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Abstract

We report an atomic integral direct implementation of the approximate coupled-cluster singles and doubles method
CC2 for the triplet excitation energies of closed shell molecules. Employing an explicitly spin-coupled triplet excitation
space we obtain a compact and efficient formulation which needs approximately the same operation count as required for
singlet excitation energies. Compared to a spin orbital based approach this gives a reduction by about a factor of 3. A basis
set study employing basis sets with up to 432 functions is presented for the lowest triplet excitations in benzene and the
results are compared with other theoretical and experimental results. © 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The evaluation of molecular properties using coupled-cluster (CC) theory has gained increasing popu-
larity over the past 10 years [1,2]. A particularly important strategy has been to use hierarchies of CC
models where improved accuracy can be obtained at each level in the hierarchies. A commonly used CC
hierarchy for calculating frequency dependent properties consists of CCS(N*), CC2(N°), CCSD(N?®),
CC3(N7), CCSDT(N?®) etc. where the number in parentheses denotes the computational cost as a function
of the number of orbitals N [3]. CCS, CCSD [4] and CCSDT [5-7] refer to the standard CC models
containing all singles, all singles and doubles, and all singles, doubles and triples excitations, respectively.
CC2 is an approximation to CCSD where the doubles equation is truncated to lowest (first) order in the
fluctuation potential [3] while CC3 is an approximation to CCSDT where the triples equation is truncated
to lowest (second) order [8].

Excitation energies are in CC theory obtained as eigenvalues of the CC linear response eigenvalue
equation. CC2 determine single replacement dominated excitation energies correct through second-order
while they are correct through third-order in CC3. In this Letter we describe the calculation of triplet
excitation energies in the CC2 model using an integral direct approach and an explicit spin-coupled triplet
excitation space.

Triplet excitation energies have previously been calculated using second-order models. These include the
second-order polarization propagator approach (SOPPA) [9] and the complete active space second-order
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perturbation approach (CASPT2) [10]. In SOPPA the excitation energies are determined as the eigenvalues
of a generalized random phase (RPA) eigenvalue equation that is correct through second-order in the
fluctuation potential. In CASPT?2 an excitation energy is obtained by subtracting the total energies of the
ground and excited states. A major advantage of CASPT2 compared to the other second-order approaches
is that excitation energies may be obtained also for open shell systems. Triplet CCSD excitation energies
have also been reported by Stanton and Bartlett [11] using a spin orbital based approach.

In this Letter we report an implementation of the CC2 model for the calculation of triplet excitation
energies for molecules with a closed shell single-reference dominated ground state. After a short intro-
duction to CC response theory in Section 2 we derive in Section 3 and Section 4 a convenient paramet-
rization of the triplet double excitation space. In Section 5 this parametrization is employed to obtain an
efficient formulation of the linear transformation required for the calculation of triplet excitation energies.
In Section 6 we present a CC2 basis set investigation of the triplet excitation energies of benzene and
compare the results with the ones obtained in SOPPA, CASPT2 and experimental studies.

2. Theory

Using the single-reference CC ansatz

|CC) = exp(T)[HF) (1)
the similarity transformed Schrodinger becomes
exp(~T) H|CC) = E[HF), 2)

where |HF) is the Hartree-Fock reference state, H the Hamiltonian, and T is the cluster operator. For a N
electron system the cluster operator becomes

T=T+T+ +Ty, (3)

n= Yt )
H;

In the last equation 7, is an i-electron excitation operator and ¢,, the corresponding cluster amplitude. The
amplitudes ¢, are determined by projecting the Schrodinger equation in Eq. (1) onto a manifold of exci-
tations out of the reference state

(u] = (HF]], (5)

9, = (ulexp(~T) H|CC) = 0. (6)
The projection from the left with the reference state |HF) gives the CC energy,

E = (HF|H|CC). (7)

In the CCSD model the cluster-operator is truncated after the 75> term. The CC2 model is an approximation
to the CCSD model retaining the CCSD singles equations in their original form whereas the CCSD doubles
equations are approximated to first order in the fluctuation potential and with the singles excitation am-
plitudes treated as zero-order parameters. The CC2 equations become [3]:

