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A general scheme is presented for the calculation of excitation energies using the standard coupled
cluster hierarchy and a simple implementation is described for the higher standard models. An error
analysis is performed to find to what order excitation energies in different coupled cluster models
are correct. The analysis includes both the standard coupled cluster hierarchy as well as the
approximate models and considers excitations to states that are dominated by one, two, and three
electron replacements compared to the reference state. Calculations are presented up to the
quadruple excitation level for the open shellB2 molecule using an excited closed shell state as
reference state to emphasize the usefulness of the order analysis. The coupled cluster excitation
energies are compared to full configuration interaction results. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1379332#

I. INTRODUCTION

For a closed shell ground state molecule coupled cluster
~CC! theory can straightforwardly be used to determine the
ground and lowest excited states and the properties of these
states.1–5 The ground state can be determined using the stan-
dard set of coupled cluster models CCS~singles!, CCSD
~singles and doubles!,6 CCSDT ~singles, doubles, and
triples!,7,8 CCSDTQ ~singles, doubles, triples, and
quadruples!,9,10 etc., where an improved accuracy is obtained
at each level.1,2 The excitation energies and the properties of
the ground and excited states can also be determined, with
improving accuracy, from the coupled cluster response func-
tions for these models.3–5 The approximate coupled cluster
models CC2,11,12 CC3,13–15 CC4, etc., may also be used to
determine the excitation energies and the properties of the
ground and excited states and together with the standard
coupled cluster models they are often used as a hierarchy,
that converges towards the full configuration interaction
~FCI! results.

In this paper we will examine the order to which an
excitation energy that is one, two or three electron replace-
ment dominated compared to the reference state is correct for
a given coupled cluster model. The analysis is an extension
of the one by Christiansenet al.13,16to general levels of elec-
tron replacement and correlation.

Calculations are presented up through the CCSDTQ
level. Highly efficient algorithms have previously been de-
scribed for calculation of excitation energies for the coupled
cluster models CC2, CCSD, and CC3 but general algorithms
are not available for obtaining excitation energies for the
CCSDT and in particular for the CCSDTQ models. We de-
scribe in this paper a simple algorithm for calculating exci-

tation energies for these models. The algorithm uses gener-
alized CI technique to evaluate the action of excitation
operators on general states and is a simple extension of the
general algorithm by Olsen17 for calculating coupled cluster
states. Similar approaches have been suggested in Refs. 18
and 19. Using the present implementation we report the first
use of such a program to analyze and predict an excitation
spectrum. Previous calculations were restricted to small
benchmark calculations using basis sets lacking diffuse func-
tions.

For closed shell molecules, the electronic configurations
for the lowest excited states are usually single electron pro-
moted in comparison to the ground state configuration. In a
few cases the lowest excited states are dominated by a con-
figuration where two electrons are promoted. When elec-
tronic configurations for excited states are compared they
often differ by two and in some cases even by three electrons
or more. Therefore, when an excited closed shell state is used
as the reference state in a coupled cluster response function
calculations, states that are double and even triple excited
with respect to the reference state will often be encountered
among the lowest excitation energies. Standard restricted
coupled cluster models can be applied for open shell ground
state molecules only if an excited closed shell state is used as
reference state. To investigate the performance of the stan-
dard coupled cluster models for excitation energies that are
dominated by higher excitation levels, we report calculations
on B2 which has anX3 Sg

2 open shell ground state. We use
the second closed shell state of1Sg

1 symmetry as the refer-
ence state.

In Sec. II we perform an order analysis while Sec. III
describes the algorithm that is used to obtain the excitation
energies in the CCSDT and CCSDTQ models. In Sec. IV the
performance of the order analysis is demonstrated througha!Electronic mail: khald@kemi.aau.dk
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calculation of the lowest states inB2 . The last section con-
tains some concluding remarks.

II. PERTURBATION ANALYSIS OF EXCITATION
ENERGIES

In order to find the coupled cluster excitation energies
we need to solve the coupled cluster response eigenvalue
equation

A Rk5 vkRk. ~1!

Here A is the coupled cluster Jacobian andRk is the right
eigenvector that corresponds to the eigenvaluevk . Likewise
the left eigenvectors can be found from

Lk A5vkLk. ~2!

Using that the eigenvectors are biorthogonal

L j Rk5d jk , ~3!

we obtain

vk5Lk A Rk. ~4!

