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Lorenzo Ugo Ancarani

Universit�e de Lorraine, CNRS, LPCT, Metz, France

Vincenzo Aquilanti

Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
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Preface

This volume of Advances in Quantum Chemistry comprises 15 invited expert

contributions on the state of the art of molecular electronic structure

computations. Related talks were given at the Molecular Electronic

Structure (MES) international conference, held in Metz, France in 2018

(chaired by L.U. Ancarani, https://mesm.event.univ-lorraine.fr/). About

80 researchers, from all 5 continents, attended the meeting that comprised

30 invited and 14 contributed talks, as well as a poster session.

Financial support is gratefully acknowledged from the Universit�e de

Lorraine, CNRS Groupement de Recherche THEMS and CORREL,

Q-Chem, Ville de Metz, Metz M�etropole, Conseil G�en�eral de la Moselle

and R�egion Grand Est.

We thank all local committee members and Universit�e de Lorraine staff
for making the conference run smoothly, session chairpersons, and last but

not least, all participants for many lively and fruitful discussions throughout

the meeting.

At a reception on 29 august 2018, for delegates of MES in Metz,

Pr Clemens Roothaan’s 100th birthday was celebrated. He pioneered

molecular electronic structure, influencing so many of us. Sadly, he passed

away on 17 June 2019.

The MES series began in 2012, the first being hosted in Ҫanakkale,
Turkey, by Israfil Guseinov. It is with great regret that we report he passed

away on February 16, 2019 (aged 85), fondly remembered by his many

students.

Subsequent MES meetings were held in 2014 (Amasya, Turkey) and

2016 (Buenos Aires, Argentina).

The scientific themes covered at MES, in 2018, are reflected by the four

sections presented in this volume which opens with the review by Bischoff

on the Multiresolution Analysis, a useful and efficient tool to evaluate

molecular properties.

Section 2 is devoted to mathematical innovations, necessary to unify the

choice of basis sets (Aquilanti et al.), improve convergence rates (Randazzo

and Ancarani), normalize cluster wave functions (Gebremedhin and

Weatherford), and cater for the notorious electron–nuclear cusp (Loos et al.).
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The first contribution presents interrelations between properties of

hypergeometric orthogonal polynomials (the Jacobi ladder), discussing their

use in basis sets for atomic and molecular orbitals. Next, we move on to a

Sturmian approach that innovates on one example of the bases mentioned

in the previous chapter, i.e., the Coulomb Sturmians, extending them to

two-dimensional functions. The muffin-tin orbitals are often used in solids

and leave interstices between the circular sections they make in a plane;

normalizing cluster wave functions in the interstitial region within the

muffin-tin approximation is the subject of the third contribution. This

section closes with a chapter describing how to implement self-consistently

the cusp at the nucleus for electrons in molecular orbitals.

Section 3 presents a highly accurate correlated atom (Ruiz), progress in

Natural Orbital theory (Piris et al.), two different effective potential

approaches (Mendez et al., Staroverov and Ospadov), and Fock-space

correlated NaH (Musial et al.).

The first contribution in this section reports highly accurate atomic

explicitly correlated wave functions for Boron. It is followed by a compre-

hensive study of progress in Natural Orbital density-oriented methods.

Effective potentials are then discussed in two distinct contributions with

numerical approaches. In the first contribution, the validity of effective

potentials when applied to collision theory is tested for atoms and also for

methane, as a molecular example. The second proposes a unified construc-

tion of Fermi, Pauli, and Exchange-Correlation potentials.

Section 4 begins with two correlated excited-state approaches (Coriani

et al. and Faraji et al.), density descriptors are then presented by Etienne

et al., followed by a Quantum Monte Carlo application to surface reactions

(Sharma and Hoggan) and confined H atom (Sarsa et al.).

Two contributions with applications to excited-state correlated wave

functions open this section: the first concerns core excitations in water,

ammonia, and carbon monoxide, while the second treats singlet fission in

suitable organic dimers. The next chapter deals with electron density

descriptors so useful in relation to molecular structure and properties. Next,

we move on to heterogeneous catalysis and use of a QuantumMonte Carlo

approach to model systems (physisorption of H and H2 on clean Pt(111)).

The volume closes with a contribution on the stability of the H atom after

a spatial confinement is removed.