(m|H + [H, T, HF) = 0, (8)
(|H + [F, D]HF) =0, 9)
where F is the SCF Fock operator and H is the 7} transformed Hamiltonian

H =exp(—T)H exp(Th). (10)
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In CC response function theory excitation energies are obtained as the eigenvalues w of the non-symmetric
eigenvalue equation

AR = 0R, (11)
where A is the Jacobian for the vector function €,
dQ
Ay = —F 12
AT (12)
which in the CC2 model can be written as
A’” = <<:u1[1:177:v1] —t[[Hv T¥'|]7T2]|HF> <:ul|[l:[77"z]|HF>>. (13)
" (1] [H, 7, ][HF) (1| [F, ©][HF)

To get an efficient solution for triplet excitation energies requires an explicit and efficient parametrization of
the triplet excitation space.
3. Triplet excitations

Using the second quantization creation and annihilation operators, a' and «, an explicitly spin coupled
manifold of triplet single excitation operators is conveniently obtained by

T, = alaam — aZﬁa,ﬂ. (14)
In Eq. (14) and in the following we use the indices a, b, c,.. ., for virtual (unoccupied) orbitals and the
indices i, J,k, ..., for occupied orbitals. The indices « and f indicate spin functions with mg = +% and
ms = —1, respectively.

To obtain an operator manifold for triplet double excitations the creation and annihilation operators
{al , lﬁ}, {a},, alﬁ}, {—ais,ai,} and {—a;s,a;,} with a > b and i > j must be coupled to spin-adapted two-
electron excitations with a total spin of 1. Coupling of spin functions of four independent particles with spin
1leads to three linear independent triplet spin functions. Using the genealogical coupling scheme the three
trlplet double excitation operators can be expressed as O} 0( 1,3,1), oy 0( 1,1,1) and oy 0( 0,;, 1), where
the number in parentheses describes the intermediate spin couplings [12]. The explicit expressions for the
three operators are obtained as

1.3 1 ' . .
1,0
Oy (5» 1»§a 1> = 75 (alaamalﬂja + “jmaiaalﬁaj/ﬁ - al/ga,-/;a}maﬂ - al/faiﬁ“/iﬁaj/f - alaai,;az/;aﬂ

+ aiﬁama};aaﬂ;) (15)
1 1 1 1 1 1
1,0 _
0, <§7 L3 1> =7 (aZﬁaiaaZaajﬁ - Eaiaamalaaﬂ - zaZaai%altﬁajﬁ + zalﬁaiﬂaZaaja
1
+ iaZﬂai[faZﬁaj/f - aiﬂiﬁ@g%) : (16)
1,0 1 1 1 + i + T f i i i
on X 0’5’ 1) = P (%ﬂiuabaaﬂ = Qg il pQjg — ypQipQp, Qo + aa/;aiﬁabﬁa.i/i)7 (17)

where a > b and i > j. A more convenient form can be obtained by the following linear combinations:

2 1 3 2 1 1 . , 1
—\/%0411’0 (57 L3 1) 5 0, (57 L3 1> = al,analyay — algagal,a;, = 3 (TyEw — TwiEy),  (18)
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2 1 .3 1 1 1 1 1
50}10 (5, 1,57 1) - % 04110 (Ea laia 1) + 041170 (E’O’E’ 1) = almaida;rua.ia - alﬁaiﬁa};/iaﬂ;

1
5 (T;uEb/ + Tb] az) (19)
2 1 3 1 1 1
\/;Oi‘o(z, 1,5, 1) — ﬁ Oi‘o(z, 1,5, 1) — Oio( ,0,— 1) a‘wa,aazﬁaﬂ; — azﬂa,ﬁa,to,aﬂ
1
=5 (T — TiyEa)- (20)

As our triplet excitation operator manifold we choose
+)Taibj = (TaiEbj + Tban,') Wlth a > b, i > j, (21)
sy = (TuEy; — TyjEs)  with (ai) > (b)). (22)

The diagonal elements vanish since 7,,E,; = 0. If a = b and i # j or a # b and i = j there is only one way to
obtain a triplet excitation operator in accordance with Egs. (21) and (22).
The operator ()7, has the symmetries

sy = DTy = =D T = =Ty (23)
while the operator (7)T,;,; has the symmetries
) aibj = _(7>Tbjai- (24)