The Jacobian in exact coupled cluster theory can be written

Am in j
5^m i uexp~2T!@H,tn j

#exp~T!uHF&, ~5!

where the cluster operator for aM particle system is

T5T11T21¯1TM ~6!

andtn j
is an excitation operator of excitation levelj and^m i u

is an excited state of excitation leveli . To perform a pertur-
bation analysis of the excitation energies we partition the
Hamiltonian as

H5F1V, ~7!

whereF is the Fock operator andV is the fluctuation poten-
tial. The amplitudes of the cluster operator are determined
from a coupled cluster calculation on the reference state. In
the perturbation analysis the double cluster amplitudesT2

enter in first order in the fluctuation potential whereas the
single and triple cluster amplitudes~T1 andT3! enter in sec-
ond order,T4 enters in third order,T5 in fourth order, etc.1

The Jacobian in Eq.~5! can thus be expanded as

Am in j
5^m i u@F,tn j

#uHF&1^m i u@V,tn j
#uHF&1^m i u@@V,tn j

#,T2#uHF&1^m i u
1
2 @@@V,tn j

#,T2#,T2#1@@V,tn j
#,T11T3#uHF&

1^m i u
1
6 @@@@V,tn j

#,T2#,T2#,T2#1@@@V,tn j
#,T2#,T11T3#1@@V,tn j

#,T4#uHF&1^m i u
1
2 @@@@V,tn j

#,T2#,T2#,T11T3#

1 1
2 @@@V,tn j

#,T11T3#,T11T3#1@@@V,tn j
#,T2#,T4#1@@V,tn j

#,T5#uHF&1^m i u
1
2 @@@@V,tn j

#,T2#,T2#,T4#

1 1
2 @@@@V,tn j

#,T2#,T11T3#,T11T3#1@@@V,tn j
#,T11T3#,T4#1@@@V,tn j

#,T2#,T5#1@@V,tn j
#,T6#uHF&1o~7!, ~8!

where the brackets contain terms of successive higher order
in the fluctuation potential. The excitation ranks of
@@¯@@B,Tn1

#,Tn2
#,¯#,Tnk

#uHF& can be found from1

(
i 51

k

ni2mb<s<(
i 51

k

ni1mb2k, ~9!

wheremb is the particle rank of the operatorB

mb5 1
2 ~nv

c1no
a1no

c1nv
a! ~10!

and no
c and nv

c are the number of occupied and virtual cre-
ation operators inB, and no

a and nv
a are the corresponding

numbers for the annihilation operators.ni is the excitation
rank of the cluster operators

ni5
1
2 ~nv

c1no
a2no

c2nv
a! ~11!

andk is the number of operators besidesB that occur in the
commutator. Using Eq.~9!, an excitation operatorRj of ex-
citation level~rank! j will have nonzero contributions in first,
second, third, fourth, fifth, and sixth order ifj fulfills the
conditions:

^mxu@V,Rj #uHF&: j 22<x< j 11, ~12!

^mxu@@V,Rj #,T2#uHF&: j <x< j 12, ~13!

^mxu
1
2 @@@V,Rj #,T2#,T2#1@@V,Rj #,T11T3#uHF&:

j 21<x< j 13, ~14!

^mxu
1
6 @@@@V,Rj #,T2#,T2#,T2#1@@@V,Rj #,T2#,T11T3#

1@@V,Rj #,T4#uHF&: j 11<x< j 14, ~15!

^mxu
1
2 @@@@V,Rj #,T2#,T2#,T11T3#1@@@V,Rj #,T2#,T4#

1 1
2 @@@V,Rj #,T11T3#,T11T3#1@@V,Rj #,T5#uHF&:

j <x< j 15, ~16!

^m i u
1
2 @@@@V,Rj #,T2#,T2#,T4#1@@@V,Rj #,T11T3#,T4#

1 1
2 @@@@V,Rj #,T2#,T11T3#,T11T3#

1@@@V,Rj #,T2#,T5#1@@V,Rj #,T6#uHF&: j 12<x< j 16

~17!

Furthermore it is seen that^mxu only has a nonvanishing
coupling if it is coupled to a cluster operator of excitation
level x12 or lower. Using this, the structure of the Jacobian
becomes
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A51
S D T Q P H ¯

S d~0!1o~1! o~1! o~1! 0 0 0 ¯

D o~1! d~0!1o~1! o~1! o~1! 0 0 ¯

T o~2! o~1! d~0!1o~1! o~1! o~1! 0 ¯

Q o~3! o~2! o~1! d~0!1o~1! o~1! o~1! ¯

P o~4! o~3! o~2! o~1! d~0!1o~1! o~1! ¯

H o~5! o~4! o~3! o~2! o~1! d~0!1o~1! ¯

A A A A A A A �

2 , ~18!

where we explicitly have written the singles (S), doubles
(D), triples (T), quadruples (Q), quintuples (P), and hex-
tuples (H) terms. In the Jacobiand(0) denotes the zero-
order diagonal elements consisting of the orbital energy dif-
ferences ando(n) is the lowest nonvanishing order of the
Jacobian matrix element.

