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INTRODUCTION

With the development of more sophisticated quantum chemical methods
in recent years, realistic calculations of molecular excited states became
increasingly feasible. Electronically excited molecules play important roles in
flames, plasmas, the atmosphere, and photochemical synthesis. Large organic
molecules that absorb or emit in the visible region of the electromagnetic
radiation spectrum are used as dyes or fluorescent markers in biological pro-
cesses. The photochemistry of living systems, namely photosynthesis and the
vision process, are currently under intense investigation. All these phenomena
require (at least initially) a detailed consideration of the spectral properties of
the excited states involved.

Electronic spectra arise from transitions between electronic states of dif-
ferent quantum numbers induced by electromagnetic radiation with ultraviolet
or visible (UV/vis) light. The term ‘‘electronic spectra’’ implies the Born–
Oppenheimer (BO) picture of molecules where the electronic and nuclear
degrees of freedom are separated. Similarly, the description of the spectra in
terms of particular electronic states is valid solely in a small region of the
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nuclear configuration space, that is, for chemically similar structures. Each
excited state has, in all respects, different properties than the ground state,
namely, energy, geometry, electron density, dipole moment, and so on. In
this sense, we can consider the excited states of one molecule as different types
of entities or occurrences of the same Hamiltonian.

Excited states are very important in quantum chemistry. Obviously, they
are the basic quantities of interest when electronic spectra are considered.
Furthermore, because the excited states form a complete basis of the Hamilto-
nian, all second-order properties such as polarizabilities (van der Waals
forces), NMR chemical shifts, ESR g-tensors, or optical rotations of chiral
molecules can be calculated quite accurately by sum-over-(excited) state
expressions. It should also be clear that any attempt to model photochemical
reactions must be preceded by a careful examination of the electronic spectra
of the reactants and products in order to deduce the electronic character of the
states involved.

The interpretation of electronic spectra is more difficult than those
obtained by IR or NMR techniques and also the theoretical–computational
requirements are higher. The reason for this is that usually a significant reor-
ganization of the electronic and nuclear coordinates occurs upon excitation
and, in addition, the induced changes are often delocalized in nature. Further-
more, even for medium-sized systems, the density of states in small energy
regions can be very large, which leads to overlapping spectral features (due
to large band widths). These feature are theoretically (and also experimentally)
difficult to resolve.

The ability of electronic structure theory to make reliable predictions for
excitation energies and transition moments has advanced extraordinarily in
recent years. By using time-dependent density functional theory (TDDFT),
linear-response (LR) or equation-of-motion (EOM) coupled-cluster (CC), or
multireference perturbation theory (MRPT), even relatively large molecules
now can be investigated routinely. On the other hand, investigations of
excited-state problems are still not as routine as most ground states. Also, reli-
able ‘‘black-box’’ type methods to simulate a wide variety of electronic spectra
are still missing. Although some of the problems may be solved in the near
future by more efficient computer algorithms and advanced hardware capabil-
ities, inherent difficulties in the description of excitation processes will remain.
It seems obvious that the complexity of the problem requires more human
efforts, that is, a careful examination and understanding of the system under
consideration, and furthermore a bit more than basic knowledge about the
theoretical methods that are used.

This chapter provides a comprehensive overview of the current status
of computational chemistry to describe electronic spectra. The focus is predo-
minantly on larger molecular systems under medium-to-low resolution condi-
tions. A quantitative description of the high-resolution spectra of diatomic to
four-atom molecules requires special treatments for vibrational and relativistic
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fine-structure effects and must also employ highly accurate quantum chemical
methods (e.g., multireference configuration interaction, MRCI), which are
currently not feasible for larger molecules. The main intention of this presen-
tation is to provide the nonspecialist with an introduction to the field and a
review of the key references that may be helpful as a starting point for his
or her own investigations.

After a very basic introduction to the problem in which the general types
of spectra and excited states are discussed, various theoretical aspects of the
simulation of electronic spectra are outlined in the following section. This sec-
tion includes the important topics of excitation energies and transition
moments as well as some consideration of vibrational effects that can now
be included routinely even for larger systems. It also includes a comprehensive
but condensed presentation of quantum chemical methods that can, and
should, be applied to these problems. The last section contains case studies
of a variety of problems including UV spectra of organic and transition metal
systems, Rydberg spectra, spectra of open-shell systems, and circular dichro-
ism (CD) spectroscopy, which also involves magnetic transition moments. In
addition, recent advances in the description of vibrational structure in the elec-
tronic spectra of larger molecules are described.

Before continuing, we want to refer the reader to some of the existing
reviews and key references about this topic. Many of the general theoretical
and technical aspects of quantum chemical methods cannot be considered
here. In this respect, the reader is referred to the excellent book of Helgaker
et al.1 The most recent introduction to the problem of electronic spectroscopy
is that of Peyerimhoff,2 where many important older references can also be
found. Much older, but still valuable books, are those of Murrel,3 Jaffe and
Orchin,4 Mataga and Kubota,5 and Robin.6 The standard textbooks on photo-
chemistry from Turro,7 Michl and Bonacic-Koutecky,8 and Klessinger and
Michl9 also include good introductions to the theoretical description of elec-
tronic spectra. More specific reviews, that is, those dealing with a particular
theoretical method (such as CASPT2) can be found in the excellent contribu-
tions from the Roos group.10–12 A recent review of electronic excitations in
aggregates–oligomers including density matrix based techniques to analyze the
states has recently been given by Tretiak and Mukamel.13 A very good survey
of spin–orbit effects on electronic spectra (not considered here), which empha-
sizes theoretical aspects, has recently been given by Marian14 (see also Ref. 15).

Types of Electronic Spectra

To perform reliable quantum chemical simulations of electronic spectra,
a detailed understanding of the different state and possible transition types is
necessary. Figure 1 provides a schematic overview of the processes usually
observed for molecules where, for simplicity, the rovibrational fine structure
of the electronic levels has been neglected.
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One of the key points here is that state and orbital pictures should not be
interchanged or mixed. Electronic absorption spectra originate from transi-
tions between eigenstates and not from those between one-electron wave func-
tions (orbitals). While the state picture is exact, but provides no detailed
information about the electronic structures, the orbital picture is approximate.
However, it is intuitively understandable and allows for easy classification of
electronic spectra. In the orbital picture, a transition between the ground and
an excited state is simplified to an excitation between origin (occupied in the
ground state) and target (virtual, i.e., usually empty in the ground state) orbi-
tals. More mathematically speaking, one implicitly uses single excitations
between the orbitals (even more precisely: singly substituted Slater determi-
nants; the terms ‘‘excited’’ and ‘‘substituted’’ are used synonymously) to
express the wave functions of the excited states. Beside the most common
valence–valence excitations, valence–Rydberg excitations are important in
which the final orbital has relatively large spatial extent resembling atomic
functions of higher principal quantum number. Core excitation spectra are
an important tool in material science for the assignment of molecular oxida-
tion states [for a very early and the most recent density functional theory
(DFT) study on this topic see Refs. 16 and 17].

Figure 1 Overview of different state and transition types in a state (a) and orbital picture
(b). Abbreviations: IP (ionization potential), ESA (excited-state absorption).
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The dominating importance of single excitations is based on physical
reasons. They dominate the most common one-photon processes, since they
usually have low excitation energies and involve large transition moments
(intensities). This is different for two-photon spectra; for a recent DFT study
on this topic, see Ref. 18.

The large number of excitation possibilities, especially in higher lying
energy regions, is one of the reasons why absorption spectra simulations
are so difficult. Because emission processes are usually observed only from
the lowest excited state to the ground state (in rare cases a second excited state
must be considered), their theoretical description is much easier. Energetically
embedded into the electronic spectrum are ionic states, where at least one elec-
tron has been removed from the system. These continuum states and their
formation are the topic of scattering theory, which will not be considered
here. However, especially for Rydberg spectra, ionized states are important
because they represent the asymptotic limit of a Rydberg series with infinite
principal quantum number.

The second important issue to consider is the measurement conditions
under which the experimental spectra are recorded. This not only has dramatic
consequences for the shape of the spectra but also determines which theoreti-
cal approaches should be taken. Figure 2 shows different visible absorption

Figure 2 Visible absorption spectra (n! p� state, onset at �550 nm) of tetrazine under
different conditions (from top to bottom): (a) aqueous solution at room temperature
(RT), (b) cyclohexane at RT, (c), hydrocarbon matrix at 77 K, (d) gas phase at RT, and
(e) TDDFT–B3LYP20,21 simulation of the vibronic transitions at RT. The 0–0 vibronic
transition has been set to zero.
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spectra for the n! p� band of tetrazine, where the influence of environment
and temperature can be seen very clearly (this nice example was first presented
by Mason19).

Spectrum (d) shows a medium-resolved UV spectrum in the gas phase at
room temperature for which a huge number of vibronic transitions occurring
simultaneously with the change of electronic quantum number are resolved. A
detailed understanding of this spectrum including hot-bands (excitations out
of vibrationally excited levels of the ground state, excitation energies < 0 in
Figure 2) requires a vibrational treatment of both electronic states. Trace (e)
shows the result of such a simulation (outlined in more detail in later sections)
presented as a ‘‘stick-spectrum,’’ which is in almost perfect agreement with
experiment. Due to solvent–matrix-induced line-broadening, the fine structure
is clearly reduced in the spectrum that is recorded in a hydrocarbon matrix at
low temperatures. Note the missing hot band, for example, at �700 cm�1 due
to decreasing population of thermally excited vibrational levels in the ground
state. With increasing temperature (spectrum b), the density of vibrational
states increases thereby further broadening the bands. It seems clear that
changes of this kind require the inclusion of temperature in the simulations,
for example, via population of levels according to a Boltzmann distribution.
The spectra (b) and (c) have been recorded in weakly interacting hydrocarbon
solvents that more or less resemble the gas-phase spectrum. Experience shows
that such spectra can be safely used in theoretical treatments (which mostly
neglect solvent effects) as substitutes for the often missing gas-phase spectra.
In most cases, weakly interacting solvents just induce a small red-shift of the
entire spectrum due to a higher polarizability (larger stabilization by van der
Waals interactions) of the excited states. On the contrary, spectrum (a)
recorded in water shows complete loss of any vibrational structure due to
strong interactions with the solvent (mostly weak N � � � H bonds). This situa-
tion would require the calculation of a number of different water–tetrazine
aggregates, including their dynamic behavior, which is currently out of reach
for any reliable quantum mechanical treatment.

Types of Excited States

Selection of the theoretical method to be employed in practical simula-
tions is the decisive factor for the overall accuracy of a calculated spectrum.
The main problem in computing the various electronic states is to properly
account for the electron correlation (EC) effects, which is the difference
between a Hartree–Fock (HF) independent particle model and reality. Usual-
ly, one distinguishes between dynamic (short-ranged) EC, which is ubiquitous
and can be understood as a pure many-particle effect, and static (long-ranged)
EC resulting from the energetic near-degeneracy of different electronic config-
urations. This very important issue is outlined schematically in Figure 3. Note
that in the following we deal exclusively with spin-allowed transitions (i.e., no
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change of spin-multiplicity between the states) and that mostly even-numbered
electron systems with singlet multiplicity will be discussed (exceptions are the
phenoxyl radical and the lowest triplet state of naphthalene, both discussed in
a later section).

Electronic excitation is usually connected with an unpairing of electrons,
which, as a rule of thumb, contributes �1 eV correlation energy change per
pair. Furthermore, even the usual definition of the correlation energy
(Ecorr ¼ Eexact � EHF) is not unambiguous for excited states because a HF
self-consistent field (SCF) description (which is used as ‘‘uncorrelated’’ refer-
ence) is rarely possible. Because the degree of sophistication of the theoretical
treatment that can be performed is usually limited, it is important to know
which main factors influence the magnitude of the electron-correlation contri-
butions.

For that purpose, electronic spectra are first classified according to the
character of the states involved. A very basic distinction relies on the electronic
structure of the corresponding initial state from which the transition occurs.
This initial state is not necessarily the ground state of the system, shown sche-
matically in Figure 4, which includes the three most common possibilities.
For a more detailed discussion of this point in the context of restricted and
unrestricted TDDFT approaches, see Ref. 22.

Most electronic spectra are measured for closed-shell systems that usually
have a large gap between occupied and virtual orbitals. This case is the

Figure 3 Orbital pictures of electron correlation effects: (a) ground state of a closed-
shell system with a large highest occupied molecular orbital–lowest unoccupied
molecular orbital (HOMO–LUMO) gap showing predominantly dynamic EC. (b) Near-
degeneracy of two electronic configurations occurring, for example, in biradicals or
during homolytic bond cleavage. (c) Near-degeneracy of two singly substituted
electronic configurations in an excited state.
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simplest because the initial state is then often the ground state of the system
(we consider absorption here) and it is, furthermore, usually well described
by a single Slater determinant. In these systems, doubly occupied MO to vir-
tual MO (D–V) single excitations (see Figure 4) play the most important role,
although important exceptions with low-energy double excitations (e.g., poly-
enes) are known. It is clear that the number of different excitation types
increases for systems that are already open shell in the ground state. For radi-
cals, doubly occupied to singly occupied (D–S) and singly occupied to virtual
(S–V) excitations must also be considered and in the case of excited-state
absorption, S–S excitations are also possible. While many different theoretical
approaches have been developed and extensively tested for the closed-shell
situation, the open-shell systems are more complex. For low-spin states espe-
cially, only a few methods are, in principle, applicable.

