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Perturbative triple excitation corrections to coupled cluster singles
and doubles excitation energies

Ove Christiansen, Henrik Koch, and Poul Jørgensen
Department of Chemistry, University of Aarhus, DK-8000 Aarhus C, Denmark

~Received 22 November 1995; accepted 19 April 1996!

The contributions from various excitation levels to excitation energies calculated within a coupled
cluster framework are analyzed in terms of order in the fluctuation potential. In particular, the role
of triple excitations is considered, focusing on their importance for describing excitations of single
and double replacement dominated character. Several noniterative triples corrections to the coupled
cluster singles and doubles~CCSD! excitation energies are proposed. In the CCSDR~3! approach,
which is a noniterative analog to the recently proposed iterative CC3 model, single replacement
dominated excitations are correct through third order in the fluctuation potential, and double
replacement dominated excitations are correct through second order. The performance of
CCSDR~3! is compared to other noniterative and iterative triples models in benchmark calculations
on CH1, Ne, BH, and CH2. © 1996 American Institute of Physics.@S0021-9606~96!02528-7#

I. INTRODUCTION

Second-order Møller–Plesset theory~MP2!, coupled
cluster singles and doubles~CCSD!, and CCSD with pertur-
bative triples contributions, CCSD~T!,1 constitute a hierarchy
of approximations where electron correlation is treated at a
still higher level of sophistication. Increasing accuracy can
therefore be obtained for ground state properties in single
configuration dominated systems going to higher levels in
this hierarchy. In iterative coupled cluster models like
CCSD, both excitation energies2 and transition moments3

can be determined from coupled cluster response theory.4–8

The frequency dependent polarizability derived from a MP2
quasienergy exhibits a pole structure that is inconsistent with
the one of the exact response function,9,10 and excitation en-
ergies and transition moments cannot therefore be obtained
in MP2. Similarly, for the two-step approach CCSD~T!,
where perturbative triple excitation corrections are added to
the ground state energy, a response function with one set of
poles improved relative to the poles of the CCSD response
function does not exist. Excitation energies and transition
moments therefore cannot be obtained with increasing accu-
racy in the MP2, CCSD, and CCSD~T! hierarchy.

In a recent series of papers we have introduced a hierar-
chy of coupled cluster models:7,11–13 CCS(N4), CC2(N5),
CCSD(N6), CC3(N7), etc., where excitation energies and
transition moments can be obtained at increasing accuracy.
The numbers in parenthesis indicate the computational effort
given in terms of the scaling of the calculations with the
number of orbitalsN. The CC2 and CC3 models are intro-
duced as approximations to CCSD and coupled cluster
singles, doubles, and triples~CCSDT!, respectively. The
strategies used in introducing CC2 and CC3 are similar, and
are based on a perturbational analysis of the coupled cluster
equations in terms of order in the fluctuation potential, and
on the crucial role of single excitations in coupled cluster
property calculations. In CC2 we approximate the CCSD
doubles equation to lowest nonvanishing order in perturba-
tion theory~first order! and in CC3 the CCSDT triples equa-

tion is approximated to lowest nonvanishing order~second
order!. The singles amplitudes will respond to external per-
turbations to zeroth order in the fluctuation potential and we
therefore treat the singles as zeroth-order parameters. The
CC2 model is similar to MP2 in the sense that the ground
state energy is correct to second order in the fluctuation po-
tential, and both scale asN5. The CC3 ground state energy
contains the same fourth- and fifth-order terms as CCSD~T!
and scales asN7. For ground state energies~and thus all
properties obtained from this as derivatives! the CCS, CC2,
CCSD, CC3 hierarchy should thus be considered similar to
that of HF, MP2, CCSD, and CCSD~T!, but the introduction
of CC2 and CC3 extends the hierarchical concept to excita-
tion energies, transition moments, etc., as well as frequency
dependent molecular properties will have a proper pole
structure.

We have derived the response functions for the coupled
cluster models in the hierarchy of coupled cluster models.7,11

From these we have determined excitation energies and tran-
sition moments as poles and residues, respectively. This
leads to coupled cluster eigenvalue equations for determining
the excitations energies. Since CC2 and CC3 are iterative
models we need to solve equations iteratively withN5 and
N7 operation count, respectively, to find both the reference
energy and the excitation energies. However perturbational
corrections to CCS and CCSD excitation energies can be
defined that, from a perturbational point of view, level CC2
and CC3 in accuracy. It should be emphasized that the exci-
tation energies obtained from such perturbational approaches
do not represent poles of a response function, and are not
rigorously related to a ground state energy. However, the
perturbational corrections are interesting because~1! nonit-
erative approaches are computationally preferable to iterative
models and~2! they may be helpful in understanding the
importance of individual contributions to the excitation en-
ergies. Even though a noniterative approach is justified from
perturbation theory there is no guarantee that it will perform
similar to iterative models. However this does not necessar-
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ily imply that the noniterative approaches are inferior to it-
erative models on the contrary. For ground state energies it is
an empirical observation that the noniterative CCSD~T! ap-
proach is as good as iterative triples models like CC3 and
CCSDT-1a.14

A noniterative CC2 approach defines a doubles correc-
tion to the CCS excitation energies and in fact becomes
equivalent to the CIS~D! approach of Head–Gordonet al.15

We compare models including the doubles iterative or non-
iterative in another publication. In this paper we investigate
triples corrections to CCSD excitation energies.

