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Response functions in the CC3 iterative triple excitation model
Ove Christiansen, Henrik Koch,a) and Poul Jo”rgensen
Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark

~Received 9 June 1995; accepted 26 July 1995!

The derivation of response functions for coupled cluster models is discussed in a context where
approximations can be introduced in the coupled cluster equations. The linear response function is
derived for the approximate coupled cluster singles, doubles, and triples model CC3. The linear
response functions for the approximate triples models, CCSDT-1a and CCSDT-1b, are obtained as
simplifications to the CC3 linear response function. The consequences of these simplifications are
discussed for the evaluation of molecular properties, in particular, for excitation energies. Excitation
energies obtained from the linear response eigenvalue equation are analyzed in orders of the
fluctuation potential. Double replacement dominated excitations are correct through second order in
all the triples models mentioned, whereas they are only correct to first order in the coupled cluster
singles and doubles model~CCSD!. Single replacement dominated excitation energies are correct
through third order in CC3, while in CCSDT-1a, CCSDT-1b, and CCSD they are only correct
through second order. Calculations of excitation energies are reported for CH1, N2, and C2H4 to
illustrate the accuracy that can be obtained in the various triples models. The CH1 results are
compared to full configuration interaction results, the C2H4 results are compared with complete
active space second order perturbation theory~CASPT2! and experiment, and the N2 results are
compared to experiment. Double replacement dominated excitations are improved significantly
relative to CCSD in all the triples models mentioned, and is of the same quality in CC3 and
CCSDT-1a. The single replacement dominated excitation are close to full configuration interaction
results for the CC3 model and significantly improved relative to CCSD. The CCSDT-1 results for
the single replacement dominated excitations are not improved compared to CCSD. ©1995
American Institute of Physics.

I. INTRODUCTION

Coupled cluster methods have proven to be accurate and
economical tools for describing electron correlation. Until
now especially coupled cluster restricted to single and
double excitations~CCSD! and CCSD with a noniterative
correction for triple excitations CCSD~T! ~Ref. 1! has been
widely used. A variety of molecular properties have been
calculated using these and other coupled cluster models. Fre-
quency independent properties have been obtained as energy
derivatives for both iterative2 and noniterative coupled clus-
ter approaches.3 Frequency dependent response functions
have been derived for iterative cluster models like CCSD.4–6

The CCSD~T! model, being a two step approach, does not
have a well defined frequency dependent response function
with one set of correlated poles consistent with the accuracy
of the CCSD~T! total energy. Coupled cluster linear response
~CCLR! theory has been used to determine frequency depen-
dent polarizabilities,7 transition moments,8 and excitation
energies.9 Equation of motion coupled cluster10 ~EOM-CC!
gives excitation energies that are identical to the those ob-
tained from coupled cluster linear response theory for usual
truncated and nonapproximated coupled cluster models.
EOM-CC is based on a biorthogonal approach with no inter-
action between the reference and the excited states. The
EOM-CC approach is therefore not well defined for approxi-
mate coupled cluster models where approximations are intro-

duced in the cluster amplitude equations. Transition mo-
ments and polarizabilities differ in the coupled cluster
response and EOM-CC approaches, the most important dif-
ference being that coupled cluster response functions gives
properties that scale correct with the size of the system con-
trary to EOM-CC.8,9

Electronic excitation energies from an electronic ground
state to excited states dominated by single electron replace-
ments can be determined accurately in a CCSD approach.
This was clearly demonstrated in the first CCSD linear re-
sponse~CCSDLR! calculations of excitation energies9 and
has later been confirmed on numerous occasions. Contrary
excitation energies to states dominated by double electron
replacements are poorly described in CCSD. Recently, Watts
and Bartlett have significantly improved the accuracy of
double replacement dominated excitations using approxima-
tive coupled cluster singles doubles and triples~CCSDT!
approaches.11,12 In Ref. 11 the CCSDT reference was opti-
mized without approximations but the CCSDT Jacobian ma-
trix elements beyond CCSD was approximated to include
only up to two-electron density matrix terms. In Ref. 12
Watts and Bartlett calculated excitation energies in the com-
putational cheaper CCSDT-1a model.13 The description of
double replacement dominated excitations is significantly
improved in both models while the description of the single
replacement dominated excitations was not improved in ei-
ther one. We derive in this paper the linear response function
for the CC3 model introduced in Ref. 14, and demonstrate
that both single and double electron replacement excitations
are significantly improved compared to CCSD. The approxi-
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mations in the CC3 model relative to CCSDT are solely in
the equation for the triples. This equation is approximated
according to two principles: ~i! We restrict the triples equa-
tion to the form entering in second order in fluctuation po-
tential; ~ii ! the singles are treated as zeroth order parameters.
The first criteria alone leads to the CCSDT-1b model.15 The
CCSDT-1a is obtained from CCSDT-1b by further neglecting
a term bilinear in single and triple amplitudes in the doubles
equation.15 The second criteria is motivated by the fact that
singles are important since they provide an approximate de-
scription of orbital relaxation. This is especially important
when perturbing the molecular system and when non-Har-
tree–Fock orbitals are used.

Features of the CC3 wave function is that the energy is
correct through fourth order in the fluctuation potential and
includes the fifth-order terms that are also included in
CCSD~T!. The CC3 model scales asN7, whereN is the
number of orbitals. This should be compared with theN8

scaling for CCSDT and theN6 scaling for CCSD. The CC3
method is thus between CCSD and CCSDT in computational
effort, and comparable to CCSD~T!. In the CC3 model we
iterate all equations and thus need moreN7 processes than in
CCSD~T!, where only CCSD equations are iterated. In the
CC3 model we need not store triples amplitudes as is the
case in CCSDT. Since CC3 is a one step iterative approach,
it gives one consistent set of poles with an improved accu-
racy relative to CCSD.

We have carried out an order analysis of the excitation
energies of approximate coupled cluster models. In CCSD
excitation energies are correct through second and first order
for single and double replacement dominated excitations re-
spectively. In CC3 this is improved to third and second order
respectively. In the CCSDT-1 models the single replacement
dominated excitations are correct through second order only.
The CC3 linear response function is fully correct through
third order, and only a single term is missing in fourth order.
The CCSDT-1a and CCSD-1b linear response functions are
not correct through third order.

From an iterative eigenvalue equation one may define
noniterative approximate corrections to lower order models
as demonstrated by Head-Gordonet al.16 A noniterative ex-
citation energy model was introduced in Ref. 12 based on the
CCSDT-1a excitation energies; it was denoted as EOM-
CCSD~T!. It is not based on a strict derivation of a CCSD~T!
response function or EOM-CCSD~T! approach, but by defin-
ing a noniterative triples excitation energy from a CCSDT-1a
excitation energy expression. There is thus no strict relation-
ship between the CCSD~T! total energy and the EOM-
CCSD~T! excitation energies. It is clear that noniterative cor-
rections can only be introduced from corresponding iterative
models. In this paper we restrict ourself to investigate itera-
tive models. The introduction and testing of noniterative
models is postponed to later investigations.

In Sec. II we give a short summary of the most important
equations for the CC3 model. In Sec. III we discuss time-
independent perturbation theory for the CC3 model. In Sec.
IV we derive the CC3 frequency dependent linear response
response function. The linear response function and equa-
tions for determining the excitation energies is also com-

pared in Sec. IV for various triples methods. In Sec. V we
present sample calculations of excitation energies for CH1,
N2, and C2H4 in the CC3 and CCSDT-1 models and in Sec.
VI we give some concluding remarks.