In our subsequent derivation it is convenient to have the possibility to write the two electron triplet ex-
citation operators both with and without constraints in the summation indices. Introducing amplitudes
R"” and R“” which satisfy the same symmetries as the operators (* >Ta,,,j and T.»; We obtain

1
(MR, = Z (+)R;C{7(TckEdl + TyEy) = i Z (+)R£7(TckEdz + TyEy)

c>d k>1 ckdl

3 Z DR Ty Ea, (25)
ckdl

IR, = Z (7)Rk/(TckEdl TuE)
ck>d1

3 Z TwEa — TuEe)

ckdl

Z RYTAEq. (26)

ckdl

The triplet—-double excitation operators may therefore be expressed both with and without constraints in
the summation indices. Alternative spin-coupling schemes for the triplet two electron excitation operators
are given in [14].

4. Triplet basis

The triplet basis is defined by the triplet excitation operators,
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T,,[HF) = |(3)9), (27)
(TuEp + TojEa) HF) = |(+)57) &7, (28)
(TuEy; — TyE,)HF) = |(_)Zb> (ai) > (b)) (29)
which is linear independent and together with
. 1
(i (3) = 5 (HF| L, (30)
; 1
(i (D) = g (HF|(EpTiu + EuTp). (31)
“ 1
()] = < (HF|(Ey T,y — EaTp) (32)
8
forms an orthonormal basis. It is furthermore convenient to note that
a 1~ ab
<ijb(+)|Ecde1\HF> = EP"/‘PU] Oaib chdl s (33)
a 1 D
<1jb(—)|Ecde/\HF> = Epg'b Oaibj.ckdl (34)
with the permutation operators P{;”, f’,‘;b and 13,»j defined as
b qab __  qab ba
POAD = AP 4 4%, (35)
pab qab __ qab ba
PoAs = A% — Ak, (36)
PyA = A% — A% (37)

5. Linear transformation

The excitation energies for the CC2 model are the eigenvalues of the CC2 Jacobian, which in the three
component form of the previous sections may be expressed as

(llH, v ]+ [[H, 1), DIHF)  (wlH,©, JJHF) ([, [[HF)
Al‘i“/ = <#2+HH7 Tﬂ1]|HF> 5H2+v3+wuz+ 0 ) (38)
<:u27 ‘ [H7 Ty ] |HF> 0 5#2,1’2, Dy,

where w,, and w,, equals the orbital energy difference
Wyipj+ = Dgipj— = €4 + €5 — € — €. (39)

The Jacobian differs from the CCSD Jacobian in the doubles—singles and in the doubles—doubles block.

The CC2 eigenvalue problem must be solved iteratively. This requires the ability to carry out linear
transformations with the CC Jacobian. The transformation of the trial vectors may, using a simplified
notation, be expressed as

P Ay Ay Aro- R,
P | = | A1 Az e Ario Ry |. (40)
Pa Ay Axay Az oo Ry

Inserting the expression for the CC2 Jacobian in Eq. (38) into Eq. (40) we obtain
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Glpl = <?(3)|[1§, OR\] +[[H, PR, 1] |HF>, (41)
(i, PR, (@)
(=, <3>R1]|HF>, (43)

3. <+>R2]|HF>, (44)

+)paibj7
7)pai =

_)paibj+ =

)
)
A, ORI ), 47)
)
ab )

7)paibj— =

(
(
=
g = 5 COIF, ORIHF ), (45
0,
(
0,
(

(= )I[F, Ry |HF>.