In Ref. 16 Watts and Bartlett presented excitation ener-
gies in the CCSDT-1a model.17 In a recent paper7 we ana-
lyzed CC3 and CCSDT-1a excitation energies and found that
for single replacement dominated excitations CCSDT-1a are
only correct to second order in the fluctuation potential,
whereas CC3 is correct through third order. The CCSD
model is correct through second order. In recent benchmark
calculations13 we found that CCSDT-1a often fails to im-
prove the CCSD results, while in CC3 all considered excita-
tions are improved. The double replacement dominated ex-
citations are significantly improved in both CC3 and
CCSDT-1a and are correct through second order in the fluc-
tuation potential in both approximations. In the case of
CCSD these excitations are only determined correct through
first order. The different behavior of CC3 and CCSDT-1a for
single replacement dominated excitation is due to the fact
that CC3 includes the direct coupling of single and triple
excitations, whereas CCSDT-1a does not,7,13 and this cou-
pling enters in third order. In Ref. 16 a noniterative triples
method denoted EOM-CCSD~T! was proposed based on
CCSDT-1a. From the CCSDT-1a eigenvalue equation a
triples correction was introduced in a proposed analogy with
the connection between CCSDT-1a and CCSD~T! for ground
state energies. Since EOM-CCSD~T! is based on CCSDT-1a
it does not include either the direct singles–triples coupling
and third-order terms are thus neglected for single replace-
ment dominated excitations. As we shall see later, double
replacement dominated excitations in EOM-CCSD~T! have
errors in second order in the fluctuation potential. EOM-
CCSD~T! improved the quality of double replacement domi-
nated excitations considerably relative to CCSD. While both
EOM-CCSD~T! and CCSD~T! in a loose sense may be de-
scribed as a first iteration of CCSDT-1a in, respectively, the
ground excitation energy expressions and the ground state
energy, the analogy between CCSD~T! and EOM-CCSD~T!
has some important shortcomings:~1! CCSD~T! does not
have a response function with a pole structure allowing for
the identification of CCSD~T! excitation energies; CCSD~T!
excitation energies therefore do not exist!~2! A noniterative
correction to excitation energies does not have a rigorous
connection to ground state energies.~3! The EOM-CCSD~T!
excitation energy correction is based on a proposed analogy
between eigenvalue equations and reference energy equa-
tions. However in the presentation of the EOM-CCSD~T!
approach in Ref. 16 an order analysis in the fluctuation po-
tential is not given, while the order concept is essential in
establishing the CCSD~T! correction to the ground state

energy.1 We shall see that the EOM-CCSD~T! excitation en-
ergy in this sense is quite inferior to the fourth-order quality
of a CCSD~T! ground state energy, and to other approaches
for including triples corrections to CCSD excitation energies.
~4! The CCSD~T! approach differs from other earlier pertur-
bative corrections like CCSD1T~CCSD!18 due to the inclu-
sion of a singlet–triplet coupling term, that actually first en-
ter in fifth order. No direct singlet–triplet coupling is
included in the EOM-CCSD~T! excitation energy.

In this paper we will introduce corrections to CCSD ex-
citation energies based on perturbation theory arguments.
We identify the most important contributions beyond CCSD
based on perturbation theory in the fluctuation potential. This
leads us to define a pseudoperturbation to the CCSD eigen-
value problem, including the most important higher order
contributions. From an expansion of the eigenvalue equation
in this pseudoperturbation, we identify the lowest order con-
tributions beyond CCSD. This is a generalization of the ap-
proach used by Head-Gordonet al. in the introduction of the
CIS~D! doubles correction to CIS excitation energies.15 We
obtain a perturbational corrected excitation energy that is
correct throughthird order in the fluctuation potentialfor
single replacement dominated excitations, and throughsec-
ond order in the fluctuation potentialfor double replacement
dominated excitations. We denote the excitation energies ob-
tained in this approach as coupled cluster single and double
response excitation energies with lowest order triples correc-
tions @CCSDR~T!#. The ~T! is used to emphasize that nonit-
erative triples corrections are added to the CCSD result. It
does not indicate a direct relationship with CCSD~T!. The R
indicates that we consider coupled cluster response and it is
to the response properties we add triples corrections. From
iterative triples models like CC3, CCSDT-1a, and
CCSDT-1b17 we may introduce corresponding noniterative
perturbational corrections. We denote these approaches
CCSDR~3!, CCSDR~1a!, and CCSDR~1b!. None of these ex-
citation energies has a strict relationship to a ground state
energy. Of course the triples corrected excitation energy can
be added to various ground state energies to obtain an ap-
proximation for the excited state energy, but we should keep
in mind that this is an additional approximation. We discuss
this topic in a forthcoming publication. In this paper we in-
troduce the perturbational triples corrections to CCSD and
compare excitation energies for CH1, Ne, BH, and CH2 with
results obtained in recent benchmark calculations.

II. PERTURBATION THEORY ANALYSIS OF
EXCITATION ENERGIES IN COUPLED CLUSTER
THEORY

Coupled cluster excitation energies are determined solv-
ing the coupled cluster response eigenvalue equation,

ARk5vkRk , ~1!

whereA is the nonsymmetric coupled cluster Jacobian.Rk is
the right eigenvector corresponding to the eigenvaluevk .
The left eigenvectorL k is obtained from

L kA5vkL k . ~2!
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From biorthogonality it follows~if we choose the normaliza-
tion to unity! that

L jRk5d jk . ~3!