Table 1 contains a state classification in terms of the more chemically–
physically motivated language often used in the literature. Note that the
entries in the different sections can in fact occur in almost arbitrary combina-
tions, for example a charge-transfer excited state can be single reference domi-
nated by single excitations (a state often occurring lowest in dyes) or one can
have a high-spin Rydberg state, and so on. The last column contains theoreti-
cal issues that may be applicable in particular cases.

As already mentioned, the accurate account of the electron correlation
effects in the different states is the most important precondition to obtain reli-
able predictions for electronic spectra. Before considering some details of this
simulation process, a few words on general aspects of EC in larger systems

Figure 4 Orbital pictures of the most common initial-state configurations and the
different types of single excitations. The open-shell state shown on the right side
additionally has the possibility of S-S excitations. Abbreviations: doubly occupied MO
(D), virtual MO (V), singly occupied MO (S).
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seem appropriate. Large molecules are close to a crossover region when going
from molecular systems to solids, and, from a physicist’s point of view would
be classified as insulators, semiconductors, or metals. The EC effects in
insulators (saturated with s-bonds only) are mostly local (short-ranged,
dynamic) in nature and can thus be described by local wave function or density
functional methods. The variations of the EC effects between the different
states of insulators are expected to be small or roughly constant so that
even simple methods completely lacking EC may be sufficient. However, these
simple systems are not very interesting chemically and, thus, most theoretical
treatments performed in practice must consider semiconductor- or even metal-
like molecules. One characteristic of the states in these systems is the nonlocality of

Table 1 Overview of Excited-State Typesa

State
Classification Description Theoretical Aspects to Consider

Valence Excitations between Strongly varying amounts of EC
(non)bonding–anti-bonding
orbitals

Rydberg Excitations to virtual orbitals Special AO basis sets required
of large spatial extent asymptotics of potentialb

Core excited Excitations out of core orbitals Special treatments–algorithms
to extract high-lying roots

Locally excited Excitations between
spatially close orbitals

Charge transfer Excitations between Asymptotics of potentialb

very distant orbitals

Singly excited WF are dominated by Simple TD approaches sufficientc

singly excited determinants
Multiply excited WF includes important Multireference approaches

contributions from doubles, necessary
triples, and so on

Single reference WF can be described mainly by Mostly dynamic EC
one determinant

Multi- WF includes many important Breakdown of MO picture
configurational contributions Static EC
(multireference)

Low spin Spins are mostly paired EC larger for low-spin
(e.g., singlet, doublet) than for high-spin states

High spin Ms > Ms (min)
(e.g., triplet, quartet)

aAbbreviations: WF (wave function), EC (electron correlation), TD (time-dependent), AO
(atomic orbital).

bMainly apply to TDDFT, where approximate exchange-correlation potentials are used in the
effective Kohn–Sham Hamiltonian.

cFor example, adiabatic TDDFT or LR(EOM) coupled-cluster singles and doubles.
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the EC (or even exchange) effects, where also a separation into static and
dynamical EC is no longer appropriate. This nonlocality is difficult to describe
theoretically mainly because (a) three or more particle correlations become
important and (b) theoretical approximations that rely on ‘‘spatial separation’’
cannot be used. Thus, only correlated wave function approaches that include
these effects explicitly will ultimately yield the desired accuracy in these cases.
In this context, a strong warning should be noted: For obvious reasons, most
developments of new quantum chemical methods for excited states will be
tested and ‘‘benchmarked’’ on atoms or small molecules with only a few elec-
trons. The results and conclusions thus obtained are not always transferable to
‘‘real’’ problems (i.e., a method that gives good results for ethene is not neces-
sarily appropriate for porphyrin) mostly because the importance of higher
order EC effects increases with the size of the system.

THEORY

Excitation Energies

In the Born-Oppenheimer picture, electronic transitions occur between rovi-
brational levels of two electronic states n and m. The excitation energy is
the energy difference between the two levels yielding the spectral position of
the transition

�Enm;vv0; jj0 ¼ Em;v0;j0 � En;v;j ½1	

where v and j indicate vibrational and rotational quantum numbers, respec-
tively. Because the rotational structure is rarely resolved experimentally for
larger molecules, we always assume in the following that j ¼ j0 ¼ 0 and
drop the corresponding index. For the special case that the transition occurs
between the two vibrational ground states (v ¼ v0 ¼ 0), Eq. [1] reduces to

�E0--0
nm ¼ Eel

m � Eel
n þ EZPE

m � EZPE
n ½2	

yielding the 0–0 transition energy E0--0, where EZPE are the vibrational
zero-point energies. At low temperatures, the 0–0 transition can usually be
identified as the onset of the experimental spectrum. The calculation of this
important quantity thus requires the computation of the two electronic-state
energies and their vibrational normal modes. Because the calculation of
EZPE is relatively demanding (even in the usually employed harmonic approx-
imation), one often replaces the 0–0 transition energy by the pure electronic
part,

�Eel
nm ¼ Eel

m � Eel
n ½3	
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This approximation is relatively accurate yielding errors typically < 0.1–
0.2 eV. If transitions from the ground state are considered, these errors are
systematic because the vibrational frequencies in the excited state are usually
smaller than in the ground state and thus, �Eel > �E0--0.

So far, all energies discussed for the two states necessarily refer to energy
minima, and thus, two separate geometry optimizations of the molecular
structures are required. While this is a routine task for most ground states,
excited-state geometry optimization is a very difficult problem. First, for
most of the more accurate excited-state quantum chemical models, implemen-
tations of analytical gradients are still missing. Although numerical derivatives
can in principle always be obtained, their calculation is usually too costly and
thus they are used only for benchmark purposes on small systems.23 Second, in
higher energy regions, the density of states is usually very large, which leads to
many avoided surface crossings. In such situations, geometry optimizations are
almost impossible because state flippings often occur and induce a complete
breakdown of the most common quasi-Newton optimization algorithms.
These are the reasons that even today most investigations rely on the so-called
vertical approximation. In this approach, the optimized ground-state geometry
is used to calculate all excited-state energies and transition moments. Note
that the vertical excitation energy

�E
0el
nm ¼ E

0el
m � Eel

n ½4	

(where the prime indicates the use of the nonrelaxed ground-state geometry)
does not correspond to any observable. Instead, it represents a relatively good
approximation (often to within 0.1–0.2 eV) to the intensity maximum of a
spectral band. It should be clear that this approach works best for large mole-
cules with small geometry changes between the states and for spectra obtained
in solution under low-resolution conditions. Typical values for the difference
between vertical and 0–0 excitation energies are given in Table 3.

The ultimate goal of theoretical electronic spectroscopy is to provide reli-
able and realistic simulations of electronic spectra. For that purpose, one
usually needs a relatively high accuracy for the excitation energies. If we con-
sider valence and Rydberg states with �E values of < 10 eV, and if we assume
typical bandwidths of �0.3–0.5 eV, the errors for �E should not exceed 0.2–
0.3 eV. Even more important than the accuracy of the absolute values (sys-
tematic errors can be corrected by global shifting or scaling as is usually
done in IR spectroscopy) is the relative accuracy obtained for the different
states of one molecule. A wrong ordering of states can lead especially to
misinterpretation of experimental data, an issue that is a particular problem
in photochemical studies.

To illustrate the accuracy that can be obtained by modern quantum che-
mical methods, the results for a benchmark set of molecules is now briefly dis-
cussed. An outline of the theoretical background of the applied methods is
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given in a later section. Table 2 shows results for vertical singlet–singlet exci-
tation energies obtained with TDDFT (time-dependent density functional
theory), CC2 (a simplified coupled-cluster model), and MR-MP2 methods
(multireference perturbation theory). The systems tabulated have been chosen
to cover a broad range of molecules and states of different character. Further
discussions on the accuracy of calculated �E values are given below in the
sections containing the case studies; another TDDFT benchmark study can
be found in Ref. 24.

Inspection of the data clearly shows how difficult it is to meet the accu-
racy requirements of �0.2–0.3 eV even for these lowest-lying states. Although
the mean absolute deviation (MAD) for all three methods falls in this range,
only the MR-MP2 method achieves a good overall accuracy for the entire
range of systems. Both TDDFT and CC2 have some outliers with errors

Table 2 Comparison of Calculated Vertical Singlet–Singlet Excitation Energies
with Experimental Absorption Band Maximaa

TDDFT-B3LYP CC2 MR-MP2
Experimental

Molecule State (eV) Errorb (eV)

Anthracene 11B3uðpp�;LaÞ 3.3 0.03 0.69 0.39
11B2uðpp�;LbÞ 3.5 0.42 0.43 �0.15

Indole 21A0ðpp�;LbÞ 4.4 0.52 0.53 �0.15
31A0ðpp�;LaÞ 4.8 �0.02 0.47 0.15

Porphyrin 11B1uðpp�Þ 2.0 0.08 0.32 �0.33
11B2uðpp�Þ 2.4 0.05 0.31 �0.07
21B1uðpp�Þ 3.1 0.24 �0.03
21B2uðpp�Þ 3.3 0.22 �0.02

Indigo 11Buðpp�Þ 2.0 0.08 0.36 0.10
Pyridazine 11B2ðn! p�Þ 3.4 0.14 0.47 0.22
Benzocyclo- 11B2ðn! p�Þ 2.8 0.10 0.19 �0.12

butendione
11A2ðn! p�Þ 3.5 0.05 0.33 0.12

Benzaldehyde 11A00ðn! p�Þ 3.8 �0.17 0.12 0.18
C5 �uðn! p�Þ 2.8 0.56 �0.19
Pyrrole 11A2ðp! 3sÞ 5.2 �0.45 �0.06 0.06

11B2ðp! 3pÞ 5.9 �0.36 �0.10 0.10
Si2ðCH3Þ6 1Euðs! 4pÞ 6.4 �0.38 �0.68 0.12
Ferrocene 11E1gðd! dÞ 2.8 �0.79 �0.09
CrðCOÞ6 11T1uðd! p�Þ 4.4 0.08 0.34

21T1uðd! p�Þ 5.5 0.50 0.10
P4 11T2 5.6 �0.08 �0.08 �0.22
Na4 11B3u 1.8 0.06 0.03 0.05

mean absolute deviation (MAD) 0.24 0.32 0.15

aFor technical details and references to the experimental data see Ref. 25.
bError ¼ �Eðcalc:Þ ��Eðexp :Þ.
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>0:5 eV and CC2, especially, completely breaks down for C5 and the difficult
transition metal systems. Note that the three methods tested represent the
most accurate approaches that can also be applied to larger systems and
that other ‘‘cheap’’ methods (like CIS or semiempirical treatments) often yield
quite unreliable results with errors >0.5–1 eV.

As already mentioned, a direct comparison of vertical excitation energies
with experimental data is not possible and such results contain uncertainties
due to geometry relaxation effects. A more reliable assessment of theoretical
methods can be achieved by a comparison of the �E0--0 values that are
presented for the lowest states of some unsaturated molecules in Table 3.
The last column of this table indicates the difference between 0–0 and vertical
excitation energies.

These data indicate more clearly the problems theoretical methods
(TDDFT in this case) have in accounting for the change of electronic structure
upon excitation. For the ionic La states of the aromatic compounds (using
Platts nomenclature derived from the perimeter model, see, Ref. 9 e.g.) and
the 1Bu state of the polyene, a systematic underestimation of the excitation
energies is observed while the opposite is true for the other more covalent
states that exhibit stronger multiconfigurational character (for a more detailed
discussion of these problems see Refs. 35 and 36).

The effects of geometry relaxation (sixth column) are significant for the
smaller and medium-sized systems (0.4–0.6 eV) but diminish with the size of
the molecule. For the larger aromatic molecules, differences between �E

0el and
�E0--0 of �0.2–0.3 eV are found. Note, however, that the geometry relaxation
effects can be more important (up to 1 eV) in the case of larger systems as well
when single-bond torsions between conjugated fragments are possible.37 The
differences between the �Eel and �E0--0 values (the ZPE contribution) are
much smaller (0.12–0.17 eV, 0.03 eV for azulene) and roughly constant for
the systems considered.

Transition Moments

Band intensities (transition probabilities) are the second important factor
determining the shape of an electronic spectrum. Including the oscillating
radiation field as a perturbation to the molecular Hamiltonian and applying
time-dependent perturbation theory yields, under some approximations (the
most important being that the radiation wavelength is much larger than the
size of the molecule and small field strengths), the electronic transition
moment (TM) as an expectation value over the initial and final wave functions
with the relevant one-electron operator ÔO,

TM ¼ �mjÔOj�n

D E
½5	
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A comprehensive discussion of this important derivation can be found in
Refs. 38 and 39. The nuclear contributions to the TM leading to vibrational
fine structure in the spectra are discussed in the following section. Alterna-
tively, the electronic part of the TM is obtained from the first-order reduced
transition density matrix c as

TM ¼ trðOcÞ ½6	

where the matrix O is the representation of the operator in the basis of orbitals
c (Oij ¼

Ð
ciðrÞÔOcjðrÞdr) and c is the analogous matrix representation of the

transition density given by

gij ¼
ð
ciðr1Þgðr1; r

0
1Þcjðr01Þdr1dr01 ½7	

with

gðr1; r
0
1Þ ¼ Nel

ð
�m�ndr2 � � � drN ½8	

The importance of the concept of transition density matrices is that they allow
a straightforward interpretation of excited states13 either by plotting or by
population analyses as usually performed for ‘‘normal’’ (n ¼ m) densities.