To find to what order an excitation energy in Eq.~4! is
correct, we need to know to what order the right and left
eigenvectors are correct. We therefore expand the Jacobian
A, the trial vectorsR, L , and the excitation energyv in
orders of the fluctuation potential

A5 (
k50

`

A(k), ~19!

R5 (
k50

`

R(k), ~20!

L5 (
k50

`

L (k), ~21!

v5 (
k50

`

v (k). ~22!

We further assume intermediate normalization. Recognizing
that L (0)5R(0) we therefore have

~L (0)!TR(0)51, ~23!

~L (k)!TR(0)5~L (0)!T R(k)50. ~24!

To determine the right eigenvectors we rearrange Eq.~1!
as

~A(0)2v (0)!R(k)5(
l 51

k

~v ( l )R(k2 l )2A( l )R(k2 l )!. ~25!

The first term on the right-hand sidev ( l )R(k2 l ) is just a
constant times lower order contributions. If we only want to
find the lowest order in which an excitation level can be
nonzero, we can neglect this term, since it contributes only to
the same excitation levels as the lower order correction vec-
tors. The first term on the right-hand side in Eq.~25! will
therefore be neglected in the following analysis.

For ani excitation dominated excitation energy the right
correction vector to first order can be analyzed using

~vmx
2v (0)!Rmx

(1)52^mxu@V,Ri
(0)#uHF& ~26!

which can be different from zero fori 22<x< i 11 using
Eq. ~12!. To second order for ani excitation dominated right
correction vector we have

~vmx
2v (0)!Rmx

(2)52^mxu@@V,Ri
(0)#,T2#

1@V,Ri 22
(1) 1Ri 21

(1) 1Ri
(1)1Ri 11

(1) #uHF&.

~27!

Using Eqs.~12! and ~13! it is seen that we have nonvanish-
ing terms for i 24<x< i 12. Continuing in this fashion it
can be shown that thenth order correction for ani excitation
dominated right correction vector has nonvanishing contribu-
tions wheni 22n<x< i 1n. This is summarized in Table I
for single, double, triple, quadruple, and quintuple excitation
dominated excitation energies.

The left eigenvectors can be found from Eq.~2! which
may be rearranged as

L (k)~A(0)2v (0)!5(
l 51

k

~L (k2 l )v ( l )2L (k2 l )A( l )!. ~28!

TABLE I. The order, in the fluctuation potential, in which different excita-
tion components enter in the right vector.

Excitation
vector component S D T Q P H

Single
replacement
dominated

0 1 2 3 4 5

Double
replacement
dominated

1 0 1 2 3 4

Triple
replacement
dominated

1 1 0 1 2 3

Quadruple
replacement
dominated

2 1 1 0 1 2

Quintuple
replacement
dominated

2 2 1 1 0 1

Hextuple
replacement
dominated

3 2 2 1 1 0

673J. Chem. Phys., Vol. 115, No. 2, 8 July 2001 Excitation energies



This equation is very similar to Eq.~25! for the right vectors.
We note that the lowest order in which an excitation level
enter is independent of the first term on the right-hand side in
Eq. ~28!. Thus as in the equations for the right correction
vector this term will be neglected in the following analysis.

For ani excitation dominated excitation energy the first
order analysis gives

Lnx

(1)~vnx
2v (0)!52(

m i

Lm i

(0)^m i u@V,tnx
#uHF&. ~29!

This can be nonzero ifi 21<x< i 12 which is seen from
Eq. ~12!. To second order we need to analyze the equation

Lnx

(2)~vnx
2v (0)!52(

m i

Lm i

(0)^m i u@@V,tnx
#,T2#uHF&

1(
m i

(1)
^m i

(1)u@V,tnx
#uHF&, ~30!

where

TABLE II. The order, in the fluctuation potential, in which different exci-
tation components enter in the left vector.