II. THE CC3 MODEL

In Ref. 14 we introduced the CC3 model as an approxi-
mation to the CCSDT model. The CCSDT state is defined as

uCCSDT&5exp~T11T21T3!uHF& ~1!

whereT1, T2, andT3 are the usual cluster operators

Ti5(
n i

tn itn i
. ~2!

The labelni refers to an ordering with respect to excitation
level i , i51,2,3 and numberingn within the excitation class.
The excitation operator is denoted astn i

and tn i the corre-
sponding amplitude. The cluster amplitudes are determined
by projecting the time-independent Schro¨dinger equation

exp~2T12T22T3!HuCCSDT&5EuHF& ~3!

onto the space of single, double, and triple excitations from
the Hartree–Fock reference,

^m i u5^HFutm i

† , ~4!

wherei51,2,3. In order to obtain the CCSDT state we thus
solve the complete set of equations

^m i uexp~2T12T22T3!H exp~T11T21T3!uHF&50
~5!

with i51,2,3. This determines theuCCSDT& state and the
energy is in turn obtained by projecting Eq.~3! onto the
referencêHFu

E5^HFuH exp~T11T2!uHF&. ~6!

We now introduce a partitioning of the Hamilton operatorH
into a Fock operatorF and a fluctuation operatorU, describ-
ing the difference between the Fock potentialVF and the
two-electron repulsion,

H5F1U, ~7!

where

F5(
pq

~hpq1Vpq
F !ap

1aq5(
p

epap
1ap , ~8!

U5
1

2 (
pqrs

~pqurs!ap
1ar

1asaq2( Vpq
F ap

1aq . ~9!

In Ref. 14 we presented an alternative derivation of
many body perturbation theory using a coupled cluster pa-
rametrization of the exact wave function. Based on this and
the subsequent analysis we introduced the CC3 model from
the requirements that it should provide an energy correct to
fourth order inU, and retain the approximate description of
orbital relaxation given by theT1 operators. This leads us to
approximate the CCSDT amplitude equations such that the
singles and doubles equations of CCSDT are retained with-
out approximation, and the triples equations are approxi-
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mated to have the form entering in second order in the fluc-
tuation potential, but with the singles treated as zeroth order
or having no order. Determining the triple excitations correct
through second order ensures the total energy is correct
through fourth order for a set of Hartree–Fock orbitals. For
the unperturbed system the singles enter in second order in
the fluctuation potential, but this is solely a consequence of
using optimized Hartree–Fock orbitals for the reference. Us-
ing nonoptimized orbitals this is not the case. The singles
respond to external perturbations to zeroth order inU. In
molecular property calculations the singles thus provide ap-
proximate orbital relaxation in two senses: relaxation to the
correlation and relaxation to the external perturbation. The
fact that singles respond to external perturbations to zeroth
order inU, makes the treatment of singles as zeroth order
parameters necessary for obtaining a balanced description of
molecular properties. The singles and doubles equation of
both CC3 and CCSDT can be written as

^m1uĤ1@Ĥ,T2#uHF&1^m1u@Ĥ,T3#uHF&50, ~10!

^m2uĤ1@Ĥ,T2#1 1
2@@Ĥ,T2#,T2#uHF&1^m2u@Ĥ,T3#uHF&

50, ~11!

whereT1 transformed operators are defined through

Ô5exp~2T1!O exp~T1!. ~12!

See Ref. 17 for features ofT1 transformed operators and
their use in integral direct coupled cluster techniques. With-
out external perturbations the equations determining the
triples are

^m3u@F,T3#uHF&1^m3u@Û,T2#uHF&50. ~13!

Equations~10!, ~11!, and~13! define the CC3 energy in the
absence of external perturbations. The practical conse-
quences of the approximations is that theN8 operation count
of the CCSDT triples equation in Eq.~5! is reduced to anN7

operation count of the CC3 triples equation Eq.~13!. The
triple terms of the single double equations areN7. Equation
~13! can be solved for an analytical form of the triples am-
plitudes in terms of single and double amplitudes and two-
electron integrals. This expression can be inserted into the
triples terms of Eqs.~10! and~11!. The CC3 amplitude equa-
tions may thus be solved in a computational efficient way
involving N7 processes only and without explicit storage of
triple amplitudes~see Ref. 14 for details!.

In this paper we consider the case where the system
described byH05F1U is perturbed by a time-independent
one-electron perturbationbV. Here we derive general fre-
quency dependent response functions, and we therefore do
not allow the orbitals to relax explicitly. This would lead to
Hartree–Fock poles in the response function in addition to
the correlated poles, as well as product poles will appear. The
presence of noncorrelated poles in a correlated response
function is clearly an undesired feature. This additional set of
poles as well as their second order nature is inconsistent with
the pole structure of the exact response function. Since we do
not treat orbital response explicitly, we use a generalized
version of Eq.~13! where we generalize the perturbational
analysis in Ref. 14 to double perturbation theory in the fluc-

tuation potentialU and the external perturbationV. Instead
of treatingF1bV as the zeroth-order problem as in the or-
bital relaxed case we letF be the zeroth-order problem per-
turbed by the two independent perturbationsU andV. This
gives a viable alternative to explicit orbital relaxation due to
the special treatment of the singles in the reference state
calculation. The crucial importance of the singles for calcu-
lating accurate properties is clearly exposed in the double
perturbation analysis since the singles are zeroth order inU,
and first order in the one-electron perturbationV. No ap-
proximations in the singles can thus be justified if one con-
siders the perturbed system and do not explicitly allow the
orbitals to relax. Approximating to second order inU and
keeping all terms inV, the equations determining the triples
in the presence of external perturbations can be written as

^m3u@F1bV̂,T3#uHF&1^m3u@Û,T2#uHF&

1 1
2^m3u@@bV̂,T2#,T2#uHF&50. ~14!

Equation~14! corresponds to the orbital relaxed form, where
orbital relaxation is not introduced explicit. For one-electron
perturbations the singles are the only parameters responding
in zeroth order inU. For two-electron perturbations the situ-
ation is more complicated and the analysis above is not fully
adequate. Equation~14! is specialized to one-electron pertur-
bations. This is not a severe limitation since most frequency
dependent properties and transition moments refer to one-
electron operators. The perturbed form of the singles and
doubles equations in the CC3 model are obtained from Eqs.
~10! and ~11! whereH is substituted withH01bV. Equa-
tions ~10!, ~11! and ~14! defines the CC3 model in the pres-
ence of an external perturbation and these are used in the
following sections to derive the CC3 linear response func-
tion.

The CCSDT-1a and CCSDT-1b models are obtained
making further approximations in the CCSDT equations,
where the criteria thatT1 should be treated as zeroth order
parameters is not imposed. TheT1 transformed operator in
Eq. ~13! is thus not considered in CCSDT-1a and CCSDT-1b,
but is replaced with the usual Born–Oppenheimer Hamil-
tonian. The only difference between CCSDT-1a and
CCSDT-1b is that theT1 transformed operator in the last
term of the doubles equation@Eq. ~11!# is also replaced by
the untransformed operator in CCSDT-1a. Based on a pertur-
bation theory analysis these approximations are reasonable
for calculation of the total energy, but as described earlier,
the singles are of crucial importance for calculations of mo-
lecular properties.

