
adcc: A versatile toolkit for rapid development of
algebraic-diagrammatic construction methods

Michael F. Herbst∗, Maximilian Scheurer†, Thomas Fransson†,,‡

Dirk R. Rehn†, Andreas Dreuw†

Article Type

Software Focus

Abstract

ADC-connect (adcc) is a hybrid python/C++ module for performing excited state
calculations based on the algebraic-diagrammatic construction scheme for the polarisation
propagator (ADC). Key design goal is to restrict adcc to this single purpose and facilitate
connection to external packages, e.g., for obtaining the Hartree-Fock references, plotting
spectra, or modelling solvents. Interfaces to four self-consistent field codes have already
been implemented, namely pyscf, psi4, molsturm, and veloxchem. The computational
workflow, including the numerical solvers, are implemented in python, whereas the working
equations and other expensive expressions are done in C++. This equips adcc with adequate
speed, making it a flexible toolkit for both rapid development of ADC-based computational
spectroscopy methods as well as unusual computational workflows. This is demonstrated
by three examples. Presently, ADC methods up to third order in perturbation theory are
available in adcc, including the respective core-valence separation and spin-flip variants.
Both restricted or unrestricted Hartree-Fock references can be employed.

∗CERMICS, École des Ponts ParisTech, 6 & 8 avenue Blaise Pascal, 77455 Marne-la-Vallée, France; Inria
Paris, 75589 Paris Cedex 12, France; Sorbonne Université, Institut des sciences du calcul et des données,
ISCD, 75005 Paris, France
†Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany
‡Fysikum, Stockholm University, Albanova, 10691 Stockholm, Sweden

1

ar
X

iv
:1

91
0.

07
75

7v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 1
7

O
ct

 2
01

9

GRAPHICAL TABLE OF CONTENTS

adcc
adcc: A versatile toolkit for research and teaching in computational spectroscopy based on

the algebraic-diagrammatic construction scheme for the polarisation propagator (ADC).

INTRODUCTION

In recent years, high-level programming languages have attracted more and more attention

from computational simulation frameworks. In the field of quantum chemistry, a multi-

tude of packages have emerged, mostly employing python as scripting language of choice

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. The feature sets of such packages are steadily growing and

can be compared to those of traditional quantum-chemical program packages. In addition

to features usable in practice, python-driven packages have also paved the way for rapid

prototyping and development of new methodologies, most notably through the pyscf and

psi4 programs [1, 2, 3]. Through individual components and libraries comprising these pro-

grams, a community-driven, open, and sustainable development can be guaranteed [1, 11].

The aforementioned codes are freely available and encourage code contributions from ex-

ternal users and developers. For improved performance, a combination of python with a

compiled programming language, e.g., C++, is commonly employed. With this approach,

computationally demanding routines are handed off to C++, while flexibility is maintained

by exposing these routines to python. This exploits the strengths of each individual lan-

guage. A more detailed discussion on this hybrid python/C++ design can be found in the

psi4 and psi4numpy publications [1, 2]. Especially the high-level reference implementations

and tutorial in psi4numpy demonstrate the enormous flexibility of a synergistic combination

of python and C++.

A family of methods that has obtained little attention in the context of hybrid python/C++

program design is the algebraic-diagrammatic construction scheme for the polarisation propa-

2

gator (ADC) [12, 13]. To this extent, we have developed “ADC-connect” (adcc), a python/C++

package for carrying out ADC calculations as well as allowing for rapid development of ADC

methods through a high-level python interface. Our package is a standalone toolkit that can

be seamlessly connected to any quantum-chemical host program to perform ADC methods

on top of its SCF results. Beyond the SCF, adcc also tries to employ as much existing

software as possible for standard tasks such as tensor operations or visualisation, allowing

us to focus solely on the implementation of ADC methods. In this manner, adcc is agnos-

tic of the host program and other third-party codes of the python ecosystem. By keeping

existing interfaces open, we or our users do not commit to a single software stack, but are

provided full flexibility. A large set of ADC methods is already available in adcc and to

date psi4 [1, 2], pyscf [3], molsturm [4], and veloxchem [14] are fully supported as host

programs.

M11 (MT)21

M21 M22

0 50 100 150 200 250 300
0

50

100

150

200

250

300

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

0 50 100 150 200 250 300
0

50

100

150

200

250

300

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

(a) schematic representation (b) water ADC(2) matrix (c) water ADC(3) matrix

Figure 1: Structure of the ADC matrix. (a) shows a schematic representation indicating

the singles block M11, doubles block M22 and coupling block M21, (b) and (c) depict the

ADC(2) and ADC(3) matrix of water in an STO-3G [15] basis, respectively. The elements

are coloured in a log10-scale.

The key equation for each ADC(n) model is the Hermitian eigenvalue problem

MX = ΩX, X†X = I, (1)

where Ωnm = δnmωn is the diagonal matrix of excitation energies and M is the so-called

ADC matrix. The matrix M exhibits a block structure, shown in Figure 1a, where indi-

vidual blocks are treated at different orders of perturbation theory. On top of this block

3

structure the individual blocks are sparse (Figure 1b and c) which is a direct consequence

of the selection rules obtained from spin and permutational symmetry in the tensor con-

tractions required for computing M. Exploiting this sparsity when diagonalising the matrix

(1) is a key step to make ADC tractable for relevant systems. In this regard, adcc fol-

lows the conventional approach [13, 16] to use contraction-based [4], iterative eigensolvers,

such as the Jacobi-Davidson [17]. All tensor operations in the required ADC matrix-vector

products are performed on block-sparse tensors. In this setting, the computational scal-

ing of ADC(2) is given as O(N5) where N is the number of orbitals, whereas ADC(2)-x and

ADC(3) scale as O(N6) [13]. These computationally demanding procedures are implemented

in C++ through the parallelised libtensor library [18] and made available to the python

layer. In this manner, adcc achieves comparable performance as a C++-only implementa-

tion [16]. Still, all data is readily accessible from python, e.g., to perform post-processing

in numpy [19] or matplotlib [20]. Consequently, our design enables a very flexible com-

putational workflow and interactive usage in Jupyter notebooks or IPython shells [21, 22].

This will be demonstrated by several examples. Additionally, exposing linear algebra oper-

ations of C++ tensor objects to the python layer made it possible to implement numerical

procedures, e.g., iterative solver schemes completely in python. As such, adcc provides all

the necessary building blocks for development of complex workflows or novel approaches

of ADC that can be arbitrarily assembled and extended on the python layer. Together

with the comprehensive documentation available online (https://adc-connect.org), the

barrier between “users” and “developers” of adcc is minimal. adcc is freely available on

https://github.com/adc-connect/adcc. All figures and tables of the paper can be repro-

duced using the scripts and details of the supporting information (SI-4).

The remainder of the paper is structured as follows: The next Section discusses design

and structure of adcc with emphasis on the computational workflow and the integration

with external packages. Examples how adcc can be used in practice are provided thereafter,

followed by a short review of the currently supported feature set of adcc.

4

https://adc-connect.org
https://github.com/adc-connect/adcc

DESIGN AND KEY COMPONENTS

Design goals

With adcc, we aimed for a flexible library for rapid ADC method development that seam-

lessly integrates into the existing python ecosystem. Consequently, secondary goals for the

design philosophy of the code arise which are briefly outlined in the following.