Using the orthonormality we may write the excitation energy
as,

vk5L kARk . ~4!

Consider now the Jacobian of exact coupled cluster theory,

Am in j
5^m i uexp~2T!@H0 ,tn j

#exp~T!uHF&, ~5!

where them excitations in excitation classi51,2,...,n are
designatedm i . Without truncations in the expansion ofT we
can represent the exact solution in terms of a coupled cluster
parametrization. Partitioning the HamiltonianH0 into the
Fock potential F, and the fluctuation potentialU,
H05F1U, the Jacobian in Eq.~5! can be expressed in terms
of contributions from various excitation levels in different
orders in the fluctuation potential.

Recognizing thatT2 enters in first order,T1 andT3 in
second order, and higher excitation cluster operators to
higher order, we may expand the matrix elements of the
Jacobian as

Am in j
5^m i u@F,tn j

#uHF&1^m i u@U,tn j
#uHF&

1^m i u@@U,tn j
#,T2#uHF&

1^m i u
1
2 @@@U,tn j

#,T2#,T2#1@@U,tn j
#,T1

1T3#uHF&1o~4!, ~6!

where the zero-, first-, second-, and third-order matrix ele-
ments are given explicit. The structure of the Jacobian con-
taining singles~S!, doubles~D!, triples~T!, quadruples~Q!, and
quintuples~P! becomes

5
S D T Q P

S d~0!1o~1! o~1! o~1! 0 0

D o~1! d~0!1o~1! o~1! o~1! 0

T o~2! o~1! d~0!1o~1! o~1! o~1!

Q o~3! o~2! o~1! d~0!1o~1! o~1!

P o~4! o~3! o~2! o~1! d~0!1o~1!

6 , ~7!

whered(0) denotes the zero-order diagonal elements con-
sisting of Hartree–Fock orbital differences ando(n) denotes
the lowest nonvanishing order of the Jacobian matrix ele-
ments. For example the ST block enters in first order since
the second term in Eq.~6! contributes, whereas the TS block
enters in second order since the first and second terms in Eq.
~6! are zero and the third term contributes. We divide the
excitation space into two subsets, I and II, and write Eq.~2!
accordingly

S AI,I AI,II

AII,I AII,II
D S RI

RII
D 5vS RI

RII
D . ~8!

Space I may refer to the singles space exclusively or the
singles and doubles space combined. The definitions ofAI,I ,
AI,II , AII,I , andAII,II are clear from the context. The effect of
higher excitation levels on excitations predominately de-
scribed within the I space can be analyzed using partitioning
techniques. Equation~8! can be written as,

~AI,I2vI !RI52AI,IIRII , ~9!

~AII,II2vI !RII52AII,IRI . ~10!

The zero-order problem is described by

Am in j
5^m i u@F,tn j

#uHF&5vm i
dm in j

, ~11!

wherevm i
consist of sum and differences of orbital energies,

assuming a canonical molecular orbital basis. Thus thevm i

are the zero-order eigenvalues with eigenvectors represented
by unit vectors. For single dominated excitations I denote the
single excitation space only and the zero-order solution vec-
tor becomesR1

~0! . From Eqs.~10! and ~6! we obtain a right
correction vector to first order in the fluctuation potential as,

~vm2
2v~0!!Rm2

~1!52^m2u@U,R1
~0!#uHF&. ~12!

We have absorbed theR1
~0! vector into a corresponding op-

erator for which we will use the same notation,R1
(0)

5 (n1
Rn1

(0)tn1
. Only double excitations contribute to first or-

der. Higher excitations enter in higher order. In particular we
find that to second order triples enter in the form,

~vm3
2v~0!!Rm3

~2!52^m3u@@U,R1
~0!#,T2#uHF&.

2^m3u@U,R2
~1!#uHF&. ~13!

For the double replacement dominated excitations we find
that both singles and triples enter in the first-order correction
vector to the zero-order solutionR2

~0! ,

~vm i
2v~0!!Rm i

~1!52^m i u@U,R2
~0!#uHF&, i51,3. ~14!
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For the left-hand solution vectors we can perform a similar
analysis. For the single replacement dominated excitations
we find the first-order correction vector toL1

~0! ,

Ln j
~1!~vn j

2v~0!!52(
m1

Lm1

~0!^m1u@U,tn j
#uHF&, j52,3.

~15!

Note that the non-Hermitian nature of the CC Jacobian
makes the right- and left-hand eigenvectors different in the
way that the left-hand vector contains triples corrections to
first order, whereas the triples correction is second order for
the right-hand solution vector. This originates from the fact
mentioned above that the TS block enters in second order
whereas the ST block enters in first order. For the double
replacement dominated excitations we have

Ln j
~1!~vn j

2v!52(
m2

Lm2

~0!^m2u@U,tn j
#uHF&, j51,3.

~16!

In Table I we have summarized the results obtained from the
analysis above. Using the results in Table I, the excitation
energy in the form of Eq.~4!, and the structure of the Jaco-
bian in Eq.~7!, we may identify the order in which contri-
butions from various blocks and excitations enter. The re-
sults are given in Table II.