The leading term in the interaction of radiation with matter is the electric
dipole contribution (l) for which the one-electron operator ÔO is given by the
position coordinates rk of the electrons as

ÔO � l̂lL ¼ e
XNel

k

r̂rk ½9	

which is called the ‘‘dipole-length’’ form. Note that l are vector quantities
(given in bold) including x, y, and z components. The alternative ‘‘velocity’’
formulation uses

ÔO � l̂lV ¼
�ie

�Eel

XNel

k

=̂=k ½10	

For exact wave functions and those that fulfill the hyper-virial theorem by
construction [e.g., time-dependent Hartree–Fock (TDHF) or random phase
approximation (RPA), TDDFT, see below] both forms are equivalent. Note
that all virial theorems are exactly fulfilled only in a complete (i.e., usually
infinitely large) AO basis. By a simultaneous computation of the transition
dipole moments in the length and velocity forms and subsequent numerical
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comparison, the above mentioned time dependent (TD) methods allow some
estimate of basis set completeness for the corresponding transition. Table 4
provides a numerical comparison of the two transition dipole moments for
the weakly allowed n! p� transition in acetaldehyde calculated with different
AO basis sets.

It can be seen that if a certain degree of basis set saturation is reached
(cc-pVTZ, third row), the two values start to converge to the same value
(�0.067), which is almost reached at the aug-cc-pVTZ level. Note the strong
effect of ‘‘diffuse’’ functions (denoted as aug) for this property (compare rows
three/four and five/six) and also the relatively large fluctuations for the velocity
form that are caused by the more complicated structure of the differential
operator in Eq. [10]. In addition, there is a lot of numerical evidence that
for other systems the length form is more stable yielding, with small AO basis
sets, results closer to the basis set limit (see, e.g., Ref. 42). Note too that the
presented example is quite challenging due to the ‘‘almost’’ symmetry forbid-
den character of the transition and that both the fluctuations for the V-form
are smaller and the agreement between L- and V-forms is better for dipole
allowed transitions.

The (dimensionless) oscillator strength for an electronic transition is
given by

fnm ¼
2

3
�Enmjlnmj

2 ½11	

where �E and the length of the transition dipole vector are expressed in atomic
units. Theoretically, f ¼ 1 corresponds to the transition probability of a har-
monically moving electron bound to a proton (an early model of the hydrogen
atom). Experimentally, one obtains f by integrating the area under the absorp-
tion band between energies �nn1 and �nn2 (in wavenumbers)

f ¼ 4:3� 10�9

ð�nn2

�nn1

eð�nnÞd�nn ½12	

Table 4 The TDHF Transition Dipole Moments (in Debye) for the 11A0 ! 11A00

Transition (n! p� excited state) in Acetaldehyde Calculated with
Dunning’s Correlation Consistent cc-VXZ Basis Setsa

Basis Set mV mL

cc-VDZ ½3s2p=2s	 0.0701 0.0363
cc-pVDZ ½3s2p1d=2s1p	 0.0072 0.0330
cc-pVTZ ½4s3p2d1f=3s2p1d	 0.0317 0.0534
aug-cc-pVTZ ½4s3p2d1f=3s2p1d	 þ ½1s1p1d1f=1s1p1d	 0.0695 0.0674
cc-pVQZ ½5s4p3d2f1g=4s3p2d1f 	 0.0513 0.0591
aug-cc-pVQZ ½5s4p3d2f1g=4s3p2d1f 	 þ ½1s1p1d1f1g=1s1p1d1f 	 0.0675 0.0670

aSee Refs. 40 and 41.
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where e is the decadic molar extinction coefficient given in L/(mol cm).
Although in experimental investigations a nonlinear energy scale l ¼ hc=E
(wavelengths) is usually used, it is strongly recommended that one transform
all data (experimental and theoretical) first to linear eV or cm�1 units. Inver-
sion of Eq. [12] allows one to deduce eð�nnÞ from calculated oscillator strengths.
For the band form of the individual transitions (also called ‘‘shape-function’’),
Gaussian functions have been successfully employed, which accounts for
vibrational (and solvent, if present) induced broadening. To simulate entire
spectra, the contributions from all transitions are added according to

eðEÞ ¼ 2:87� 104ffiffiffiffi
s
p

X
i

fie
�ðE��EiÞ=2s½ 	2 ½13	

where s is the full width of the band at 1=e height (for most UV bands s ¼ 0:4
eV is appropriate) and �Ei (in eV) and fi are the excitation energies and oscil-
lator strengths for transition i, respectively. Figure 5 schematically shows a
typical outcome for the simulation of a conventional UV spectrum. The verti-
cal lines indicate the position and oscillator strength of the individual transi-
tions (right f axis), while the dashed curve is the overall result from Eq. [13].
Very weak or forbidden transition should be indicated by special symbols.
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Figure 5 Example of the graphical presentation of a simulated (vertical) UV spectrum.
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For an electric dipole allowed transition, the radiation field must create
or destroy a node in the corresponding transition density. A simple example is
an atomic s! p excitation, where the transition density is simply given by the
product s� p, which yields a scalar quantity when multiplied by r and inte-
grated over space. In other words, the transition density must have a dipolar
structure, where ‘‘probability’’ is shifted from positive-to-negative (and
vice versa) regions. The mathematical process of generating the electric dipole
transition moments is schematically outlined for the example of the p! p�

transition of ethene in Figure 6.
If the transition density simultaneously has some rotational character,

the magnetic component of the radiation field becomes important. For noncir-
cularly polarized light, that is, in conventional UV spectroscopy, the magnetic
component of the radiation field can be neglected in the time-dependent per-
turbation because it enters with a factor vav

el =c; the average electron velocity is
much smaller than the speed of light. The effect of the magnetic component in
circularly polarized light is observed experimentally in electronic circular
dichroism (CD) spectroscopy of chiral molecules.43 As a conventional absorp-
tion, it is a first-order, linear effect but depends on the combined interaction of
a molecule with the electric and magnetic components of the radiation field.

The main quantity in CD is the rotatory strength R, which is completely
analogous to the oscillator strength in UV spectroscopy and is given by the
scalar product44,45

Rnm ¼ Imh�njl̂lj�mi � h�njm̂mj�mi
¼ jlnmj � jmnmj � cosðlnm;mnmÞ ½14	

Figure 6 Schematic description for the process of generating the electric transition
dipole moment for the p! p� excitation of ethene. Transparent (black) areas
correspond to a positive (negative) phase.
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where m̂m is the magnetic dipole operator (angular momentum)

m̂m ¼ �he

2mci

XNel

k

r̂rk � =̂=k ½15	

In oriented media (which will not be considered here), additional dipole–quad-
rupole terms contribute to the CD. The rotatory strength is zero by symmetry
if the molecule possesses at least one improper Sn axis as symmetry element
(this causes either m or m to be zero or an orthogonal arrangement of the
two vectors, see Eq. [14]). Also, in complete analogy to UV spectra, R can
be obtained from Eq. [12] with e replaced by the difference of extinction coef-
ficients for left- and right-circularly polarized light (�e ¼ eL � eR).

The main perspective of CD spectroscopy is its potential to determine the
absolute configurations of chiral substances that is of particular importance
for compounds with biological or pharmacological relevance, for example.
Furthermore, unlike optical spectra, the CD bands can be positive or negative,
and for this reason carry more information and sometimes allow one to
resolve close-lying or hidden electronic transitions. More details about
theoretical CD spectroscopy can be found in Refs. 43 and 46–48. In Ref. 49
the CD spectra of a benchmark set of molecules have been investigated with the
most recent quantum chemical methods. Some representative examples are
discussed in a later section of this chapter. Recent advances in the theoretical
description of magnetically induced CD, which in addition employs a static
magnetic field, can be found in Ref. 50.

Vibrational Structure

In general, the intensity I of a transition between the two states �m and
�n is proportional to the square of the transition dipole moment

ln;m ¼ h�njl̂lj�mi ½16	

with the dipole operator

l̂l ¼ �e
X

i

r̂ri þ e
X

s

ZsR̂Rs ¼ l̂le þ l̂lN ½17	

where r̂ri and R̂Rs denote the electron and nuclear coordinates, respectively, and
Zs represents the nuclear charges.

For the description of a vibronic transition both electronic and nuclear
coordinates must be taken into account. In the adiabatic BO approximation,
the complete wave function can be separated into the product

�ðr;RÞ ¼ �eðr;RÞ�NðRÞ ½18	
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where �eðr;RÞ and �NðRÞ denote the electronic and nuclear wave functions,
respectively (for a good review about treatments beyond the BO approxima-
tion see Ref. 51).

After the separation of translational, rotational, and vibrational modes
of nuclear motion

�NðRÞ ¼ �tðRtÞ�rðRrÞ�vðRvÞ ½19	

the vibrational modes can be represented within the harmonic approximation
as a product of eigenfunctions of the harmonic oscillator �iðQiÞ

�vðRvÞ ¼ �ðQÞ ¼ �1ðQ1Þ�2ðQ2Þ � � � �NðQNÞ ½20	

where Qi denote the vibrational normal coordinates. For the transition dipole
moment le0�0;e� of a vibronic transition e�! e0�0 with quantum numbers e and
e0 for the electronic and � and �0 for the vibrational parts of the initial and final
state, respectively, these expressions give39

le0�0;e� ¼ h�0ðQ0Þjle0;eðQÞj�ðQÞi ½21	

where �ðQÞ and �0ðQ0Þ are the vibrational functions, Q and Q0 are the normal
modes of the initial and final states, respectively, and le0;eðQÞ denotes the elec-
tronic transition dipole moment as a function of the initial state normal
modes. Because for the transition dipole moment in general no analytical
expression is available, it is expanded in a Taylor series around the initial state
minimum geometry Q0.

le0;eðQÞ � le0;eðQ0Þ þ
X

i

qle0;e0

qQi
ðQi �Qi;0Þ þ � � � ½22	

Truncation of the expansion after the first term yields the Franck–Condon
(FC) approximation for the transition dipole moment

le0�0;e� ¼ le0;eðQ0Þh�0ðQ0Þj�ðQÞi ½23	

In the FC picture, the transition occurs from the vibrational ground state of the
initial electronic state to the vibrational excited state of the electronically
excited state (considered in the following absorption), which most resembles
the first one.52–54 This is shown schematically in Figure 7 for two excited states
that (with respect to the ground state) are shifted differently along one
vibrational normal coordinate Q.

A description of electric dipole forbidden transitions, where le0;eðQ0Þ ¼ 0
is not possible in terms of the FC approximation, because vibronically induced
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transition moments are neglected. Truncation of the Taylor expansion
(Eq. [22]) after the second term yields the Franck–Condon–Herzberg–Teller
(FC–HT) approximation for the transition dipole moment

le0�0;e� ¼ le0;eðQ0Þh�0ðQ0Þj�ðQÞi þ
X

i

qle0;e

qQi
h�0ðQ0ÞjðQi �Qi;0Þj�ðQÞi ½24	

This description accounts for transition dipole moments induced by displace-
ments along the normal modes during the electronic transition, that is, a simul-
taneous excitation of vibrational modes. This approximation is also denoted
as double-harmonic. For electric dipole forbidden transitions, the first term in
Eq. [24] vanishes and the resulting expression is denoted as the Herzberg-
Teller (HT) approximation.

le0�0;e� ¼
X

i

qle0;e0

qQi
h�0ðQ0ÞjðQi �Qi;0Þj�ðQÞi ½25	

Figure 7 Schematic description of the FC principle for two excited states with
dominating 0–0 transition (�2, almost parallel potential surfaces) and a broad intensity
distribution (�1, shifted minimum), respectively. The nonzero intensities for 0–1,
0–2, . . . vibrational transitions to �2 result entirely from the different shapes of the
surfaces, while the intensity distribution for the other transition originates mainly from
the shifted minimum.

Theory 173



A physical explanation for the influence on the transition dipole moment
of vibrational excitations that occur simultaneously to the electronic transition
is that displacements along the normal modes result in a perturbation of the
electron–nuclear interaction. Thereby a mixing of the excited-state electronic
wave function with other excited-state wave functions occurs that leads to a
mixing of the corresponding transition dipole moments39,55 (‘‘intensity bor-
rowing’’ from dipole-allowed transitions). Because this process depends criti-
cally on the energy separation between the target and the mixing states, a good
overall description of the electronic spectrum is necessary to obtain reliable
HT transition moments.

For molecules with more than one internal degree of freedom the normal
modes of the ground and excited state are not in general identical (Duschinsky
effect). Thus, for the calculation of the multidimensional integrals in Eqs.
[23]–[25] it is necessary to describe the excited-state normal modes on the
basis of the ground state taking into account the different minimum geome-
tries. This is achieved by the following linear transformation (Duschinsky-
transformation)56

Q0 ¼ JQþ K ½26	

with K ¼ L
0TM1=2DR and the Duschinsky-matrix J ¼ L

0TL, where L and L0

denote the normal modes in mass-weighted Cartesian coordinates of the
ground and excited state, respectively, DR the difference of the minimum geo-
metries and M the diagonal matrix of the atomic masses. This relationship is
exact for normal modes that—in the common symmetry group of ground and
excited states—do not span the same symmetry species as one of the rotations.
For normal modes having the same symmetry as one of the rotations, so-called
‘‘axis switching effects’’ occur.57,58 Nevertheless the Duschinsky-transforma-
tion has been proven to be a good approximation.

