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The algebraic diagrammatic
construction scheme for the
polarization propagator for the
calculation of excited states
Andreas Dreuw∗ and Michael Wormit

The algebraic diagrammatic construction (ADC) scheme for the polarization
propagator provides a series of ab initio methods for the calculation of excited
states based on perturbation theory. In recent years, the second-order ADC(2)
scheme has attracted attention in the computational chemistry community because
of its reliable accuracy and reasonable computational effort in the calculation of
predominantly singly excited states. Owing to their size-consistency, ADC methods
are suited for the investigation of large molecules. In addition, their Hermitian
structure and the availability of the intermediate state representation (ISR) allow
for straightforward computation of excited-state properties. Recently, an efficient
implementation of ADC(3) has been reported, and its high accuracy for typical
valence excited states of organic chromophores has been demonstrated. In this
review, the origin of ADC-based excited-state methods in propagator theory is
described, and an intuitive route for the derivation of algebraic expressions via
the ISR is outlined and comparison to other excited-state methods is made.
Existing computer codes and implemented ADC variants are reviewed, but most
importantly the accuracy and limits of different ADC schemes are critically
examined. © 2014 John Wiley & Sons, Ltd.
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INTRODUCTION

The development of accurate, predictive, and, at
the same time, computationally efficient theoreti-

cal approaches for the calculation of excited electronic
states of medium-sized and large organic molecules
is an active field of research in contemporary theo-
retical chemistry,1–6 which addresses one of its great-
est challenges: the study of photochemistry of large
molecules with more than approximately 25 atoms
of the second row of the periodic table.7,8 Here, one
faces a serious dilemma when different excited elec-
tronic states of a molecule are to be computed: any
approximation made to the Hamiltonian introduces
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imbalances in their description, and, clearly, the more
severe an approximation is, the less balanced is the
description of different excited states.2 Computations
on large molecules, however, require severe approx-
imations to be technically feasible at all. Hence, for
the computation of excited states of large molecules in
reasonable time, it is necessary to find a compromise
between accuracy and feasibility, or in other words,
a theoretical method, that is computationally efficient
and at the same time accurate enough to deliver a
conclusive solution to the investigated photochemical
problem. For excited states of large molecules this is
particularly difficult, because their excited states are
usually close in energy but possess very different elec-
tronic structures (e.g., 𝜋𝜋*, n𝜋*, charge transfer, Ryd-
berg, or doubly excited), requiring in general quite
accurate calculations. A plethora of quantum chemical
approaches exist already for the calculation of excited
states (see for example Refs 1–8). However, their
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accuracy and hence their reliability and predictive
power vanish quickly with increasing level of approx-
imation. In most cases it is thus not possible to iden-
tify a single quantum chemical method to describe all
excited states with similar high accuracy, and one is
usually forced to focus only on those states relevant to
the investigated problem.

In the late 1990s great enthusiasm existed
about linear-response (LR) time-dependent density
functional theory (TDDFT),9–11 because accurate cal-
culations of absorption spectra were reported at very
low computational cost.12 TDDFT using standard
exchange-correlation functionals rapidly became the
method of choice for the calculation of excited states
of medium-sized and large molecules with up to 250
atoms of the second row of the periodic table, i.e., far
more than 1000 basis functions.13,14 However, due to
the approximate nature of the xc-functionals and the
nowadays well-known problems of LR TDDFT with
charge-transfer excited states,15,16 doubly excited
states,13 its accuracy is essentially unpredictable
and reliable theoretical benchmarks are generally
required.2 Despite the large number of available
xc-functionals and their different levels of sophisti-
cation, DFT-based methods are also generally not
systematically improvable.

A valuable alternative is offered by efficient
semiempirical methods, for example the intermedi-
ate neglect of differential overlap/screened approxi-
mation (INDO/S),17,18 the orthogonalization method
2 (OM2)/MRCI,19–21 or DFT/MRCI.22,23 In particu-
lar, the last two approaches have shown great poten-
tial in the investigation of multi-reference problems,24

but it is clear that also these require accurate bench-
marks for an initial assessment of the accuracy,
due to the underlying high levels of semiempirical
approximations.

For large molecules, accurate benchmarks are
nowadays mostly generated by wave function-based
ab initio methods following the theoretical approaches
of multi-configuration self-consistent field (MCSCF),
configuration interaction (CI), coupled cluster
(CC) or, as we will see below, most recently also
the algebraic diagrammatic construction (ADC)
approach.25–27 These comprise well-known meth-
ods like complete-active space self-consistent field
(CASSCF)26,28 in combination with second-order
perturbation theory (CASPT2),29,30 the approx-
imate coupled-cluster schemes of second and
third order, CC231–36 and CC3,37–39 respectively,
or equation-of-motion (EOM)40–45 and LR46–48

CC methods, for instance. Most recently, also
propagator-based approaches have gained more
attention, the second-order polarization propagator

approximation (SOPPA)49–52 and the ADC scheme
of the polarization propagator in second and
third order of perturbation theory [ADC(2)
and ADC(3)].43–57

The interest in the ADC scheme of the polar-
ization propagator has been triggered by recent
efficient implementations of the second-order scheme
ADC(2)-s into widespread quantum chemical pro-
gram packages such as Turbomole,58 Q-Chem,59,60

and Psi4.61 It turned out to be a slightly more efficient
alternative to CC2 exhibiting a similar accuracy for
singly excited states with a mean error (±standard
deviation) of 0.22± 0.38 eV.35,62 In addition, its Her-
mitian structure offers advantages in the computation
of excited-state properties, such as nuclear gradients
or dipole moments35,63 and the inclusion of environ-
mental effects via polarizable continuum models,64 for
example. Furthermore, it has recently been demon-
strated that the ADC formalism is also applicable
in the computation of molecular response proper-
ties such as polarizabilities65 and indirect nuclear
spin–spin coupling constants.66 Despite the increasing
interest in the application of ADC-based methods, its
theoretical foundations, the basic concepts, as well as
their accuracies and application ranges are known to
an expert group of quantum chemists only. Hence, it
is our intention here to introduce ADC schemes for
the polarization propagator to a broad computational
community, for whom it may provide a useful method
for the calculation of excited electronic states and
the comprehensive investigation of photochemical
problems.

