rydbergps*
1 E1g(e1g→3s) 6.563 6.334m 95 6.510 ~6.28!h 98
1 A2u(e1g→3p1) 7.092 6.932,n 6.928a,g 95 7.023 ~6.86!h 99
1 E2u(e1g→3p1) 7.169 6.953n 95 7.152 ~6.94!h 98
1 A1u(e1g→3p1) 7.262 ••• 96 7.268 ••• 98
2 E1g(e1g→3d0) 7.671 7.535,e 7.540j 95 7.595 ~7.46!h 98
1 B2g(e1g→3d2) 7.760 ••• 95 7.724 ••• 98
1 B1g(e1g→3d2) 7.751 ••• 95 7.748 ••• 98
3 E1g(e1g→3d2) 7.772 ••• 95 7.754 ••• 98

aReference 44.
bReference 36.
cReference 38.
d2 1E1g(a2u→e2u) and 13E1g(a2u→e2u).
eReference 41.
fReference 32.
gReference 37.
hSee text.
i2 1A1g(e1g→3d1) and 13A1g(e1g→3d1).
jReference 43.
kReference 42.
l1 1E1g(e1g→3d1) and 23E1g(e1g→3d1).
mReference 39.
nReference 40.

7771J. Chem. Phys., Vol. 113, No. 18, 8 November 2000 Triplet excitation energies



tation energies will therefore approach each other for the
higher Rydberg states where the interaction with the other
states becomes vanishing. This is confirmed by the results in
Table VI, where for example the CCSD excitation energies
to the ps* singlet and triplet Rydberg state are 6.563 and
6.510 eV, respectively, for the 1E1g state while it is 7.772
and 7.754 for the 3E1g state. As expected the triplet Ryd-
berg excitation energies are a little smaller than the corre-
sponding singlet Rydberg excitation energies. For the singlet
Rydberg excitations the triples contribution is small. For ex-
ample in the CC3 calculations on the Rydberg singlet exci-
tation energies for benzene the triples contribution was less
than one-hundreth of an eV. The triplet Rydberg excitations
may therefore be expected also to have small triple contribu-
tions and the vertical CCSD/aug-cc-pVTZ-CM2 may there-
fore be expected to be rather accurate.

The vertical CCSD/aug-cc-pVTZ-CM2 singlet Rydberg
excitation energies were in Ref. 27 between 0.09 and 0.23
eV higher than the experimental Rydberg excitation ener-
gies, mainly due to the fact that geometry relaxation and
zero-point vibrational effects were neglected. Due to the
similarity between singlet and triplet Rydberg states we may
estimate experimental triplet Rydberg excitation energies by
subtracting from the CCSD/aug-cc-pVTZ-CM2 triplet verti-
cal excitation energies the difference between the vertical
singlet CCSD/aug-cc-pVTZ-CM2 excitation energy and the
singlet experimental Rydberg excitation energy. For example
the estimate for theps* 1 3E2u experimental Rydberg exci-
tation energy becomes 7.152 eV–~7.169 eV–6.953 eV!
'6.93 eV. The estimated ‘‘experimental’’ Rydberg triplet
excitation energies are given in parantheses in Table VI. No
experimental triplet Rydberg excitation energies have so far
been reported.

V. CONCLUSION

In this work we have presented an implementation of
CCSD triplet excitation energies using an explicit spin-
coupled triplet space. The implementation is integral-direct
and the cost for one linear transformation for the triplet ex-
citation energies is about two times the cost for one linear
transformation for the singlet case.

The triplet spectrum has been calculated for benzene us-
ing basis sets of both augmented double zeta and triple zeta
quality and with different sets of diffuse CM functions. We
have found that the triplet excitation energies are more single
excitation dominated than the corresponding singlet excita-
tion energies and the CCSD triplet excitation energies may
therefore be expected to have smaller correlation errors than
the corresponding singlet excitation energies. From a com-
parison with the singlet spectrum we have estimated the cor-
relation error for the CCSD triplet vertical valence excitation
energies still to be considerabe while the CCSD triplet ver-
tical Rydberg excitation energies may be expected to have
very small correlation errors. We have also estimated experi-
mental triplet Rydberg excitation energies based on a com-
parison with the singlet spectrum. In general we have found
that the triplet excitation energies are more single excitation
dominated than the corresponding singlet excitation energies.
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