III. TIME-INDEPENDENT PERTURBATION THEORY

The CC response theory developed in Ref. 6 is based on
the introduction of a dual type vector^Lu to the uCC& refer-
ence function. In this section we investigate the conse-
quences of making approximations in the cluster equations.
Consider a nonapproximated CC theory, that is a theory
where no approximations are made in the equations obtained
by projection of the coupled cluster Schro¨dinger equation in
Eq. ~3!. In the time-independent case we have a well de-
fined energy and we may combine Eqs.~5! and ~6! to write
the total energy as
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E5^LuHuCC&, ~15!

where the dual type vector is defined as

^Lu5^HF u1(
m i

t̄m i
^m i uexp~2T!. ~16!

The t̄ parameters are so far arbitrary but may be fixed by
requiring thêLu state to be a left solution of the Schro¨dinger
equation

^LuH5E^Lu. ~17!

The dual type vector̂Lu satisfy the normalization

^LuCC&51 ~18!

and from the above we may derive a generalized Hellmann–
Feynman theorem

d

db
^L~b!uH01bVuCC~b!&5^LuVuCC&. ~19!

The energy in Eq.~15! may alternatively be viewed as an
energy Lagrangian18 with t̄ parameters as Lagrangian param-
eters. Botht and t̄ parameters are then determined using the
variational principle. Variation with respect to the Lagrang-
ian parameters gives Eq.~5! and variation with respect to the
cluster parameters give the equation determining thet̄ pa-
rameters. This equation is identical to the one obtained from
Eq. ~17! by projection. If orbital relaxation is treated explic-
itly the Lagrangian needs to be modified to allow for this and
becomes

LCC5^HFuexp~2k!H exp~k!exp~T!uHF&1(
m i

t̄m i
^m i u

3exp~2T!exp~2k!H exp~k!exp~T!uHF&

1 (
m.n

k̄mn̂ HFuexp~2k!@Emn ,H#exp~k!uHF&. ~20!

The orbital rotation generator,

k5(
mn

kmnEmn , ~21!

contain nonredundant orbital parameters andk̄ is the La-
grangian parameters corresponding to the nonredundant or-
bital rotations. In our derivation of time-dependent response
functions, orbital relaxation is not treated explicitly as dis-
cussed previously. In some cases for example when describ-
ing geometrical derivatives one may wish to use the orbital
relaxed energy function and the Lagrangian in Eq.~20! then
must be used.2

The expectation value of Eq.~19! combined with equa-
tions for the time dependence of thet and t̄ parameters ob-
tained by requiring theuCC& and ^Lu states to satisfy the
time-dependent Schro¨dinger equation, can be used to derive
frequency dependent response functions for nonapproxi-
mated CC methods. In this paper we consider the CC3 model
where approximations are introduced in the triples equations
and the triples equations are therefore not obtained by pro-
jection. The CC3 total energy may be expressed as

E5^LSDuH01bVuCC3&1(
m3

t̄m3S ^m3u@F1bV,T3#

1@Û,T2#1
b

2
@@V,T2#,T2#uHF& D , ~22!

where

^LSDu5^HFu1 (
m i

i51,2

t̄m i
^m i uexp~2T12T2!. ~23!

The CC3 energy in Eq.~22! is not a simple transition matrix
element between a CC3 state and a dual vector. Generally the
dual state concept can only be used when the energy and all
constraints are obtained by projection onto the same equa-
tion. In approximate coupled cluster models we introduce
approximations in the cluster equations and the dual state
approach can not be used in general. However, the energy in
Eq. ~22! may be viewed as an energy Lagrangian where the
t and t̄ parameters are determined from the variational prin-
ciple. The first derivative of the CC3 energy becomes

dE

db
5^LSDuVuCC3&1(

m3

t̄m3
~^m3u@V̂,T3#uHF&

1 1
2^m3u@@V̂,T2#,T2#uHF&!. ~24!

We thus do not have a generalized Hellmann–Feynmann ex-
pressed in terms of an average value between two states as in
Eq. ~19!. This again is a consequence of the fact that the
triples equation in the CC3 model is not determined directly
from the Schro¨dinger equation by projection. In CC3 the
singles and doubles equations are identical to the ones ob-
tained from projection, but the equations determining the
triples are approximated as described in Sec. II. It is clear
that the aforementioned discussion applies to other approxi-
mative coupled cluster models, e.g., the CCSDT-1a and
CCSDT-1b models.

The dual state approach is based on a generalized
Hellmann–Feynman theorem, and the fact that the time de-
pendence of the parameters can be determined directly from
the time-dependent Schro¨dinger equation for the two states
uCC& and ^Lu. It is clear that these assumptions are not ful-
filled for approximate coupled cluster models. However, mo-
lecular properties can be defined from the CC3 energy in Eq.
~22! using the variational Lagrangian approach, since this
approach is applicable for both approximated@Eq. ~22!# and
nonapproximated coupled cluster models@Eqs. ~15! and
~20!#. In Sec. VI we use the Lagrangian concept to derive the
frequency dependent response functions for coupled cluster
models.

IV. TIME-DEPENDENT PERTURBATION THEORY

A. General theory of response functions

The expectation value derivation of response functions is
not possible for approximated coupled cluster models, while
an energy-based approach could straightforwardly be applied
using the Lagrangian technique. In the time-dependent case
an energy as such is not well defined. Sasagane, Aiga, and
Itoh19 have circumvented this problem by expressing the re-
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sponse functions as derivatives of a so-called quasienergy.
This approach is applicable to both variational and nonvaria-
tional wave functions, and in the time-independent limit fi-
nite field results are obtained for molecular properties.

We now outline the essential ideas in order to establish
the connection between exact and approximate theory. We
may write the exact wave function as

uc̄&5e2 iF uc̃&, ~25!

where the phaseF is a function of time. Projecting the time-
dependent Schro¨dinger for uc̄& against ^c̃ u, we obtain an
equation for this phase factor

Ḟ5^c̃uSH2 i
]

]t D uc̃&. ~26!

Equation~26! gives a recipy for determining the phase-factor
when we have determineduc̃&. It is therefore advantageous to
separate the phasefactor from the equations determininguc̃&.
Various principles can be used to determine the time depen-
dence ofuc̃& see, for example, Olsen and Jo”rgensen20 for a
review. The time derivative of the phase as it occurs in Eq.
~26! is referred to as a quasienergy and appears in the time-
dependent Hellmann–Feynman theorem

d^c̃u@H2 i ~]/]t !#uc̃&
dl

5 K c̃U ]H

]l Uc̃ L 2 i
]

]t K c̃U ]c̃

]l L . ~27!

The time-dependent Hellmann–Feynman theorem is valid
for all variational wave functions. We consider an external
perturbation written as

Vt5 (
i52n

n

(
x
Hxex~v i !exp~2 iv i t !, ~28!

and we occasionally use the short hand notationHA5A. Dif-
ferent approaches can be taken to determine response func-
tions for the operators in Eq.~28!. The response functions
may be defined in terms of an expansion of the time-
dependent expectation value

mA~ t !5^c̄uAuc̄&5^c̃uAuc̃&. ~29!

Introducing the time-dependent Hellmann–Feynman theo-
rem it is seen that response functions may alternatively be
determined from an expansion of the derivative of the
quasienergy with respect to an arbitrary Fourier component

mA~ t !5S d^c̃u@H2 i ~]/]t !#uc̃&
deA~v!

1 i
]

]t K c̃U ]c̃

]eA~v!L D exp~ ivt !. ~30!

ThemA(t) then contain a term involving the quasienergy and
a term involving time differentiation of the wave function.