1. Build on established software. Instead of designing a complete quantum-chemical pro-

gram, adcc focuses only on ADC methods and their numerical procedures. For most

other aspects, adcc relies on established third-party packages, which allows to reuse

many years of development effort and bug fixing. This makes adcc a light-weight

package to be easily integrated in more complex computational workflows.

2. Open interfaces for reproducible and sustainable science. The SCF interface of adcc

is deliberately kept simple for easiest connectability to an existing SCF codes. This

has two important consequences: (1) It makes adcc sustainable and maintainable,

because in case an SCF code became unavailable in the future, a replacement could

be easily integrated. (2) Results can be verified and reproduced across different SCF

implementations, reducing the chance of building on top of wrongful assumptions and

introducing accidental dependencies.

3. Good compromise between performance and code complexity. Given the asymptotic

scaling up to O(N6) of ADC methods, performance aspects cannot be ignored in a

practically useful implementation. The total time required to achieve a scientific out-

come in computational sciences, however, clearly goes beyond just the runtime of sim-

ulations. Much rather, the time needed to install, setup, and familiarise oneself with

a framework also matters. In case additional features are to be added to the code, the

time effort to understand the code base, to implement, debug, and test also plays a piv-

otal role. Unfortunately, achieving peak performance typically has a negative impact

on readability and usability, such that a balance needs to be found. In adcc we have

thus chosen a design, where the workflow and the numerical schemes are completely

5

controlled from high-level python code with only selected computationally demanding

parts implemented in C++. This allows adcc users both to quickly experiment with

workflows or numerical routines and to treat problems of practical relevance in a single

toolkit.

4. Low barriers between users and developers. With our toolkit we not only want to

allow for use of provided, predefined functionality, which already exists inside adcc.

By providing detailed documentation and readable code, we want to encourage users

to become active developers, e.g., by extending our workflows, beyond anything we as

the adcc developers could ever imagine. It is our hope that such an open platform

will lead to a community-driven improvement of adcc in particular and computational

spectroscopy in general.

Demand-driven computation in adcc

The general flow and main computational tasks of an ADC calculation with adcc is shown in

Figure 2 with classes or functions from adcc given in teletype. The term “host program”

refers to the (third-party) program environment from which the ADC calculation has been

started. In practice, this is the code that yields the Hartree-Fock SCF ground state and

provides access to an integral library for obtaining the antisymmetrised electron-repulsion

integral (ERI) tensor or operator integrals (e.g., electric dipole operator integrals). Steps

2–4 are setting up the necessary scaffold to import host-program-specific data into adcc.

Afterwards, the main bookkeeping classes of adcc are constructed in steps 5–7, i.e., MP

quantities, recurring parts of the ADC working equations (intermediates) [23], and a lazy

matrix [4, 24] representation of the ADC matrix. Of note, this AdcMatrix class collects all

MP results, intermediates, and expressions for the working equations of a particular ADC

method. The ADC eigenvalue problem is then solved in step 8, and the results are wrapped

by an ExcitedStates object, see the next Section for details.

With the workflow schematic of adcc in place, we will now explain how adcc efficiently

implements this complex computational procedure. Here, the main challenge is that individ-

ual computational steps can explicitly or implicitly become mutually dependent. This not

6

1. Host program runs SCF:
MO energies and MO coefficients available

2. Select HartreeFockProvider:
interface to host program for on-demand data supply

3. MoSpaces:
Block tiling and index order for Tensor objects

4. ReferenceState:
Convert HF results and ERI blocks to MoSpaces order

5. LazyMp:
Computes MP T2 amplitudes and density corrections

6. AdcIntermediates:
Computes and caches ADC intermediates

7. AdcMatrix:
Lazy-matrix representation of M

8. guess singlet, jacobi davidson:
Solve eigenvalue problem (2) for Ω and X

9. ExcitedStates:
Interface to density matrices ρn and ρn←m

Tools for state analysis and visualisation

10. Custom visualisation and analysis in user code

Figure 2: Schematic of an ADC calculation using adcc. Steps 2 to 9 take place inside adcc,

whereas steps 1 and 10 are executed in the host program or user code. Functions or classes

from the adcc library are marked with teletype font.

only applies to ADC, but also to related methodologies with similar computational stages.

The ADC intermediates for example (step 6 in Figure 2) require the MP(2) T2 amplitudes.

Therefore, step 6 obviously depends on step 5. In turn, a naive sequential implementation

requires step 5 to know that the T2 amplitudes will be needed in step 6 in order to decide

whether these quantities are to be computed or not.

One way to resolve this circular dependency is to compute every quantity at every step,

regardless of whether it is used later or not. This approach, however, is rather inefficient.

Another option is to inspect the computational parameters at the beginning of the adcc run

and schedule computations for each step. While this “schedule” approach works reasonably

7

well for simple workflows, it inevitably leads to a combinatorial explosion in the required

bookkeeping logic if the number of parameters increases. Already at the current stage, adcc

has about 40 different code execution paths through the workflow in Figure 2 with varying

amounts of work required at each step.

For this reason we have taken a different approach: Upon initialisation of data structures,

such as ReferenceState, LazyMp, or AdcIntermediates, these objects are empty. For

example, constructing LazyMp does not lead to the computation of the T2 amplitudes at

this very instance. Only once the T2 amplitudes are needed for the first time, e.g., by

computation of the ADC(2) intermediates, they are computed and cached in memory. Thus,

the first demand for a specific quantity drives its computation. For this reason we have

termed this strategy “demand-driven”. This idea is heavily inspired from a concept called

lazy evaluation in programming language theory [25], where any expression in the source code

is only ever evaluated once its outcome is needed. In adcc, the caching check is typically

an if-statement directly enwrapping the computation. This has two important advantages.

Firstly, it makes the code responsible for computing one quantity self-contained, which lowers

the code complexity. Secondly, it prevents schedule logic and computational algorithm to

get out of sync. Thus, a major advantage of the demand-driven computation is that one

simply cannot forget to request the computation of a particular quantity in a previous step

or forget to remove this request. This decouples code entities and makes adcc automatically

choose the path of least computational load.

To illustrate the demand-driven workflow in practice, Figure 3 shows the memory and

time profile for a computation of ten singlet excited states of noradrenaline at the ADC(2)/6-

31++G** level [26]. The time spent in selected classes and functions of adcc is indicated

by the alternating yellow-green background, and the memory size of the executing python

process as detected by the operating system is plotted in grey. Of note, the memory profile

not only depends on the behaviour of adcc, but also on the memory management of the

python interpreter and the C library (in this case glibc). The time axis is split into two

segments with the first resolving the first six minutes of the calculation to higher detail. The

lower part of Figure 3 shows two bars of orange and blue blocks, which highlight, respectively,

the time spent inside AdcMatrix for computing the ADC working equations and the time

8

Figure 3: Memory and time profile of an ADC(2) calculation for the lowest 10 singlet ex-

citations of noradrenaline in a 6-311++G** basis [26]. The green and yellow background

indicate the time spent in functions or classes of adcc, which are labelled in teletype font.