In the following section, the origin of ADC in
Green’s function theory is briefly outlined, motivat-
ing its otherwise unusual name. Subsequently, a more
intuitive derivation of the ADC equations and a con-
ceptual access to excited-state properties is provided,
when the concept of the intermediate state represen-
tation (ISR) is explained. To make a connection to
more familiar excited-state methods, the structure of
the ADC matrices at several approximation levels is
first discussed, and then the general properties of CI,
CC, and ADC methods are compared. Most impor-
tantly, the computational accuracy of ADC methods is
discussed, and the limitations of their applicability are
pointed out. Finally, existing ADC implementations
are reviewed.

THE ORIGIN OF THE METHOD IN
PROPAGATOR THEORY

The ADC scheme of the polarization propagator
for electronically excited states originates from
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many-body Green’s function theory.53 Green’s func-
tions are a useful mathematical technique to solve
inhomogeneous differential equations.67 Although
in many-body systems, like the electronic Hamilto-
nian of molecules, a unique Green’s function cannot
be defined, it is still possible to identify building
blocks, which are usually called propagators, which
yield solutions to certain classes of problems.68,69

The one-electron propagator, for instance, measures
the probability of the electron to travel within a
certain time t from one place to another, while the
two-electron propagator does the same for two cor-
related electrons. Hence it is clear that knowledge
of the exact one-electron and two-electron propaga-
tors allows to calculate exact expectation values of
one and two-particle operators.70 In addition, the
electron propagator provides access to ionization
potentials and electron affinities, typical one-electron
properties.71–73

The polarization propagator describes the time
evolution of the polarization of a many-electron
system, which from a more abstract perspective
corresponds to time-dependent fluctuations of the
ground-state electron density or wavefunction of
the otherwise unperturbed system.68 To be more
explicit, the polarization propagator acts on the
time-dependent ground-state wavefunction and prop-
agates time-dependent density fluctuations of the
many-body system. Their mathematical description in
the eigenstate basis of the corresponding electronic
Hamiltonian requires the wavefunctions of the excited
electronic states. Thus, the polarization propagator
implicitly contains information about the electronic
excited states of the many-electron system, i.e., the cor-
responding molecule. This is readily apparent in the
well-known spectral representation of the polarization
propagator which, if expressed as a matrix function,
is given by68:

Πpq,rs (𝜔) =
∑
n≠0

⟨
𝜓0|c†qcp|𝜓n

⟩⟨
𝜓n|c†r cs|𝜓0

⟩
𝜔 + EN

0 − EN
n

+
∑
n≠0

⟨
𝜓0|c†r cs|𝜓n

⟩⟨
𝜓n|c†qcp|𝜓0

⟩
−𝜔 + EN

0 − EN
n

(1)

where 𝜓0 is the electronic many-body ground state
of the molecule with energy EN

0 . The creation and
annihilation operators c†q and cp, respectively, cre-
ate or annihilate an electron in the correspond-
ing one-electron state, which are typically associ-
ated with canonical Hartree-Fock orbitals. The sum
is carried out over all electronically excited states
𝜓n with total energy EN

n . This so-called Lehmann

representation of the polarization propagator contains
information on the excitation spectrum, as it pos-
sesses poles at the vertical excitation energies 𝜔n =
EN

n − EN
0 , while the residues are the transition prob-

abilities of the corresponding excitation. Both sums
on the right-hand side of Eq. (1) contain identical
information, hence it is sufficient to consider only one
of them. Since in Eq. (1), the polarization propaga-
tor is expressed in the eigenstates of the molecular
system, i.e., the ones that diagonalize the molecular
Hamiltonian, it is usually called ‘diagonal’ represen-
tation of the polarization propagator and compactly
written as

Π (𝜔) = x† (𝜔 − Ω)−1 x (2)

where Ω is the diagonal matrix of vertical excitation
energies 𝜔n and x is the matrix of transition ampli-
tudes, or also called ‘spectroscopic’ amplitudes. For
the derivation of ADC approximation schemes,53

Eq. (2) is to be formulated in a ‘non-diagonal’
representation according to

Π (𝜔) = f† (𝜔 − M)−1 f , (3)

which fits to the representation of the polarization
propagator in terms of Feynman-Goldstone diagram-
matic perturbation series. The existence of such a
representation needs to be postulated here. M is a
‘non-diagonal’ matrix representation of an ‘effective’
Hamiltonian and f is the matrix of the ‘effective’
transition moments.53 At this point in the original
derivation, diagrammatic perturbation theory comes
into play, and the ‘effective’ Hamiltonian and tran-
sition amplitudes are expanded independently with
respect to their perturbation-theoretical order in the
fluctuation potential,53 which is the correlation energy
according to the typical Møller-Plesset partitioning of
the Hamiltonian