This collection has been arranged from themost fundamental to the most

applied contributions on the two themes, broadly basis sets and electron

correlation, both essential for determining accurate electron densities in

xvi Preface



atoms, molecules, and solids. Many of the properties calculated are highly

sensitive to the bases and to the contribution of electron correlation, modest

in energy amplitude but key to the accurate description of electronic

structure.

To complete this preface, we would like to thank all the authors and also

those who gave their valuable time insightfully refereeing an article for this

volume. Every contribution has helped to build up a snapshot on molecular

electronic structure computations: correlation methods, basis sets and more, with

expert input.

We have taken much pleasure in editing this exciting collection and

hope that it translates to a pleasurable and informative read.

LORENZO UGO ANCARANI AND PHILIP E. HOGGAN

MAY 15, 2019
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CHAPTER ONE

Computing accurate molecular
properties in real space using
multiresolution analysis
Florian A. Bischoff*
Institut f€ur Chemie, Humboldt-Universit€at zu Berlin, Berlin, Germany
*Corresponding author: e-mail address: florian.bischoff@hu-berlin.de
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Abstract

Multiresolution analysis (MRA), and specifically multiwavelets, can be used to compute
properties of molecules accurately with defined error control. The truncation error
induced by using only a finite mathematical basis for the quantum molecular wave
function, which is a major source of inaccuracy in computations, can be controllably
removed with MRA. A large variety of molecular properties can be computed, includ-
ing ground-state properties and excited states, first- and second-order properties

Advances in Quantum Chemistry, Volume 79 # 2019 Elsevier Inc.
ISSN 0065-3276 All rights reserved.
https://doi.org/10.1016/bs.aiq.2019.04.003
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(dipole moments, nuclear gradients, vibrational frequencies) using density functional
theory (pure and hybrid functionals) as well as correlated methods (second-order
perturbation theory and Coupled-Cluster).

1. Introduction

1.1 On the computation of molecular properties
Two challenges have dominated science: finding the basic natural laws that

determine everything and applying these laws to a system of interest in a

complex environment. The basic theory of chemistry, quantum mechanics,

is well-known since the early 20th century. Applying quantum mechanics

on a chemical system is called quantum chemistry.While the laws governing

themotion of a single particle are understood, the application of these laws in

a complex environment such as a molecule are unsolved. Quantum chem-

istry thus deals with the development of approximate theories to describe the

motion of particles in a molecular system and the application of these

methods in chemical problem settings.1

Chemical structure and reactivity always involve many interacting par-

ticles but many-particle problems are not solvable analytically in general.

Single-particle problems are numerically tractable, so a common theme in

quantum chemistry is to reduce many-particle systems to approximate

effective one-particle or few-particle systems. This reduction in complexity

is called the quantum chemical model and it includes models like Hartree–
Fock (HF), density functional theory (DFT), or correlated methods such as

many-body perturbation theory or the Coupled-Cluster ansatz.

In addition to the approximations in the chosen model, the model’s

working equations cannot be solved analytically in general, so that they must

be discretized in a suitable way and solved numerically. Depending on the

chemical system a suitable discretization can be chosen in real space, in

momentum space, or in any other representation. In molecules a set of

atom-based Gaussian basis functions is typically used, in solid state chemistry

plane waves form an appropriate basis.

After having chosen a model and a basis, the wave function of a chemical

system can be computed. The wave function determines the energy of the

system but also other properties such as dipole moments, polarizabilities,

excitation energies, nuclear gradients, NMR chemical shifts, and many

more. Often a derivative technique is used, i.e., the response of the molec-

ular energy to a certain physical quantity determines the corresponding

4 Florian A. Bischoff



property.2 For instance, the dipole moment can be computed as the deriv-

ative (response) of the energy with respect to an external electric field. Even

if the wave function is known computing related properties can be very

expensive because the wave function is only approximate and artifacts

(e.g., Pulay forces) may emerge.3,4

The accuracy of the computed properties critically hinges on both the

model and the basis. Some properties are more sensitive to the basis set than

others. Even if the energy may be essentially converged for a given quantum

chemical model, these properties may not be accurately reproduced, because

functions might be missing in the basis set that contribute to the property but

not to the energy (e.g., diffuse functions for excited states). Furthermore

there is an interplay between model and basis: the basis set requirements

are in general higher for many-body methods than for effective one-particle

methods.