The orange and blue bars at the bottom indicate the activity of the AdcMatrix class and

the time spent importing the electron-repulsion integrals, respectively. Details about the

computational hardware can be found in the supporting information, Section SI-3.

needed for importing the ERI tensor.

One notices the ERI tensor not to be imported at once, but at four distinct times in the

profile. Each time interval corresponds to computing one block of the ERI tensor in the host

program via an AO-to-MO transformation followed by importing it into the ReferenceState.

Through the demand-driven design of adcc, one can easily follow the order of the block

import, summarised in Table 1. Note that the objects requiring import of a new ERI block

often also depend on previously imported blocks that are already cached.

9

Table 1: Breakdown of the demand-driven import of ERI blocks for the noradrenaline calcu-

lation of Figure 3. The first demand of a block is indicated by the operations of the rightmost

column. o refers to occupied orbitals and v to virtual orbitals. Multiple blocks in one row

are imported sequentially.

time (min) ERI block ← first demand

0 〈oo||vv〉 ← LazyMp T2 ← AdcIntermediates

1 〈ov||ov〉 ← AdcMatrix.diagonal ← guess singlet

3.5 〈ov||vv〉, 〈oo||ov〉 ← AdcMatrix.matvec ← jacobi davidson

250 〈oo||oo〉, 〈vv||vv〉 ← transition densities ← ExcitedStates

The complete chain of imports and computations in Table 1 has actually been triggered

by requesting only three things directly from adcc, namely (1) the ADC(2) guesses via

guess singlet, (2) the converged ADC(2) excitation vectors from jacobi davidson and (3)

the computation of the oscillator strengths for these states via ExcitedStates. The other

computations including the import of the ERI tensor blocks were implicitly driven by this

initial demand. If this demand is modified, e.g., by performing a computation employing the

CVS, frozen-core (FC) or frozen-virtual (FV) approximations, the ERI blocks not required

by the respective approximations, will never be computed in the host program during the

ADC calculation. Still, dropped blocks can be requested via the ReferenceState in user

code, meaning that any additional demand on top of the ADC calculation will be satisfied

as well. This is a great advantage during debugging and in order to extend features of adcc

in user code.

Typically the import of an ERI tensor block leads to an increased memory usage, since

tensor data is generated with the AO-to-MO transformation in the host program. As dis-

cussed, in adcc the ERI import is automatically delayed for as long as possible. This implies

that the allocation of the ERI tensor memory is delayed as well. As a result, the peak

memory usage for the noradrenaline calculation in Figure 3 is only obtained at the very end

of the calculation, namely during the property calculation, once the 〈vv||vv〉 block has been

imported. This memory profile implies that adcc will run out of memory as late as possible.

10

In other words it will still finish intermediate work, from which the calculation could be

restarted on a node with more RAM. Note that at the moment adcc does not yet implement

any form of checkpointing, however.

Structure and mix of programming languages in adcc

Guess construction
e.g. guess singlet

Iterative solvers
e.g. jacobi davidson

Excited states analysis
ExcitedStates

algorithm

Default ADC workflow: run adc, adc1, adc3, cvs adc2x, . . .

Computation scripts and user code

workflow

HartreeFockProvider

OperatorIntegralProvider

ReferenceState

OperatorIntegrals
LazyMp, AdcMatrix
AdcIntermediates

interface

Tensor block tiling
MoSpaces

Tensor interface
Symmetry, Tensor

working equations
expensive expressions

core

libtensor libadcHost programs

Figure 4: Code structure of adcc and interfaces to user scripts, external host programs or the

C++ libraries libtensor [18] and libadc [16]. Shown inside the yellow-blue box are the four

layers of adcc with key classes and functions marked in Teletype font. The background of

the box indicates the predominant programming language employed in the respective layer,

yellow for python and blue for C++.

With the adcc workflow and the concept of demand-driven computations in place, we

will now explain the actual structure and building blocks of adcc in detail, together with

the hybrid python-C++ programming approach.

Figure 4 shows the code structure of adcc along with interfaces to external codes or user

scripts as indicated by arrows leaving or entering the adcc box. Inside the box, the colours

indicate the predominant programming language used to provide the respective features.

Going from top to bottom, the first layer is the workflow layer. It contains a default ADC

workflow for setting up the AdcMatrix and subsequently calling the functions of the algorithm

11

layer to solve the ADC eigenvalue problem (1). Main ingredients of this second layer are the

guess functions, the python-based implementations of the iterative solver algorithms and the

ExcitedStates class to analyse the obtained results. Next, the interface layer contains the

datastructures responsible for the ADC working equations and their requirements, including

the HartreeFockProvider and OperatorIntegralProvider interface classes for each host

program. As discussed, most computation in adcc happens in this layer, demanding the

computation or import of prerequisites as needed. For performing these tasks, the inter-

face layer accesses helper functionality from the bottommost part of adcc, the core layer.

This layer contains the MoSpaces class for defining the tensor tilings as well as the Tensor

and Symmetry classes, which expose slightly amended primitive tensor operations from the

libtensor [18] block-sparse tensor library to adcc. It also contains the interface code to the

libadc library, which implements the ADC working equations and other expensive expres-

sions in libtensor syntax. Both these libraries are written in C++, such that implementing

the remainder of the core layer in C++ turned out to be most practical. The libadc library

has been previously distributed as part of the adcman [16] module of the Q-Chem quantum

chemistry package [27]. As part of the interface to libadc, the core layer further makes

use of the hierarchical storage datastructures of the ctx library [28] for organising the data

required for evaluating the ADC equations.

On the contrary, the interface layer, as indicated by the colour-coding in Figure 4, is

partly written in python and partly in C++. The divide between these languages is not

at all clear-cut: Much rather some functions and datastructures are implemented using

both languages. Using Pybind11 [29] the respective C++ functionality is exposed to python,

where it can be accessed and extended without duplicating code. In this way, the interface

to performance-critical portions of adcc in the core layer is implemented in C++ and the

remaining aspects may fully exploit the language features python has to offer. One example

where this approach turned out to be very useful are the HartreeFockProvider interfaces,

which on the one hand need to interact with a third-party host program, whose interfaces we

as adcc developers cannot control, on the other hand it still needs to provide the generated

data to the libtensor library. For the former aspect, a dynamic language like python

is extremely handy, while for the latter, low-level memory access is required and thus a

12

language like C++ is much more suitable.

The algorithm layer itself is also an example for python code, which extends the C++ core.

By proper Pybind11-wrapping of key classes, such as the MoSpaces, Tensor, and Symmetry

classes, the algorithm layer can directly configure and access all the functionality of the core

layer albeit being written in python. This includes raw tensor operations such as addition,

multiplication or tensor contraction. Provided that the tensor tiling in MoSpaces has been

setup appropriately, these operations automatically take symmetry into account and are

parallelised. In this way all relevant numerical schemes of ADC, such as the iterative diago-

nalisation inside the jacobi davidson, can be implemented purely in python. Certainly, a

multitude of calls between python and C++ are required which are associated with a runtime

overhead. Since the time spent for computing tensor operations in libadc, libtensor, and

the core layer dominates the overall runtime, such that call time overhead as well as the

general performance penalty of python are completely negligible. Compared to a C++-only

implementation of the algorithm, however, flexibility is gained through python. This enables

more involved or highly problem-specific numerical schemes, which can be developed, tested,

and implemented with much reduced effort.