M = M(0) + M(1) + M(2) + …

f = f(0) + f(1) + f(2) + … (4)

A perturbation-theoretical order analysis of the
expansion of Π(𝜔) yields explicit algebraic expres-
sions for the matrix elements (M)(n)

𝜇𝜈
and f(n)𝝁 , where

the indices 𝜇 and 𝜈 refer to certain excitation classes,
i.e., singly, doubly, etc. excited. The order of an ADC
approximation scheme, ADC(n), accounts for all
terms and blocks required for a perturbation theo-
retically consistent description of Π(𝜔) through order
n. The ADC schemes can thus be seen as a specific
reformulation of the diagrammatic perturbation series
of the polarization propagator. Having now explicit
algebraic expressions for the matrix M available, and
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knowing that the polarization propagator has poles
at the excitation energies, the latter can be obtained
simply by diagonalization of the matrix M at a desired
order of perturbation theory. Hence, the solution of
the Hermitian eigenvalue problem

MY = YΩ; Y†Y = 1 (5)

yields vertical excitation energies 𝜔n and eigenvectors
y, which give access to spectroscopic amplitudes x via

x = y†f . (6)

Summarizing the line of thought of this
derivation briefly, the polarization propagator of
a molecular system carries information about the
exact excited states. The ADC scheme allows for
a perturbation-theoretical consistent reformulation
of approximations for the polarization propaga-
tor, which then in turn contain only approximate
information on the excited states. Diagrammatic
analysis of the perturbation-theoretical series yields
explicit algebraic expressions, and hence, a mathe-
matical framework to compute excitation spectra.
Naturally, the higher the order of perturbation the-
ory, the more accurate the results for the excitation
energies and transition amplitudes can be expected
to be.

The derivation outlined above also points
toward the origin of the name of the methodology:
ADC scheme, since diagrammatic perturbation theory
is employed to construct consistent levels of approx-
imations to propagators. Of course, the polarization
propagator is only one possible propagator. ADC can
be applied to, and it has already been used for other
propagators as well. For example, the electron prop-
agator yields algebraic expressions for the calculation
of electron affinities,74 while the hole propagator
delivers ionization potentials75 and the two hole
propagator gives direct access to double ionization
potentials,76 and so forth. All these schemes are
usually referred to as ADC, thus requiring to name
the underlying propagator. In the following, however,
we will concentrate on ADC for the polarization
propagator only, i.e., on the calculation of excited
electronic states.

THE INTERMEDIATE STATE
REPRESENTATION

Today, an alternative route of the derivation of the
algebraic ADC expressions exists via the so-called
ISR.55,63,77,78 This route does not require knowl-
edge about propagators and is thus more easily

comprehensible for students and computational sci-
entists with a more standard quantum chemical
training.

In the previous derivation, the excited-state basis{
�̃�J

}
, in which the ADC equations are defined was

not known, and apparently, this is not necessary to
obtain excitation energies and spectroscopic ampli-
tudes. However, without knowledge of these basis
functions, the wavefunctions of the excited states
are not accessible, as it is otherwise not possible
to construct them from the ADC eigenvectors y
according to

𝜓n =
∑

J

ynJ�̃�J . (7)

The explicit form of the basis functions, the
so-called intermediate states (IS)

{
�̃�J

}
, was later

derived.55,77 Starting from the correlated ground-state
wavefunction 𝜓0, a correlated excited-state basis{
𝜓0

J

}
, can in general be generated by acting on it with

excitation operators
{

ĈJ

}
≡

{
ĉ†aĉk, ĉ

†
aĉ†

b
ckĉl, ....

}
rep-

resenting physical single, double, etc… excitations

𝜓0
J = ĈJ𝜓0. (8)

These correlated excited states
{
𝜓0

J

}
are generally

not orthogonal, but can be successively orthogonal-
ized via Gram-Schmidt (GS) orthogonalization yield-
ing directly the orthogonal intermediated state basis{
�̃�J

}
. The concept of the ISR is very general, and obvi-

ously, the previously defined ‘effective’ quantities M
and f can now be expressed directly exploiting the IS
basis as follows:

(M)IJ =
⟨
�̃�I|Ĥ − EN

0 |�̃�J

⟩
, (9)

(
f
)

J,pq =
⟨
�̃�J|ĉ†pĉq|𝜓0

⟩
, (10)

with Eqs (9) and (10) being the ISRs of the shifted
Hamiltonian and the effective transition ampli-
tudes, respectively. The latter can be contracted
with the dipole operator to obtain transition dipole
moments. Choosing now the nth order Møller-Plesset
ground state as starting point for the derivation of
the IS basis, one arrives at the nth order ADC(n)
scheme for excitation energies. For example, start-
ing with the MP2 ground-state wavefunction and
the MP2 ground-state energy, ADC(2) is obtained.
Hence, one can state that ADC(2) can be seen as
‘MP2 for excited states’. It is important to note
that the ADC(n) methods converge to full-CI with
increasing order.
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As is immediately obvious, the ISR concept
offers new possibilities,63,78 not available in previous
propagator approaches and the previous derivation
of ADC. In particular, the ISR opens an avenue for
convenient and efficient calculation of excited state
and transition properties, since every operator Ô can
be represented in the IS, in analogy to Eqs (9) and (10)

(O)IJ =
⟨
�̃�I|Ô|�̃�J

⟩
, (11)

and the corresponding expectation value is simply
obtained by contraction with the corresponding ADC
eigenvalues

⟨O⟩nm = y†nOym . (12)