Excitation
vector component S D T Q P H

Single
replacement
dominated

0 1 1 2 2 3

Double
replacement
dominated

1 0 1 1 2 2

Triple
replacement
dominated

2 1 0 1 1 2

Quadruple
replacement
dominated

3 2 1 0 1 1

Quintuple
replacement
dominated

4 3 2 1 0 1

Hextuple
replacement
dominated

5 4 3 2 1 0

TABLE IV. An order analysis of excitation energies for different coupled cluster models in terms of the
fluctuation potential. The excitations are divided into single, double, triple, and quadruple replacement domi-
nated excitation energies. The scaling is given as a function of the number of orbitalsN.

Model

Amplitudes included

Scaling

Order through which the
excitation energy is correct

all partially Single Double Triple Quadruple

CCS S N4 1
CC2 S D N5 2 0
CCSD SD N6 2 1
CC3 SD T N7 3 2 0
CCSDT SDT N8 4 2 1
CC4 SDT Q N9 5 3 2 0
CCSDTQ SDTQ N10 5 4 2 1
CC5 SDTQ P N11 6 5 3 2
CCSDTQP SDTQP N12 7 5 4 2

TABLE III. The order, in the fluctuation potential, in which contributions
from the various blocks of the Jacobian enter in the excitation energies for
single, double, triple, and quadruple electron dominated excitations.
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(
m i

(1)
^m i

(1)u5 (
m i 21

Lm i 21

(0) ^m i 21u1(
m i

Lm i

(0)^m i u

1 (
m i 11

Lm i 11

(0) ^m i 11u1 (
m i 12

Lm i 12

(0) ^m i 12u.

~31!

This may be nonzero ifi 22<x< i 14. Tonth order nonzero
contributions can be obtained wheni 2n<x< i 12n. This is
summarized in Table II.

Using the analysis of the right and left vectors together
with the order analysis of the Jacobian we can determine to
what order the different contributions to the excitation en-
ergy is correct. This is summarized in Table III where lines
have been drawn to separate the terms that enter in the dif-
ferent standard models. From Table III we can determine to
what order an excitation energy of an excitation level is cor-
rect in different coupled cluster models. The results are given
in Table IV for the models CCS, CC2, CCSD, CC3, CCSDT,
CC4, CCSDTQ, CC5, and CCSDTQP.

To illustrate how the results of Table IV are obtained for
the standard coupled cluster models let us as an example
consider to what order a double excitation dominated excita-
tion energy is correct in the CCSDTQ model. The CCSDTQ
model includes all terms of quadruple or lower excitation
level, i.e., the terms in Table III up to and including
LQAQQRQ . The lowest order at which terms enter beyond
the CCSDTQ model for a double excitation dominated exci-
tation energy is 5, where, e.g., the termLPAPDRD contrib-
utes. Therefore CCSDTQ is correct through fourth order for
a double excitation dominated excitation energy.

The analysis of the approximate models CC2, CC3,
CC4, CC5, etc., is a little different. These models are defined
such that approximations are introduced only at the highest
cluster amplitude level and at this level only the lowest
order correction terms are included. For example, in the CC4
model the quadruples terms of the CCSDTQ model is only
kept to lowest order whereas no approximations are intro-
duced in the terms that refer to lower excitation levels, i.e.,
the terms that only contain single, double, and triple excita-
tions. A double dominated excitation will therefore be correct
through third order in CC4 since only the lowest order
coupling to the quadruples is correct, for example, the
fourth order contributions in theLDADQRQ , LQAQDRD ,
LQAQTRT , andLQAQQRQ terms are not described correct. A
more detailed analysis and an implementation of the CC4
and CC5 models have not yet been performed.

III. LINEAR TRANSFORMATIONS WITH THE COUPLED
CLUSTER JACOBIAN MATRIX

The eigenvalue problem defining the excitation energies,
Eq. ~1!, is typically solved iteratively where in each iteration,
the Jacobian times a vectorx is calculated

j m5(
n

^HFu t̂m
† exp~2T̂!@Ĥ,t̂n#exp~ T̂!uHF&xn . ~32!