1.2 Expanding the molecular wavefunction in a basis
1.2.1 Atoms and diatomics
In atoms and diatomic molecules separable coordinate systems may be

used, enabling the computation of the wave function directly on a numer-

ical grid. The computational load is reduced to the solution of an effective

one- or two-dimensional Schr€odinger equation.5 These calculations can

be very precise and may serve as benchmark calculations. The basis func-

tions are chosen as χð r!Þ¼RðrÞYlmðθ,ϕÞ, with the angular part being

described by spherical harmonics Ylm(θ, ϕ). The radial part may be repre-

sented directly on a grid, by finite elements, by B-splines, or by any other

suitable method.5,6

1.2.2 Atom-centered basis functions for molecules
In molecular quantum chemistry no separable coordinate system is available

and the equations cannot be factorized. The approach that is typically used

is called linear combination of atomic orbitals (LCAO), where a set of

functions of the form χð r!Þ¼RðrÞYlmðθ,ϕÞ is placed on the atoms of the

molecule, with r, θ and ϕ being spherical coordinates with a given atom

as origin. As in the atomic case, the angular functions Ylm(θ, ϕ) are spherical
harmonics, the radial part may be chosen in different ways, e.g., as Slater

function, as Gaussian function,7 or as numerical basis. Gaussian basis func-

tions are by far the most common choice due to their computational

simplicity (in particular with respect to integral evaluation8) and for their

5Computing accurate molecular properties



fast, initial convergence to the basis limit and few Gaussians suffice to get

reasonable results for molecular properties. Optimized Gaussian basis sets

are available for the whole periodic table and are, in fact, the workhorse

of molecular quantum chemistry.9 However, after the fast initial conver-

gence they tend to converge slowly to the basis set limit in particular in

post-HF methods.10 The atom-centeredness leads to the basis set superpo-

sition error (BSSE), which overbinds intermolecular complexes.11,12 The

decay of the function is too fast for representing anions or excited states

properly and severe, unbalanced errors may occur. Adding diffuse functions

might lead to overcompleteness and linear dependencies. In general, since

the basis sets are optimized and predefined, a high degree of arbitrariness

is left and hard to avoid in chemical problem settings.

1.2.3 Plane waves in the solid state
Plane waves can be seen as a grid basis in momentum space, motivated by

Bloch’s theorem.13 As such they extend over thewhole real space and are thus

particularly suited for periodic boundary conditions in solid state calculations.

Plane wave basis sets can be systematically completed without the danger of

overcompleteness. The convergence is fast for one-particle methods and for

many-body methods truncation schemes can be employed.14,15 A drawback

of planewaves is the inability to represent sharp features such as interelectronic

or electron–nuclear cusps in the wave function but it can be alleviated by the

use of sophisticated pseudopotentials.16,17

1.2.4 Real-space methods for high precision
Real-space grid methods have been used in quantum chemistry primarily for

computing reference values for small systems, such as atoms or diatomic

molecules.18,19 Small polyatomic systems have also been investigated.20–22

While these methods can be very precise for small (in particular low-

dimensional) systems, they are expensive to apply on larger molecules

because the number of grid points increases quickly. More efficient are

finite element methods, where space is divided into connected polyhedral

subregions or elements, with the basis functions defined only inside the

elements.23,24 In the context of density functional theory they are applica-

ble also to large systems. A related method uses wavelets as basis functions,

which have a high convergence rate with respect to the polynomial

order.25,26 Recently methods using low-rank tensor approximations have

been developed that can handle the exponential increase of grid points in

an efficient manner.27

6 Florian A. Bischoff



1.2.5 Multiresolution analysis in chemistry and physics
In this review, a novel method for representing the wave function called

multiresolution analysis (MRA) will be discussed. MRA is based on wavelet

analysis, known from signal processing,28 and was introduced as a basis into

quantum chemistry in 2004 for HF and DFT.29 Since 2012 MRA was also

used for many-body methods, such as second-order perturbation theory

(MP2) or Coupled-Cluster, which are computationally very demanding

and require special numerical techniques to become tractable.30–33Wavelets

have the advantages of adaptiveness, completeness without the danger of

overcompleteness, low-scaling behavior, and guaranteed precision. On

the other hand, they are more affected when the quantum chemical model

is changed from effective one-particle to many-particle, which entails an

increase of the dimensions from 3 to 6 or more. This behavior has been

called the “curse of dimensions”34 and it means that the effort to solve a sys-

tem of sizeN increases exponentially asNdwith the number of dimensions d.