When, for example, Ô is chosen to be the dipole
operator in Eq. (11), the static dipole moments of
the excited states (n=m) and the transition dipole
moments between excited states (n≠m) are obtained
via Eq. (12).78 Most importantly, though, the excited
state many-body wavefunctions can now be explicitly
constructed according to Eq. (7). This allows for the
calculation of one-electron densities, transition den-
sities, difference densities, or detachment/attachment
density plots, which greatly facilitate the interpreta-
tion of the electronic structure of excited states.79,80

Beyond the calculation of excited-state prop-
erties, the ISR also provides a rigorous mean to
derive open-shell ADC schemes.81–83 This has
not been possible previously via the original alge-
braic diagrammatic pathway, because the required
open-shell polarization propagator is not known. Via
the ISR, on the contrary, the derivation of unrestricted
algebraic diagrammatic construction (UADC) schemes
is intriguingly simple using Eq. (8). In the unrestricted
case, the reference ground state corresponds to an
unrestricted MP ground state, and the excitation
operators have to refer to spin orbitals rather than
spatial orbitals as in the restricted case. As a conse-
quence, the excitation operators acquire an additional
spin index

{
ĈJ

}
≡

{
ĉ†a𝜎 ĉk𝜎, ĉ

†
a𝜎 ĉk𝜎 ĉ

†
b𝜏

ĉl𝜏 , ....

}
and one

has to take care that subsequent annihilation and
creation operators act on same-spin orbitals being
both either 𝛼 or 𝛽 orbitals. Following the same deriva-
tion steps as outlined above yields unrestricted ADC
equations. Along the same line of thought spin-flip
ADC equations can in principle be derived. In that
case, the triplet MP ground state serves as starting
point, in which the two unpaired electrons are said
to possess 𝛼 spin. To generate now the singlet IS basis
from the triplet ground state via the ISR formalism,
the excitation operators of Eq. (8) must be ensured to
flip the spin of one of the excited electrons from 𝛼 to 𝛽.

THE STRUCTURE OF THE ADC
MATRIX

For the derivation of the explicit expressions of the
matrix elements of the ADC matrix, the formalism of
second quantization is usually exploited and strings
of creation and annihilation operators need to be
evaluated to construct the IS basis and to represent the
shifted Hamiltonian in them.53,77 Explicit expressions
of the matrix elements (M)(n)

𝜇𝜈
are given elsewhere53,56

and shall not be discussed in detail here. Instead,
a more general discussion of the structure of the
ADC matric at different levels of perturbation theory
appears to be more useful.

As can be seen in Figure 1, the matrices of
the ADC(2)-s, ADC(2)-x, and ADC(3) schemes have
the same size, i.e., the dimension of a CI singles
plus doubles matrix. In other words, they comprise
singly excited Φa

i , so-called particle-hole (p-h) states,
and doubly excited Φab

ij , so-called two particle-two
hole (2p-2h) intermediate states. The ADC schemes
differ, however, in the order of perturbation theory to
which the matrix elements of each individual block
are expanded. In the strict ADC(2)-s scheme, which
is rigorously derived when starting from the MP2
ground state, the (p-h) block is expanded to second
order of perturbation theory, the (p-h, 2p-2h) coupling
block to first order and the (2p-2h) block to zeroth
order. As a consequence, the (2p-2h) block is diagonal
containing only the orbital energy differences on the
diagonal (Figure 1).

The extended ADC(2)-x scheme is an ad hoc
extension of the ADC(2)-s scheme without rigorous
theoretical justification.54 In ADC(2)-x, the matrix
elements of the (2p-2h) block are now expanded
up to first order of perturbation theory, while all
other matrix elements of the ADC(2)-s scheme remain
unchanged (Figure 1). As a consequence, the (2p-2h)
block is no longer diagonal and the computational
effort for the diagonalization of the ADC(2)-x matrix
increases from O(N5) for ADC(2)-s to O(N6). How-
ever, the inclusion of the coupling between the doubly
excited states improves their theoretical description,
that is, a substantial lowering of their excitation ener-
gies is observed. As we will see below, this ad hoc
extension leads to an overall unbalanced description
of the excitation spectrum and a consistent underesti-
mation of excitation energies.

Originally, the third-order ADC(3) scheme has
been derived using the diagrammatic path,56,57 of
course algebraic expression can also be obtained via
the ISR pathway, when the MP3 ground state is used
as starting point for the construction of the IS basis.
In ADC(3), the matrix elements of all blocks are
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FIGURE 1 | Structures of the ADC matrix in the strict and
extended second-order schemes ADC(2)-s and ADC(2)-x, as
well as the third-order scheme ADC(3). The matrices of these
schemes have the dimension of a CISD matrix, as they stay
within the singles and doubles manifolds. For the individual
blocks the level of perturbation theory is given (white: zeroth
order; yellow: first order; orange: second order; red: third
order).

2

0

ADC(2)-s ADC(2)-x ADC(3)

1

1 1 1

2 1

1

3 2

2Φkl
cd

Φij
ab Φij

ab Φij
abΦi

a Φi
a Φi

a

Φk
c

expanded consistently to one order of perturbation
theory higher than in ADC(2)-s. Singly excited states
are thus treated in third order of perturbation the-
ory, while doubly excited states are computed to first
order. Their coupling is treated consistently up to
second order (Figure 1). However, the dimension of
the ADC(3) matrix remains in the singles and dou-
bles excitation manifolds. The computational effort
of ADC(3) scales in analogy to ADC(2)-x like O(N6),
though exhibiting a slightly bigger prefactor. In gen-
eral, every calculation at ADC(2)-x level can also
be done at ADC(3) level. In contrast to ADC(2)-x,
ADC(3) offers a balanced description of the valence
excitation spectrum and, as will be demonstrated
below, with a much higher accuracy.