Coupling between ‘‘neighboring’’ excitation levels enter
in second order@from the second term on the right-hand side
of Eq. ~6!#, whereas excitation levels separated by two
couples in third order@coupling the second and the third

terms in Eq.~6!#. We thus find in Table II that to zero and
first order only contributions from the singles space enter for
single replacement dominated excitations. The coupling to
doubles enters in second order. Since CCSD contains all
singles and doubles terms, CCSD is correct through second
order for single replacement dominated excitations, and be-
yond second order it is necessary to include higher excita-
tions. All terms within the singles and doubles space are
determined correct through third order in CCSD since the
reference singles and doubles amplitudes are correct through
second order. The only additional third-order terms enter
from the coupling to triples. For double replacement domi-
nated excitations CCSD is only correct through first order,
and the coupling to triples enters in second order. We have
previously discussed this for iterative coupled cluster models
but the term by term analysis summarized in Table II is
convenient in analyzing the behavior of noniterative triples
corrections to CCSD.

It is evident from the theory above, that to obtain the
single replacement excitations correct through third order in
a coupled cluster parametrization it is necessary to include
the lowest order contributions to all triples blocks, that is the
ST, TS, DT, TD, and TT blocks must be taken into account
to lowest order which is first, second, first, first and zeroth
order, respectively. For obtaining the double excitations cor-
rect through second order it is necessary to include the low-
est order contributions from DT, TD, and TT.

III. PERTURBATIONAL CORRECTIONS TO CCSD
EXCITATION ENERGIES

In the previous section we identified the most important
triples contributions beyond CCSD. All these terms are in-
cluded in the iterative CC3 model, while the CCSDT-1a
model only partially includes the third-order terms for single
replacement dominated excitations. The importance of in-
cluding all terms through a given order was demonstrated in
the numerical examples in Refs. 7 and 13. In this section we
introduce perturbational corrections to CCSD that include all
lowest order triples terms. All third-order terms are included
for single replacement dominated excitations and all second-
order terms are included for double replacement dominated
excitations. We further introduce noniterative triples models
corresponding to the iterative CC3, CCSDT-1a, and
CCSDT-1b models. We define a pseudoperturbation theory
by partitioning the Jacobian,

A5A~0!1A~1!1A~2!. ~17!

The zeroth-order JacobianA~0! are defined to be the CCSD
Jacobian augmented with all zeroth-order orbital energy dif-
ferences in the triple and higher excitation part of the Jaco-
bian,

A~0!5SASD 0

0 v
D , ~18!

The pseudoperturbationsA~1! andA~2! need to be defined. To
ease the understanding of the structure of all elements that

TABLE I. The order in the fluctuation potential in which different excitation
components enter in the excitation vector.

Excitation vector component S D T Q

Single
replacement
dominated

R 0 1 2 3

L 0 1 1 2

Double
replacement
dominated

R 1 0 1 2

L 1 0 1 1

TABLE II. The order in the fluctuation potential in which contributions
from various blocks of the Jacobian, and components of the eigenvectors
enters in the excitation energies for single and double replacement domi-
nated excitations.

Single
excitations

Double
excitations

LSASSRS 0 2
LSASDRD 2 2
LDADSRS 2 2
LDADDRD 2 0
LSASTRT 3 3
LTATSRS 3 4
LDADTRT 4 2
LTATDRD 3 2
LTATTRT 3 2
Q and higher o(5) o(3)
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enter in the various approaches, we start off by introducingA~1! andA~2! based on the CC3 Jacobian. CC3 is the most complete
iterative triples model of CC3, CCSDT-1a, and CCSDT-1b, and the other methods can be obtained by neglecting terms in the
CC3 Jacobian. From the CC3 Jacobian of Ref. 13 we define the pseudoperturbations,

A~1!5H 0 0 ^m1u@H0 ,tn3
#uHF&

0 0 ^m2u@Ĥ0 ,tn3
#uHF&

^m3u@@Ĥ0 ,T2#,tn1
#uHF& ^m3u@Ĥ0 ,tn2

#uHF& 0
J , ~19!

and

A~2!5H 0 0 0

^m2u@@Ĥ0 ,T3#,tn1
#uHF& 0 0

0 0 0
J 1ASD,ho,

~20!

where ho~higher order! denotes that we consider higher or-
der terms originating from improving the singles and doubles
amplitudes beyond CCSD. In Eqs.~19! and ~20! we have
used theT1 transformed Hamiltonian of Ref. 19,

ô5exp~2T1!o exp~T1!. ~21!

The triples dependent DS block inA~2! is taken as second
order in the pseudoperturbation since this term is itself third
order in the fluctuation potential, and it therefore couples
singles with doubles in fourth order. The triples amplitudes
in A~2! include the lowest order contributions in perturbation
theory. The explicit expression for the triples amplitudes is
the one from the corresponding iterative model.@That is the
CC3 triples equation for CCSDR~3! and the CCSDT-1b
triples equation for CCSDR~1b!.# For CC3 this is

tm3
52

^m3u@Û,T2#uHF&
vm3

. ~22!