With the use of a recursive algorithm,59 the resulting integrals h�0ð JQþ
KÞj�ðQÞi are reduced to the integral over the vibrational ground state from
which the h�0ðJQþ KÞjQij�ðQÞi terms can be derived as well.60 A further tech-
nical issue concerns the calculation of the normal modes and frequencies of the
ground and excited states. In all vibronic structure treatments we employ a
numerical approach, where the second derivatives of the energy and the deri-
vatives of the transition moments are calculated by finite differences from ana-
lytical gradients and the transition moments, respectively. This is done very
efficiently in parallel using an extended version of the program SNF
2.2.1.61,62 For the calculation of the FC and HT integrals and all required level
combinations in a user-specified energy interval, the HOTFCHT 1.260

program is used.
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Quantum Chemical Methods

General
Before continuing with an overview of existing quantum chemical

approaches for computing the excited states of large molecules, it seems
appropriate to first define a ‘‘wish list’’ of the properties these methods should
provide. Generally desired properties that also apply to ground states (e.g.,
size-consistency, weak AO basis set dependence, systematic improvability,
etc.) are not included in this list.

1. Applicability: The method should be able to treat arbitrary types of excited
states (see Table 1, first column), especially highly excited ones, and those
occurring in photochemical applications. Spectral simulations sometimes
require the simultaneous description of 10–100 states.

2. Accuracy: Errors for excitation energies should be < 0.1–0.2 eV, transition
moments should be accurate to within 20–30% and the sign (direction) of
the moment should be correct.

3. Properties: All standard one-electron properties and transition moments as
well as analytical nuclear gradients for geometry optimization should be
available. The method should allow interpretation of the results within
simple (e.g., MO) models.

4. Human effort: The method should be of ‘‘black-box’’ character including
as few technical parameters as possible.

5. Computational: Memory and CPU requirements should not be significantly
larger than for the corresponding ground-state calculation.

Unfortunately, none of the methods currently in use simultaneously fulfill all
these requirements. The user’s choice is thus determined by a consideration of
the assets and drawbacks of a particular method which, in relation to the type
of electronic spectra/states, may change from one problem to the other.
Figure 8 provides the reader with a comprehensive overview of existing quan-
tum chemical methods for excited states.

One of the basic problems to consider in advance concerns the multire-
ference character of the ground state and the importance of multiply excited
configurations in the excited states. The choice depicted in Figure 8 distin-
guishes between single-reference CI or TD approaches on the left and multi-
reference treatments on the right (MR-CC and quantum Monte Carlo
treatments also shown on the right side are currently under intense develop-
ment and included only for completeness). Both groups of methods have their
own advantages and disadvantages. The MR methods are general in a sense
that once a zeroth-order [reference, �ð0Þ] wave function has been built up,
any type of excited state can be treated. The price to pay, however, is that
the choice of �ð0Þ is not unique and furthermore requires a lot of human effort.
In contrast, the starting point for the TD approaches is the electronic ground
state, where the excitation energies (transition moments) are obtained as poles
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(residuals) of the response of the ground state to a time-dependent perturba-
tion (electric field).

The basic theoretical background of the most widely used methods
will be outlined in the following sections including the most important work-
ing equations and technical issues that must be considered in large-scale appli-
cations.

CI Methods
Although the application of configuration interaction (CI) methods to

excited-state problems has decreased in recent years, they should be consid-
ered here first because the formalism is easy to understand and if properly
developed, are also most general in application. A recent comprehensive
review can be found in Ref. 63.

All CI methods are variational, that is, the electronic Schr€odinger
equation

ĤHj�CI
n i ¼ ECI

n j�CI
n i ½27	

is solved for state n with the following ansatz for the wave function

j�CI
n i ¼ ðT̂T1 þ T̂T2 þ T̂T3 þ � � �Þj�ð0Þi ½28	

where �ð0Þ is a so-called reference wave function and T̂Tk are the single (one-
electron, k ¼ 1), double (two-electron, k ¼ 2) and triple (three-electron, k¼3)
excitation (replacement) operators, respectively. By acting onto �ð0Þ these
operators generate complete sets of (excited) determinants by substitutions
of occupied orbitals i; j; k; . . . in the determinants of �ð0Þ with virtual orbitals
b; c; d; . . .. Note that in general, open-shell determinants are not eigenfunc-
tions of the ŜS2 operator (they cannot be classified according to multiplicity
as, e.g., singlet, doublet, triplet, . . .). Actual treatments are often based on
so-called configuration-state functions (CSF), which are represented by appro-
priate linear combinations of several determinants with the same Ms value (the
term ‘‘configuration’’, which is often used to characterize the spatial distribu-
tion of the electrons in the different orbitals, is merely used linguistically but
cannot be employed in actual computations).

The most important contributions from singles and doubles excitation
are given, for example, by

T̂T1 ¼
X

ib

tb
i aia

y
b ½29	

T̂T2 ¼
1

4

X
ibjc

tbc
ij aia

y
baja

y
c ½30	
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where t represent the unknown amplitudes (CI coefficients) and a and ay are
the annihilation and creation operators, respectively. If �ð0Þ is taken as a single
determinant (usually the HF ground state), this leads to single-reference CI
methods. Depending on the level of truncation of the excitation operator in
Eq. [28], one obtains CIS (includes only T̂T1), CISD (T̂T1 þ T̂T2), CISDT, and
so on, models. Of these, only CIS is widely used to calculate electronic spectra:

� The computational cost for CIS is similar to that of the ground-state HF
calculation and can also be performed directly in the AO basis thus
minimizing hard-disk I/O. The accuracy of CIS for excited states is
roughly that of HF for the ground state, that is, dynamic electron
correlation effects are neglected (for ground and excited states).

� The CISD provides an unbalanced description for the excited states
relative to the ground state, because for a closed-shell ground state, the
most important double excitations (which mainly account for EC) are
included. On the contrary, an excited state, which is already singly
excited with respect to the ground state, requires at least the inclusion of
triple excitations (triples are related to the singles as the doubles are to
the HF state). Thus, CISD grossly overestimates the excitation energies.64

Note that this does not hold for LR–CCSD, which accounts for higher
excitations by the exponential of the excitation operator. Compared to
CIS, all other CI schemes are not size-consistent (i.e., the calculated
excitation energy for two noninteracting fragments is not exactly the
same as for separate calculations on the individual monomers).

There are two major routes to improve the CI methods. The first is by includ-
ing size-consistent corrections for dynamical EC leading to the CIS(D) and
CIS-MP2 methods65 (which are closely related to the coupled-cluster methods
described in a later section). The second is by improving the reference wave
functions, which leads to multireference CI (MRCI) methods, that, however,
remain size-inconsistent.

In the MRCI approach, one tries to reach a balanced description by set-
ting up a zeroth-order wave function �

ð0Þ
n for each state of interest that

includes the most important electronic configurations (static EC). For one par-
ticular state, then,

j�ð0ÞMRi ¼
Xreferences

a

cð0Þa j	ð0Þa i ½31	

where 	
ð0Þ
a represent electronic configurations (determinants) with variation-

ally determined coefficients c
ð0Þ
a . A wide variety of different choices for �

ð0Þ
MR

are currently in use, including full-CI within a selected set of orbitals (CAS),
excitation restricted CI within a selected set of orbitals (RAS), or even indivi-
dually (iteratively) selected configurations.
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Application of this ansatz together with the truncation to single and dou-
ble excitations as before (Eq. [28]) now includes all important contributions in
a balanced manner. Hence, for a singly excited state, important parts of the
triple excitations are included. The MR(SD)CI (the SD term is usually
discarded in the abbreviation) method is very accurate for small- and med-
ium-sized systems when the remaining size-consistency errors are corrected
empirically, for example, via the Davidson scheme. Unfortunately, it is com-
putationally very demanding to have an N6

el scaling behavior with system size
and a very large prefactor. It can be routinely applied only to systems with
�20–40 electrons (for benchmark or calibration purposes). For a more effi-
cient approach that empirically combines DFT and MRCI methods, and
that can be applied also to large systems see Ref. 66, applications in electronic
spectroscopy can be found in Refs. 67–71.

Perturbation Methods
One way to retain the generality of the MR ansatz while reducing the

computational costs is to use perturbation theory (PT). Perturbation theory
has the important property of being size-consistent if properly formulated
and implemented.72 The starting point is again a reference wave function
�

ð0Þ
n for a particular electronic state n that includes the most important contri-

butions to the wave function. By construction, �
ð0Þ
n satisfies the eigenequation

ĤH0j�ð0Þ
n i ¼ Eð0Þ

n j�ð0Þ
n i ½32�

where ĤH0 is the zeroth-order Hamiltonian. In MP partitioning, ĤH0 is defined
via the perturbation V, which is

lV̂V ¼ ĤH 	 ĤH0 ¼
XNel

i

XNel

j>i

1=r̂rij 	 V̂Vee

D E
average

½33�

the difference between the true and the mean-field (HF) electron–electron
repulsion. In the MP schemes, ĤH0 is represented as a sum of general Fock
operators that are state-dependent. As usual in perturbation theory, the energy
and wave function are expanded in a Taylor series for l that then leads to a
(decoupled) system of linear equations for each perturbation order. For large
systems, one usually truncates at second-order (for an approximate fourth-
order treatment see Ref. 73) which leads to methods that scale as N5

el with
the system size. The second-order energy correction Eð2Þ is

Eð2Þ ¼ 	
X

a

tð1Þa h�ð1Þ
a jĤHj�ð0Þ

n i ½34�
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where 	
ð1Þ
a is an element (CSF) of the first-order corrected wave function with

amplitude t
ð1Þ
a that is obtained by solving the linear equations

X
a

tð1Þa h	
ð1Þ
b jĤH0 � Eð0Þn j	ð1Þa i ¼ �h	

ð1Þ
b jĤHj�

ð0Þ
n i ½35	

In general, �ð1Þ ¼
P

a t
ð1Þ
a 	

ð1Þ
a contains all single and double excitations from

the reference that directly interacts through the true operator ĤH [the various
variants of MRPT differ in how the annihilation and creation operators act on
�ð0Þ].

A key point here is that in contrast to the MRCI case, the very large
interaction matrix contains only elements between CSF and the simple one-
electron operator ĤH0 (the costly interactions with ĤH appear only on the right
side of Eq. [35] with the reference). This not only decreases the scaling beha-
vior from N6

el (CI) to N5
el (PT), but also reduces the computational effort

considerably because the one-electron matrix elements are very easy to
evaluate. Apart from technical details for the solution of Eq. [35] (which
especially holds for CASPT2, which uses a density matrix approach74),
the different implementations of multireference perturbation theory
(CASPT2,74–76 CASMP2,77 MR-MP278) differ mainly by the choice of
the reference wave function. Both CASPT2 and CASMP2 are based on
complete-active-space wave functions as references that consist of a full CI
treatment within an active space of orbitals–electrons and state-optimized
orbitals while the MR-MP2 variant can employ arbitrary CI references and
orbital sets. To be applicable for large molecules, careful consideration of tech-
nical details and implementation is necessary: There are at least two
approaches76,78 that have demonstrated good accuracy at reduced computa-
tional costs.

Within the ‘‘ab initio world’’, CASPT2 became the de facto standard by
chemists for the calculation of electronic spectra. Its first success was the accu-
rate description of the electronic spectrum of benzene,75 which at that time
was a challenging goal for quantum chemistry. Since then, hundreds of appli-
cations of CASPT2 in electronic spectroscopy appeared that are described in
existing reviews10–12 (for the most recent application see Ref. [79]). The most
severe drawback of CASPT2 is the full CI reference wave function on which it
is based. Without symmetry, active spaces of 12 electrons in 12 orbitals in the
preceeding CASSCF treament are the current limit that is often not enough for
large unsaturated systems.

TDHF and TDDFT
It is an understatement to say that DFT80,81 has strongly influenced the

evolution of quantum chemistry during the past 10–15 years. In the last 5
years, this statement also holds true for the treatment of excited states and,
since then, time-dependent Kohn–Sham (KS) DFT (TDDFT)[82,83] has
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become a routine tool to simulate electronic spectra. Both TDDFT and TDHF
methods can be derived along similar lines as outlined briefly below.