Highly efficient algorithms have been advanced for con-
structing the linear transformation of Eq.~32! for the coupled

cluster models CCSD, CC2, and CC3. In the present context,
where coupled cluster operator manifolds including qua-
druple or higher excitations may be included, a more general
approach may be used. In Ref. 20, it was demonstrated how
the standard coupled cluster vector function

f m5^HFu t̂m
† exp~2T̂!Ĥ exp~ T̂!uHF& ~33!

may be calculated for arbitrary choices of the excitation
manifold using ideas and algorithms developed in the con-
text of configuration interaction theory. For example, the
vector exp(T̂)uHF& is explicitly constructed as an expansion
in terms of Slater determinants by expanding exp(T̂) in pow-
ers ofT̂ and using generalized CI techniques to evaluate the
action of T̂ on a general vector. Although the initial version
of these codes are rather slow, their generality allows the
testing of the importance of various excitation levels. We
will now describe, how the algorithms for the calculation of
the coupled cluster vector function can be generalized to the
evaluation of Eq.~32!, thereby allowing the evaluation of the
linear transformation with the coupled cluster Jacobian for
very general types of coupled cluster expansions.

The calculation of Eq.~32! is preceded by a calculation
of the following vector:

ua&5exp~ T̂!uHF&, ~34!

whereT̂ is the final cluster operator for the reference state.
The vectorua& is stored on disc and used in all the subse-
quent evaluations of the linear transformations, Eq.~32!. We
will shortly return to the spaces in which the above vectors
should be evaluated. For a given vectorx the linear transfor-
mation is obtained by separately calculating the two terms of
the commutator in Eq.~32!. The first term

j m
1 5(

n
^HFu t̂m

† exp~2T̂!Ĥ t̂n exp~ T̂!uHF&xn ~35!

is obtained in the following steps:

~1! ud&5(nxnt̂nua&;
~2! ue&5Ĥud&;
~3! u f &5exp(2T̂)ue&;
~4! j m

1 5^HFu t̂m
† u f &.

The construction ofud& from ua&, the construction ofu f &
from ue& and the evaluation of the general transition density
^HFu t̂m

† u f & follows the algorithms discussed in Ref. 20. Simi-
larly the evaluation ofue& from ud& is a direct CI linear
transformation.

The second part of the commutator in Eq.~32! is ob-
tained as

j m
2 5(

n
^HFu t̂m

† exp~2T̂!t̂nĤ exp~ T̂!uHF&xn5Eccxn ,

~36!

whereEcc is the total energy of the ground state. As a final
step, the Jacobian times vector product is obtained by sub-
tracting j2 from j1.
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The vectorsua&, ud&, ue&, andu f & are obtained as Slater-
determinant expansions, and must in general be evaluated in
spaces that are larger than the space spanned by
uHF&,t̂muHF&. From the definition ofj1 it is seen thatu f &
should be evaluated in the space spanned byuHF&,t̂muHF&.
As T̂ only contains excitation operators,ue& can be restricted
to the same space. However, asue& is obtained fromud& by
applying the Hamiltonian operator,ud& must be evaluated in
a larger space, containing all Slater determinants in
(nxnt̂nua& that may be brought into the spaceuHF&,t̂muHF&
by the single and double replacement operators inĤ. The
construction ofj2 is straightforward and needs no explana-
tion.

The need to use extended CI spaces forua&,ud& means
that the present algorithm has a significantly higher operation
count and requires significantly more disc space than con-
ventional coupled cluster algorithms. If the number of occu-
pied orbitals isO and the number of virtual orbitals isV, the
operation count for the CCSDT expansion scales asO5V5 for
the current algorithm, whereas it scales asO3V5 for the stan-
dard approach. Furthermore for the CCSDT wave function it
is necessary to obtain and manipulate Slater determinant ex-
pansions containing up to fivefold excitations. The current
implementation is therefore ineffective and is only intended
for testing the importance of higher excitations in small mol-
ecules using small basis sets. However, CCSDT and
CCSDTQ excitation energies may be calculated for diatomic
molecules in the aug-cc-pVDZ basis using the present ap-
proach. These calculations are significantly larger than pre-
vious reported calculations using general algorithms.18,19

IV. SAMPLE CALCULATION OF B 2

A. Computational considerations

The ground state of theB2 molecule has triplet symme-
try X 3Sg

2 and the open shell electronic configuration
1sg

2 1su
2 2sg

2 2su
2 1pu

2 . The first state of1Sg
1 symmetry has

the same electronic configuration as the triplet ground state
whereas the second state of1Sg

1 symmetry has the closed
shell electronic configuration 1sg

21su
22sg

22su
23sg

2 , which is
doubly excited relative to the ground state configuration. We
use this state as the reference state in the coupled cluster
response function calculations. TheB2 calculations are car-
ried out at the ground state equilibrium internuclear distance
of 1.59 Å,20 and the augmented correlation consistent basis
set aug-cc-pVDZ was used.21 The augmented correlation
consistent basis set aug-cc-pVTZ21 was used to estimate the
basis set saturation.