The time-dependent Hellmann–Feynman theorem is
valid for all variational wave functions and the above ap-
proaches are therefore equivalent for variational wave func-
tions. When Eq.~29! is used the phase is removed from the
calculation.20 For nonvariational wave functions Eq.~29! can
only straightforwardly be used if a generalized Hellmann–
Feynman theorem can be expressed in terms of an expecta-

tion value. The coupled cluster dual state approach is based
on this strategy, where the expectation value is replaced by
the generalized Hellmann–Feynman theorem in Eq.~19!,
and the time dependence of the coupled cluster and the dual
state is determined from the time-dependent Schro¨dinger
equation. Equation~30! applies equally well to both varia-
tional and nonvariational wave functions and gives in the
time-independent limit the energy differentiated results.
Sasaganeet al.19 have shown how response functions for
nonvariational wave functions may be obtained based on Eq.
~30!

An essential idea in the work of Sasaganeet al.19 is that
the contributions from the second term on the right hand side
of Eq. ~28! can be eliminated choosing a particular value for
v

v52vs52(
i51

n

v i ~31!

for thenth order response functions with associated frequen-
ciesvi . Then frequenciesvi are arbitrary~see Ref. 19 for
details!. Expressions for response properties in terms of the
quasienergy become

^A&5
]Ḟ~ t !

]eA~0!
, ~32!

^^A;B&&v1
5

]2Ḟ~ t !

]eA~2v!]eB~v1!
U
0

, ~33!

and so on. The phase factor approach does not require ex-
plicit states and expectation values to be given in order to
derive response functions. Only the quasienergy need to be
defined to derive the response functions. The quasienergy
can be formulated in terms of constraints and the Lagrangian
technique can therefore be generalized to time-dependent
wave functions as well. Using this technique MP2~Ref. 21!
and Brueckner Coupled Cluster~Ref. 22! frequency depen-
dent properties have been derived.

B. Coupled cluster quasienergy approach

We first outline the theory for usual non-approximated
coupled cluster theory, since the principles are the same as
for approximate coupled cluster models like the CC3 model.
The response functions we obtain for nonapproximated
coupled cluster models are identical to the ones previously
derived in the literature. The time dependence for such a
coupled cluster state can be parametrized as

uCC~ t !&5e2 iF uCC̃~ t !&5e2 iF exp@T~ t !#uHF&. ~34!

Projecting the time-dependent Schro¨dinger equation,

SH2 i
]

]t D U CC~ t !&50, ~35!

onto the Hartree–Fock reference determines the quasienergy
as
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Ḟ5 KHFUSH2 i
]

]t D UCC̃~ t !L 5^HFuHuCC̃~ t !&. ~36!

Monkhorst4 and Dalgaard and Monkhorst5 used this to derive
coupled cluster linear response functions.~Without using a
quasienergy Lagrangian approach.! The time-dependent am-
plitudes are obtained by projection onto^mi uexp~2T!. We
may express this in term of a quasienergy Lagrangian

L5^HFuHuCC̃~ t !&1(
m i

t̄m i
~ t !K m iUexp@2T~ t !#SH

2 i
]

]t D UCC̃~ t !L . ~37!

The use of Lagrangians allows the 2n11 and 2n12 rules18

to be used. We may at this point also introduce relaxed or-
bitals in the description similar to what is done in the time-
independent case@see Eq.~20!#. The corresponding Lagrang-
ian becomes

LCC5^HFuexp@2k~ t !#SH2 i
]

]t D exp@k~ t !#exp@T~ t !#uHF&1(
m i

t̄m i
~ t !K m iUexp@2T~ t !#exp@2k~ t !#SH2 i

]

]t D
3exp@k~ t !#exp@T~ t !#uHF&1(

mn
k̄mn~ t !^HFuFEmn8 exp@2k~ t !#SH2 i

]

]t D exp@k~ t !#G uHF&. ~38!

Time-dependent Hartree–Fock equations must then be
solved. However, as mentioned earlier, the orbital relaxation
introduces features not consistent with true response func-
tions, and we therefore do not use explicitly relaxed orbitals.
As described in Sec. II, theT1 operator in coupled cluster
theory gives an approximate description of the orbital relax-
ation.

Introducing the time-averaged Lagrangian

$L~ t !%T5
1

T E
t0

t01T

L~ t !dt, ~39!

where the periodT is the shortest common multiple period of
the periodic perturbations in Eq.~28!, we require the La-
grangian to be optimal with respect to variations oft̄ and t
parameters

d$L~ t !%T50. ~40!

Based on theVt in Eq. ~28! we can make an expansion of the
amplitudes

t5t ~0!1t ~1!~ t !1t ~2!~ t !1••• , ~41!

where the responses are expressed as, for example,

t ~1!~ t !5(
i

exp~2 iv i t !(
x

ex~v i !t
~x!~v1!. ~42!

Expanding the time-development of thet̄(t) parameters simi-
lar to t in Eqs. ~41! and ~42!, we can collect terms in the
Lagrangian in orders in the perturbation

L~ t !5L ~0!1L ~1!~ t !1L ~2!~ t !1••• , ~43!

whereL ~0! is the unperturbed energy of the CC model. To
ordern in the external perturbationVt we have

$L ~n!~ t !%T5$^L̃uH1VtuCC̃&~n!%T

1H K L̃U2 i
]

]t UCC̃L ~n!J
T

~44!

with a combination of frequencies for the perturbations ful-
filling

(
i51

n

v i50 ~45!

and Eq.~40! is used to determinet̄ ( i ),t ( i ), i51,n. The same
equations are obtained as in the dual state approach. The
Lagrangian$L(t)%T is fully variational, and thus satisfies the
2n11 and 2n12 rules. Furthermore, the time-differentiation
term in Eq.~44! does not contribute to the properties. This
can be seen as a consequence of the 2n12 and 2n11 rules,
writing it as

S (
k50,n

(
m

t̄m
~k!2 i

dtm
~n2k!~ t !

dt D
T

. ~46!

Only t̄m
(k) with n>k12 contributes according to the 2n12

rules. This means thatk<(n/2)21 and, thus,n2k>(n/2)
11, and according to the 2n11 rule for thet parameters, the
t (n2k) can be eliminated. We can thus write

]

]e~v!
$L~ t !%T5

]

]e~v! F K L̃USH2 i
]

]t D UCC̃L G
T

5@^L̃uAuCC̃&exp~2 ivt !#T . ~47!

From Eq.~47! response functions are obtained as derivatives
according to the scheme proposed by Sasaganeet al.,19 and
indicated in Eqs.~32! and ~33!. The response functions are
equivalent to the ones obtained in Ref. 6.

The essential results from the derivation of the linear
response function are summarized as follows. From the
variational requirements we obtain the equation for the clus-
ter amplitudes
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~vI2A!tA52jA, ~48!

zA52h, ~49!

where the CC JacobianA is defined as

Am in j
5^m i uexp~2T!@H0 ,tn j

#exp~T!uHF& ~50!

and the vectorsj andh are given as

jm i

A 5^m i uexp~2T!A exp~T!uHF&, ~51!

hn j
5^HFu@H0 ,tn j

#exp~T!uHF&. ~52!

From Eq. ~44! we may then determine the linear response
function as

CC^^A;B&&v5
]2$L%T

]eA~2v!]eB~v!
U
0

5^Lu@A,TB~v!#uCC&

1^Lu@B,TA~2v!#uCC&

1^Lu@@H0 ,T
A~2v!#,TB~v!#uCC&. ~53!