Keeping the implementation of iterative solvers and guesses aside, the algorithm layer

also contains the ExcitedStates class. This class is returned to the user once the ADC

calculation in adcc has finished and holds key results of the calculation such as the excita-

tion vectors or the excitation energies. From these, state densities ρn, transition densities

ρn←m, and other properties can be computed on demand. The returned quantities are in

fact Tensor objects, allowing the user to post-process them directly using the tensor op-

erations of libtensor. Alternatively, these objects may be converted to and from dense

numpy arrays to allow full integration with the usual numpy/scipy ecosystem [19, 30]. More

details about customisable post-processing can be found in the example Section and on

the adcc website. Some conventional analysis and visualisation techniques, such as the

plotting of an empirically broadened excitation spectra are directly available by calling the

plot spectrum function of the ExcitedStates. These functions integrate well with existing

python infrastructure, in this case matplotlib [20]. An example for the spectra plotting of

ExcitedStates can be found in the examples. Such tools to quickly visualise results are key

13

for reducing the feedback loop when working with adcc from, e.g., a Jupyter notebook [22]

or for educational purposes.

A user who is new to adcc will start to interact with the library mostly via the workflow

layer, calling the predefined ADC procedure it exposes via the run adc python function.

More method-specific functions with slightly varying presets are available for individual

ADC methods, for example adc1, cvs adc3, These functions provide only limited

capability for customisation, passing parameters such as the subspace size or the structure

of the core space (for core-valence separation) to the rest of the library. For more advanced

use cases, like the ones mentioned above, they may then leverage the ExcitedStates class or

construct deviating ADC workflows building on the python primitives of the algorithm and

interface layer. Simulation procedures resulting from this process are already developments

(in python code), which could potentially be integrated back into the library in the future.

In this way the original user has smoothly become a developer of adcc. Even for yet deeper

modifications one may stay in high-level python code, being able to tinker with advanced

aspects such as the setup of the ADC guesses or the numerical procedure to diagonalise the

ADC matrix. Overall, it is our hope that the sketched structure of adcc allows to motivate

users to become developers as well.

Related to the aspect of obtaining a sustainable base of users and developers is the ques-

tion of a sustainable software stack. For this it is important to (1) build on top of software,

which is already established and thus unlikely to disappear and (2) to stay sufficiently flexi-

ble to be able to swap components if this may still become necessary. We achieved this by

building on top of two actively developed C++ libraries, libtensor and libadc [18, 16], and

abstracting from these libraries explicitly through the Tensor and Symmetry classes. In this

way, clearly defined entry points from adcc to these third-party codes are defined, such that

other tensor libraries could be supported in the future as well. Similarly, with respect to

the host programs for supplying integral and SCF data, adcc supports multiple SCF codes

out of the box. As will be explained in more details in the next Section, the SCF interface

expected by the HartreeFockProvider has been designed to be easily fulfilled, such that

support for further host programs can be added with ease.

14

HF interface and ERI data import

To start an ADC calculation, adcc requires two kinds of data from the host program. Firstly,

the obtained SCF results, such as the molecular orbital energies, coefficients and occupation

vector as well as the Fock matrix and the (antisymmetrised) ERI tensor. Secondly, metadata

such as the SCF convergence threshold and whether or not a restricted SCF procedure was

employed. Only optionally, if the computation of properties such as dipole moments and

oscillator strengths is desired, adcc requires further the total molecular charge, the nuclear

dipole moment and the electric dipole integrals in the atomic orbital basis. We will only

review key design aspects about the interface between adcc and host programs in this section,

the complete documentation can be found in the supporting information SI-1 and SI-2 or

online under https://adc-connect.org/q/hostprograms.

At the moment data can be supplied to adcc in three ways. The most straightforward

implementation only requires one to prepare a python dictionary, which supplies the above

quantities as either primitive python data types or as numpy arrays. The antisymmetrisation

of the ERI tensor may either be performed in adcc or the antisymmetrised tensor may be

supplied directly. This dictionary is then passed to run adc or any other method from the

workflow layer to start an ADC calculation. For this type of interface the key focus was

simplicity rather than efficiency. Therefore, adcc makes no attempt to exploit any kind of

symmetries for the Fock matrix or the ERI tensor. Even for restricted SCF results, all four

spin blocks of the Fock matrix need to be passed, including the αβ and βα blocks, which are

always zero. Naturally this leads to a huge memory overhead and thus allows this interface

only to be used for small test calculations. The second option is a variant of the dictionary-

based interface, where the data is supplied from an HDF5 file [31]. This version integrates

more closely into the demand-driven workflow, such that adcc will only read those parts of

the tensors from disk, which are needed.

The best performance for the data import, however, is achieved through an implementa-

tion of a HartreeFockProvider and a corresponding OperatatorIntegralProvider specific

to the host program. As the names suggest, the former is responsible for all HF-related quan-

tities and the latter for integrals such as the electric dipole operator integrals. Both classes

15

https://adc-connect.org/q/hostprograms

allow to integrate host-program-specific routines, e.g., for the AO-to-MO transformation,

into the demand-driven workflow of adcc. This requires the definition of about 20 functions,

of which most are trivial and only require the user to return plain data.

The integration with the import of the ERI tensor, however, is more involved and the

design will be briefly discussed. Once the first demand towards an ERI tensor block triggers

the import process inside the ReferenceState class, the tensor tiling and tensor symme-

try is already known and can be used to deduce the minimally required subset of tensor

elements to fully represent the complete block in question. A block-sparse tensor library

such as libtensor only holds these elements in memory and consequently only these need

to be filled with data by the host program. In the import code one thus only loops over

symmetry-reduced chunks of the ERI tensor and requests the respective tensor data from

the HartreeFockProvider. This is done by passing it an index range, some details about

the memory alignment and a data pointer with the memory location to place the generated

ERI elements into. If this memory pointer can be directly employed as output memory

inside the AO-to-MO routine of the host program, the ERI tensor import operates without

a single copy. The import is implemented inside the C++ part of ReferenceState as well

as the core layer of adcc. On this low level a link between adcc and a host program can

be achieved directly by inheriting from a C++ abstract base class. One may also implement

a HartreeFockProvider in python, since we employ Pybind11 [29] to allow python classes

to overwrite the C++ base class. At this level adcc also uses numpy arrays to conveniently

hide the details of the memory pointer without an additional copy. An implementation of

a HartreeFockProvider from python thus has the full flexibility of numpy and python to

interact between host program and adcc, but at no additional expense.

Since all three interface approaches are python-based, they can be mixed. This is useful

for adding initial support of a new host program, since one can start with a rapid prototype

using the dictionary-based approach. Based on this the functions of the HartreeFockProvider

can be implemented step by step, verifying correctness along the way.