One possibility to further reduce the computa-
tional effort of ADC(2) calculations is to exploit the
spin-opposite-scaling (SOS) approach, which has been
established previously for MP284 and CIS(D)85 and
which has recently also been applied to ADC(2) and
CC2.86 Having understood the gist of the ISR deriva-
tion, it is clear that it can be followed also starting
from the SOS-MP2 ground state. This yields a ‘rig-
orous’ ISR-SOS-ADC(2) scheme, which contains the
SOS scaling factor only in the second-order expansion
terms of the (p-h) block.87 However, this derivation
route does not provide any substantial improvement,
neither in computational efficiency nor in accuracy.
Hence, an additional approximation is made to the
ADC matrix elements in that the same-spin compo-
nents are also neglected in the (2p-2h) contributions.
This makes the introduction of two further semiem-
pirical parameters for the rescaling of the remain-
ing opposite-spin components necessary (Figure 2).
Along this line of thought, SOS-ADC(2)-s as well as
SOS-ADC(2)-x have been developed, and the corre-
sponding scaling factors have been fitted to an existing
benchmark set. In particular, SOS-ADC(2)-x has been
designed to reproduce the excitation energies of singly-
and doubly excited states of linear polyenes as accu-
rately as possible,87 which is a notoriously difficult
task for quantum chemical methods.

If the interest lies only in a particular class of
excited electronic states, it is generally possible to

ADC(2)-x

SOS-ADC(2)-x

ss SOS

ss

os

os

Cos

CxCosΦkl
cd

Φij
ab

Φij
ab

Φi
a

Φi
a

Φk
c

Φkl
cd

Φk
c

FIGURE 2 | Effect of spin-opposite scaling (SOS) on the size and
structure of the ADC(2)-x matrix. Neglect of the same-spin (ss)
component and scaling of the opposite-spin (os) components leads to a
reduction of the matrix dimension and the possibility to fit the
semiempirical scaling factors (cos and cx) to known benchmark data.
The color of the blocks represents the order of perturbation theory
(yellow: first order; orange: second order). The shaded parts of the
original ADC(2)-x matrix (left) are neglected in the SOS approximation.

reduce the complexity of the ADC matrix further.
One example is the calculation of core-excited elec-
tronic states, i.e., such states in which an electron is
promoted from a core orbital to a valence orbital.
Such excited states are important for the computa-
tion of X-ray absorption spectra, for example. The
calculation of core-excited states is generally diffi-
cult with standard implementations of excited-states
methods, because their solution algorithms are typi-
cally designed to yield the energetically lowest excited
states of the spectrum.88 Hence for the calculation of
the energetically high-lying core-excited states, which
are located in the middle of the energy spectrum,
the full ADC matrix would need to be diagonal-
ized, which is computationally very inefficient and
practically not feasible. A practical and very efficient
work-around is offered by the core-valence separa-
tion (CVS) approximation, which exploits the fact that
core and valence orbitals are energetically and spa-
tially decoupled making the corresponding coupling
elements in the ADC matrix vanishingly small.89–91

Within the CVS approximation, these couplings are
set to exactly zero, and as a consequence, the ADC
matrix can be diagonalized in the space of core-valence
excited states only (Figure 3). This leads to substantial
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ADC(2)-x
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Φij
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Φkl
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ΦKL
ab
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ΦIj
ab

ΦK
c

ΦKl
ab

Φi
a ΦI

a

ΦI
a

Φk
c
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FIGURE 3 | Effect of the core-valence-separation (CVS)
approximation on structure and size of the ADC(2)-x matrix. The
restriction of one of the indexes of the occupied orbitals to correspond
to a core orbital results in a significant reduction of the matrix
dimension. The color of the blocks represents the order of perturbation
theory (yellow: first order; orange: second order) and the shaded parts
of the original ADC(2)-x matrix (left) are set to zero in the CVS
approximation.

reduction of the ADC matrix dimension and sub-
stantial computational savings without relevant loss
of accuracy, and gives direct access to core-excited
states. Recent work has shown that in particular
the CVS-ADC(2)-x scheme in combination with the
6-311++G** basis set yields core-excitation spectra in
excellent quantitative agreement with experimentally
recorded ones of medium-sized and large molecules.92

COMPARISON WITH OTHER
EXCITED-STATE APPROACHES

After the introduction of the basic concept and the
mathematical structure of ADC, we are in the position
to discuss basic general properties of ADC and to
compare them with CI and coupled cluster (CC)-based
methods. It is well known that correlated CI methods,
except full CI of course, are not size-consistent.27 As
the ground-state correlation energy, also excitation
energies, transition moments as well as excited-state
properties are not size-consistent. On the other hand,
as CI methods are Hermitian, the computation of
excited-state properties and transition moments is
straightforward.27

The CC-based excited-state methods com-
prise three related approaches referred to as
coupled-cluster linear response (CCLR),46–48

equation-of-motion coupled cluster (EOM–CC),40–42

and symmetry-adapted cluster configuration interac-
tion (SAC–CI),93–95 which yield identical algebraic
expressions for the excitation energies but differ
in the calculation of properties.96 All of them are
non-Hermitian methods and thus lead to a twofold

TABLE 1 Comparison of General Properties of Configuration
Interaction (CI), Coupled Cluster (CC) and Algebraic Diagrammatic
Construction (ADC) Methods