For CCSDT-1b theT1 transformation in Eq.~22! is skipped.
Further we need to define how the higher order contributions
in the SD block are included inASD,ho. We therefore define
triples corrected single and double amplitudes as

tm i
* 5tm i

CCSD1
^m i u@Ĥ,T3#uHF&

vm i

, ~23!

and may then include the lowest order effects definingASD,ho

from

ACCSD1ASD,ho5ASD~ t1* ,t1* !, ~24!

whereASD(t1* ,t1* ) denotes a CCSD Jacobian built from the
triples corrected amplitudes in Eq.~23!. The effect ofASD,ho

enters in fourth order. It is included since it has proven nu-
merically important and because it can be considered as de-
scribing the lowest order effects of relaxing the ground state
amplitudes to the effect of triples excitations. Note that in
CCSDR~3! we have for convenience chosen to calculate the
triples contribution inA~2! from the triples corrected ampli-
tudes.

The coupling between various blocks inA~1! describes
the lowest order triples contributions. The different treat-
ments of the terms inA~1! andA~2! give a simple relationship
to the iterative CC3 model~see later!. Including terms
through second order in the pseudoperturbation ensure that
we have included all terms that are second order in the fluc-
tuation potential from these blocks~since all terms inA~1! are
at least of first order in the fluctuation potential! and in par-
ticular that single replacement dominated excitations are cor-
rect through third order in the fluctuation potential~since the
TS block giving this coupling is second order in the fluctua-
tion potential!. To second order in the pseudoperturbation
with the above definitions ofA~1! and A~2! we obtain
CCSDR~3! excitation energies. As discussed above theA~2!

terms will contribute in fourth and higher order, and theA~2!

terms can thus be neglected without consequences for the
order in which we have determined the excitation energies
correct through. This gives the CCSDR~T! approach. This
model includes the lowest order contributions beyond
CCSD, and is the natural choice in a strict order correct
approach.~Note that we retain theT1 transformed Hamil-
tonian since we always treat the singles as zeroth-order pa-
rameters!.

Neglecting terms in the iterative CC3 model give the
CCSDT-1a and CCSDT-1b models. Noniterative models
corresponding to the CCSDT-1a and CCSDT-1b Jacobians
may be obtained in the same way that CCSDR~3! was ob-
tained from CC3. We denote these as CCSDR~1a! and
CCSDR~1b!. We have not included the relaxation of the ref-
erence amplitudes in these models. This is convenient since
it makes it easier to appreciate the difference between our
strategy and the EOM-CCSD~T! approach in Ref. 16. The
CCSDR~1b! correction is obtained from CCSDR~3! neglect-
ing the TS block ofA~1! and theT1 transformation in the TD
block, in addition to not consideringASD,ho. CCSDR~1a! is
obtained from CCSDR~1b! by further neglecting theT1
transformation in the DT block and theA~2! contribution. The
CCSDR~1a! and CCSDR~1b! approaches may improve the
double replacement dominated excitations and will fail to
improve the single replacement dominated excitations con-
sistently as is evident from the analysis in the preceding sec-
tion.

Assume now that we have solved the zeroth-order prob-
lems, that is we have determined the CCSD left and right
eigenvectors,
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A~0!R~0!5v~0!R~0!, ~25!

L ~0!A~0!5L ~0!v~0!. ~26!

We assume the CCSD eigenvectors are normalized to unity
as in Eq.~3!. Expanding the coupled cluster eigenvalue equa-
tion @Eq. ~1!# gives to first and second order in the pseudop-
erturbation

~A~0!2v~0!!R~1!52~A~1!2v~1!!R~0!. ~27!

~A~0!2v~0!!R~2!52~A~1!2v~1!!R~1!2~A~2!2v~2!!R~0!.
~28!

Projecting the first-order equation onto the zeroth-order left-
hand solution gives

v~1!5L ~0!A~1!R~0!50, ~29!

where the zero result follows from the structure ofA~1!, and
the fact thatL ~0! andR~0! are CCSD solution vectors with
zero in the higher excitation part. Projecting the second-order
equation we obtain

v~2!5L ~0!A~1!R~1!1L ~0!A~2!R~0!. ~30!

This is the general form for the higher excitation level con-
tributions in the pseudoperturbational approach. Introducing
R~1! from Eq. ~27! we may write the excitation energy cor-
rection as

v~2!5L ~0!~A~2!2A~1!~A~0!2v~0!I !21A~1!!R~0!. ~31!

Introducing the various approximations with the correspond-
ing A~1! andA~2! matrices, we obtain the expressions for the
excitation energy correction given in Table III. In Table III
we also list the order in the fluctuation potential through
which single and double replacement excitations are deter-
mined correctly.

It is appropriate to discuss the EOM-CCSD~T! approach
in the context of the above development. To better appreciate
the differences to the previously described perturbational ap-
proaches and EOM-CCSD~T! we recast the EOM-CCSD~T!
theory in the notation of this paper. The EOM-CCSD~T! ap-
proach was introduced in an equation of motion coupled
cluster ~EOM-CC! framework.20 Coupled cluster response
theory and EOM-CC give identical excitation energies, but
differ for other response properties, e.g., transition moments
and polarizabilities. The most important difference is that
EOM-CC results do not scale correct with the size of the
system for these properties, while coupled cluster response
theory does.3,8 Also if approximations are introduced in the
coupled cluster equations as for example in CCSDT-1a, the
ground state and the excited state interact in EOM-CC, and
the EOM-CC framework cannot be applied in a rigorous way
to obtain equations for the excited state. No such problems
occur in the pseudoenergy Lagrangian formulation of
coupled cluster response theory.7 The essential formulas in
Ref. 16 make it possible to recast the theory in terms of the
Jacobian given above. In the EOM-CCSD~T! approach

TABLE III. Excitation energy corrections in various models and the order in the fluctuation potential through which single~S! and double~D! replacement
dominated excitations are formally correct.L ~0!, L ~1!, R~0!, andR~1! refer to CCSD vectors and first-order vectors in the pseudoperturbation@see Eqs.~27! and
~33!#. ACCSD is the CCSD Jacobian build with CCSD amplitudes (t1 ,t2) or triples corrected amplitudes.