16

EXAMPLES

Comparison of ADC methods

8 mol = psi4.geometry("""

9 units au; symmetry c1

10 O 0 0 0; H 0 0 1.795239827225189; H 1.693194615993441 0 -0.599043184453037

11 """.replace(";", "\n"))

12 psi4.core.be_quiet()

13 psi4.set_options({'basis': "cc-pvtz", 'e_convergence': 1e-7})

14 _, wfn = psi4.energy('SCF', return_wfn=True)

15

16 # Run ADC(1) on 7 singlets

17 n_singlets = 7

18 adc_1 = adcc.adc1(wfn, n_singlets=n_singlets)

19

20 # Build guess for ADC(2) by appending a zero doubles part to each vector

21 adc2matrix = adcc.AdcMatrix("adc2", adc_1.ground_state)

22 def append_doubles_block(adc1_vector):

23 symmetries = adcc.guess_symmetries(adc2matrix,

24 spin_block_symmetrisation="symmetric")

25 return adcc.AmplitudeVector(adc1_vector["s"], adcc.Tensor(symmetries[1]))

26 guesses_1 = [append_doubles_block(exv) for exv in adc_1.excitation_vectors]

27

28 # Run ADC(2), ADC(2x) and ADC(3)

29 adc_2 = adcc.adc2(adc2matrix, n_singlets=n_singlets, guesses=guesses_1)

30 adc_x = adcc.adc2x(adc_2.ground_state, n_singlets=n_singlets,

31 guesses=adc_2.excitation_vectors)

32 adc_3 = adcc.adc3(adc_x.ground_state, n_singlets=n_singlets,

33 guesses=adc_x.excitation_vectors)

34

35 adc_1.plot_spectrum(label="ADC(1)")

36 adc_2.plot_spectrum(label="ADC(2)")

37 adc_x.plot_spectrum(label="ADC(2)-x")

38 adc_3.plot_spectrum(label="ADC(3)")

39 plt.legend()

40 plt.show()

6 8 10 12 14 16 18
Energy (eV)

0.00

0.01

0.02

0.03

0.04

C
ro
ss

se
ct
io
n
(a
u)

ADC(1)
ADC(2)
ADC(2)-x
ADC(3)

Figure 5: python script computing the seven lowest-energy singlet excited states of water

in a cc-pVTZ basis [32] at ADC(1), ADC(2), ADC(2)-x and ADC(3) level and resulting

excitation spectrum. The procedure uses the respective lower level of theory as a guess

for the next computation. Spectra are broadened empirically with a Lorentzian with width

parameter γ = 0.01 atomic units and shown in the same colour as the computed excitation

energies and cross sections, which are marked by a cross.

A frequent task in benchmarking is to compare the result of multiple levels of theory

on the same system. Using adcc, different ADC methods can be used upon the same

system with concise python code, shown in Figure 5 alongside the resulting spectra. In

lines 8 to 14, the script prepares a restricted Hartree-Fock reference of water in psi4 using

a cc-pVTZ basis [32]. On top of this the adc1, adc2, adc2x and adc3 functions of adcc

perform the respective ADC method on top. In each case, the excitation vectors of

the ExcitedStates object of the lower level of theory are used as guesses, which for the

case of employing ADC(1) results in ADC(2) requires to append a zero doubles part of the

appropriate singlet symmetry in lines 22 to 26. For starting the ADC calculation only the

17

first invocation in line 18 makes reference to the wfn object containing the HF reference. All

other calculations start directly from a LazyMp ground state or even an AdcMatrix, which

allows to share and re-use previously computed quantities, such as the T2 amplitudes. In

lines 35 to 40, the obtained excited states are broadened with a Lorentzian (width parameter

γ = 0.01 atomic units) and plotted. For this the plot spectrum function of adcc integrates

with matplotlib placing the spectrum directly on a matplotlib figure. In this way the plot

can be extended via the usual matplotlib functionality. In this example, we add a legend

with plt.legend() and display the image shown on the right of Figure 5 with plt.show().

The complete script with 40 lines including the code needed for the visualisation of the

excited states spectra is very tractable and most lines of code are completely self-explanatory.

Obtaining key quantities such as the state densities as numpy arrays allows to easily extend

the analysis and, e.g., visualise density differences in matplotlib. Such direct access to

key quantities greatly decreases the feedback loop between calculation and insight. Further-

more, the brevity of the code implies that it can be written spontaneously in an interactive

IPython [21] shell or a Jupyter notebook [22] during a scientific discussion or a lecture. This

provides a powerful hands-on technique for rapid ADC method development, debugging or

interactive teaching sessions directly in the web browser.

Flexible selection of frozen MOs and CVS spaces

For the calculation of core-excited state, some flavour of the core-valence separation (CVS)

approach is routinely employed to avoid the difficulty of considering states buried in a contin-

uum of valence transitions [33, 34, 35, 36, 37]. Previous ADC implementation have, however,

used a construction of the CVS space where all (core) MOs up to the last probed one is in-

cluded in the CVS-ADC matrix. This leads to matrix dimensions which are larger than

necessary, as we will now demonstrate using the adcc implementation, which enables the

use of any CVS spaces, as well as the freezing of arbitrary occupied or unoccupied MOs. We

consider the carbon X-ray absorption spectrum of 1,1-difluoroethene, with results illustrated

in Fig. 6. This system has been investigated experimentally [38] and in theory [39], and

possess significant shifts in transition energy due to the substitution of electronegative fluo-

18

286 288 290 292 294
Energy (eV)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

C
ro
ss

se
ct
io
n
(a
u)

adcc.cvs_adc2x(scfres, n_singlets=20, n_core_orbitals=4)
adcc.cvs_adc2x(scfres, n_singlets=20, n_core_orbitals=[2, 3])
adcc.cvs_adc2x(scfres, n_singlets=20, n_core_orbitals=2, frozen_core=2)
adcc.cvs_adc2x(scfres, n_singlets=20, n_core_orbitals=[2, 3], frozen_virtual=9)

adcc.cvs_adc2x(scfres, n_singlets=20, n_core_orbitals=4)
adcc.cvs_adc2x(scfres, n_singlets=20, n_core_orbitals=[2, 3])
adcc.cvs_adc2x(scfres, n_singlets=20, n_core_orbitals=2, frozen_core=2)
adcc.cvs_adc2x(scfres, n_singlets=20, n_core_orbitals=[2, 3], frozen_virtual=9)

F1s and C1s in CVS
C1s in CVS
F1s frozen
C1s in CVS, top 10% virtuals frozen

Figure 6: Carbon K-edge X-ray absorption spectrum of 1,1-difluoroethene, using different

subspaces in CVS as well as by freezing core and/or virtual orbitals. Commands for calcu-

lating these spectra are shown above the Figure.

rine. The spectra have been calculated for a MP(2)/cc-pVTZ [32] optimised structure, [27]

with excited states calculated using CVS-ADC(2)-x/6-311++G** [26]. This combination

of ADC level and basis set has been noted to provide results in close agreement to exper-

iment [35, 40]. Our results overestimates experimental measurement by 0.3 − 0.6 eV [38],

when scalar relativistic effects are accounted for.