Excitation energies and transition moments can be obtained
from poles and residues of the response functions. The poles

of the response function occur at the poles of the amplitude
responses. From Eq.~47! it is seen that the excitation ener-
gies become the eigenvalues of the nonsymmetric CC Jaco-
bian.

AS5vS. ~54!

If T5T11T2 , Eqs.~47!–~54! give the CCSD result. Higher-
order response functions are easily obtained as well. The
advantage of the quasienergy approach is that it may be ap-
plied to approximate CC models as well. In the next section
we consider application to the CC3 model.

C. The CC3 linear response function

Response functions for approximate coupled cluster
models can be derived from a quasienergy Lagrangian,
where the approximations are introduced into the time-
dependent equations. The quasienergy Lagrangian for the
CC3 model is obtained from the CCSDT Lagrangian@see Eq.
~39!#, where approximations are introduced in accordance
with the perturbed CC3 equations, Eq.~14!,

LCC35^HFuH exp@T1~ t !1T2~ t !#uHF&1 (
m i

i51,2

t̄m i
~ t !^m i uexp@2T1~ t !2T2~ t !#SH2 i

]

]t Dexp@T1~ t !1T2~ t !1T3~ t !#uHF&

1(
m3

t̄m3
~ t !^m3uFF1V̂t2 i

]

]t
,T3~ t !G1@Û,T2~ t !#1 1

2@@V̂t,T2~ t !#,T2~ t !#uHF&. ~55!

Equations equivalent to Eqs.~47!–~54! are obtained where the Jacobian now is the CC3 Jacobian,

5
^m1u@Ĥ01@Ĥ0 ,T2#,tn1

#uHF&

^m2u@Ĥ01@Ĥ0 ,T21T3#,tn1
#uHF&

^m3u@@Ĥ0 ,T2#,tn1
#uHF&

^m1u@Ĥ0 ,tn2
#uHF&

^m2u@Ĥ01@Ĥ0 ,T2#,tn2
#uHF&

^m3u@Ĥ0 ,tn2
#uHF&

^m1u@H0 ,tn3
#uHF&

^m2u@Ĥ0 ,tn3
#uHF&

dmnvm3

6 , ~56!

and thej vector becomes

jA5S ^m1uÂ1@Â,T2#uHF&

^m2u@Â,T21T3#uHF&

^m3u@Â,T3#1 1
2@@Â,T2#,T2#uHF&

D . ~57!

Theh vector is unchanged since the triple contributions vanish. The CC3 response function can be expressed as one term
having the same structure as the CCSD linear response function and additional contributions from triples that we give as
explicit:

CC3^^A;B&&v5CCSD^^A;B&&v1$11P@A~2v!,B~v!#%S (
m2

t̄m2

~0!^m2u@A,T3
B~v!#1@@H0 ,T1

A~2v!#,T3
B~v!#uHF&1(

m3

t̄m3

~0!

3^m3u@Â,T3
B~v!#1@@A,T1

B~v!#,T3
~0!#1@@Û,T1

A~2v!#,T2
B~v!#1@@@Û,T1

A~2v!#,T1
B~v!#,T2

~0!#

1@@A,T2
B~v!#,T2

~0!#uHF& D . ~58!
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Equation~58! is the CC3 linear response function for one-
electron frequency dependent perturbations. Excitation ener-
gies are obtained as eigenvalues of the CC3 Jacobian in Eq.
~56! and transition moments are obtained as residues of Eq.
~58!.

Simplifications in the aforementioned derivation lead to
CCSDT-1a and CCSD-1b linear response functions. As de-
scribed in Sec. II these approximations are somewhat unbal-
anced as they do not include the singles in the triples equa-
tions. In addition CCSDT-1a lacks the singles–triples
contributions in the doubles equation. Both CCSDT-1a and
CCSDT-1b have a zero triples–singles block in the Jacobian
in contrast to the CC3 model. As we discuss later, this triples
singles block is important in order to describe single replace-
ment dominated excitation correct through third order. The
triples–doubles block does not have aT1 transformed Hamil-
tonian in both CCSDT-1a and CCSDT-1b. For CCSDT-1a
the doubles–triples block does not have aT1 transformed
Hamiltonian, and there is no triples contributions in the
doubles–singles block. Similar approximations occur in thej
vector. The changes in the Jacobian and thej vector in
CCSDT-1a and CCSDT-1b compared to CC3 has as a con-
sequence that the triple responses are not correct to second
order. The third-order term missing in the CCSD response
function@the first term in the parenthesis in Eq.~58!# are thus
only partially included, and CCSDT-1a and CCSDT-1b linear
response functions are not fully correct through third order.

In CC3 the triples response is correct through second order,
and the form of all singles, doubles, and triples third-and
fourth-order terms in the response function are retained. The
CC3 linear response function is thus fully correct to third
order. The third-order term in the doubles space with triples
responses~first term in the parenthesis in Eq.~58!! will,
however, also include a fourth-order term through the triples
responses in third order in the fluctuation potential. Since the
triple responses are only correct to second order, the CC3
lacks this fourth-order term in the singles doubles and triples
space. Quadruples enter the response function in fourth or-
der. Thus CCSDT based models can not provide frequency
dependent response functions correct through fourth order.

D. Order analysis of excitation energies

In this section we carry out an order analysis of the
excitation energies in various coupled cluster models. The
exact excitation energies are obtained if no truncations is
introduced in the excitation manifold and all equations are
solved non-approximated. Excitation energies in coupled
cluster theory are obtained from the eigenvalues of the CC
Jacobian

AS5vS. ~59!

Recognizing thatT2 enter in first order andT1 andT3 in
second order, etc., we may expand the matrix elements of the
Jacobian as

Am in j
5^m i u@F,tn j

#uHF&1^m i u@U,tn j
#uHF&1^m i u@@U,tn j

#,T2#uHF&

1^m i u
1
2@@@U,tn j

#,T2#,T2#1@@U,tn j
#,T11T3# uHF&1O~4!, ~60!

where the zeroth-, first-, second-, and third-order matrix elements are given explicit. The structure of the Jacobian containing
singles (S), doubles (D), triples (T), quadruples (Q), and quintuples (P) become

5 S
D
T
Q
P

S
d~0!1O~1!

O~1!
O~2!
O~3!
O~4!

D
O~1!

d~0!1O~1!
O~1!
O~2!
O~3!

T
O~1!
O~1!

d~0!1O~1!
O~1!
O~2!

Q
0

O~1!
O~1!

d~0!1O~1!
O~1!

P
0
0

O~1!
O~1!

d~0!1O~1!

6 , ~61!

whered~0! denote the zeroth-order diagonal elements con-
sisting of Hartree–Fock orbital differences and O(n) denote
the lowest nonvanishing order of the Jacobian matrix ele-
ments. For example theSTblock enter in first order since the
second term in Eq.~60! contribute, whereas theTS block
enter in second order since the first and second term in Eq.
~60! is zero and the third term contribute.

We now consider excitations that are dominated by
single and double replacements relative to the reference con-
figuration in more detail, and accordingly write Eq.~59! as

SASD B

C DD S SISII D 5vS SISII D , ~62!

whereASD refer to the singles and doubles block of the Jaco-
bian. The definition ofB, C andD is clear from the context.
All zero and first order contributions to the single and double
replacement dominated excitations are contained inASD. The
effect of triples and higher excitation manifolds on the single
and double replacement dominated excitations can be ana-
lyzed using partitioning techniques giving an effective eigen-
value equation in the singles and doubles space@assuming
that ~D2v1!21 exist#,

@ASD2B~D2v1!21C#SI5vSI . ~63!