In the CC3 calculations of the reference state we found
that when the CCSD state was used as a start guess we ob-
tained a solution that had a large admixture of other elec-
tronic configurations and an energy of249.215 159 09 a.u.
However, when we calculated the CC3 reference state di-
rectly we obtained a state with the expected dominant elec-
tronic configuration and an energy of249.196 806 70 a.u.
The CC3 excitation energies are calculated using this state as
the reference state. It was only in the CC3 calculations that
two solutions were encountered. In the calculations that used
the standard models only one state was obtained and this
state always had the expected configuration dominance.
Table V summarizes the total energy for theX 3Sg

2 ground

TABLE VI. FCI excitation energies relative to the 21Sg
1 state. For the other models it is the differences relative

to the FCI excitation energies that are given. All calculations are carried out using the aug-cc-pVDZ basis set.

State Occupation
Excitation

level CCSD CC3 CCSDT CCSDTQ FCI

X 3Sg
2 2su

2pu
2 2 0.060 65 0.034 73 0.009 45 0.000 5320.075 876 771

1 5Su
2 2su

1pu
23sg

1 2 0.061 50 a 0.002 33 20.000 01 20.066 409 734
1 1Dg 2su

2pu
2 2 0.060 13 0.033 19 0.009 26 0.000 5120.052 741 328

1 3Pu 2su
2pu

13sg
1 1 0.004 37 20.000 80 20.000 02 20.000 01 20.050 486 287

1 1Sg
1 2su

2pu
2 2 0.068 46 0.019 89 0.006 33 20.000 14 20.039 959 216

1 1Pu 2su
2pu

13sg
1 1 0.009 16 20.003 33 20.000 28 20.000 01 20.020 899 842

1 3Du 2su
1pu

23sg
1 2 0.069 49 0.024 80 0.003 30 0.000 0020.014 743 256

1 3Su
2 2su

1pu
23sg

1 2 0.078 19 0.024 07 0.002 51 20.000 14 20.007 413 979
2 1Sg

1 2su
23sg

2 0.0 0.0 0.0 0.0 0.0
1 3Su

1 2su
1pu

23sg
1 2 0.064 61 0.023 53 0.004 99 0.000 32 0.000 767 332

1 3Pg 2su
1pu

3 3 0.025 49 0.016 93 0.019 44 0.002 39 0.003 813 231

aNot calculated as it is a quintuplet state.

TABLE V. Ground and reference state energies.a

CISDTQb FCI CISDTQ CCSD CC3 CCSDT CCSDTQ

X 3Sg
2 249.297 000 45 249.276 778 91 249.273 988 86

2 1Sg
1 249.226 179 10 249.200 902 13 249.200 145 55 249.200 739 92 249.196 806 70 249.200 569 12 249.200 885 98

aaug-cc-pVDZ basis unless stated otherwise.
baug-cc-pVTZ basis.
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state and the 21Sg
1 reference state for differentab initio

models.
The CCSDT and the CCSDTQ results were obtained us-

ing the general CC code of the LUCIA program written by
Olsen.17,22 Likewise LUCIA was used to calculate the FCI
excitation energies. The CCSD and the CC3 excitation ener-
gies were obtained with a local version of the DALTON
program.23

B. Convergence of excitation energies for a hierarchy
of coupled cluster models

In Table VI the FCI excitation energies are given relative
to the 21Sg

1 state. For the CC hierarchy CCSD, CC3,
CCSDT, and CCSDTQ the differences in the excitation en-
ergies from the FCI results are also reported in Table VI, as
well as the dominant electronic configuration of the states
and the excitation level relative to the reference state elec-
tronic configuration.

From Table VI it is seen that the considered electronic
states fall into three classes having either single, double or
triple excitation dominance relative to the reference state.
From the analysis in Sec II we will therefore expect the
errors for the excitation energies to fall into three different

classes as well. The results in Table VI are in accordance
with the order analysis of Table IV. For a given wave func-
tion level we have significantly smaller errors for the single
excitation dominant states than for the double excitation
dominated ones and the largest error is found for the triple
excitation dominant state that has an error of 2.4mEh even
at the CCSDTQ level. For excitations of all excitation levels
the error decreases when a higher level in the hierarchy is
considered. For the single electron replacement dominant ex-
citation energies the decrease is in accordance with previous
observations where in average the errors were found to be
reduced by about a factor of 3 at each level.16,24,25For two
electron replacement dominated excitation energies we ob-
serve a similar reduction in the error when increasing the
level in the hierarchy. In Fig. 1 we have displayed the errors
for the double excitation dominated excitation energies. The
figure clearly demonstrates the systematic improvement
within the CC hierarchy.