We consider an N-electron system that is initially at time t ¼ t0 in its
ground state j�0i. At times t > t0 a time-dependent perturbation lÛUðtÞ is
applied. For our purposes, the most important perturbation is the electric
dipole part (l) of a monochromatic radiation field given by

ÛUðtÞ ¼ �lEe�iot ½36	

that oscillates with frequency o and has a (constant) field strength E. The
linear response (LR) [index ð1Þ] of an observable OðtÞ is defined as the first
variation of the expectation value with respect to the scalar variable l

Oð1ÞðtÞ ¼ dh�ðtÞjÔOðtÞj�ðtÞi ¼ d

dl
h�ðtÞjÔOðtÞj�ðtÞijl¼0 ½37	

where �ðtÞ is the time-dependent (ground-state) wave function. Graphically,
we can imagine that �ðtÞ can be represented by the complete set of all excited
eigenstates (including �0) of the Hamiltonian and, thus, one can derive infor-
mation about the desired excited states by considering the time evolution of
�ðtÞ. More precisely, at certain frequencies o electronic transitions are stimu-
lated and the first-order response of the ground state must diverge. For these
values of o, the first-order response equations are exactly satisfied even if lE is
zero, since these are intrinsic molecular properties corresponding to free oscil-
lations. In other words, solving the TD equations for some Hamiltonian with a
particular ansatz for the ground-state wave function is equivalent to finding
the poles of the frequency-dependent polarizability aðoÞ (see Figure 9) that
is given by the sum-over-states formula

aðoÞ ¼
Xall excited states

n

f0n

o2
n � o2

½38	

The transition moment can be obtained as the residue given by

h�0jlj�ni ¼ lim
o!on

ðo� onÞaðoÞ ½39	

Both the DFT and HF methods use an effective, one-particle (mean-field)
Fock operator F. In general, it can be written as a functional of the first-order
density matrix g (see Eq. [8] with m ¼ n ¼ 0) as

F½g	ðtÞ ¼ h½g	ðtÞ þ vH½g	ðtÞ � vxc½g	ðtÞ þ lUðtÞ ½40	
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where h is the one-electron part of the Hamiltonian, the index H indicates the
e–e Coulomb (Hartree) part and vxc is a general (non-local, HFþ local, DFT)
exchange-correlation potential. In analogy to Eq. [37], the linear response of
the mean-field (KS or HF) density matrix is

gð1ÞðtÞ ¼ d

dl
gðtÞjl¼0 ½41	

By a Fourier transformation to the frequency domain, one obtains after expan-
sion in the complete set of KS or HF one-particle eigenstates the following
expression:

gð1ÞðoÞ ¼
X

i

X
a

uaiðoÞ
o� ðea � eiÞ

jiihaj
� 	

� u�aiðoÞ
oþ ðea � eiÞ

jaihij
� 	

½42	

where i and a are occupied and virtual orbitals, respectively, e are their ener-
gies and uai are the matrix elements of the perturbation in the basis of the orbi-
tals. Combining Eqs. [40] and [42] leads, after some algebraic manipulations,
to a non-Hermitian eigenvalue problem that has to be solved for o ¼ �E. It is
of the form

A B
B A

� 	
X
Y

� 	
¼ �E

1 0
0 �1

� 	
X
Y

� 	
½43	

Figure 9 Frequency dependence of the electric dipole polarizability aðoÞ. The position
of the dashed line corresponds to the system’s excitation energy.
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where X and Y are the solution vectors of the single particle-hole (excitations,
jiihaj) and hole-particle (deexcitation, jaihij) amplitudes, respectively, and A, B
are related to Hamiltonian matrices between the single (de)excitations that are
made from one-particle eigenvalues and Coulomb and exchange integrals over
the MOs.84,85 If formulated in the AO basis, Eq. [43] can be solved efficiently
with computational effort similar to that of the preceeding ground-state SCF
calculation. If the matrix B is set to zero, Eq. [43] reduces to a normal eigen-
value problem including only single excitations (Y ¼ 0, CIS). For DFT variants
of CIS, see Refs. 86 and 87. An important advantage of TDHF(DFT) over CIS
is that the former methods satisfy, in a complete AO basis, certain sum-rules,
for example,

P1
i fi ¼ Nel.

The actual form of the mean-field applied to the ground state (HF or
Kohn–Sham DFT) determines the explicit expressions for the matrix elements.
In a general notation including TDHF as well as TDDFT, they read

Aias;jbt ¼ dstdijdabðeas � eitÞ ½44	
þ ðisasjjtbtÞ � dstcHFðisjsjatbtÞ
þ ð1� cHFÞðisasjfstjjtbtÞ

Bias;jbt ¼ ðisasjbtjtÞ � dstcHFðisbsjatjtÞ ½45	
þ ð1� cHFÞðisasjfstjbtjtÞ

where i; j are used for ground-state occupied orbitals, a,b for virtual orbitals,
and s and t are the spin variables. The parameter cHF is the coefficient of the
‘‘exact’’ HF exchange (EEX) part in hybrid functionals. Thus, similar to the
ground state, there is a continuous change from TDHF to TDDFT when
hybrid functionals with a variable amount of HF exchange contribution are
considered. A lot of numerical evidence indicates that this also holds for cal-
culated properties of ground and excited states.

The last terms in these equations, which are of DFT origin, are defined as

ðisasjfstjjtbtÞ ¼
ð ð

iðr1Þaðr1Þf xc
stðr1; r2Þjðr2Þbðr2Þdr1dr2 ½46	

In the so-called adiabatic approximation, the time-dependent exchange-corre-
lation kernel f xc is derived from the time-independent ground-state functional,

f xc
stðr1; r2Þ ¼

d2Exc

drsðr1Þdrtðr2Þ
½47	

This approximation should work best for o! 0, that is for energetically low-
lying excited states.

The magnitude of the excitation energies is determined mainly by the
diagonal part of the matrix A. For the closed-shell case, one obtains as a
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zeroth-order approximation for the excitation energy of a state represented by
a single substitution between MOs i and b

�E ¼ eb � ei � cHFðiijbbÞ � ð1� cHFÞðiijf jbbÞ þ 2ðibjibÞ ½48	

Although this is often quantitatively a drastic approximation (due to the
neglect of configuration mixing), a closer inspection of Eq. [48] gives
some insight into the factors that determine excitation energies. In the HF
case (cHF ¼ 1), the difference of orbital energies is a very crude approximation
because the Coulomb integral ðiijbbÞ represents a significant correction, that
is, lowering of the excitation energy [the exchange integrals ðibjibÞ are usually
one order of magnitude smaller]. This is different in DFT, where the �e term is
much smaller and where the Coulomb interaction is replaced by a response
integral containing the (local) exchange-correlation kernel. This locality of
the DF leads to severe problems when the excitation is connected with a spa-
tial separation of the hole–particle as for Rydberg or charge-transfer states.
For a very early attempt to correct this in the DFT/SCI(CIS) methods, see
Ref. 86. Consider, for example, a charge-transfer excitation from donor
orbital i to the acceptor orbital b [where ðibjibÞ � 0]. One obtains

�E ¼ IPþ EA� cHFðiijbbÞ � ð1� cHFÞðiijf jbbÞ ½49	

where we have approximated the ionization potential IP by ei and the electron
affinity EA by eb. The interaction between the separated charges must be
described by the Coulomb law, that is, cHFðiijbbÞ þ ð1� cHFÞðiijf jbbÞ / 1=R,
where R is the distance between the hole–particle. Because cHF ¼ 0 for pure
DF and ðiijf jbbÞ falls off exponentially, the 1=R fall-off condition is not ful-
filled. This analysis shows that the inclusion of nonlocal HF exchange
cHF > 0 in a local (pure) density functional is essential to describe charge-
and-spin-separating situations.

Coupled-Cluster Methods
The basic idea of most coupled-cluster (CC) approaches for excited

states is the same as for the TDHF/DFT methods: Excitation energies are
obtained as the poles (where, e.g., the frequency-dependent polarizability
goes to infinity) of the ground-state response with respect to a time-dependent
perturbation. The important difference is that the ground state is not described
by a single HF/KS determinant but (similar to the CI ansatz) by many singly,
doubly, and so on, substituted configurations. The important size-consistency
property is included in the CC methods by using the exponential of the excita-
tion operator

j�CCi ¼ eT̂T j�ð0Þi ½50	
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By choosing j�ð0Þi 6¼ �HF, one arrives at MR–CC methods that are currently
an active field of research, but that are not applied routinely except for bench-
mark systems. Similar to the CI method, truncation of the excitation operator
then leads to a hierarchy of methods termed CCS (which is equivalent to CIS
for energies), CCSD, CCSDT, and so on.

Applying the time-dependent perturbation is straigthforward and leads
to LR–CC methods. The nonlinear systems of equations include the ‘‘normal’’
T1 and T2 (for CCSD) operators–amplitudes and additionally single and dou-
ble excitation (time-dependent) response amplitudes (for details the reader is
referred to Refs. 1, 64, 88, 89 and references cited therein). An alternative
approach, that, although conceptually different yields exactly the same excita-
tion energies, is the equation-of-motion coupled cluster (EOM–CC) method
[90]. The EOM–CC equations also contain the CC wave function j�CCi
(Eq. [50]) and a second (state-dependent) excitation operator R̂Rn including sin-
gle, double, . . . excitations (usually R̂R is truncated in the same manner as T̂T).
The EOM equations read as

½ĤH0; R̂Rn	j�CCi ¼ oR̂Rn�CC ½51	

where ĤH0 ¼ ĤH � EHF.
One characteristic of all LR/EOM–CC methods is that a non-Hermitian

eigenvalue problem finally has to be solved (which cannot be reduced to a
standard eigenvalue problem as Eq. [43]) yielding ‘‘left’’ and ‘‘right’’ sets of
solutions, and therefore also two sets of transition moments.

A ‘‘break through’’ for the application of the CC methods to excited
states of large systems has recently been obtained by Christiansen et al.91

These authors introduced a simplified LR–CCSD method termed CC2,
where the doubles excitation operator is taken from second-order perturbation
theory (Q̂Q2). The CC2 ground-state wave function can be written as

j�CC2i ¼ eT̂T1þQ̂Q2 j�ð0Þi ½52	

and thus only the singles amplitudes remain as free parameters while the dou-
bles contributions Q̂Q2 are taken from a MP2 treatment, that is, from

qab
ij �

hiajjbi
ðea þ eb � ei � ejÞ

½53	

which reduces the scaling behavior from OðN 6
elÞ to OðN 5

elÞ. In general, CC2
excitation energies are only slightly inferior to those from full CCSD. A further
reduction of the computational costs in CC292 has been obtained by using
the resolution-of-the-identity (RI) approximation for the two-electron integ-
rals. The very efficient RI method is also used here in MR-MP2 and MRCI
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methods as described before [66, 78]. The error for the excitation energies
introduced by the RI approach is �0.01–0.03 eV, which is clearly insignificant
compared to other sources of error like basis set truncation error that is of the
order of 0.1–0.2 eV with standard cc-pVTZ basis sets. An analytical gradient
for RI-CC2 has also been reported recently,93 which routinely allows for geo-
metry optimizations of medium-sized molecules. This recent advance includes
a significant fraction of dynamical electron correlation (as opposed to CIS and
CASSCF that have hitherto been frequently used for that purpose).

Recommendations
Here, we provide a summary of the quantum chemical methods that can,

and should be applied to the calculation of electronic spectra of large systems:

1. Hartree–Fock based methods (TDHF and CIS): Good energetic results from
these methods cannot be obtained; the errors for excitation energies often
exceed 0.5 eV. For low-spin states, �E is often too large so scaling factors
of �0.7–0.8 are in use while the �E values for high-spin states are usually
underestimated. Contrary to statements in the literature,94 the results are
often even qualitatively wrong (false state ordering). The Rydberg states,
for which they appear to perform reasonably well, are not really important
for large systems. Because excited-state geometries are relatively insensitive
to correlation effects, these methods may be used (after careful calibration)
for that purpose but even this is difficult because the predicted order of
states is often wrong. Both TDHF and CIS methods have a tendency (as
does HF for ground states) to break symmetry, and consequently they often
yield geometries that are too distorted. They are to be preferred over
TDDFT if the asymptotic behavior of the potential (see below) is of crucial
importance. They are sometimes applicable if only relative trends in a series
of very similar molecules are of interest.

2. Coupled-cluster methods: For systems with well-behaved ground states,
and, if the excited states are reasonably described by single excitations,
low-order coupled cluster methods (CC291 or LR/EOM-CCSD64, 90) can
provide good accuracy (errors < 0.3 eV). Especially when used together
with efficient integral approximations (RI-CC292) computations can be
performed for fairly large molecules. For more complicated excited states
or when the ground state is already strongly correlated, the inclusion of T̂T3

is mandatory, which limits the applicability to small molecules.
3 Perturbation methods: In general, second-order multireference PT methods

can be recommended for excited-state problems. They usually show very
good accuracy (errors < 0.2 eV, excitation energies are systematically
underestimated) and they can be applied to a wide variety of states and
problems. However, MRPT methods are not ‘‘black-box’’ and careful
checks of the technical details like the size of reference space, choice of
orbitals, and so on, must be done. These methods require a lot of user
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experience, as well as detailed insight into the system. For many states in
the high-energy regions, the reference wave functions become prohibitively
large, and, the second-order treatment often breaks down. The most serious
disadvantage is that the results are very sensitive to the so-called ‘‘intruder
states’’, which have low zeroth-order energies but are only weakly
interacting with the reference state.

4. Density functional methods: The TDDFT approaches employing hybrid
functionals such as B3LYP20,21 or BHLYP95 are always the method of
choice for providing a first overview about the electronic spectrum of a
particular molecule. The errors for �E are much smaller than with TDHF/
CIS and usually within 0.3–0.4 eV of experiment (often �E is under-
estimated). For larger transition metal compounds, TDDFT is the only
method that is routinely applicable. The same holds for spectra, where on
the order of a hundred different states must be considered. With common
(asymptotically incorrect) functionals, larger errors are obtained for
Rydberg85,96 (see the following section) and charge-transfer states97–99 or
for states with strong contributions from ionic valence-bond structures.35 A
calibration on ab initio or experimental data and a check of the functional
dependence of the results is strongly recommended.

5. Basis sets: The basis set requirements in excited-state applications are not
very different than those for the corresponding ground state if only low-
lying valence states are considered, and thus, properly polarized valence-
triple-� (or even double-�) sets are often good enough (i.e., they provide �E
to within 0.1 eV). Because the valence excited states of medium-sized
systems can sometimes include diffuse components, a check of, for
example, the r2


 �
expectation values (see the following section) is

recommended and depending on its value, diffuse basis functions must be
added (for an example, see a later section). For low-lying Rydberg states,
additional atom-centered diffuse sets of single-� quality ([1s1p1d]/[1s1p]
for main group compounds) are sufficient.