The explicit forms of the terms are

V.= Z Rc( ac Z tlAlekc> + Z 1 &ikke — Z YRy <E, + Z tflchlckd> - Zga/;kn (50)
7

T okl k cdl

<3)paibj+ ; By (gbjm + &pjar + Ghgui T gbjal) (51)

Oty = (8o~ B s~ ) (52)
=2 ( DR e =D il + 3 RF) : (53)

cdk okl

+)pgibj+ = (Ga —€&+e— ej) RZ{ (54)

+)paihj7 =0, (55)

pu =2 ( Xdk:( R ke — zk; Rig8ren + Z Racﬂc) 5 (56)

Py =0, (57)

. = ( —ata- ) RS, (59)

The transformations with @R, ®R,, and ®)R,_ are done at the same time which gives computational savings

<3)loai,Transformed = Z RC ( ac Z tlkL]dkc> + Z t?zchlkkc Z & Ra (F}ﬂ + Z tzl Llckd)

I okl cdl
Zgakkt + 22 (R + TRY) &uane — ZZ Ry + TR &
cdk ckl

+2Z IR + CIRE) B, (59)
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1= ~ A A A a
(3>paibj+frransformed = EPij (gbjai + 8pjai T &pjai T ghjaz) + (Ea —€&te— E_/)(+)Rij‘})7 (60)
Gy . zl(m_A_w,_er__&,)Jr( —€6+e—¢€) R (61)
pazb}—,Transformed 2 gb_/at gb/az gbjaz gb]az €a € €p €j ij *

The terms @p,,, Jp, and )p,, are identical to the terms in the CCSD model [15]. The Vp,;. and the
() p ;- terms are just doubles amplitudes multiplied with an orbital energy difference. The ®p,;,, and
), terms are calculated by a direct transformation of the AO integrals to the MO basis. For CC2, the
computationally most demanding steps are the calculations of the transformed integrals g, €;ui» a0d & -
In the spin coupled formulation the dominant contribution to the operation count for these transforma-
tions is = 3N*0. In a spin orbital approach the integrals 8y and g7, have to be computed for three
different spin cases (xaco, S and aofff), while the integrals g,,,. with three virtual indeces have to be
computed for four spin cases (oo, BSSS, aofif and ffocn), which leads to an operation count of
~ 17/2N*0. Together with the three spin cases for R, and Painj» this results in an overall increase of op-
eration count, memory and disc space requirements by about a factor of 3.

6. Excitation energies for benzene
6.1. Basis sets

The CC2 basis sets investigation of the triplet excitation energies of benzene are given in Table 1. The
same basis sets were used as in the previous basis set investigation for the singlet excitation energies [13].
The calculations were carried out at the same geometry as in CASPT2 [16] and SOPPA [17] calculations.
The ground state energies are given in Table 1 of Ref. [13] (The MP2-energy for the ANOI1-basis set should
have been —231.634979 Hartree.). In the basis set study we have focused on a systematic extension of
Dunning’s aug-cc-pVDZ basis set. Diffuse functions were added at the center of mass (CM) to describe the
Rydberg states. As diffuse CM functions we have used both the contracted optimized atomic natural orbital
(ANO) center function and systematic sets of s,p,d primitive functions where the CM s,p,d primitive
functions had the following exponents: CM1 (0.01); CM2 (0.01;0.0033); and for CM3 (0.01;0.0033;0.0011).
The effect of adding tight functions was investigated by the CM2(t)-functions which had exponents of
(0.01;0.03) for the primitive s,p,d functions. The largest number of CM functions that we have used were
the uncontracted set from the ANO center function corresponding to the primitive functions suggested by
Kaufmann et al. [18] which are referred to as CMS. After examining the effect of CM functions we have
improved the description of the valence region by replacing the aug-cc-pVDZ basis set with the aug-
cc-pVTZ basis set.

Comparing the results in Table 1 it can be seen that the different CM function expansions give quite
similar results. Going from CM1 to CM2 changes the excitation energies by less than 0.02 eV while going
from CM2 to CM3 has no significant change. Adding more tight CM functions also has very little effect
except for the 2°E,, state where the difference between the CM2(t) and the other basis sets is about 0.05 eV.
Comparing all the CM basis set results we see changes of less than 0.01 eV for most states. A few states
differ by around 0.03 eV while the 2°E,;, state differs by as much as 0.08 eV. A reasonablely accurate
description is obtained keeping two primitive functions in the CM basis.