CI(n) CC(n) ADC(n)

Size consistency No (Yes) Yes

Hermiticity Yes No Yes

Compactness n m+ 11/m+ 22 m+ 11, 2

Ground state CI(n) CC(n) MPn

1For even order n=2m.
2For odd order n=2m+1.

wavefunction representation of the excited states,
corresponding to right and left eigenvectors of the
non-Hermitian CC secular matrix. Hence, for a rig-
orous calculation of excited-state properties, both
the right and left excited-state representations have
to be computed.97 In other words, the excited states
need to be computed twice. However, the accuracy
of the calculated properties is independent of the
non-Hermiticity. Turning to size-consistency, exci-
tation energies are size-consistent within all CC
schemes; however, ground-state transition moments
and excited-state properties are size-consistent only in
the case of CCLR.98–100

In contrast to CC methods, the ADC(n) schemes
are Hermitian and fully size-consistent with respect
to excitation energies, transition moments and
excited-state properties.97,101 Hence, the computation
of excited states and, in particular, of their prop-
erties is straightforward, since the ADC equations
need to be solved only once. Another advantage of
ADC over CI and CC is its compactness (Table 1).
Compactness is in general defined as the explicit
size of the configuration space that is needed for a
consistent perturbation-theoretical description of the
singly excited states to specific order n.55,101 For CI
methods, the required configuration space always
corresponds to n, i.e., for treatment of singly excited
states in nth order perturbation theory n-tuply excited
configurations need to be taken into account. CC and
ADC approaches are generally more compact. For an
even order n= 2 m, both require configuration spaces
of m+ 1 only, which means that for a treatment of
the singly excited states in fourth-order perturbation
theory ‘only’ triply excited configurations need to
be considered. For an odd order n=2m+ 1, ADC
requires again configuration spaces of m+ 1, while
CC methods have to go to m+ 2. This is noticeable
already in third-order methods. While EOM-CCSDT
or CC(3) need to include triply excited (3p-3h)
configurations, ADC(3) stays within the doubly
excited-state manifold, i.e., the (2p-2h) space. ADC
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TABLE 2 Comparison of the Characteristics of ADC Schemes and
CC Models

Method Space E0 p-h 2p-2h Properties Scaling

CCS p-h 1 1 – 0 n4

ADC(1) p-h 1 1 – 1 n4

ADC(2) 2p-2h 2 2 0 2 n5

CC2 2p-2h 2 2 0 1 n5

ADC(2)-x 2p-2h 2 2 1 2 n6

CCSD 2p-2h 3 2 1 2 n6

ADC(3) 2p-2h 3 3 1 3 n6

CC3 3p-3h 4 3 2 3 n7

The configuration space, order of perturbation theory of the ground-state
energy (E0), the singly (p-h) and doubly (2p-2h) excited states as well as of
response properties are given together with the scaling of the computational
effort with the number of orbitals n.

schemes represent thus the most compact methods for
excited states (see also Table 2).

In Table 2, a comparison of the general charac-
teristics of CC and ADC schemes is made. It is readily
apparent that CC and ADC methods have both
advantages and disadvantages. The biggest advantage
of CC methods is certainly the improved description
of the ground state, which is for example consistent to
fourth order of perturbation theory in CC3, while it is
only third order in ADC(3).97 Concomitantly, also the
(2p-2h) configurations are better described. However,
owing to the higher compactness of ADC compared
to CC, the scaling of the computational effort with
number of molecular orbitals is more favorable for
ADC(3) than for CC3. Most remarkable, though, is
the consistently high order of perturbation-theoretical
treatment of the excited-state properties in the ADC
schemes, which is always as high as the one of the
(p-h) configurations.

Let us briefly inspect the relation of the
second-order methods CIS(D), ADC(2)-s, and CC2
in a bit more detail, which are closely related both
from a theoretical and computational point of view.35

Mathematically, the ADC(2)-s matrix MADC(2) can be
derived from the corresponding CC2 Jacobian ACC2,
which is a non-symmetric matrix in a bi-orthogonal
representation. Neglect of the t1 amplitudes present
in the CC2 Jacobian yields in a first step the CIS(D∞)
Jacobian ACIS(D∞).35 Eventually, the ADC(2)-s matrix
is obtained by symmetrization

MADC(2) = 1
2

[
ACIS(D∞) + ACIS(D∞)†

]
. (13)

A systematic CIS(Dn) class of approximate
second-order methods can be derived from CIS(D∞)
through inversion of the diagonal (2p-2h) block and
binomial expansion up to order n.102 Thereby the

doubles are eliminated from explicit consideration
and the ‘dressed’ singles matrix needs to be solved
in the space of single excitations only. However,
apart from CIS(D0) a generalized, energy-dependent
eigenvalue problem has to be solved iteratively. Not
surprisingly, ADC(2)-s and CIS(D∞) yield very similar
excitation energies, while the results obtained with
CIS(D0) and CIS(D1) deviate more strongly due to
the additional approximations.35,85 In general, CC2
yields slightly more accurate results for excitation
energies with the smallest mean absolute errors.35,62

The advantage of ADC(2)-s compared to CC2 that
the excitation energies are obtained as eigenvalues
of a Hermitian secular matrix results in a physically
correct description of conical intersections between
states of the same symmetry.