Model Expression for the triples corrected excitation energies S D

CCSDR~3!a L ~0!ACCSD~ t1* ,t2* !R~0! 3 2

1(
m i

i51,2

Lm i

~0!(
n3

^m i u@Û* ,tn3
#uHF&^n3u@Û* ,R2

~0!#1@@Û* ,R1
~0!#,T2* #uHF&

vn3
2v~0!

1(
m2

Lm2

~0!^m2u@@U,R1
~0!#,T3* #uHF&

3 2

CCSDR~T! L ~0!ACCSD~ t1 ,t2!R
~0!1(

m i
i51,2

Lm i

~0!(
n3

^m i u@Û,tn3
#uHF&^n3u@Û,R2

~0!#1@@Û,R1
~0!#,T2#uHF&

vn3
2v~0! 2 2

CCSDR~1a! L ~0!ACCSD~ t1 ,t2!R
~0!1(

m i
i51,2

Lm i

~0!(
n3

^m i u@U,tn3
#uHF&^n3u@U,R2

~0!#uHF&

vn3
2v~0! 2 2

CCSDR~1b!

L ~0!ACCSD~ t1 ,t2!R
~0!1(

m i
i51,2

Lm i

~0!(
n3

^m i u@U,tn3
#uHF&^n3u@U,R2

~0!#uHF&

vn3
2v~0! 1(

m2

Lm2

~0!^m2u@@U,R1
~0!#,T3#uHF&

EOM-CCSD~T!

L ~0!ACCSD~ t1 ,t2!R
~0!1(

m i
i51,2

Lm i

~0!(
n3

^m i u@U,tn3
#uHF&^n3u@U,R2

~0!#uHF&

vn3
2v~0! 1v~0!L ~1!R~1!

2 1

aThe asterisk denotes that the reference state amplitudes are the triples corrected amplitudes in Eq.~23!, and correspondingly the triples amplitudes according
to Eq. ~22!, and theT1 transformed Hamiltonian of Eq.~21! calculated from triples corrected amplitudes.
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triples correction vectors are introduced into Eq.~4! giving

v5~L ~0!1L ~1!!~A~0!1A~1!!~R~0!1R~1!!. ~32!

The left and right triple correction vectors are obtained as the
first iteration of CCSDT-1a. This corresponds to theR~1!

vector of Eq.~27! with the CCSDT-1a Jacobian asA~1! and a
similar equation for the left-hand correction,

L ~1!~A~0!2v~0!!52L ~0!A~1!. ~33!

Equation~32! is with these assumptions identical to Eq.~11!
of Ref. 16. Using Eqs.~27! and~33! we may write the EOM-
CCSD~T! excitation energy as

v5v~0!1L ~0!A~1!R~1!1v~0!L ~1!R~1!. ~34!

We now compare the last two terms in Eq.~34! with the
triples correction in Eq.~20!. The A~2! term in Eq. ~30! is
zero for CCSDT-1a. The last term in Eq.~34!, which is sec-
ond order in the fluctuation potential for double replacement
dominated excitations, see Table II, does not show up in Eq.
~30!. Note that this extra term scale with the size of the
CCSD excitation energy. For double replacement dominated
excitations Eq.~34! is not correct through second order in the
fluctuation potential. Equivalently, it is not correct through
second order in the pseudoperturbation, since the terms in-
volving the second-order correction vectors have been left
out in Eq. ~32!. The second-order correction vectors would
enter in terms likeL ~2!A~0!R~0!1L ~0!A~0!R~2!, and these terms
together with the last term in Eq.~34! vanish due to the
second-order biorthonormality condition

L ~2!R~0!1L ~0!R~2!1L ~1!R~1!50. ~35!

The correct second-order result of Eq.~30! is then obtained.
The CCSDR triples corrections can in compact form be

written as,

v~2!5(
m i

Lm i

~0!sm i
~v~0!!, ~36!

where thes vector corresponds to one linear transformation
in our partitioned CC3 algorithm or a subset of this transfor-
mation. To obtain CCSDR triple corrections we need to cal-
culate the CCSD left and right eigenvectors and then for

each eigenvalue do one transformation according to the ex-
pressions given in Table III. The scalar product with the
CCSD left solution vector then gives thev~2! excitation en-
ergy correction. We do not need to consider the left correc-
tion vector, and the final correction is thus somewhat simpler
than the EOM-CCSD~T! correction as described in Ref. 16.