The effect of improving the description of the valence space is seen by comparing the excitation energies
calculated with the aug-cc-pVDZ-CM2 and the aug-cc-pVTZ-CM2 basis sets. Going from aug-cc-pVDZ-
CM2 to aug-cc-pVTZ-CM2 shifts all the excitation energies less than 0.2 eV. The valence excitation en-
ergies are all shifted down except the 1°E,, state that is shifted up by 0.15 eV. The Rydberg states are
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generally shifted up by 0.14 £ 0.03 eV except for the 2°E,, state which is shifted down by 0.03 eV. The
special behavior of the 2°E,, state is caused by the small energy difference between this state and the valence
1’E,, state leading to a large coupling between these states. The Rydberg state therefore has a large valence
component and vice versa.

6.2. Triplet excitation energies

In Table 2 we compare results obtained using different methods. Experimental results for the three lowest
valence states are obtained from [20] and represent the energies at the Frank—Condon maxima. The ex-
perimental excitation energy for the fourth valence state has been obtained from Lorentzon et al. [16]. The
calculations have all been performed using the ANOI1 basis set [16] except for CC2 where also results are
given for the aug-cc-pVTZ-CM2 basis set. The ANOI basis set is of double-zeta quality. The lower ground
state energy in the ANOI basis set than in the aug-cc-pVDZ set is probably due to a better description of
the core as described in Ref. [13]. This better description however is unimportant for the excitation energies
and the ANOI and the aug-cc-pVDZ-CM2 excitation energies are thus also quite similar. Comparing the
CC2 and the CASPT?2 results differences of less than 0.6 eV are found for the valence states. For the
Rydberg states there are differences of up to 0.3 eV. The differences between CC2 and SOPPA are up to
0.6 eV for the valence states while differences of up to 0.4 eV are found for the Rydberg states.

The difference between the CCS and CC2 excitation energies are between —0.4 and 1.0 eV. For CC2 and
CCSD the differences are between —0.4 and 0.2 eV. Generally the CC2 excitation energies for the valence
states are closer to the CCSD excitation energies than the CCS results while for the Rydberg excitation
energies the CCS results are the ones closest to the CCSD results. For all but the 1°E,, excitation energies
the correction from CCS to CC2 and from CC2 to CCSD is in opposite directions.

It is difficult to make more definite statements about the relative performance of the various models from
a comparison with experiments since the basis set error is still significant and geometry and vibrational
effects have not been considered. Consideration of geometry relaxation and zero-point energy will in
general lead to smaller excitation energies.

The percent single excitation component %7; in the CCSD excitation vector in the ANO1 basis calcu-
lation is also given in Table 2. The triplet excitation energies usually have larger %7 than the corresponding
singlet excitation energies due to the fact that the double excitations that often give large contributions to
the singlet states are the double excitations from one orbital to another and these double excitations have
no triplet component. From Table 2 it can be seen that the lowest percent single excitation in the CCSD
triplet excitation energies is 97.9% which should be compared to 85% for the corresponding singlet exci-
tation energies, see Table 6 of Ref. [19]. The stronger single excitation dominance in the triplet excitation
energies means that the triplet excitation energies are expected to be described at least as accurately as the
corresponding singlet excitation energies.

7. Conclusion

In this Letter we have presented a direct atomic integral driven implementation of CC2 triplet excitation
energies using an explicit triplet spin coupled excitation space. We have carried out a basis set investigation
for the triplet excitation energies of benzene with basis sets containing up to 432 basis functions. As ex-
pected the Rydberg states requires diffuse basis functions. In accordance with a previous basis set inves-
tigation on the singlet excitation energies we found that primitive CM functions were as good as CM
functions constructed from elaborate contraction schemes with several primitive basis functions. The basis
set saturation for the Rydberg states using CM functions was fast and much more efficient than adding
atom centered diffuse functions. In order to estimate basis set saturation of the valence space we have
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compared results from the basis sets aug-cc-pVDZ-CM2 and aug-cc-pVTZ-CM2. It was found that the
lowest triplet valence excitation energies generally changed by less than 0.1 eV while the excitation energies
for the Rydberg states generally increased by approximately 0.14 eV. To make more conclusive statements
of the accuracy that can be obtained for triplet excitation energies using the CC2 model more extensive
work is required i.e., comparing the results in the CCS, CC2, CCSD, CC3 hierarchy with full configuration
interaction (FCI) results. Work in this direction is in progress.
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