The excitation energies that are correct to the same order
in the fluctuation potential also have errors of comparable
size. For example, the errors for CCSD single excitation
dominated excitation energies are comparable to the errors
for CCSDT for double excitation dominated excitation ener-
gies which again is similar to the error for the triple excita-
tion dominated excitation energy in CCSDTQ.

When the excitation manifold in the coupled cluster cal-
culations is extended to include triple and quadruple excita-
tions, it is ~according to a referee! natural to inquire whether
configuration interaction~CI! calculations would provide ex-
citation energies of similar accuracy. In Table VII, we thus
report excitation energies relative to FCI using the CISD,
CISDT, and CISDTQ expansions. The reference state was
identified as the state with the largest weight of the 2su

23sg
2

configuration. For the CISDT calculations, the lowest two
1Sg

1 states have significant contributions from this configu-
ration and in accordance with the above criterium we used
the second state as the reference state. At the CISD level, the
spectrum is qualitatively erroneous, predicting all excitation
energies to be positive. Comparing the excitation energies in
Table VI and Table VII, we note that single, double, and
triple replacement excitations all converge significantly
faster using the CC hierarchy than using the CI hierarchy.

FIG. 1. The deviation of different double excitation dominated excitation
energies from the FCI results for different coupled cluster models inB2

calculations using the aug-cc-pVDZ basis set. Results forX 3Sg
2 (1),

1 5Su
2 (3), 1 1Dg (* ), 1 1Sg

1 (h), 1 3Du (j) , 1 3Su
2 ((), and

1 3Su
1 (d).

TABLE VII. FCI excitation energies relative to the 21Sg
1 state. For the other models it is the differences

relative to the FCI excitation energies that are given. All calculations are carried out using the aug-cc-pVDZ
basis set.

State Occupation
Excitation

level CISD CISDT CISDTQ FCI

X 3Sg
2 2su

2pu
2 2 0.088 69 0.024 77 0.002 03 20.075 876 771

1 5Su
2 2su

1pu
23sg

1 2 0.078 55 0.017 91 0.001 04 20.066 409 734
1 1Dg 2su

2pu
2 2 0.087 25 0.024 47 0.001 96 20.052 741 328

1 3Pu 2su
2pu

13sg
1 1 0.073 45 20.004 90 0.002 71 20.050 486 287

1 1Sg
1 2su

2pu
2 2 0.091 47 0.032 59 0.003 26 20.039 959 216

1 1Pu 2su
2pu

13sg
1 1 0.071 46 20.003 14 0.002 51 20.020 899 842

1 3Du 2su
1pu

23sg
1 2 0.084 11 0.017 03 0.001 27 20.014 743 256

1 3Su
2 2su

1pu
23sg

1 2 0.094 47 0.017 61 0.001 71 20.007 413 979
2 1Sg

1 2su
23sg

2 0.0 0.0 0.0 0.0
1 3Su

1 2su
1pu

23sg
1 2 0.083 12 0.024 13 0.002 07 0.000 767 332

1 3Pg 2su
1pu

3 3 0.088 68 0.012 83 0.011 91 0.003 813 231
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To understand the superiority of the coupled cluster ap-
poach, it is instructive to compare the wave functions of the
two approaches. In the coupled approach, the wave function
of an excited state is obtained in the form

uEX~CC!&5(
n j

cn jtn j exp~T!uHF&. ~37!

We may thus consider the wave function of the excited state
as obtained by applying excitations to a contracted reference
state exp(T)uHF&. If the major parts of the correlation are
identical in the ground and excited state, as is typical for
excitations involving only few electrons, the coupled cluster
method provides an accurate description of excited states.

In the CI formalism, the wave functions for an excited
state is obtained as

uEX~CI!&5(
n j

cn jtn j uHF&. ~38!

As the bare Hartree–Fock state here constitutes the reference
state, all correlation effects for the excited state must be in-
cluded through the excitation operators(n j cn jtn j .

The advantage of the CC approach compared to CI is
stressed by an order analysis. According to the analysis of
the coupled cluster approach in Sec. II, the excitation energy
to an n-tuple excited state is correct through second order
when up ton11-fold excitations are included. In the CI
approach, the wave function of an-tuple excited state con-
tainsn12-fold excitations already in first order. In a CI cal-
culation that includes excitations up to leveln11, the wave
functions are therefore only correct through zero order and
the corresponding energy is then correct only through first
order.