IV. BENCHMARK CALCULATIONS

The CH1 FCI calculations of Olsenet al.21 are an often
used benchmark for investigating the performance of ap-
proximative models. EOM-CCSD~T!, CC3, and CCSDT-1a
results are available in the literature. In Table IV these re-
sults are given together with the results obtained in the per-
turbative triples models of this paper. All our perturbative
triples corrections perform better than the corresponding it-
erative models.@CCSDR~3! versus CC3 and CCSDR~1a!
versus CCSDT-1a#. The perturbative based CCSDR~1a! ap-
proach is also closer to FCI than EOM-CCSD~T! for all ex-
citations. Since these approaches are based on the same Jaco-
bian, this may be interpreted according to the theoretical
discussion in Sec. III. The differences between CCSDR~1a!
and EOM-CCSD~T! are rather small for the states with large
single excitation weights as expected since both methods are
correct to second order in the fluctuation potential. Both
leave out the ST block and no significant improvements are
obtained relative to CCSD. The extra term in Eq.~34! is
expected to be rather small since in the case the product of
the correction vectors is third order. For the double replace-
ment dominated excitations the differences between
CCSDR~1a! and EOM-CCSD~T! are larger, and for the larg-
est excitation energy we have the largest deviation of 0.17
eV. This agrees with the fact that the extra term in EOM-
CCSD~T!, v~0!L ~1!R~1!, depends on the CCSD excitation en-
ergy. For double replacement dominated excitations the
EOM-CCSD~T! contains an error in second order that scales
with the size of the excitation energy. For the double replace-
ment dominated excitations none of the perturbative models
is consistently better than the others and the differences are
small compared to the overall error. Again this can be ex-
plained from the theoretical discussions, since theperturba-

TABLE IV. CH1 FCI excitation energies in eV. The error in coupled cluster models~FCI model!.a

Excitation FCIb CCSDc CC3d CCSDR~3! CCSDR~T! CCSDT-1ae EOM-CCSD~T!e CCSDR~1a! CCSDR~1b!
%t1

~CCSD!

X 1S1→1S1 8.549 20.560 20.230 20.206 20.199 20.232 20.234 20.200 20.198 1
13.525 20.056 20.016 20.006 0.011 20.058 20.034 20.032 20.032 93
17.217 20.099 20.026 20.020 20.001 20.068 20.052 20.045 20.045 84

1P
3.230 20.031 20.012 20.003 0.016 20.041 20.016 20.016 20.019 97
14.127 20.327 20.219 20.219 20.199 20.272 20.268 20.255 20.259 72

1D
6.964
16.833

20.924
20.856

20.318
20.261

20.303
20.249

20.279
20.225

20.323
20.264

20.335
20.344

20.281
20.178

20.281
20.177

0
24

aBasis set and geometry as in Ref. 21.RCH52.137 13. Basis is C@1061/531# and H@51/31# from Ref. 21.
bFCI numbers from Ref. 21.
cCCSD results from Ref. 2.
dCC3 results from Ref. 7.
eCCSDT-1a and EOM-CCSD~T! results from Ref. 16.
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tive triple correction approaches all includes the same second
order terms for double replacement dominated excitations.

For single replacement dominated excitations the CCS-
DR~T! and CCSDR~3! results are closer to FCI than the
CCSDR~1a! and CCSDR~1b! results for all excitations. The
CCSDR~T! and CCSDR~3! methods are correct through third
order since both include the lowest order singlet–triplet cou-
pling. This coupling is not included in CCSDR~1a! and
CCSDR~1b!. Finally we note that the difference between
CCSDR~1a! and CCSDR~1b! is small, indicating little effect
of the A~2! term depending on the triples reference ampli-
tudes that constitute the major difference between these two
approximations.

In a recent paper we compared FCI excitation energies
of BH, Ne, and CH2 with those obtained in the hierarchy of
coupled cluster models CCS, CC2, CCSD, and CC3.
CCSDT-1a excitation energies were presented as well. In
Table V we give the FCI results and the errors relative to FCI
for CCSD, the perturbative triples corrections models, and
the iterative triples models CC3 and CCSDT-1a. We divide
the excitations into single replacement dominated excitations
~.90% T1! and the rest that has significant double replace-
ment character. For the latter class we see the same picture as
for CH1. All perturbative corrections behave similarly and
are in most cases more accurate than the iterative triples
results. CCSDR~T! and CCSDR~1a! appear to be more accu-
rate than CCSDR~3!, but only marginally relative to the re-
maining error to FCI. For the single replacement dominated
excitations we find significantly different behaviors of the

perturbative corrections. For Ne we see significant improve-
ment for all triples models relative to the CCSD result. In
this case we thus actually obtain improvements of the CCSD
results for single replacements dominated excitations even
though the lowest order singlet–triplet coupling is not in-
cluded. TheA~2! term has some effect in this molecule. The
CCSDR~3! result is closer to FCI than CC3. For BH we
observe that all perturbative triples models improve the
CCSD results. It should be noted that CCSDR~T! and
CCSDR~3! give the largest shifts relative to CCSD.
CCSDR~3! is closest to FCI, and actually closer than CC3.
For CH2 we have very small errors at the CCSD level, and
significant differences between the different perturbative
triples approaches are observed. CCSDR~1a! and
CCSDR~1b! differ from CCSD by less than 0.9 mhartree and
these models are thus still rather close to FCI. CCSDR~T!
give larger changes of up to 3 mhartree and in the opposite
direction. The CCSDR~3! shifts are smaller, indicating the
importance of relaxation of the ground state amplitudes. The
errors toward FCI in CCSDR~3! are still larger than in the
iterative CC3 model that is very close to FCI. We tried to use
CC3 reference amplitudes in the CCSDR~T! excitation en-
ergy calculation, and obtained shifts in the CCSDR ap-
proaches of22.060.2 mhartree for all single replacement
dominated excitations. In CH2 we thus apparently have large
cancellation effects between contributions ofdifferentorder.
The good performance of CCSD, CCSDR~1a!, and
CCSDR~1b! is thus probably fortuitous.