Finally let us briefly comment on the relation
between ADC(2)-s and SOPPA, which are both
second-order polarization propagator approaches
based on Møller-Plesset perturbation theory. The
most striking difference between these schemes lies in
the dimension of the corresponding matrix represen-
tations. While ADC(2)-s spans the space of p-h and
2p-2h configurations, in other words, the matrix has
the same dimension as the CISD matrix, in SOPPA
also h-p and 2h-2p configurations are included.49,50

As a consequence, the matrix dimension is twice as
large as the one of ADC(2)-s, however, both exhibit
very similar accuracy.51 The relation between the
ADC(2)-s and SOPPA matrices is similar to the one
between the ADC(1) or CIS and the random phase
approximation (RPA) or time-dependet Hartree-Fock
(TDHF), in which the neglect of the h-p configurations
in the latter approaches yields the working equations
of ADC(1) or CIS.13

ACCURACY AND LIMITATIONS
OF ADC SCHEMES

The excited-state methods ADC(2)-s, ADC(2)-x, and
ADC(3), as well as the spin-opposite-scaled variants
SOS-ADC(2)-s and SOS-ADC(2)-x, which have been
introduced above, offer elegant Hermitian computa-
tion schemes for excitation energies and properties of
medium-sized and large molecules. However, as any
other excited-state method, also these schemes possess
a clear range of accuracy and applicability, which shall
be briefly discussed in the following section.

Before going to the individual ADC schemes
in detail, it should be pointed out that one lim-
itation is set by the ground-state treatment. Since
all ADC schemes are built upon perturbation the-
ory according to the Møller-Plesset scheme, it is
clear that ADC(n) methods can only be expected to
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yield reasonable results for molecules whose electronic
ground state is reasonably well described by the cor-
responding MPn method. This excludes molecules
with pronounced ground-state multi-reference char-
acter, i.e., small HOMO-LUMO gaps. However, this
limitation may be overcome in the near future by using
spin-flip approaches as outlined above. Nevertheless,
the conventional ADC methods are applicable to most
organic and inorganic molecules with energetically
well separated closed- or open-shell electronic ground
states covering a huge range of photochemistry.

The accuracy of the ADC schemes has recently
been thoroughly evaluated by comparison to Thiel’s
benchmark set103,104 of medium-sized molecules.62

This augments previous evaluations, which were
mainly done with respect to full CI data of atoms and
diatomic molecules.54,57 In general, however, simi-
lar accuracies have been found. Going through the
different ADC variants, the second-order approach
ADC(2)-s is applicable to fairly large molecules
owing to its comparably low computational effort.
ADC(2)-s turns out to be a robust and reliable method
exhibiting typical mean errors (±standard deviation)
of 0.22± 0.38 and 0.12± 0.16 eV for the singlet
and triplet states, respectively, of the representa-
tive 28 organic molecules of Thiel’s benchmark set
(Table 3).103,104 Application of the SOS approxima-
tion yields the SOS-ADC(2)-s scheme, which extends
the accessible range of molecular sizes substantially
and allows for fitting of the scaling parameters
to the benchmark data (see above). This leads to
a substantial reduction of the errors, 0.00±0.15
and 0.06±0.10 eV for the singlet and triplet states,
respectively.87 However, one should keep in mind that
the scaling factors have been fitted for this bench-
mark set, so that, generally, similar accuracy cannot
be taken for granted for other classes of molecules.
SOS methods are semiempirical methods and require
thorough benchmarking for each new application.

The extended second-order ADC(2)-x scheme
turned out to exhibit a rather large mean error
for the benchmark data with −0.70±0.37 eV for
its singlet states and −0.55± 0.20 eV for its triplet
states.62 This large, though consistent, underestima-
tion of excitation energies originates from the previ-
ously described ad hoc extension of the (2p-2 h)-block
of the ADC(2)-s matrix to first-order perturbation
theory. However, ADC(2)-x is still useful in identify-
ing doubly excited states, since their excitation ener-
gies are significantly lowered. Therefore, ADC(2)-x
is recommended to be exploited as diagnostic tool
for the presence of doubly excited states in the low
energy region of the excitation spectrum.105 When no
states with pronounced double excitation character

TABLE 3 Comparison of the Mean Errors and Their Standard
Deviation of Singlet and Triplet Excitation Energies Computed with
Different ADC Schemes

Singlets Triplets

ADC(2)-s 0.22± 0.381 0.12± 0.161

SOS-ADC(2)-s 0.00± 0.152 0.06± 0.102

UADC(2)-s 0.25± 0.203, 4

ADC(2)-x −0.70± 0.371 −0.55± 0.201

SOS-ADC(2)-x −0.11± 0.182 −0.04± 0.122

UADC(2)-x 0.32± 0.203, 4

ADC(3) 0.12± 0.281 −0.18± 0.161

The excitation energies are given in eV.
1Reprinted with permission from Ref 62.
2Reprinted with permission from Ref 87.
3These errors refer to doublet states.
4Reprinted with permission from Refs 81 and 83.

are present, ADC(2)-s or CC2 should be used for the
calculation of the complete spectrum. Again, the SOS
approximation can be used turning ADC(2)-x into a
semiempirical method. Fitting the parameters in the
same way as for SOS-ADC(2)-s before yields a sub-
stantial improvement of the accuracy for the bench-
mark set of −0.11± 0.18 and −0.04± 0.12 eV for
triplet states, respectively.87 Special attention in the fit-
ting of the SOS scaling parameters has however been
paid to doubly excited state of linear polyenes. Of
course, the same statement as above also holds for
SOS-ADC(2)-x, and care must be taken when it is
applied to molecules outside the benchmark set by
careful testing of the accuracy.