The accuracy of the single and double replacement domi-
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nated excitations is obtained examining the orders of the
matricesASD, B, C, andD. We write the lowest order ofB,
C andD matrices needed in the subsequent analysis

Bm in j
~0! 5Cm in j

~0! 50, ~64!

Dm in j
~0! 5vm i

dmnd i j , ~65!

Bm in j
~1! 5^m i u@U,tn j

#uHF&@d i1d j31d i2~d j31d j4!#, ~66!

Cm in j
~1! 5^m i u@U,tn j

#uHF&d i3d j2 , ~67!

Cm3n1
~2! 5^m3u@@U,tn1

#,T2#uHF&. ~68!

We note that theTD (Bm2n3

(1) ) andDT (Cm3n2

(1) ) blocks of the

Jacobian enter in first order. SinceD contains zeroth-order
contributions, the effective eigenvalue equation, Eq.~63!,
shows that these matrices gives a second-order contribution.
This contribution is the only second-order contributions from
higher excitation manifolds and gives only direct contribu-
tions to the doubles spectrum.

In CCSD the singles and doubles amplitudes are correct
to second order, and the fullASD is, therefore, correct
through second order. The single replacement dominated ex-
citations are therefore correct through second order, whereas
the double replacement dominated excitations are correct
through first order only missing the second order triples con-
tribution described earlier.

In CC3 the singles and doubles amplitudes are correct
through third order and the triples amplitudes through sec-
ond. ASD is therefore correct through third order. The
second-order triples contribution lacking in CCSD is in-
cluded in CC3, and the double replacement dominated exci-
tations are therefore correct through second order. The same
second-order contribution is also included in the CCSDT-1
models and similar accuracy may therefore be expected in
CC3 and CCSDT-1 for the double replacement dominated
excitations, the differences being higher order terms. Note
that the contribution inB~1! from the quadruples vanishes in
second order because the corresponding term inC is of sec-
ond order. To obtain higher than second-order accuracy in
the doubles spectrum, the quadruple manifold needs to be
taken into account.

We now investigate the single replacement dominated
excitations. Recall thatASD is correct through third order in
CC3. From the structure of the Jacobian in Eq.~61! it is seen
that for the single replacement dominated excitations the
only additional third-order contributions arise from the cou-
pling between the second-orderTS block in C~2! @Eq. ~68!#
and the first-orderST block @Eq. ~66!#. The inclusion of the
TSblock of the Jacobian is thus necessary in order to obtain
single replacement excitations correct through third order.
This contribution is retained in CC3 due to the special treat-
ment of the singles amplitudes. In CCSDT-1a and
CCSDT-1b the coupling between the triples and singles
manifold is neglected. In fact, it is also neglected in the ap-
proximate EOM-CCSDT study of Watts and Bartlett11 this
being the reason why their single replacement excitation en-
ergies are of second order quality only. CC3 thus gives
double replacement excitation energies correct through sec-

ond order, and single replacement excitation energies correct
through third order. This property is unique to CC3 com-
pared to the other triples corrected excitation energy models
published so far and a consequence of treating the singles as
zeroth order parameters inU. This treatment of singles en-
sures that the coupling between the single spectrum and
higher excitations manifolds is described correct through
lowest order, which is important in a balanced description of
response properties as well as the total energy.

We mention that the CCSDT-3 and CCSDT-4 models of
Urbanet al.15 include this coupling. The CCSDT-4 model is
a N8 model and comparable to the full CCSDT model in
computational requirement. Calculations of total energies in-
dicate that the CCSDT-3 model is not better than CCSDT-1a
and CCSDT-1b.23,24 The CCSDT-3 model is somewhat un-
balanced since third-order terms from the doubles are in-
cluded in the cluster equations but the triples third-order term
excluded. These models have only been used for total ener-
gies and no excitation energies have been published using
these models. The linear response function for CCSDT-3 is
correct through third order.

E. Partitioning of CC3 equations

One of the major problems in triple excitation models is
the storing of triples amplitudes. In actual CC3 calculations
the triples amplitudes are therefore eliminated. In Ref. 14 we
demonstrated how this could be done in the optimization of
the reference CC3 state. In this section we discuss a similar
approach for evaluation of the linear response function.
Since the CC3 Jacobian in Eq.~56! has a simple diagonalTT
block equations~48! and ~49! may be solved explicitly for
triples parameters in terms of singles and doubles parameters
and matrix elements. We obtain for the triples amplitude re-
sponses

~v j2vm3
!tm3

A ~v j !5jm3
1 (

n i
i51,2

Am3n i
tn i
A ~v j !, ~69!

and for the triplest̄ parameters,

vn3
t̄n3
~0!52 (

m i
i51,2

t̄m i

~0!Am in3
. ~70!

Inserting this into the singles and doubles equations we ob-
tain equations for the singles and doubles parameters ex-
pressed solely in the singles and doubles space. The triples
parameters can always be obtained from Eqs.~69! and~70! if
they are needed explicit. The partitioned form of the CC3
frequency dependent Jacobian in the singles and doubles
space is

PAm in j
~v!5^m i u@Ĥ01@Ĥ0 ,T2#,tn j

#uHF&1(
n3

Am in3
An3n j

v2vn3

.

~71!

Introducing the effective triple excitation operatorbn j

3 (v) as
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bn j

3 ~v!5d j2(
m3

^m3u@Û,tn2
#uHF&

v2vm
tm3

1d j1(
m3

^m3u@@Û,tn j
#,T2#uHF&

v2vm
tm3

, ~72!

we can write this as

PAm in j
~v!5CCSDAm in j

1^m i u@Ĥ0 ,bn j

3 ~v!#uHF&

1d i2d j1^m2u@@Ĥ0 ,T3#,tn1
#uHF&. ~73!

The first term has the same structure as the CCSD Jacobian,
the second term arises from the partitioning and the third
from the approximate triples operator. The second term gives
the lowest order triples contributions as described in the pre-
vious section. Using this Jacobian the partioned equations for
the CC3 singles and doubles response parameters become

@v j12PA~v j !#t
x~v j !5Pjx~v j !, ~74!

t̄~0!PA~0!52h~0!. ~75!

The frequency dependentj vector is

Pjm i

A ~v j !5jm i

A 1(
n3

Am in3
jn3

A

5CCSDjm i

A 1^m i u@Â,T3#uHF&

1^m i uS Ĥ0 ,(
m3

jm3

v j2vm3

tm3D uHF&. ~76!

Similarly, we may partition the eigenvalue equation in Eq.
~60!. The triplesC vector can be written as

~v2vn3
!Cn3

5 (
m j

j51,2

An3m j
Cm j

~77!

and the eigenvalue equation can be written as an equation in
v in the single and double space;

PA~v!C5vC. ~78!

We may use this equation to determine the singles and
doubles spectrum of the full CC3 eigenvalue equation. Ad-
ditional zeroth-order triples poles exist in Eq.~78! but these
zeroth order poles will for most purposes not introduce any
problem in determining the single and double excitation
spectrum. In practical applications we thus solve an ‘‘eigen-
value’’ equation in the single and double space self consistent
in v.

In solving the eigenvalue equation or sets of linear equa-
tions we need to carry out linear transformation with the
Jacobian on trial vectors

rm i
5(

n j

Am in j
Cn j

. ~79!

We can write the linear transformations in the CC3 model as

CC3r~v!m1
5CCSDrm1

1^m1u@H0 ,B3~C1 ,C2 ,v!#uHF&,
~80!