We note that including only the two carbon core orbitals in the CVS space leads to

identical results as including also the fluorines, at a lower computational cost. Alternatively,

it is possible to freeze the fluorine core MOs and then select the lowest two MOs in the

CVS space, which then again lead to identical results at a lower cost than including also the

19

fluorines. The fluorine core MOs can be left outside the CVS space or frozen with identical

results as they are spatially and energetically separated from the carbon core electrons, but

this would not be the case if, e.g., the L-edge of heavier atoms are considered. Finally,

we illustrate the use of a carbon-specific CVS space together with freezing the 10% highest

virtuals (here, 9 virtuals), which leads to an increase in transition energy of 0.16± 0.01 eV

due to some lack of relaxation. Such a freezing of virtuals, as well as choosing CVS spaces

focused on a single, chemically unique core orbital, can be employed to obtain additional

lowering of computational cost. Care must be taken if any of these approaches are applied.

Solvent shift of nile red

2.4 2.6 2.8 3.0 3.2 3.4
Energy (eV)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

C
ro
ss

se
ct
io
n
(a
u)

ADC(2) vac.
PE-ADC(2) water
PE-ADC(2) BLG

HONTO LUNTO

Figure 7: Absorption spectrum (left) with three singlet excited states of nile red in vacuum,

water, and BLG. Highest occupied NTO (HONTO) and lowest unoccupied NTO (LUNTO)

for the first singlet excited state in water (right). Spectra are broadened empirically with a

Lorentzian (γ = 0.02 eV).

To illustrate the capabilities of adcc in a biomolecular application, the solvent shift

of nile red in water and protein environment is modelled using the polarisable embedding

(PE) model in combination with ADC (PE-ADC) [41]. Geometries of the chromophore and

parameters for the water and the β-lactoglobulin (BLG) protein environments were used from

previous work [42]. Using pyscf as host program, three singlet excited states were computed

at the ADC(2)/cc-pVDZ [32] level of theory using adcc. Calculations included 420 basis

20

functions and ran for 8 hours on 32 cores on a single node (see supporting information for

hardware details). The PE-HF ground state calculations in pyscf employed cppe [42], which

is also a modular python library. Perturbative corrections of the excitation energies [41]

were computed directly in the python job scripts. The resulting spectra for nile red in

vacuum, water, and BLG were obtained by convolution with a Lorentzian function (γ =

0.02 eV). Natural transition orbitals (NTOs) were also generated in the python job script

by decomposing the AO transition density matrix with numpy (numpy.linalg.svd) and

subsequently writing the orbitals to disk with the cubegen utility in pyscf. Finally, cube

files of NTOs were rendered with VMD [43].

The resulting excitation spectra and NTOs of the first excited states of nile red embed-

ded in water are depicted in Figure 7. The NTOs clearly show the ππ∗ nature of the lowest

transition. Consequently, the absorption cross section is high, and the transition is strongly

red-shifted in the embedded systems compared to vacuum. Rather than discussing the prop-

erties of nile red, which has been done in previous work [42], the given example shows that

adcc is capable of tackling systems of medium size with good performance. As explained

before, full flexibility is still granted, here by a) computing perturbative corrections to the

ADC excitation energies and b) generating NTOs in user code with negligible programming

effort. In the same manner, other solvent models available through the supported host pro-

grams could be combined with adcc as well, e.g., continuum solvation models. Furthermore,

users could expand their scripts with more advanced wave function analysis [44], making the

analysis more interactive and tailored to the problem at hand.

CURRENT STATE AND SUPPORTED FEATURES

Presently the adcc code base allows to model electronically excited states using various levels

of the algebraic-diagrammatic construction scheme for the polarisation propagator (ADC).

This includes ADC(2), ADC(2)-x, and ADC(3) [12, 45] for the treatment of valence-excited

states as well as the respective core-valence separation (CVS) variants [34, 46] for tackling

core-excited states. Both restricted as well as unrestricted Hartree-Fock references are sup-

ported and few-reference ground states as well as their excitations can be approached using

21

the spin-flip modification [47] of ADC. For reducing the number of active occupied or virtual

orbitals and thus lowering the computational cost, the frozen-core and frozen-virtual [48]

approximations can be additionally applied to all methods implemented in adcc. The se-

lection of occupied or virtual orbitals to be frozen as well as the selection of the core space

is completely arbitrary, i.e., not limited to contiguous blocks of occupied or virtual orbitals.

The tensor operations required in the ADC working equations are evaluated in the C++ core

of adcc utilising the block-sparse tensor library libtensor [18] for exploiting symmetry and

parallelising operations. As a result adcc is able to easily address medium-sized problems,

such as the cc-pVDZ ADC(2) calculations of nile red shown previously.

In adcc ADC calculations are started and controlled from a python module, which ex-

poses predefined ADC workflows for all aforementioned methods. In line with the building-

block approach taken by adcc, the Hartree-Fock (HF) reference needs to be prepared in an

external host program. Currently four host programs are supported out-of-the box, such

that in practice the respective SCF datastructures are directly understood by adcc, namely

psi4 [1, 2], pyscf [3], molsturm [4] and veloxchem [14]. Further programs can be added by

implementing about 20 functions from python, by employing a dictionary, or by using an

HDF5 file to pass precomputed data from the host program to adcc.

The default workflow of adcc computes a set of requested excited states and offers python

functions for simple post-processing, such as plotting of the excitation spectrum. Key indi-

vidual ADC quantities, such as transition or state properties or respective transition or state

density matrices can be directly accessed as numpy arrays [19]. Beyond this, any individual

step of adcc and its intermediate results may be requested from python. This allows unusual

or novel ADC computations to be easily realised and simplifies the extension of adcc be-

yond its present capabilities in user code. For a laptop-scale problem, this makes adcc highly

suitable for interactive use, allowing to grasp the quantum-chemical properties of a system

through one’s own code rather than through a “black box” provided by traditional program

packages. This greatly facilitates a hands-on approach to computational spectroscopy for

teaching or research.

22

SUMMARY AND OUTLOOK

The hybrid C++/ python module adcc for the simulation of excited states based on the

algebraic-diagrammatic construction for the polarisation propagator (ADC) has been pre-

sented. Instead of aiming for a complete framework for spectroscopy simulations, our phi-

losophy is to integrate with existing software as much as possible and only provide a single

building block, i.e., a module for ADC calculations. For this reason our C++ core layer

mainly contains code to interface with two libraries, libtensor [18] for performing tensor

operations and libadc [16] for the implementation of the ADC working equations. Simi-

larly, on the python layer we aim to integrate both with the conventional python ecosystem,

i.e., with libraries such as numpy [19] or matplotlib [20], as well as python-based quantum

chemistry software: Running calculations with adcc by supplying a Hartree-Fock reference

from pyscf [3], psi4 [1, 2], molsturm [4], or veloxchem [14] is supported out of the box.

The required interfaces, both on the C++ and the python layer, are kept simple and are

well-documented with ideally all functionality of the C++ core being available from python

as well. This has the advantage that large parts of adcc, including our iterative solver

algorithms, could be implemented in python. The result is a flexible module with extensible

workflows, which has been demonstrated in the given examples. Despite this flexibility, adcc

easily performs calculations with about 400 basis functions making adcc not only a useful

tool for method development, but also for practical research calculations or teaching.