C. Comparison with other works

Practically no experimental data are available for the en-
ergies of the excited states we have calculated forB2 . Thus,
we will only compare our results with other theoretical stud-

ies. In Table VIII we present the FCI results together with
multireference configuration interaction~MRCI! calculations
of Langhoff and Bauschlicher26 and Hacheyet al.27 ~similar
results have been obtained in other works, e.g., Ref. 28!. The
excitation energies in Table VIII are given relative to the
X 3Sg

2 ground state energy. The FCI results are obtained in
the aug-cc-pVDZ basis. In the MRCI calculations, as in our
work, the core orbitals have been frozen to the canonical
Hartree–Fock orbitals. We have verified that the use of fro-
zen core orbitals have very little effect. To investigate basis
set saturation we have calculated the excitation energies us-
ing the CISDTQ model for both the aug-cc-pVDZ and the
aug-pVTZ basis set. The calculation showed only small
changes in the excitation energies as a result of increasing
the basis set, the largest shift was about 0.09 eV. We there-
fore expect that the aug-cc-pVDZ FCI results give a good
estimate for the vertical excitation energies and have an ac-
curacy of about 0.1 eV.

Comparing the FCI results in Table VIII with the results
of Langhoff et al. and with Hacheyet al. we see that the
MRCI calculations yield significantly different excitation en-
ergies for the 13Pu , 1 1Pu, and the 21Sg

1 states. In par-
ticular for the 21Sg

1 state we have large differences between
the FCI and the MRCI results. Comparing the electronic con-
figurations for the ground and excited states we recognize
that this state is the only one that has an electronic configu-
ration that is doubly excited relative to the ground state con-
figuration, making in particular this state very sensitive to the
choice of reference space in the MRCI calculations.

V. CONCLUSION

In this paper we have performed an error analysis of the
excitation energies that are calculated using the standard hi-
erarchy CCS, CC2, CCSD, CC3, CCSDT, etc., of coupled
cluster theory. The order to which the excitation energies are
correct is determined for excitations that are dominated by
one, two, three, etc., electron replacement compared to the
reference state. To illustrate the performance of the order
analysis we have calculated the lowest excitation energies of
the open shell systemB2 using a closed shell excited state as
the reference state. We have found improvements for excita-
tion energies of all excitation levels at all levels in the hier-
archy and have seen that excitation energies that are correct
to the same order in the fluctuation potential give errors of
comparable size. At the CCSDTQ level the differences com-
pared to FCI are 0.01 and 0.5mEh or smaller, for single and
double electron replacement excitations, and an error of 2.4
mEh persists for the triple excitation dominated excitation
energy.

Both the order analysis in Table IV and the results in
Table VI show that it is generally not feasible to obtain ac-
curate excitation energies for an open shell ground state mol-
ecule with the standard coupled cluster models using an ex-
cited closed shell state as reference state. This is due to the
fact that when an excited closed shell state is used as refer-
ence state the lowest electronic states often become double
or even triple excitation dominated. As the accuracy of the
excitation energies in the standard CC models degrade with
the excitation level, the standard models therefore give con-

TABLE VIII. Excitation energies with respect to the ground state,X 3Sg
2 ~in

eV!.

State
Excitation

level FCIa Langhoffb Hacheyc

X 3Sg
2 0 0.00 0.00 0.00

1 5Su
2 1 0.26 0.21d 0.14f

1 1Dg 0 0.63 0.56d 0.64f

1 3Pu 1 0.69 0.44d 0.43f

1 1Sg
1 0 0.98 0.91d 0.91f

1 1Pu 1 1.50 1.13e 1.22f

1 3Du 1 1.66 1.59e 1.64f

1 3Su
2 1 1.86 1.79e 1.88f

2 1Sg
1 2 2.06 1.45e 1.40f

1 3Su
1 1 2.09 2.05e 1.98f

1 3Pg 1 2.17 2.05e 2.04f

aResults using the aug-cc-pVDZ basis set.
bSee Ref. 26.
cSee Ref. 27.
dResults for the 5s4p3d2f 1g ANO basis set.
eResults for the 4s3p2d1f ANO basis set.
fThe basis set is 6s5p2d.
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siderable errors for most of the excitation energies, and the
CCSDTQ model, which gives satisfying results forB2 , is
too expensive to be practical for larger molecules. A
promising approach for high spin open shell ground state
molecules may be to use spin restricted coupled cluster
theory.29,30
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