CC3r~v!m2
5CCSDrm2

1^m2u@@H0 ,C1#,B3~0,t2
~0!,0!#uHF&

1^m2u@Ĥ0 ,B3~C1 ,C2 ,v!#uHF&, ~81!

where we have introduced the effective triples operator

B3~C1 ,C2 ,v!5(
n i

Cn i
bn i

3 ~v!

5(
m3

^m3u@Û,C2#uHF&
v2vm

tm3

1(
m3

^m3u@@Û,C1#,T2
~0!#uHF&

v2vm
tm3

.

~82!

The triples contribution to the equations for optimization of
the reference can be written as

^m i u@Ĥ0 ,B3~0,T2 ,0!#uHF&, i51,2. ~83!

It is thus seen that relative to CCSD, essentially the same
kinds of terms are involved for the wave function optimiza-
tion and in the transformations that are necessary for solving
eigenvalue equations. For the terms involvingC2 only a gen-
eralized triples diagonal needs to be taken into account. The
rest involveC1 and originate from the singles inĤ. These
terms can be calculated using the same strategy as before but
with a one index transformed Hamiltonian

H̃5@Ĥ,C1#. ~84!

Building on the capability of doing CC3 wave function
optimization and CCSD excitation energies, the amount of
extra programming is fairly small. The CCSDT-1a and
CCSDT-1b models are easily obtained by neglecting some of
the terms as described in Sec. IV C. The CCSDT-1b are ob-
tained by neglectingT1 and C1 contributions inB3 and
CCSDT-1a is obtained by further neglectingT1 andC1 in the
second and third term in Eq.~81!.

The construction of the right hand sides and the final
contraction for calculating other properties than excitation
energies is more involved. We postpone further discussion of
these matters to later work. We have demonstrated here that
we may solve CC3 linear equations and eigenvalue equations
in the single and double space without storing triples trial
and transformed vectors with anN7 operation count similar
to what is required to optimize the reference wave function.14

V. CALCULATIONS

Calculations are presented for excitation energies of
CH1, N2, and C2H4. For CH

1 we compare CC3 results to
FCI, CCSD, CCSDT-1a, CCSDT-1b, approximative EOM-
CCSDT results from Ref. 11, and noniterative CCSDT-1a
results reported in Ref. 12. For N2 and C2H4 we compare
CC3 excitation energies with CCSDT-1a and experiment as
well as CCS, CC2, CCSD results obtained in the hierarchy of
coupled cluster models described in Ref. 25. For C2H4 we
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further compare with CASPT2~Ref. 26! ~second order per-
turbation theory building on a complete active space refer-
ence! results.

A. CH1

The CH1 calculations were carried out at the internu-
clear distance 2.13713 a.u., using the 14s5p1d basis of Ref.
27. CH1 has a ground state electronic configuration
1s22s23s2 with a large nondynamical correlation contribu-
tion from 1s22s21p2. CH1 has a1P valence state dominated
by 1s22s23s11p1, that is single replacement dominated rela-
tive to the ground state. Furthermore, CH1 has one valence
excited state of1S1 symmetry and one of1D symmetry that
originate from the 1s22s21p2 electronic configuration and
are predominantly double replacements relative to the
ground state. In Table I, we report ground state energies and
excitation energies from theX 1S1 ground state to the va-
lence excited states and to some higher states for the various
approaches.

The CC3 ground state energy in Table I is within 0.5
milliHartree of the CCSDT energy and the FCI energy. The
CCSDT-1a and CCSDT-1b energies are almost identical to
the CC3 energy. The reference is thus described at similar
accuracy in CC3 and the CCSDT-1 models.

The CCSDT-1a and CCSDT-1b excitation energies are
almost identical for all excitations. The excitation energies of
double excitation character is significantly improved relative
to CCSD for all approximative triples method. The error in

CCSD is of order 0.5–1.0 eV. In the triples models this is
improved to be less than 0.3 eV relative to FCI, whereas the
differences between CC3 and CCSDT-1 is less that 0.05 eV.
For the double replacement excitations the differences be-
tween the CC3 and CCSDT-1a approaches are thus minor.
The approximative EOM-CCSDT includes some triples–
doubles and triples–triples interaction and transitions with
large double excitation contributions are closer to FCI in this
model than for the other triples models. The errors in this
approximative EOM-CCSDT model is 0.1 eV. The descrip-
tion of single replacement dominated excitations is improved
significantly in CC3 compared to CCSD while CCSDT-1
does not improve the CCSD energies for single replacement
dominated excitations. The approximative EOM-CCSDT
model does not either improve the single replacement domi-
nated excitations significantly. The CCSDT-1 models and the
approximative EOM-CCSDT model exclude the third order
triples corrections to the single excitation energies, and
therefore give no improvement relative to CCSD. For double
replacement dominated excitations the noniterative
CCSDT-1a model, denoted EOM-CCSD~T! in Ref. 12, is
very close to CCSDT-1a. For single replacement dominated
excitations closer agreement with FCI is obtained than in
CCSDT-1a. The authors of Ref. 12 noted that this may be
accidental.

For the single replacement dominated excitations the
CCSDT-1a corrections to CCSD does not include the third-

TABLE I. CH1 excitation energies in eV and ground state energies in a.u.

Excitation CISDa CCSDa Noniter CCSDT-1ab CCSDT-1ab CCSDT-1b
Approx. EOM
CCSDTc CC3 FCId % t1 in CCSD

X 1S1→1S1 9.917 9.109 8.783 8.781 8.779 8.624 8.779 8.549 1
14.941 13.581 13.559 13.583 13.584 13.576 13.541 13.525 93
18.651 17.316 17.269 17.285 17.285 17.265 17.243 17.217 84

1P 4.457 3.261 3.246 3.271 3.274 3.279 3.242 3.230 97
15.572 14.454 14.395 14.339 14.401 14.266 14.346 14.127 72

1D 8.438 7.888 7.299 7.287 7.284 7.029 7.282 6.964 0
18.488 17.689 17.177 17.097 17.095 16.798 17.094 16.833 24

Ground state
energy~1S1! 238.014 201 238.017 670 238.019 131 238.019 131 238.019 516 238.019 131 238.109 638

aCISD and CCSD result from Ref. 9.
bCCSDT-1a and noniterative CCSDT-1a~results from Ref. 12!.
cApproximate EOM-CCSDT result from Ref. 11.
dFCI numbers from Ref. 27.

TABLE II. N2 excitation energies in eV and ground state energies in a.u. Basis set from Ref. 29. Basis set is [11s7p2d/6s5p2d]. RNN52.067 a.u.