In the future we plan to extend adcc to other ADC methods of similar mathematical

structure, such as IP-ADC [49, 50, 51, 52]. For this we expect our focus on python and open

interfaces to accelerate developments. A clear aim is also to enhance deeper integration of

adcc into other quantum-chemical software projects. As a result not only the feature set

of each involved project would grow, but the implied possibility to mix and match software

building blocks for a scientific simulation at wish, generates an environment for sustainable

scientific innovation.

23

FUNDING INFORMATION

MS was supported by the Deutsche Forschungsgemeinschaft (DFG) by means of the research

training group “CLiC” (GRK 1986, Complex Light Control). TF was supported by a grant

from the Swedish Research Council (Grant No. 2017-00356). This work was supported by the

Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences

(GSC220).

RESEARCH RESOURCES

Calculations in this work were supported by the state of Baden-Württemberg through

bwHPC (bwForCluster MLS&WISO) and the German Research Foundation (DFG) through

grant INST 35/1134-1 FUGG.

ACKNOWLEDGMENTS

The authors thank Patrick Norman for stimulating the redesign of adcc from an earlier

version of the code and Adrian L. Dempwolff for discussions and helpful comments during

the preparation of the manuscript.

FURTHER READING

The details of the python interface of adcc as well as guides for installation and for getting

started can be found in the adcc documentation. The adcc documentation is available online

at https://adc-connect.org.

References

[1] Parrish RM, Burns LA, Smith DGA, Simmonett AC, DePrince AE, Hohenstein

EG, et al. Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing

24

https://adc-connect.org

Automation, Advanced Libraries, and Interoperability. J Chem Theory Comput.

2017;13(7):3185–3197. doi:10.1021/acs.jctc.7b00174.

[2] Smith DGA, Burns LA, Sirianni DA, Nascimento DR, Kumar A, James AM, et al.

Psi4NumPy: An Interactive Quantum Chemistry Programming Environment for

Reference Implementations and Rapid Development. J Chem Theory Comput.

2018;14(7):3504–3511. doi:10.1021/acs.jctc.8b00286.

[3] Sun Q, Berkelbach TC, Blunt NS, Booth GH, Guo S, Li Z, et al. The Python-based

Simulations of Chemistry Framework (PySCF). WIREs Comput Mol Sci. 2017;8(1).

doi:10.1002/wcms.1340.

[4] Herbst MF, Dreuw A, Avery JE. Towards quantum-chemical method development for

arbitrary basis functions. J Chem Phys. 2018 Aug;149(8):84106. doi:10.1063/1.5044765.

[5] Verstraelen T, Tecmer P, Heidar-Zadeh F, González-Espinoza CE, Chan M, Kim TD,

et al.. HORTON 2.1.1; 2017. Available from: http://theochem.github.com/horton/.

[6] Muller R. PyQuante: Python Quantum Chemistry;. Accessed on 15th October 2019.

http://pyquante.sourceforge.net.

[7] Field MJ. The pDynamo program for molecular simulations using hybrid quantum

chemical and molecular mechanical potentials. J Chem Theory Comput. 2008;4(7):1151–

1161. doi:10.1021/ct800092p.

[8] Unsleber JP, Dresselhaus T, Klahr K, Schnieders D, Böckers M, Barton D, et al. Seren-

ity: A subsystem quantum chemistry program. J Comp Chem. 2018;39(13):788–798.

doi:10.1002/jcc.25162.

[9] Enkovaara J, Romero NA, Shende S, Mortensen JJ. GPAW - massively parallel

electronic structure calculations with Python-based software. Procedia Comput Sci.

2011;4:17–25. doi:10.1016/j.procs.2011.04.003.

[10] Larsen AH, Mortensen JJ, Blomqvist J, Castelli IE, Christensen R, Du lak M, et al.

The atomic simulation environment—a Python library for working with atoms. J Phys:

Condens Matter. 2017;29(27):273002. doi:10.1088/1361-648X/aa680e.

25

http://theochem.github.com/horton/
http://pyquante.sourceforge.net

[11] Di Remigio R, Steindal AH, Mozgawa K, Weijo V, Cao H, Frediani L. PCMSolver: An

open-source library for solvation modeling. Int J Quantum Chem. 2019;119(1):e25685.

doi:10.1002/qua.25685.

[12] Schirmer J. Beyond the random-phase approximation: A new approximation

scheme for the polarization propagator. Phys Rev A. 1982 Nov;26:2395–2416.

doi:10.1103/PhysRevA.26.2395.

[13] Dreuw A, Wormit M. The algebraic diagrammatic construction scheme for the po-

larization propagator for the calculation of excited states. WIREs Comput Mol Sci.

2014;5(1):82–95. doi:10.1002/wcms.1206.

[14] Rinkevicius Z, Li X, Vahtras O, Ahmadzadeh K, Brand M, Ringholm M, et al. Velox-

Chem: a Python-driven density-functional theory program for spectroscopy simulations

in high-performance computing environments. WIREs Computational Molecular Sci-

ence. 2019;p. 0. Submitted.

[15] Hehre WJ, Stewart RF, Pople JA. Self-Consistent Molecular-Orbital Methods. I. Use of

Gaussian Expansions of Slater-Type Atomic Orbitals. J Chem Phys. 1969;51(6):2657–

2664. doi:10.1063/1.1672392.

[16] Wormit M, Rehn DR, Harbach PHP, Wenzel J, Krauter CM, Epifanovsky E, et al.

Investigating excited electronic states using the algebraic diagrammatic construction

(ADC) approach of the polarisation propagator. Mol Phys. 2014;112(5-6):774–784.

doi:10.1080/00268976.2013.859313.

[17] Davidson ER. The iterative calculation of a few of the lowest eigenvalues and corre-

sponding eigenvectors of large real-symmetric matrices. J Comp Phys. 1975;17(1):87 –

94. doi:10.1016/0021-9991(75)90065-0.

[18] Epifanovsky E, Wormit M, Kuś T, Landau A, Zuev D, Khistyaev K, et al. New im-

plementation of high-level correlated methods using a general block tensor library for

high-performance electronic structure calculations. J Comput Chem. 2013;34(26):2293–

2309. doi:10.1002/jcc.23377.

26

[19] van der Walt S, Colbert SC, Varoquaux G. The NumPy Array: A Structure for Efficient

Numerical Computation. Comp Sci Eng. 2011;13(2):22–30. doi:10.1109/MCSE.2011.37.

[20] Hunter JD. Matplotlib: A 2D graphics environment. Comp Sci Eng. 2007;9(3):90–95.

doi:10.1109/MCSE.2007.55.

[21] Pérez F, Granger BE. IPython: a System for Interactive Scientific Computing. Comput

Sci Eng. 2007 May;9(3):21–29. doi:10.1109/MCSE.2007.53.

[22] Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, et al..

Jupyter Notebooks - a publishing format for reproducible computational workflows;

2016. https://jupyter.org/. doi:10.3233/978-1-61499-649-1-87.

[23] Wormit M. Development and application of reliable methods for the calculation of ex-

cited states : from light-harvesting complexes to medium-sized molecules [Ph.D. thesis].

Goethe-Universität Frankfurt (Main); 2009.