For effective one-particle methods the dimension d¼ 3 is still feasible but for

post-HF methods d¼ 6 requires special techniques as described in this work

to handle the computational efforts.30,35–37

It will be shown that MRA is a versatile tool in quantum chemistry, it can

be combined with the usual quantum chemical models (HF, DFT, and cor-

relation methods) and it can reliably compute molecular properties. The

MRA algorithms are fast in the sense that, despite having a relatively large pre-

factor, they show low scalingwith respect to the system size and can eventually

surpass the efficiency of conventional methods.38 MRA can be used for time-

dependent and time-independent molecular properties, first or higher order

properties and in combination with effective one- and many-particle models.

This chapter will present the wavelet formalism as employed in MRA in

Section 2, with a brief discussion of its generalization to higher dimensions.

Its application in quantum chemistry will be presented in Section 3, includ-

ing the translation of the commonly used LCAOmatrix equations into their

first-quantized counterpart and with special emphasis on the numerical

implications of singularities in the working equations. Finally application

examples will be given in Section 4, concluded by an outlook.

2. General wavelet formalism in higher dimensions

2.1 Wavelet formalism in one dimension
The mathematical foundations of wavelets as a basis for solving differential

equations were laid out in Refs. 39–41, to which we refer for an in-depth
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discussion. The basic idea is that the spaceR can be represented in a basis of

repeatedly subdivided intervals (or boxes in higher dimensions), filled with

polynomials of orders 0,1,…,k�1.

An example for the expansion of an arbitrary function is the Haar scaling

function corresponding to polynomial order k ¼ 1.42 A Haar scaling func-

tion, which forms the basis for the expansion, is a normalized box function.

Finer scales lead to narrower boxes, with 2n boxes on the scale n,

approaching a representation with arbitrary precision with increasing num-

ber of subdivisions n. The Haar scaling function averages over the function

values in a given interval. Fig. 1 shows a Slater function represented using

Haar scaling functions, with increasing refinements. The poor representa-

tion with small refinements and convergence to the exact representation

of the exponential (Slater) function can be clearly seen. Fig. 2 shows the

Haar scaling functions for scales n¼ 0, 1, 2 with their respective translations.

Generalizing the Haar example, given a function f(x) in the interval

[0, 1], its representation fn(x) is given by

f ðxÞ� f nðxÞ¼
Xk�1

i¼0

X2n�1

l¼0

snilφ
n
ilðxÞ: (1)

If an interval other than [0, 1] is required, a suitable linear transformation

may be performed. The expansion coefficients snil and the scaling functions

φn
ilðxÞ depend on a translational index l, a polynomial index i, and a scale

index n. The coefficients snil are computed as the inner product of the scaling

function and the trial function f(x)

f xð Þ�
X
il

jφn
iliφn

iljf , (2)

snil ¼hφn
iljf i¼

Z 1

0

φn
ilðxÞf ðxÞdx: (3)

The scaling functions φn
ilðxÞ are derived from the so-called mother scaling

function (or “father wavelet”) φi(x) by scaling and translating

φn
ilðxÞ¼ 2n=2φið2nx� lÞ: (4)

For the functional form of the mother scaling function φi(x) several options

exist, in the current work it is the Legendre polynomial Pi(x),
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Fig. 1 Haar representation of a Slater function. From left to right: refinement scales n¼ 2, 4, 6, 8, corresponding to 4, 16, 64, and 256 intervals,
respectively.



φiðxÞ¼
ffiffiffiffiffiffiffiffiffiffiffi
2i+1

p
Pið2x�1Þ, x2 ð0,1Þ

0 otherwise

(
(5)

but the Lagrange interpolating function is also in use39,43

ϕiðxÞ¼
ffiffiffiffi
wi

p Xk�1

i

φiðxiÞφiðxÞ, (6)

where wi and xi are quadrature weights and roots of the Gauss-Legendre

quadrature, respectively.

The error of the representation depends on the regularity of the trial

function. The convergence rate of the representation is40

jj f nðxÞ� f ðxÞjj � 2�nk 2

4kk!
sup

x2½0,1�
j f ðkÞðxÞj (7)

Fig. 2 From left to right: The Haar scaling function on levels (scales) n ¼ 0, 1, 2 with the
respective translations l ¼ 0, l ¼ 0, 1, and l ¼ 0, 1, 2, 3.
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where it is assumed that the function f is k times continuously differentiable

in the interval: f 2 Ck[0, 1]. In Table 1 the L2 error is given with respect to

the scaling function space Vk
n for a Gaussian function expð�3ðx� ffiffiffi

2
p

=2Þ2Þ
and a Slater function expð�3jx� ffiffiffi

2
p

=2jÞ. While the smooth Gaussian

function can be represented accurately and the error decreases quickly with

n or k, the error for the Slater function converges quite slowly with increas-

ing n or k, since the function has a nondifferentiable cusp which cannot be

represented accurately (see also Section 2.2).