TABLE V. FCI excitation energies and deviation from FCI~FCI model! in m hartree,a and %t1 in CCSD.a

Molecule State %t1
b FCIb CCSDb CC3b CCSDR~3! CCSDR~T! CCSDT-1ab CCSDR~1a! CCSDR~1b!

Ne 1P0 97 602.6 8.8 20.5 0.3 20.1 20.4 20.6 21.3
1D 97 669.3 9.2 20.6 0.2 20.2 20.4 20.6 21.2
1P 97 670.9 9.2 20.7 0.2 20.2 20.4 20.5 21.2
1S 97 679.3 8.7 20.3 0.5 20.2 20.3 20.8 21.4
1S 96 1618.9 6.2 23.8 21.2 22.1 25.2 21.2 21.7

BH A 1P 95 108.2 20.8 20.3 0.1 0.9 21.1 20.1 20.2
B 1S1 97 234.4 21.5 20.6 20.4 0.3 21.7 20.7 20.7
D 1P 94 274.4 21.3 20.5 20.2 0.4 21.7 20.7 20.7
G 1P 93 302.8 21.4 20.6 20.4 0.3 22.0 21.0 20.9
C 1D 6 216.1 229.2 211.4 211.1 210.2 211.5 210.3 210.3
C 1S1 62 257.1 214.4 26.6 28.7 27.9 26.9 28.6 28.5
E 1S1 51 277.8 27.1 21.9 0.7 1.5 23.0 20.8 20.8

CH2 3 1A1 93 239.4 0.2 0.2 1.8 3.0 22.3 0.7 0.8
4 1A1 96 311.6 0.7 0.2 1.0 2.2 22.3 20.2 20.1
1 1B1 95 283.1 20.4 20.6 0.0 1.2 23.0 21.1 21.0
1 1B2 97 65.9 0.5 0.2 1.0 2.3 22.1 20.2 20.4
1 1A2 97 215.1 20.2 20.2 0.6 1.8 22.3 20.3 20.7
2 1A1 5 171.1 253.5 217.3 216.9 215.2 217.3 215.3 215.3
2 1B1 6 294.6 258.9 219.0 218.7 217.1 219.1 217.4 217.4
2 1B2 0 327.3 266.1 221.0 220.3 218.6 220.9 218.5 218.5
3 1B2 2 387.8 267.0 222.6 222.3 220.6 222.4 220.5 220.5
2 1A2 0 345.8 288.8 243.1 242.5 240.8 243.0 240.7 240.7

aGeometry and basis sets as in Ref. 12. Geometries:RBH52.3289, CH2 coordinates: C80,0,0!, H~61.644403,0,1.32213!. Basis sets: spherical pVDZ with
augmented functions. The augmented functions are, with exponents in parenthesis: Ne: 1s(0.04) and 1p(0.03), BH: 2s(0.0315,0.009244),
2p(0.02378,0.005129), and 2d(0.0904,0.02383) functions on B and on H 2s(0.0297,0.00725) and 2p(0.141,0.02735). CH2: 1s(0.015) on C and 1s(0.025)
on H.
bFCI, CCSD, CCSDT-1a, and CC3 results from Ref. 12.
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V. CONCLUDING REMARKS

The CCSD~T! model does not have a response function
with a set of poles improved relative to CCSD. Triples cor-
rection to CCSD excitation energies cannot therefore be ob-
tained from CCSD~T!. We have presented an approach for
including triples corrections to CCSD excitation energies
based on a perturbational analysis. Several approximations
have been proposed and analyzed in terms of order in the
fluctuation potential. Numerical tests have been performed
and comparison of the perturbative triple correction ap-
proaches with similar iterative approaches have been pre-
sented. We have found that for double replacement domi-
nated excitations, the excitation energies from the
perturbational corrections to CCSD presented in this paper
are more accurate than the ones obtained from the corre-
sponding iterative triples models. For single excitation domi-
nated excitations the situation is less clear. From the numeri-
cal results we conclude that to obtain significant
contributions beyond CCSD it isnecessaryto include the
singlet–triplet coupling appearing in third order. The CCS-
DR~T! and CCSDR~3! approaches provide excitation ener-
gies correct through third order in the fluctuation potential,
and have in many cases improved the CCSD excitation en-
ergies considerably. They both included fourth-order terms
coupling doubles and triples. The noniterative analogue to
CC3, CCSDR~3! seems to be the most balanced, and behaves
very similar to CC3. Thus relaxation of the ground state
amplitudes seems to be a third effect that is necessary to take
into consideration to obtain a balanced model. In forthcom-
ing benchmark calculations we present more numerical tests
on the performance of the noniterative models, which sup-
ports these findings.22 Furthermore we will in the future ad-
dress the problem of assigning total molecular energies to the
excited states in the perturbational approaches.
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