6. Semiempirical approaches represent an alternative quantum chemical
method especially for very large systems or when only main group
compounds without complicated electronic structure are involved. As for
the ground states, however, they are gradually being displaced by the more
accurate and robust DFT methods. Of the many semiempirical approaches,
the all-valence methods with orthogonalization corrections100,101 and the
simplest Pariser–Parr–Pople (PPP) type methods for very large p-systems
can be recommended (for a recent application to a 600 atom system, see
Ref. 102). One area of application is the prediction of excited-state
geometries where MNDO/CI approaches seem to be quite successful.103,104

For excitation energies, however, standard MNDO, AM1, or PM3
Hamiltonians employing small CI expansions show large systematic as
well as unpredictable (random) errors. Careful calibration is thus
mandatory with all semiempirical methods.
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CASE STUDIES

Vertical Absorption Spectra

Acetone
In this section, some general aspects of the computation of Rydberg spec-

tra are discussed (for reviews on this topic, see Ref. 6 and Ref. 105; for a recent
theoretical study on very high-lying Rydberg states (which will not be consid-
ered here), see Ref. 106). Although Rydberg states are ubiquitous, they are of
lesser importance in the spectra of large molecules that are dominated by
valence states. The reason to begin this section with this topic is twofold: First,
Rydberg states are mostly of relatively simple structure, being dominated by a
few (mostly one) single excitations and are thus easy to understand intuitively
in a MO picture. Second, the excitation process is accompanied with a spatial
separation of the electrons that is typical also for some valence states. This
leads to problems with most density functionals as already discussed in an
earlier section.

The transitions to Rydberg states generally have low intensities because
of the large spatial extension of the final orbital (small overlap with the origin
orbital yields weak transition densities) and consequently they are often hid-
den under more intense valence bands. As an example, here we therefore have
to investigate a small molecule where the valence transitions are spectrally
separated. Saturated ketones show only two valence states, namely, the
n! p� state at �4 eV and a very high-lying p! p� state so that a number
of Rydberg transitions can be observed in the 6–9-eV range. Acetone, the sim-
plest aliphatic ketone, is probably the best experimentally studied molecule
of this group of important organic systems. Of the few theoretical studies
that exist, we mention here only the most recent CASPT2 work of Merchan
et al.,107 where key references to the experimental data and older theoretical
work can also be found.

Figure 10 shows the two orbitals that are involved in the first n! 3s
Rydberg transition of acetone. The very different spatial extensions are clearly
visible and especially in the outer regions of the 3s MO its almost spherical
character can be seen.

The distinction between Rydberg and valence states is not that clear in
larger molecules. A good indicator for the state character can be obtained from
the hr 2i expectation value (a measure of spatial extension) difference for state
n with respect to the ground state. This is given by

� r 2

 �

¼ �n ĵrr 2j�n


 �
� �0jr̂r 2j�0


 �
½54	

where

r̂r 2 ¼ x̂x2 þ ŷy2 þ ẑz2 ½55	
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is the trace of the Cartesian electric quadrupole operator. For molecules com-
posed of second-row atoms, the � r 2


 �
values are usually in the range 30–50

(3s), 50–100 (3p), and > 100 a2
0 for 3d states, respectively, while they are

usually < 10 a2
0 for pure valence states.

The ‘‘diffuseness’’ of Rydberg states leads to complications with some
quantum chemical approaches. When using MRCI or MRPT2 methods it is
absolutely necessary to use virtual orbitals that are optimized in the presence
of the correct potential of Nel � 1 electrons. The (closed-shell) HF potential for
the virtual orbitals includes the (nuclear charge) shielding of all Nel electrons
and thus the Rydberg part of the spectrum is too diffuse, which leads to arti-
ficial configuration mixing in the CI procedures (to a lesser extent, however,
this also holds for some valence states, especially for medium-sized systems).
Experience shows that individually optimized orbitals are not necessary, but
instead, ROHF orbitals of, for example, the lowest cation state, can be
employed.

The problems of most density functionals with Rydberg states are also
related to the electronic potential far away from the nuclei. It is well known
that the local density approximation (LDA) exchange potential vLDA

X / rðrÞ1=3

Figure 10 Contour plots of the lone-pair MO (a) and 3s Rydberg MO (b) for acetone in
the O��CCC plane. Because of the too high potential for the virtual orbitals in ground-
state HF treatments, the calculations refer to a ROHF/d-aug-cc-pVDZ treatment for the
2B2 cation ground state.
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decays asymptotically exponentially with r [as the density rðrÞ itself] instead of
with 1=rþ const. This behavior, which can also be explained by the artificial
electron self-interaction, leads to (a) too small electron binding, that is, too
low Rydberg excitation energies and to (b) a too fast approach of the asymp-
totic (ionized) limit. Figure 11 shows the �E values for the 2p! ns (n ¼ 3--7,
n indicates the principal quantum number) Rydberg series of the neon atom as
calculated with TDHF and various TDDFT methods.

It is seen that while the TDHF results are just shifted with respect to the
experimental data, the shape of the �E versus n curves is qualitatively wrong
with the TDDFT methods. With a pure DF completely lacking ‘‘exact’’ HF
exchange (e.g., BP86108, 109) there is not only a large underestimation of the
�E values, but furthermore almost no dependence on n up to n ¼ 6 and after
that even a strong energy increase is clearly visible. As expected, the situation
is gradually improved by ‘‘exact’’ exchange mixing (from 20% in B3LYP to
50% in BHLYP95) and only the latter functional can be recommended for
the computation of Rydberg spectra. The construction of a DF with the correct
asymptotic behavior is currently an active field of research (for details and
possible solutions to the problem see Refs. 96, 110, 111 and references cited
therein).

This behavior of the DF is also observed in molecular applications.
Vertical singlet excitation energies from CASPT2107, TDDFT-B3LYP, and
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Figure 11 Excitation energies for the singlet 2p! nsðn ¼ 3--7Þ Rydberg series of the
neon atom (½6s4p	 þ 8s AO basis).
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MRCI computations (d-aug-cc-pVDZ AO basis, B3LYP/TZV(d,p) ground-
state geometry) are compared with experimental data in Table 5. A graphical
comparison with an experimental gas-phase absorption spectrum is shown in
Figure 12.

The underestimation of the �E values with TDDFT increases from
�0.65 eV for the n! 3s transition to > 1 eV for the n! 3d states. The

Table 5. Calculated and Experimental Excitation Energies (in eV) and Other
Properties of the Vertical Singlet Excited States of Acetone

�E
——————————————————————

State B3LYP CASPT2a MRCI Exp.a f L � r2

 �

1B2ðn! 3sÞ 5.71 6.58 6.51 6.35 0.037 46.2
2A2ðn! 3pxÞ 6.61 7.34 7.41 7.36 75.7
2A1ðn! 3pyÞ 6.50 7.26 7.44 7.41 0.006 90.7
2B2ðn! 3pzÞ 6.66 7.48 7.49 7.45 0.002 85.6
3A1ðn! 3dyzÞ 7.12 7.91 8.14 7.80 0.047 123.0
3B2ðn! 3dx2�y2Þ 6.93 8.04 7.92 8.09 0.048 109.7
3A2ðn! 3dxzÞ 7.24 8.09 8.17 118.0
4B2ðn! 3dz2Þ 7.18 8.18 8.21 0.004 133.3
1B1ðn! 3dxyÞ 7.17 8.20 8.25 8.17 0.002 131.1

aRef. 107.

6 6.5 7 7.5 8 8.5
∆E (eV)

0

0.2

0.4

0.6

0.8

1

re
la

tiv
e 

in
te

ns
ity

exp.
TDDFT/B3LYP  
MRCI

0.03

0.02

0.01

0.04

0.05

n3s

n3p

n3d

os
ci

lla
to

r 
st

re
ng

th

Figure 12 Comparison of the experimental UV spectrum of acetone112 with calculated
vertical transitions. The theoretical �E values are shifted by�0.15 (MRCI) and 0.65 eV
(TDDFT), respectively.

Case Studies 191



ab initio methods CASPT2 and MRCI uniformly provide a very accurate
description of the spectrum with errors of �0.1–0.2 eV, which is on the order
of the expected geometry relaxation effects. The largest error is found for the
most core-penetrating 3s state. Significant differences between CASPT2 and
MRCI results are obtained for the order of the 3px and 3py states, where
MRCI seems to be better. According to the MRCI results, the assignment of
the 3dyz and 3dx2�y2 has to be interchanged. As can be seen from Figure 12, the
relative oscillator strengths compare quite well with the experimental intensi-
ties keeping in mind that geometry changes in the excited states are quite
significant for acetone (cf. the potential curves in Ref. 107).

Organic Dyes
Compounds that absorb in the range 380–720 nm are perceived as being

colored, and, if the absorbance is strong they can be used as colorants.113 Due
to their industrial importance, there is continued interest in the theoretical pre-
diction of the spectral properties of such compounds. While the computation
of the lowest-lying (visible) bands in dyes is relatively straightforward due to
the simple electronic structure of the corresponding excited states (mostly
HOMO–LUMO single excitations), the higher-lying transitions are rarely con-
sidered. It is to be noted, however, that most p! p� excited states (even the
simple HOMO–LUMO excited ones) have large dynamic EC contributions
(mainly due to s� p correlation), which must be considered in accurate work.

In this section, we consider, as examples, the UV spectra of two organic
dyes: thioindigo and coumarin 102. We will use TDDFT, which today is the
most successful and widely used method to calculate the electronic spectra of
such compounds. Thioindigo belongs to the group of the indigoid dyes with
one of the oldest known organic dyes, indigo, as a parent system. Thioindigo,
in which both NH groups are replaced by sulfur, is a useful red vat dye and
some of its halogenated derivatives are used as pigments.113 Compounds based
on the coumarin ring system give rise to one of the most extensively investi-
gated and commercially important groups of organic fluorescent materials
that are very well characterized for their use as laser dyes.114 For other theo-
retical (DFT) work on coumarins, see Refs. 115–117.

The geometry optimizations for the ground-state structures of the inves-
tigated dyes as well as all TDDFT computations were carried out with the
B3LYP functional and employed a TZV(d,p) AO basis set. The optimized
ground-state structure of thioindigo has C2h symmetry; coumarin is already
nonplanar in the ground state due to slight pyramidalization of the NR2

group. A comparison between the experimental and calculated spectra of
thioindigo and coumarin 102 is given in Figures 13 and 14, respectively.
Note that in contrast to most of the other spectra presented in this work no
energy shift has been applied meaning that the uncorrected TDDFT excitation
energies already match the experimental (solution) data very closely.
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Figure 13 Comparison of experimental and computed [B3LYP/TZV(d,p)] UV spectra
of thioindigo.

Figure 14 Comparison of experimental and computed [B3LYP/TZV(d,p)] UV spectra
of coumarin 102.
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The visible and near-UV spectrum of thioindigo measured in benzene
show two major bands with maxima at �2.3 and 4.2 eV,118 respectively.
The calculated lowest excitation energy and oscillator strengths, which are
arguably of most interest to the dye chemist, are in excellent agreement with
the experimental values. The lowest lying 11Bu state computed at 2.36 eV is of
p! p� character and results mainly from the HOMO ! LUMO excitation.
Despite this simple electronic structure, the (dynamical) EC contributions are
large as can be seen by comparison with the TDHF excitation energy (3.77
eV), which is in error by > 1.4 eV. The second feature observed in the UV
spectrum of thioindigo is a relatively broad absorption including two
shoulders at 3.7 and 4.1 eV. Our calculations show that in this energy region
there are two 1Bu transitions close in energy: The 21Bu computed at 3.84 eV
and the 31Bu at 4.06 eV. Both states have purely p! p� character and result
mainly from HOMO-3!LUMO and HOMO-6!LUMO excitations, respec-
tively. The almost perfect agreement between the experimental and calculated
spectral data demonstrates that TDDFT provides a very reliable description of
higher-lying valence states.

The experimental absorption spectrum of coumarin 102 obtained in
ethanol solution exhibits two intense absorption bands at 3.2 and 5.9 eV
and one band with a lower intensity located at �4.8 eV.114 As for thioindigo,
the lowest-lying state is of p! p� type and mainly results from the HOMO!
LUMO excitation. The third state calculated at 4.50 eV with small intensity
ðf ¼ 0:085Þ is due to the two nearly degenerate configurations HOMO-
1!LUMO and HOMO! LUMOþ 1 and assigned to the band located in
the experimental spectrum at 4.8 eV. The third band in the spectrum of cou-
marin 102 is relatively broad with a maximum �5.9 eV. According to
the TDDFT calculations, this band is composed mainly of two transitions to
the 10A and 11A states calculated at 5.85 and 6.02 eV, respectively. In this
case, we observe some overestimation of the calculated intensities that may
be caused by solvent effects. Note, however, that TDDFT errors of �50%
for oscillator strengths, especially for higher-lying transitions, are not unusual
and that the neglected vibronic effects (FC factors much smaller than unity)
may also contribute to this error.

Transition Metal Complexes
Describing the electronic structure of transition metal compounds

remains a challenging goal in quantum chemistry in general. The importance
of static correlation effects arising from near degeneracy within the metal d-
shells causes difficulties in ab initio single-reference treatments (in TDDFT
there is some implicit account of static EC). Additionally, the low quality of
the Hartree–Fock orbitals for transition metal compounds complicates the
application of approaches lacking appropriate orbital relaxation effects.
The TDDFT method is currently the only one that can be applied routinely
to these systems, especially when large compounds without any symmetry
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are considered (for CASPT2 investigations of the spectra of small TM com-
pounds, see Ref. 11). Although in some cases semiempirical methods like
INDO seem to be applicable119 the DFT methods are more robust and even
with nontrivial basis sets the calculation times are small enough to allow rou-
tine applications on ‘‘real’’ systems. For other applications of the TDDFT
method to TM systems, see, for example, Ref. 120 and for a recent photoche-
mical TDDFT study, see Ref. 121.