Although theMRA representation of the Slater function in the first panel

of Fig. 1 is not very faithful in a point-wise sense, it does integrate to the

correct value. Furthermore, a polynomial basis of order k reproduces the

first k moments correctly

Z 1

0

f ðxÞ� f nðxÞð Þxi dx¼ 0 for i¼ 0,1,2,…,k�1: (8)

This is true for both the Legendre polynomial basis as well as the interpo-

lating polynomial basis. For each interval l ¼ [lo, hi] let P be the projection

on the polynomials of order up to k� 1 andQ the projection of the orthog-

onal complement, with 1 ¼ P +Q. The error in the moments expression is

X
l

Z hi

lo

ðP +QÞðf ðxÞÞ�Pðf ðxÞÞð Þxi dx¼
X
l

Z hi

lo

Qðf ðxÞÞxi dx¼ 0, (9)

with f n(x) ¼ Pf(x) for a given interval l. Since P projects onto a closed

subspace, the projection onto the complement Q is orthogonal to the first

k moments xk and vanishes in all intervals l.

Table 1 L2 error in the wavelet representation for selected polynomial
orders k and subdivisions n corresponding to the space Vk

n.
n k Gaussian Slater

2 4 5.2 � 10�5 8.8 � 10�3

2 6 1.9 � 10�7 3.7 � 10�3

2 8 1.2 � 10�8 2.6 � 10�3

3 4 3.3 � 10�6 3.2 � 10�3

3 6 3.1 � 10�9 1.8 � 10�3

3 8 2.2 � 10�12 1.3 � 10�3
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2.2 Adaptiveness and tree structure
For an accurate representation of a function it is often sufficient to keep some

sum coefficients at coarse levels and refine only locally where necessary. Fig. 3

shows a Slater function, its MRA representation and the point-wise errors on

various refinement levels. The precision threshold is set to 10�4, local refine-

ment is triggered if the point-wise error exceeds this threshold. It can be seen

that the shoulder to the left is well represented even on the n¼ 1 refinement

level, while the representation of the cusp locally needs much higher refine-

ments, up to n ¼ 8.

The local refinement reduces the point-wise and L2 errors but increases

the number of coefficients only marginally from 12 to 18, 24, and 42 in this

example, while for global, homogeneous refinement the number would

increase to 2nk ¼ 1536 for n ¼ 8 to achieve a comparable precision.

The MRA function can be depicted as a tree, with the nodes being the

subdivided intervals (boxes) holding the polynomials. Fig. 4 shows the tree

structure of the MRA representation of the Slater function of Fig. 3C.

A B

C D

Fig. 3 Slater function and its MRA representation (k ¼ 6) with various local refinement
depths. The insets show the point-wise errors of the MRA representation on a logarithmic
scale. (A) Max level n¼ 1, L2 error¼ 1.6� 10�2; (B) Max level n¼ 2, L2 error¼ 3.7� 10�3;
(C) Max level n ¼ 3, L2 error ¼ 1.8 � 10�3; (D) Max level n ¼ 8, L2 error ¼ 1.9 � 10�6.
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In the current representation the internal nodes (those with “child” nodes in

higher scales) are empty, while the scaling functions are defined only in the

leaf nodes (those without further children).

2.3 Wavelets and the two-scale relations
So far the MRA representation consists of the scaling functions on a given

level and translation, such that the whole domain of the original function is

covered. With increasing refinements the MRA scheme will represent the

input function to arbitrary precision.

A formal way of expressing the completeness is to define the space Vk
n

of the scaling functions f as39

Vk
n ¼ff : the restriction of f to the interval ð2�nl,2�nðl+1ÞÞ is a polynomial

of degree less than k, for l¼ 0,…,2n�1, and f vanishes elsewhereg:
(10)

Note that at this point we leave the functional form of the scaling functions

f open. They can be chosen first, which will determine the wavelets

(see below), or certain properties of the wavelets may determine the scaling

functions. The first approach is better suited for our purposes, even though

the latter was used in the original papers.