Since recently, also an efficient computer pro-
gram of ADC(3) is available and its accuracy for
excitation energies and oscillator strengths has been
tested using again Thiel’s benchmark set.62 Previ-
ous tests with a pilot implementation for atomic
and diatomic molecules found the deviations from
full CI data to be consistently below 0.2 eV.57 This
accuracy is largely corroborated for the much bigger
benchmark set of typical organic molecules, as well.
ADC(3) exhibits a quite impressive low mean error
of only 0.12± 0.28 eV for singlet and −0.18± 0.16 eV
for triplet states. This deviation from the theoreti-
cal best estimates falls in the range of the expected
error of the benchmark data itself, which are mostly
CC3 and CASPT2 numbers. For example, when CC3
is reevaluated against the theoretical best estimates,
which are not CC3 numbers, its deviation amounts to
0.23±0.21 eV for the singlet states and 0.12± 0.10 eV
for triplet states, which is similar to the one of ADC(3).
Hence it is clear that ADC(3) is a highly accurate
method with a computational effort of O(N6) which is
only slightly higher than ADC(2)-x owing to a slightly
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larger prefactor. ADC(3) is a big step forward in the
available methods for excited-state calculations, as it
is accurate and reliable, and in addition a black-box
method, which does not require selection of molecu-
lar orbitals or configuration spaces. We are convinced
that ADC(3) will soon become the benchmark method
of choice for medium-sized closed-shell molecules.

Let us finally have a look at the accuracy of the
unrestricted second-order ADC schemes, UADC(2)-s
and UADC(2)-x (Table 3). The accuracy of both
schemes has not been evaluated against a large bench-
mark set as the restricted ADC variants previously,
but only against a limited set of existing experimental
gas-phase absorption spectra of 11 medium-sized
radicals81 and gas-phase photo-electron spectra of
small closed-shell molecules.83 However, for these
investigated cases, both schemes provide a similar
accuracy with a mean error of about 0.3± 0.2 eV. As
is typical for unrestricted single-reference excited-state
methods, the UADC(2) schemes are sensitive to spin
contamination, and the ⟨Ŝ2⟩ of the unrestricted
Hartree-Fock reference should not deviate too much
from its expected value. It has been observed that val-
ues of below 1.25 for doublet radicals are still fine.81

IMPLEMENTED ADC METHODS AND
EXISTING PROGRAMS

Today, efficient implementations of ADC(2)-s,
ADC(2)-x, and ADC(3) are available in different
quantum chemistry program packages. ADC(2)-s
has been implemented in Turbomole,58 Q-Chem,59,60

and Psi4.61 The most efficient implementation is
currently the one in Turbomole based on the existing
CC2 code exploiting the resolution-of-the-identity
approximation.33–35 The most complete ADC imple-
mentation offering most features is the one in Q-Chem
using a general tensor contraction engine,106 as
ADC(2)-x and ADC(3) are only available in Q-Chem
at the moment.

Turbomole and Q-Chem offer a similar set
of excited-state properties at the ADC(2)-s level
of theory, for example, excited-state gradients,35

state-to-state transition and static excited-state
dipole moments,63 spin-orbit coupling elements,107

and two-photon-absorption cross sections.63 Since
recently, ADC calculations can also be performed in
combination with continuum solvation models.64 In
a development version of Q-Chem all these properties
are also implemented at the ADC(2)-x and ADC(3)
level of theory, which after thorough testing will be

soon included in the next official Q-Chem release.
The spin-opposite-scaled variant SOS-ADC(2)-s is
also available in Turbomole and Q-Chem, while
SOS-ADC(2)-x is currently only present in the recent
version of Q-Chem. Core-valence-separated (CVS)
ADC(2)-s and ADC(2)-x especially well suited for the
calculation of core-excitation spectra are currently
being tested in a development version of Q-Chem,92

and will also be made available soon.

CONCLUSION

The ab initio ADC schemes for the polarization
propagator represent a new family of methods for the
calculation of excited electronic states of molecular
systems. They combine, in some sense, CI concepts
with many-body perturbation theory. They offer
the advantage to be fully size-consistent, Hermitian,
and systematically improvable. However, also ADC
has clear limitations owing to the single-reference
character of the underlying Møller-Plesset electronic
ground state. Hence, for a successful ADC calculation
a reasonable description of the ground state by MP
theory is a necessary prerequisite. For molecules with
significant multi-reference character, standard ADC
schemes are not the methods of choice, and one
should instead resort to approaches such as CASSCF
and MRCI. Still, ADC is applicable to organic and
inorganic closed-shell molecules covering a broad
range of photochemistry.

The ISR formulation of ADC paves the road to
the efficient calculation of excited-state properties like
state-to-state transition dipole moments, two-photon
absorption cross sections, spin-orbit coupling ele-
ments to name a few. Also gradients can be computed,
which allow for efficient optimization of excited-state
equilibrium geometries and excited-state reaction
pathways. While the second-order ADC(2)-s scheme
represents a robust and reliable excited-state method,
ADC(2)-x serves as a diagnostic for the presence of
states with pronounced double excitation character in
the low energy region of the excitation spectrum. The
recently implemented ADC(3) scheme is a big step for-
ward in theoretical photochemistry owing to its high
accuracy at moderate computational cost of O(N6) for
a third-order method. It can be expected that ADC(3)
will soon be the benchmark method of choice to eval-
uate the accuracy of computationally more efficient
approaches such as TDDFT and semiempirical meth-
ods such as OM2/MRCI, DFT/MRCI, and SOS-ADC
schemes.
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