As an example, we present in this section a TDDFT study of the optical
absorption spectrum of [Ru(4,40-COOH-2,20-bpy)2(NCS)2] (bpy¼ 2,20-bipyr-
idine) (see inset in Figure 15), a widely used charge-transfer sensitizer in nano-
crystalline TiO2 solar cells. In the calculations, we considered the neutral
system where the four carboxylic groups are protonated to represent a realistic
model of the complex under the experimental conditions122 (water solutions at
pH < 1.5). The geometry optimization of the complex results in a pseudo-
octahedral structure with C2 symmetry and a cis arrangement of the thiocya-
nite ligands. This optimization was carried out with the DFT-BP86108,109

method employing SV(d) basis sets,123 a quasirelativistic effective core poten-
tial (ECP) with 28 core electrons124 and a ½5s5p3d	 AO basis set123 for ruthe-
nium. The excited-state calculations were carried out using the B3LYP
functional. The calculated and the experimental absorption spectra are com-
pared in Figure 15.

Figure 15 Comparison of experimental and computed [B3LYP/SV(d)] UV spectra of the
bipyridine–ruthenium complex. The theoretical �E values are blue-shifted by 0.5 eV.
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The experimental spectrum exhibits two bands in the visible and near-
UV region centered at 2.3 and 3.1 eV,125 respectively. The overall band shapes
and their relative and absolute intensities are well described by the TDDFT
approach and even the shoulder at �1.9 eV is predicted correctly. The under-
estimation of the calculated excitation energies by �0.5 eV may on the one
hand be attributed to inabilities of the chosen density functional but on the
other hand certainly includes solvation effects that have been studied in Ref.
126 in the framework of continuum models. The neglected effects of spin–
orbit coupling may be on the order of 0.1–0.2 eV, which seems to be signifi-
cantly smaller than the differences obtained with various density functionals.
As can be seen by the vertical lines included in Figure 15, which indicate the
position and f values of the individual transitions, the density of electronic
transitions even in the low-energy range is quite high. For the first two bands,
�25 electronic states have to be considered, which increases to �60 in the
range up to 5 eV. The TDDFT method is the only one that is currently applic-
able in such situations.

The character of the electronic transitions is usually analyzed in terms of
the contributing single excitations. Although this is sometimes problematic
due to extensive orbital and configuration mixing, the analysis is straightfor-
ward in our particular example. The first absorption band has strong multi-
configurational character and involves excitations from the highest occupied
to the lowest unoccupied p� molecular orbitals. The many orbitals close to
the HOMO are mainly of ruthenium d-orbital character with significant
amplitudes on the isothiocyanate ligands. The second and the third absorption
band involve excitations from a second set of metal d orbitals, to the lowest
unoccupied p� molecular orbitals, which can be characterized as metal–ligand
charge-transfer (MLCT) bands. The fourth band at�4.6 eV is very intense and
can easily be assigned to intraligand (p! p�) excitations.

Open-Shell Systems: The Phenoxyl Radical
Due to its crucial role in combustion chemistry and biology, the phenoxyl

radical has been the subject of intense experimental and theoretical studies for
many years (for recent work, see Ref. 127 and references cited therein). For
these reasons we present it here as an example of UV spectroscopy of (neutral)
radicals (for the application of DFT to the spectra of aromatic radical cations,
see, e.g., Ref. 128 and for results of MRCI computations, see Ref. 129). The
phenoxyl radical is well known as a difficult case for electronic structure
methods because it requires a sophisticated treatment of electron correlation
similar to closed-shell aromatic hydrocarbons.

In agreement with previous DFT studies,127 we found a 2B1 ground state
(assuming C2v symmetry with yz being the molecular plane) corresponding to
a singly occupied orbital (SOMO) of p type. The lowest excited state corre-
sponds to a n! p(D-S) transition of B2 symmetry, which is dipole-forbidden.
A weak band observed experimentally at �1.1 eV (1120 nm) supports this
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prediction. The calculated vertical excitation energy of 1.04 eV is in almost
perfect agreement with the experimental value. For the pp� states of A2 and
B1 symmetry the TDDFT-B3LYP/TZV(d,p) calculation yields energies slightly
too high and thus a uniform red-shift of 0.35 eV has been applied in the simu-
lation shown in Figure 16.

As can been seen from the comparison of the theoretical and experimen-
tal spectra, the unrestricted (U)TDDFT method provides a uniformly good
description of the allowed transitions and the absolute and relative intensities
are predicted quite accurately. The overestimation of all excitation energies
seems to be due at least partially to the unrestricted treatment as indicated
by a study using a recently developed restricted open-shell TDDFT22 approach.
Except for the 12A2 state discussed below, the 0–0 transitions are most intense
indicating only slight geometry changes compared to the ground state.

Figure 17 shows the vibrationally resolved spectrum obtained for the
transition to the second lowest excited 12A2 state. The theoretical treatment
has been performed in the Franck–Condon approximation. The results are
generally in very good agreement with the experimental data. The prominent
progression with a spacing of �500 cm�1 results from a totally symmetric
(in-plane) CC stretching–bending mode. The relatively high intensities of the

Figure 16 Comparison of the computed [UTDDFT-B3LYP/TZV(d,p)] and experi-
mental127 UV spectra of the phenoxyl radical. The theoretical �E values are shifted by
�0.35 eV.
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0–1, 0–2, and 0–3 vibrational transitions can be explained by the geometries
of the phenoxyl radical in the ground and excited states and the nature of the
normal modes. The X2B1 ground state has a partially chinoid structure with
short C��O (1.25 Å) and C2–C3/C5–C6 (1.37 Å) bond lengths. The C��C
bonds elongate in the 12A2 state to �1.43 Å, thus matching almost exactly
the geometric changes induced by the above mentioned stretching–bending
mode. This example clearly shows how a vibrational analysis can reveal struc-
tural details of the corresponding states. Further examples of this type will be
discussed in a later section.

Open–Shell Systems: Excited-State Absorption of Naphthalene
Excited-state absorption (ESA) is a type of electronic spectroscopy for

which only a few theoretical studies have been performed (for a recent study
on the singlet–singlet ESA spectrum of azulene, see Ref. 130 and for some
benchmark calculations on small molecules, see Ref. 131). From the experi-
mental point of view ESA is a very important topic in photophysical (kinetic)
investigations of energy, electron or hydrogen-transfer processes. Although in
principle all excited states of a molecule show a distinct electronic absorption
spectrum, only the ESA spectra of the lowest excited state in each multiplicity
(i.e., S1 or T1) are usually accessible experimentally. Because of the short

Figure 17 Comparison of the computed [UTDDFT-B3LYP/TZV(d,p)] and experi-
mental127 UV band of the 12A2 state of the phenoxyl radical. The 0–0 transition energy
is set to zero.
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lifetime (low concentration) of excited molecules, special experimental (laser)-
techniques are employed in ESA spectroscopy. Furthermore, background
absorption by molecules in the ground state or by photoproducts need to be
accounted for by taking difference spectra. Similar to the case of radicals, ESA
spectra usually start in the visible and, sometimes, bands are observed even in
the IR region (>1000 nm).

The naphthalene molecule, which is used as an example here, has a low-
est triplet state of B2u symmetry and p! p� (La) character. The dipole
allowed transitions that are polarized in the plane of the molecule thus belong
to transitions to Ag and B1g excited states. The results of the unrestricted
TDDFT-B3LYP treatment are shown in comparison with the experimental
spectrum in Figure 18.

The assignments of the most intense bands seen in the experimental spec-
trum (bands B-D) agree with those from previous semiempirical PPP-type
calculations132 and will not be discussed here. Substantial disagreement
between the theoretical and experimental data is observed only for the band
A assigned to the 13Ag state that is calculated too high by �0.5 eV. The
transition to the 13B1g state (band B) is described almost perfectly while the
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Figure 18 Comparison of the computed (UTDDFT-B3LYP/cc-pVDZ) and experimen-
tal132 triplet–triplet absorption spectra of naphthalene. Note the logarithmic intensity
scale.
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predicted excitation energies for band C and D show the typical TDDFT errors
on the order of �0.2–0.4 eV. Note, however, that the relative description for
the different states is worse compared to the phenoxyl radical where a global
shift of all excitation energies yields a satisfactory agreement with experiment.
This is because of the more complicated electronic structure of the naphtha-
lene T1 state (two vs. one open shell for the phenoxyl radical), which seems
not to be described well enough by the simple TDDFT treatment. Further-
more, due to technical limitations it is currently not possible to check the
degree of spin-contamination of the excited states (hŜS2i expectation value).
Conclusive answers about the applicability of TDDFT in this area of spectro-
scopy requires more detailed work on other systems.

Circular Dichroism

2,3-(S,S)-Dithiadecalin
The nature of the chromophore of a molecule has a major influence on

the corresponding CD spectroscopic properties. If the chromophore itself is
chiral, it is denoted as being ‘‘inherently chiral’’, whereas the term ‘‘inherently
achiral’’ is used for locally achiral chromophores that are disturbed by their
chiral surrounding (for a more detailed classification, see Ref. 133). The
strength of the Cotton effect (rotatory strengths) provided by molecules con-
taining an inherently chiral chromophore usually exceeds what is found for a
molecule containing an inherently achiral chromophore by an order of magnitude.

The dithiadecalin (DTD) molecule (see inset in Figure 19) is character-
ized by the local chiral disulfide chromophore. Its first two transitions are
expected to be of valence character and can be understood as single excitations
out of the lone-pair orbitals at the sulfur atoms into the corresponding sðSSÞ�
orbital. However, the �hr 2i values of the transitions indicate significantly
more diffuse character than expected for pure valence excited states.

To account for this fact, the TDDFT-B3LYP calculations of the spectra
have been carried out with a TZV(2df) basis set augmented with diffuse func-
tions at the sulfur atoms as well as at the neighboring carbon atoms and a
TZV(d,p) basis set for the remaining atoms. The B3LYP/TZV(d,p) ground-
state geometry has been used for these calculations. The theoretical spectrum
has been blue shifted by 0.39 eV to match the experimental band A.

The experimental spectra of DTD134 have been recorded in hexane.
Keeping in mind the above described diffuse character of all excited states
in DTD, an unbalanced theoretical description of states with stronger Rydberg
character is to be expected when gas-phase data are compared with those from
the condensed phase (Pauli-repulsion between the Rydberg state and solvent
molecule wave functions). Figure 19, however, shows an almost perfect match
between the theoretical gas-phase and experimental CD spectrum in the entire
energy range. Even band C, which is theoretically predicted to have almost
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exclusively Rydberg contributions, is described very well. It is pointed out here
that the prevailing opinion that the excitation energies of Rydberg states are
generally blue-shifted when going from the gas to the condensed phase6 has
been questioned recently for some molecules.135 It should also be mentioned
here that theoretical methods to describe the solvent effects on excited electro-
nic states beyond simple electrostatics (i.e., continuum models) are in fact not
yet developed.

The comparison with the UV spectrum shows an important advantage of
CD over conventional UV spectroscopy for chiral molecules. Because the CD
is a signed quantity, the band B is considerably better separated in the CD
spectrum. If the bands would lie even closer to each other such that they could
no longer be resolved by UV spectroscopy, CD spectroscopy would still yield
two well-separated bands since the corresponding Cotton effects are oppo-
sitely signed.

Figure 19 Comparison of the experimental and computed [TDDFT-B3LYP/aug-
TZV(2df)] UV and CD spectra for 2,3-(S,S)-dithiadecalin. The theoretical spectra have
been blue-shifted by 0.39 eV.
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(M)-[6]Helicene
Hexahelicene is one of the most widely studied molecules in theoretical

CD spectroscopy (see, e.g., Refs. 47 and 136 and references cited therein). The
system is rather large [120 valence electrons, 590 basis functions with a
TZV(d,p) AO basis] and �15–20 excited states are necessary to describe the
experimental spectrum entirely. This example is presented here to show that
correlated ab initio treatments are also applicable for such cases. The simpli-
fied coupled-cluster model CC2 together with the RI approximation is used
and compared to the standard TDDFT-B3LYP approach.

The experimental CD spectrum (see Figure 20) consists of two very
intense CD bands with opposite sign at 5.1 eV (240 nm, F) and 3.8 eV (320
nm, C). Shoulders (B, D, and E), and a very weak band (A) can, however, be
clearly identified. With the exception of the region of band D, which is pre-
dicted with the wrong CD sign in both calculations, the theoretical data are
in good agreement with the experimental spectrum; that is to say, all bands
have a clear correspondence to calculated states. The theoretical excitation
energies from CC2 have been red-shifted by 0.22 eV, which is on the order
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Figure 20 Comparison of the experimental and computed [TZV(d,p) AO basis, B3LYP
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indicate the two lowest states with small intensity obtained by CC2/TDDFT-B3LYP.
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of the expected solvent effect. Further enlarging of the AO basis would bring
the CC2 data in even closer agreement with experiment (estimated effect of
�0.1–0.2 eV). The TDDFT-B3LYP error is of opposite sign where the excita-
tion energies are underestimated by �0.2 eV. The CC2 results are furthermore
superior to those from TDDFT with respect to the splitting between the lowest
Lb (band A) and La (band B) states. The larger error for the high-energy band
F may be explained by some deficiencies of the TZV(d,p) AO basis set used,
which lacks diffuse components as well as requisite higher angular momentum
functions that are more important for explicitly correlated treatments than in
DFT.