[24] Herbst MF. Development of a modular quantum-chemistry framework for the investi-

gation of novel basis functions [Ph.D. thesis]. Ruprecht-Karls-Universität Heidelberg;

2018. doi:10.11588/heidok.00024519.

[25] Hughes J. Why functional programming matters. In: Turner D, editor. Research Topics

in Functional Programming. Addison-Wesley; 1990. p. 17–42.

[26] Krishnan R, Binkley JS, Seeger R, Pople JA. Self-Consistent Molecular Orbital Meth-

ods. XX. A Basis Set for Correlated Wave Functions. J Chem Phys. 1980;72:650.

doi:10.1063/1.438955.

[27] Shao Y, Gan Z, Epifanovsky E, Gilbert ATB, Wormit M, Kussmann J, et al. Advances

in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol

Phys. 2015;113(2):184–215. doi:10.1080/00268976.2014.952696.

[28] Herbst MF. ctx: Key-value C++ datastructures for organised hierarchical storage; 2019.

doi:10.5281/zenodo.2590706.

27

https://jupyter.org/

[29] Jakob W, Rhinelander J, Moldovan D. pybind11 – Seamless operability between C++11

and Python; 2017. Https://github.com/pybind/pybind11.

[30] Jones E, Oliphant T, Peterson P, et al.. SciPy: Open source scientific tools for Python;

2001–. Accessed on 09th Sepetember 2019. Available from: http://www.scipy.org/.

[31] HDF5 Reference Manual; 2011. Release 1.8.8.

[32] Dunning TH. Gaussian basis sets for use in correlated molecular calculations. I.

The atoms boron through neon and hydrogen. J Chem Phys. 1989;90(2):1007–1023.

doi:10.1063/1.456153.

[33] Barth A, Schirmer J. Theoretical core-level excitation spectra of N2 and CO by

a new polarisation propagator method. J Phys B: At Mol Phys. 1985;18:867–885.

doi:10.1088/0022-3700/18/5/008.

[34] Trofimov AB, Moskovskaya TÉ, Gromov EV, Vitkovskaya NM, Schirmer J. Core-

Level Electronic Spectra in ADC(2) Approximation for Polarization Propagator:

Carbon Monoxide and Nitrogen Molecules. J Struct Chem. 2000;41:483–494.

doi:10.1007/BF02742009.

[35] Wenzel J, Wormit M, Dreuw A. Calculating Core-Level Excitations and X-Ray Absorp-

tion Spectra of Medium-Sized Closed-Shell Molecules with the Algebraic-Diagrammatic

Construction Scheme for the Polarization Propagator. J Comput Chem. 2014;35:1900–

1915. doi:10.1002/jcc.23703.

[36] Vidal ML, Feng X, Epifanovsky AI E anf Krylov, Coriani S. New and efficient equation-

of-motion coupled-cluster framework for core-excited and core-ionized states. J Chem

Theory Comput. 2019;15:3117–3133. doi:10.1021/acs.jctc.9b00039.

[37] Peng R, Copan AV, Sokolov AY. Simulating X-ray absorption spectra with

linear-response density cumulant theory. J Phys Chem A. 2019;123:1840–1850.

doi:10.1021/acs.jpca.8b12259.

28

http://www.scipy.org/

[38] McLaren R, Clark SAC, Ishii I, Hitchcock AP. Absolute oscillator strengths from K-

shell electron-energy-loss spectra of the fluoroethenes and 1,3-perfluorobutadiene. Phys

Rev A. 1987;36:1683–1701. doi:10.1088/0022-3700/10/12/028.

[39] Fransson T, Coriani S, Christiansen O, Norman P. Carbon X-ray absorption spectra

of fluoroethenes and acetone: A study at the coupled cluster, density functional, and

static-exchange levels of theory. J Chem Phys. 2013;138:124311. doi:10.1063/1.4795835.

[40] Wenzel J, Holzer A, Wormit M, Dreuw A. Analysis and Comparison of CVS-ADC

Approaches up to Third Order for the Calculation of Core-Excited States. J Chem

Phys. 2015;142:214104. doi:10.1063/1.4921841.

[41] Scheurer M, Herbst MF, Reinholdt P, Olsen JMH, Dreuw A, Kongsted J. Polarizable

Embedding Combined with the Algebraic Diagrammatic Construction: Tackling Ex-

cited States in Biomolecular Systems. J Chem Theory Comput. 2018;14(9):4870–4883.

doi:10.1021/acs.jctc.8b00576.

[42] Scheurer M, Reinholdt P, Kjellgren ER, Olsen JMH, Dreuw A, Kongsted J. CPPE: An

Open-Source C++ and Python Library for Polarizable Embedding. J Chem Theory

Comput. 2019;Just Accepted Manuscript. doi:10.1021/acs.jctc.9b00758.

[43] Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph.

1996 feb;14(1):33–38. doi:10.1016/0263-7855(96)00018-5.

[44] Plasser F, Wormit M, Dreuw A. New tools for the systematic analysis and visual-

ization of electronic excitations. I. Formalism. J Chem Phys. 2014 jul;141(2):024106.

doi:10.1063/1.4885819.

[45] Trofimov AB, Stelter G, Schirmer J. A consistent third-order propagator method for

electronic excitation. J Chem Phys. 1999;111(22):9982–9999. doi:10.1063/1.480352.

[46] Wenzel J, Wormit M, Dreuw A. Calculating X-Ray Absorption Spectra of Open-

Shell Molecules with the Unrestricted Algebraic-Diagrammatic Construction Scheme

for the Polarization Propagator. J Chem Theory Comput. 2014;10:4583–4598.

doi:10.1021/ct5006888.

29

[47] Lefrancois D, Wormit M, Dreuw A. Adapting algebraic diagrammatic construction

schemes for the polarization propagator to problems with multi-reference electronic

ground states exploiting the spin-flip ansatz. J Chem Phys. 2015;143(12):124107.

doi:10.1063/1.4931653.

[48] Yang C, Dreuw A. Evaluation of the restricted virtual space approximation in

the algebraic-diagrammatic construction scheme for the polarization propagator to

speed-up excited-state calculations [article]. J Comput Chem. 2017 6;38:1528–1537.

doi:10.1002/jcc.24794.

[49] Schirmer J, Cederbaum LS, Walter O. New approach to the one-particle Green’s

function for finite Fermi systems [article]. Phys Rev A. 1983;28:1237–1259.

doi:10.1103/physreva.28.1237.

[50] von Niessen W, Schirmer J, Cederbaum LS. Computational methods for the one-

particle green’s function [article]. Comput Phys Rep. 1984 4;1:57–125. doi:10.1016/0167-

7977(84)90002-9.

[51] Schirmer J, Angonoa G. On Green’s function calculations of the static self-energy part,

the ground state energy and expectation values [article]. J Chem Phys. 1989 8;91:1754–

1761. doi:10.1063/1.457081.

[52] Dempwolff AL, Schneider M, Hodecker M, Dreuw A. Efficient implementation of the

non-Dyson third-order algebraic diagrammatic construction approximation for the elec-

tron propagator for closed- and open-shell molecules [article]. J Chem Phys. 2019

2;150:064108. doi:10.1063/1.5081674.

30