CCSa CC2a CCSDa CC3 CCSDT-1a Expt.b % T1

1Pu 15.63 14.11 13.74 13.48 13.73 13.4 86
1Su1 16.67 14.39 14.63 14.39 14.76 14.4 95
1Du 9.14 11.08 10.68 10.53 10.92 10.3 97
1Su2 8.58 10.54 10.27 10.16 10.61 9.9 98
1Pg 10.10 9.65 9.62 9.55 9.89 94
1Su1 15.31 15.65 15.70 15.14 15.88 96

Gs. E. 2108.985 177 2109.402 101 2109.394 480 2109.413 431 2109.413 364

aCCS, CC2, and CCSD results from Ref. 25.
bExperimental results from Ref. 30.
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order contributions from theTS-ST blocks. These third or-
der contributions are in the opposite direction of the other
corrections. The CC3 model includes all contributions and is
therefore significantly closer to FCI than any of the other
triples models. The superior performance of CC3 have been
observed in benchmark calculations on other systems.28

B. N2

In Ref. 25 we performed CCS, CC2, and CCSD calcu-
lations on N2 with the geometry and basis set of Ref. 29, see
Table II. We performed CC3 and CCSDT-1a calculations of
the same excitation energies; the results are given in Table II.
Further basis set studies are needed to estimate the basis set
error but it appears that the current basis set is sufficiently
large to describe the major features of the spectrum. All ex-
citations are single replacement dominated as indicated by
the percentt1 contributions. Significant differences are ob-
served between the results of the various coupled cluster
models. The CCSDT-1a and CC3 differ by up to 0.6 eV, with
CCSDT-1a generally going in the opposite direction of CC3
relative to CCSD. This indicates that large third-order con-
tributions exist in N2. Like in CH

1, the third-order contribu-
tions that couple to the triples space are in opposite direction
of the other contributions. As a consequence of the more
balanced treatment, the CC3 results are closer to the experi-
mental results than are the CCSDT-1a results.

C. C2H4

In Ref. 31 CASPT2 calculations on ethylene are re-
ported. We have carried out CCSDT-1a and CC3 calculations
using the same basis set and geometry, see Table III. The
results are given in Table III together with CCS, CC2, and
CCSD results from Ref. 25. All excitations are single re-
placement dominated with a single replacement contribution
between 94–97%t1. The difference between CCSD and
CC3 is of order 0.04 eV. From the convergence in the hier-
archy of CCS, CC2, CCSD, CC3 excitation energies and
from the experience of other benchmark calculations, the
CC3 excitation energies are expected to be accurate with the

difference between CCSD and CC3 as a conservative esti-
mate of the error bound. The CCSDT-1 model give changes
of about 0.2 eV relative to CCSD, and in the opposite direc-
tion of the changes in CC3. Thus CCSDT-1a seems to give
an unbalanced treatment of single replacement excitations
energies which may leads to significant errors, and in fact
spoils the accuracy obtained at the CCSD level.

CASPT2 results are also given in Table III. The ap-
proaches for obtaining excitation energies in the CASPT2
and in coupled cluster linear response are completely differ-
ent. In CASPT2 the total energies of the individual states are
found in a complete active space multiconfigurational self-
consistent field~CAS MCSCF! calculation followed by a
second-order perturbation energy correction. In the coupled
cluster linear response approach the ground state function is
calculated explicitly and the excitation spectrum is found
solving the linear response eigenvalue equation. Recent
benchmark calculations indicate that the energy in CASPT2
is of approximately MP2 quality but robust towards larger
static correlation effects.32 For many systems CASPT2 has
provided excitation energies within 0.3 eV of the experimen-
tal results. This accuracy is thus obtained due to cancellation
of errors between the ground state and excited state energy
and is thus sensitive to a balanced treatment of the ground
and excited state.

The CASPT2 results are within 0.1 eV of the CC3 re-
sults for all excitations except the1B1u state, and also within
0.2 eV from experiment. For most of the CASPT2 results the
calculations thus seem to be balanced and give a remarkable
accuracy. However the accuracy of the mixed valence-
Rydberg state is not consistent with the accuracy of the other
excited states. In the coupled cluster linear response calcula-
tion no special problems are encountered treating mixed va-
lence Rydberg states. In order to provide a final comparison
with experiment, basis set and geometry effects needs to be
considered in more detail.

VI. CONCLUDING REMARKS

We have outlined a general approach for deriving re-
sponse functions for approximated coupled cluster models.

TABLE III. C 2H4 singlet excitation energies in eV. Ground state energies in a.u. Basis set and geometry as in Ref. 31. Basis set is an atomic natural orbital
type ~ANO! where (14s9p4d/8s4p) is contracted to [4s3p2d/3s2p] and where a set of diffuse (2s2p1d) is added on carbon. The geometry isrCC51.339
Å, rCH51.086 Å, and,HCH5117.6.

RPAa CCSa CC2a CCSDa CC3 CCSDT-1a CASPT2b Expt.c

1B3u 7.07 7.09 7.14 7.29 7.23 7.45 7.17 7.11
1B1g 7.66 7.67 7.78 7.95 7.90 8.12 7.85 7.80
1B2g 7.82 7.83 7.82 7.99 7.94 8.16 7.95 7.90
1B1u 7.33 7.67 7.86 7.98 7.87 8.19 8.40 8.01
1Ag 8.14 8.16 8.23 8.46 8.42 8.64 8.40 8.29
1B3u 8.54 8.55 8.58 8.79 8.75 8.97 8.66 8.62
1Au 8.74 8.74 8.77 9.02 8.99 9.21 8.94
1B3u 8.79 8.79 8.84 9.08 9.04 9.26 9.03 8.90
1B2u 8.96 8.97 9.07 9.27 9.22 9.44 9.18 9.05
1B1u 8.94 8.97 9.03 9.31 9.27 9.50 9.31 9.33

Etot 278.064 796 278.064 796 278.388 064 278.411 268 278.425 041 278.424 996

aRPA, CCS, CC2, and CCSD results from Ref. 25.
bCASPT2 results from Ref. 31.
cExperimental data from the compilation in Ref. 31.
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The linear response function for the iterative approximate
triples coupled cluster model CC3 was derived, and from
simplifications of the CC3 response function, response func-
tions for CCSDT-1a and CCSDT-1b are obtained.

We have carried out an order analysis of CC3 linear
response properties in particular excitation energies. The
CC3 linear response function is correct through third order in
contrast to the CCSDT-1 models where the linear response
functions are correct through second order. In CC3 excitation
energies of single replacement character are correct through
third order, and the double replacement excitation energies
are correct through second order. The latter also holds in
CCSDT-1 whereas the single excitation dominated excita-
tions are correct to second order and not improved in
CCSDT-1 relative to CCSD. The same applies for the ap-
proximative EOM-CCSDT excitation energies of Ref. 11.
The aforementioned features of the CC3 model are all con-
sequences of the fact that the singles are treated as zeroth-
order parameters. The special treatment of the singles is eas-
ily justified by a double perturbation theory expansion of the
cluster equations. Keeping all terms in the external perturba-
tion but approximating to second order in the fluctuation
potential in the triples cluster equations, the CC3 triples
equations are obtained. This approach assures that the impor-
tant coupling to the singles is accounted for, and a balanced
description of one-electron response properties, excitation
energies, and the ground-state energy is therefore obtained.
In Ref. 25 the CC3 model is included in a hierarchy of
coupled cluster models. Through the series CCS, CC2,
CCSD, CC3, etc. properties are improved at each step in this
hierarchy. One-electron response properties are improved
from being correct through second order in CCSD~with full
inclusion of all singles and doubles term! to being correct
through third order in CC3. The same holds for single re-
placement dominated excitations. For double replacement
excitations CCSD is correct through first order and CC3 im-
proves this to second order.

We have demonstrated how excitation energies and other
properties in CC3 can be calculated usingN7 operation
counts and without explicit storage of triples trial and result
vectors. The strength of the CC3 approach is demonstrated
through calculations of excitation energies of CH1, N2, and
C2H4. Benchmark calculations on CH1 convey significant
improvements of both single and double replacements in
CC3 relative to CCSD. Benchmark calculations on other sys-
tems show the same trends.28 Significant contributions to all
excitations have thus been obtained in CC3, and the impor-
tance of treating the triples contribution in a balanced way is
clearly exposed by all the calculations.
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