The computed intensities are also in reasonable agreement with experi-
ment. The small R value for the Lb transition [�0:8� 10�40 cgs (CC2) vs.
�1:6� 10�40 cgs (exp.)137] is predicted correctly with CC2 but has the wrong
sign with TDDFT. However, this and the following La transition (band B) gain
intensity by vibronic coupling with the close-lying intense Bb state and thus,
results from vertical treatments should be taken cautiously.

When judging the accuracy of CC2 with respect to the TDDFT method,
one should also consider the necessary computation times. While the TDDFT
calculation was completed in �15 hours (on a PIII/1.4-GHz machine), the
CC2 treatment took >11 days, which corresponds to a timing ratio of �18.
As mentioned before, the best strategy is thus to first calibrate the chosen den-
sity functional(s) by comparison with ab initio approaches on smaller (but
structurally similar) molecules (in our example, e.g., ½3	- or ½4	helicene) and
finally to perform the calculation on the large target system using only the
cheaper TDDFT method.

(2S)-Tricarbonyl-g4-pentadi-2,4-enal-iron
As mentioned in a previous section, the description of the electronic spectra of

transition metal compounds in low-oxidation states is relatively complicated.
When applying DFT-based methods, it is recommended that one carefully
investigate the influence of the selected density functional. This is of particular
importance here because there are currently no ab initio methods on which the
TDDFT approaches can be calibrated. As an example we present a study of
the CD spectrum of (2S)-tricarbonyl-Z4-pentadi-2,4-enal-iron (ITP, for details,
see Ref. 49). The molecule contains two achiral chromophores [pent-2,4-die-
nal and the FeðCOÞ3 fragment] which, attached to each other, form the chiral
system. The spectroscopic activity of ITP in the near-UV originates mainly
from 3dðmetalÞ ! p� excitations. As a result of the similar energies of several
electronic configurations, extensive mixing is observed including various
n! p� states. Hence, it is understandable that the electronic nature of the
excited states in ITP is described very differently depending on which method
is applied. Furthermore, the energetic ordering and character of the MOs dif-
fers substantially between Hartree–Fock based and DFT approaches as well as
between different DFT functionals. A reasonable direct comparison of the
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results with the help of an MO based classification of the excited states is
therefore not possible so, only the simulated spectra without any transition
assignment are presented here. Figure 21 shows a comparison of experimental
and theoretical data [SV(d) basis set for C, H, O and a ½5s3p2d	 set for Fe].

Inspection of Figure 21 shows relatively good agreement of the TDDFT-
B3LYP spectrum with its experimental counterpart. The simulation with
the BHLYP functional yields wrong signs for parts of bands A and C while
the BP data seem to have little ‘‘overlap’’ with experiment. Strong dependen-
cies of the results on the chosen density functional are not uncommon for more
complicated systems. This type of dependency is the most severe drawback of
the TDDFT method. In the original publication concerning this planar-chiral
system,49 conformational effects (cis vs. trans orientation of the carbonyl
group) were investigated. The conformational preference seems to be resolva-
ble by comparison of experiment with theory.

Vibrational Structure

The shape and width of an absorption band in the visible region of the spec-
trum determines our color impression and is thus of fundamental importance
in the area of dye chemistry. Theoretical simulations of the vibronic structure

Figure 21 Comparison of the experimental and computed CD spectra for the (2S)-
tricabonyl-Z4-pentadi-2,4-enal-iron complex. The theoretical excitation energies have
been shifted by �0.31 (BHLYP), 0.02 (B3LYP), and 0.21 eV (BP), respectively (positive
values refer to a blue-shift). The simulations include the contributions from the 15
lowest excited states.
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of absorption bands allow us to evaluate the accuracy of the methods for find-
ing the minimum energy geometries and vibrational frequencies. Systematic
studies of the vibrational structures of the absorption bands for large mole-
cules have not been performed to date. A few investigations have been under-
taken using semiempirical138 or CIS139 methods that however, did not give
fully satisfactory results. For the first time, we will show here that reliable pre-
dictions can be obtained in the framework of TDDFT. This has become
possible due to the recently developed analytical TDDFT excited-state
gradient.140 In fact, it will be shown that the excited-state geometries and
vibrational frequencies from (TD)DFT are much more accurate than the
corresponding excitation energies (see also Ref. 141).

Anthracene
As a first example, let us consider the vibronic structure of the first

absorption band in the UV spectrum of anthracene. In agreement with experi-
ment, the TDDFT calculation gives an S1 state with B2u symmetry and a ver-
tical excitation energy of 3.23 eV [�E0--0ðexp :Þ ¼ 3:43 eV]. This band can be
described by a HOMO! LUMO excitation and in the Platt nomenclature
(perimeter model) it is denoted as the La state. Both states were optimized
at the (TD)DFT-B3LYP/TZV(d,p) level in D2h symmetry.

A comparison of the spectrum simulation with a low-resolution gas-
phase absorption spectrum26 is shown in Figure 22. This type of spectrum is

Figure 22 Comparison of the computed [TDDFT-B3LYP/TZV(d,p)] and experimen-
tal26 UV spectra for the 1La state of anthracene. The 0–0 transition energy is set to zero.
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typical for large systems (normal UV spectra), and has therefore been chosen
for discussion here. The theoretical intensities were obtained within the FC
approximation at 0 K and the individual transitions were broadened by Gaus-
sian shape functions using a half-width of s ¼ 165 cm�1.

The computed spectrum shows a good agreement with its experimental
counterpart over the entire energy range. This indicates that the geometry and
frequency–normal mode changes between the two states are much better
described by DFT than are the excitation energies (the DFT error for �E0--0

is �0.59 eV). The weak shoulders (hot-bands) located �300–750 cm�1 below
the 0–0 transition cannot be described by the present calculation. Although the
description of hot-bands is straightforward in principle (by thermal population
of vibrational ground-state levels), the current implementation of the recursive
integral algorithm leads to unacceptably long computation times in such cases.
As expected, the FC approximation seems to be very good for a dipole-allowed
transition as considered here. The gradual increase of the experimental inten-
sity relative to the calculated one in Figure 22 may arise from a nonhorizontal
baseline in the measured spectrum. Furthermore, the second, less intense tran-
sition to the S2 state (Lb) hidden under the La band may also contribute to this
intensity mismatch. All vibronic transitions with a high intensity correspond to
excitations of totally symmetric normal modes with a maximum excitation of
two quanta in a single vibration.

Octatetracene
Polyenes represent a class of widely studied molecules. Their ability to

undergo photochemical isomerizations is exploited by Nature to transduce
radiative energy into chemical energy and thus, these systems perform vital
functions in many biochemical processes. All-trans octatetraene is used here
as a model system to assess the ability of DFT methods to predict the impor-
tant spectroscopy of this and related systems.

A weak first absorption is found experimentally (�E0--0 ¼ 3:59 eV) cor-
responding to the electric dipole-forbidden 1Ag ! 2Ag transition. The second
(intense) band results from the allowed 1Ag ! 1Bu transition (�E0--0 ¼ 4:41
eV). This situation is challenging for any theoretical method because the char-
acter of both states is very different (single-configurational, ionic 1Bu state vs.
multiconfigurational, covalent 2Ag state with significant contributions from
double excitations).

All calculations were performed at the (TD)DFT-B3LYP/TZV(d,p) level
employing C2h symmetry. In contrast to the experimental data, the TDDFT
calculation yields an S1 state with Bu symmetry (�E0el ¼ 4:05 eV) and the
2Ag state as the second one (�E0el ¼ 4:89 eV). This error can be traced to
the systematic underestimation of excitation energies for ionic states with
TDDFT-B3LYP.35 Because of the adiabatic approximation used in the
TDDFT treatments, the 2Ag state is described solely by a mixing of
HOMO! LUMOþ 1 and HOMO-1!LUMO single excitations. It lacks
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the important HOMO–LUMO double excitation that has �30% weight in
MR-MP2 wave functions. Thus we show here how such deficiencies of the
theoretical treatment transfer to the description of the geometries and vibra-
tional frequencies, and finally to the simulated vibronic structure.

A comparison of computed (FC approximation, broadened by Lorent-
zian functions with a half-width of s ¼ 20 cm�1) and experimental gas-phase
spectra30 for the 1Bu state is shown in Figure 23. Compared to the previous
example, the theoretical description using B3LYP is worse. An obvious devia-
tion from experiment is the relatively strong progression of the nontotally
symmetric normal mode with a frequency of 143 cm�1. This indicates an over-
estimation of the frequency change for this mode upon electronic excitation.
Because ionic p! p� states benefit from the inclusion of ‘‘exact’’ HF
exchange,25 the calculation was repeated with the BHLYP functional
ðEEX ¼ 50%Þ. As can be seen from Figure 23, this significantly improves
the description of the vibronic structure that is now in acceptable agreement
with experiment over the entire energy range. Test calculations using TDHF
ðEEX ¼ 100%Þ yield results that deviate more strongly from experiment
(not shown) indicating that there is some (state-dependent!) optimum of
exchange mixing in the density functionals.

Figure 23 Comparison of the computed [TDDFT/TZV(d,p)] and experimental30

spectra for the 1Bu state of octatetrene. The 0–0 transition energy is set to zero.

Case Studies 207



The dipole forbidden 1Ag ! 2Ag transition must be treated at the Herz-
berg–Teller level (see earlier section) including the derivatives of the electronic
transition dipole moment. These results are shown in Figure 24 in comparison
with the experimental jet spectrum.31 The computed intensities were broad-
ened with Lorentzian functions using a half-width of s ¼ 0:5 cm�1.

Somewhat surprisingly, the calculated spectrum shows an almost perfect
agreement with the experiment. This seems to indicate that either the density
functional implicitly accounts for the missing double excitation (see also Ref.
142) or that its influence on the shape of the excited-state potential energy sur-
face is small or similar to that of the HOMO! LUMO þ 1 and HOMO�
1! LUMO excitations. Based upon the intensity inducing bu mode with a
frequency of 94 cm�1, which leads to mixing of the S1 and S2 states, several
excitations of totally symmetric modes with low quantum numbers are observable.

Formaldehyde
The harmonic approximation is essential for computing the vibrational

structure of electronic bands for large molecules. For more ‘‘floppy’’ (low-
energy) nuclear motions (like torsions and bendings), it is inadequate. Here,
we present an example of how the harmonic treatment of such motions effects
the shape of the calculated spectra. The electric dipole forbidden n! p�

Figure 24 Comparison of the computed [TDDFT-B3LYP/TZV(d,p)] and experimen-
tal31 spectra for the 2Ag state of octatetraene. The 0–0 transition energy is set to zero.
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transition of formaldehyde is used to illustrate this issue (for other TDDFT
treatments of the excited-state surfaces of this molecule, see Ref. 143).

The geometry of the ground state was optimized at the DFT-
B3LYP(TZV(d,p) level in C2v symmetry. The TDDFT calculation yields an
S1 state with A2 symmetry and a vertical excitation energy of 3.99 eV
(�E0--0 ¼ 3:56 eV, exp. 3.51 eV144), which can be described by the HOMO
(lone-pair)! LUMO (p�) single excitation. The geometry optimization of the
S1 state was carried out in Cs symmetry. In agreement with experimental data,
we obtain a nonplanar minimum for the excited state with a pyramidalization
angle of 34.9� (experimentally 33.6�145), which lies only 0.02 eV (experimen-
tally 0.044 eV145) below a planar transition state for inversion (see Figure 25).
Based on a Herzberg–Teller treatment, a simulation of the vibronic structure
was performed and the obtained intensities were broadened with Lorentzian
functions with a half-width of s ¼ 50 cm�1.

A comparison of the calculated and experimental gas-phase spectra144

(see Figure 26) clearly shows the limits of a harmonic treatment. Although
the overall shape of the spectrum is reproduced quite well including the domi-
nant C��O stretch progression, the inversion doubling of most peaks due to the
double-minimum potential is obviously missing. Because such situations can

Figure 25 Ground and first excited-state potential energy curves [TDDFT-B3LYP/
TZV(d,p)] along the pyramidalization coordinate of formaldehyde. For comparison, the
dashed line shows the harmonic potential.
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also be found in larger systems (although the consequences for the shape of the
spectra are expected to be of lesser importance) these limits of the currently
feasible theoretical treatments must be kept in mind.

SUMMARY AND OUTLOOK

In this chapter, we have attempted to demonstrate that present-day
quantum chemical electronic structure methods can provide an effective tool
for predicting and interpreting electronic spectra of large molecules. This
includes the calculation of vertical and 0–0 excitation energies, relative and
absolute intensities, as well as details of vibrational features of absorption
bands. A wide range of structurally different molecules and transitions
between states of various characteristics have been successfully considered.
This fact in turn strongly indicates that electronically excited states can be
satisfactorily described by some of the above mentioned theoretical methods.
The development of density functional based methods in particular has opened
new areas of application that 10 years ago would have been ‘‘unthinkable’’.
Progress has also emerged in pure ab initio (wave function) approaches in

Figure 26 Comparison of computed [TDDFT-B3LYP/TZV(d,p)] and experimental144

absorption spectra of formaldehyde. The 0–0 transition energy is set to zero.
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recent years. These systematically improvable methods are still necessary to
calibrate and test the density functionals or even other more approximate
techniques. Because of the complexity of most excited-state problems, com-
bined approaches using very different theoretical methods from all areas of
quantum chemistry are strongly recommended because a multifacted approach
will increase the overall reliability of the predictions. On the other hand, there
is still a long way to go to improve existing theories and challenging problems
remain to be solved. Beside the constant necessity to increase accuracy and
applicability, the two issues of solvent effects on electronic spectra and the
development of treatments for large and flexible systems are relevant topics
for future researchers.
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