The spaces Vk
n form a sequence converging to completeness

Vk
0�Vk

1�Vk
2�⋯�Vk

n �⋯ : (11)

0–0

1–0 1–1

2–2 2–3

3–4 3–5

Fig. 4 Tree structure of the MRA representation of the function in Fig. 3C and
corresponding intervals. The notation in the nodes is n � l, with n the refinement scale
and l the translational index.
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Furthermore we can define the orthogonal complement to Vk
n, called

the wavelet space Wk
n

Vk
n�Wk

n¼Vk
n+1: (12)

Adding the orthogonal complementWk
n to a given scaling function basisV

k
n

corresponds to subdividing the interval by two. By repeatedly subdividing

the interval, any function space Vk
n can thus be written as

Vk
n¼Vk

0�Wk
0�Wk

1�⋯�Wk
n�1, (13)

starting from the full interval. The functions that subdivide the interval are

called wavelets ψn
klðxÞ and they form an orthonormal basis in the wavelet

space Wk
n Z 1

0

ψn
ilðxÞψn0

i0l0 ðxÞdx¼ δii0δll0δnn0: (14)

Wavelets are constructed by scaling and translating the mother wavelet

function ψk(x), similar to the mother scaling function in Eq. (4)

ψn
ilðxÞ¼ 2n=2ψ ið2nx� lÞ: (15)

By definition, wavelets are orthogonal to the space of scaling functions,

implying the first k moments vanish

Z 1

0

ψ iðxÞxjdx, ¼ 0 for i, j¼ 0,1,…,k�1: (16)

This property plays an important role in the construction of integral oper-

ators in a wavelet basis. By virtue of the vanishing moments it is guaranteed

that the nonlocal integral operator becomes effectively sparse (nearly diag-

onal) and can therefore be applied very efficiently.

The properties of wavelets can again be best illustrated using the

Haar wavelets.42 The Haar scaling function φ0
00ðxÞ is a constant function

(i.e., k ¼ 1) defined on the interval [0, 1]

φ0
00ðxÞ¼

1, for 0< x< 1

0 otherwise

�
(17)
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The corresponding wavelet function ψ0
00ðxÞ is defined as

ψ0
00ðxÞ¼

1, for 0< x<
1

2

�1 for
1

2
< x< 1

0 otherwise

8>>><
>>>:

(18)

Linear combination of the scaling function on level 0 and its wavelet

generates the scaling functions on level 1

φ1
00ðxÞ¼

1ffiffiffi
2

p φ0
00ðxÞ+ψ0

00ðxÞ
� �

(19)

φ1
01ðxÞ¼

1ffiffiffi
2

p φ0
00ðxÞ�ψ0

00ðxÞ
� �

(20)

The prefactor 1ffiffi
2

p ensures that the scaling functions on level 1 are still normal-

ized. Fig. 5 shows the scaling functions and the wavelets for the Haar basis.

Scaling functions on a scale n can be represented by the scaling function

on level n ¼ 0, the so-called mother scaling function and wavelets on all

levels from 0 to n � 1. A trial function can therefore be represented either

by the scaling function coefficients (or sum coefficients) snil of Eq. (3), called

the reconstructed state, or by the coefficients s0k0 of the mother scaling

function and the coefficients of the wavelets (or difference) coefficients

dnil, called the compressed state. Both representations are equivalent and

Fig. 5 From left to right: The Haar scaling function ϕ0
00, the Haar wavelet ψ0

00, the linear
combination 1ffiffi

2
p ϕ0

00 +ψ0
00

� �
, which is identical to the scaling function on level 1 ϕ1

00.
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can be transformed into each other losslessly by using the two-scale relations

or quadrature mirror coefficients (QMF) h and g. Transforming higher scale

scaling function coefficients into lower scale scaling function coefficients

and wavelet coefficients (compression) reads as39

snil ¼
X
j

h
ð0Þ
ij sn+1

j,2l + h
ð1Þ
ij sn+1

j,2l +1

� �
, (21)

dnil ¼
X
j

g
ð0Þ
ij sn+1

j,2l + g
ð1Þ
ij sn+1

j,2l +1

� �
, (22)

and the reverse step, transforming scaling function and wavelet coefficients

into higher scale scaling function coefficients reads as

sn+1
i,2l ¼

X
j

h
ð0Þ
ji snjl + g

ð0Þ
ji dnjl

� �
, (23)

sn+1
i,2l +1¼

X
j

h
ð1Þ
ji snjl + g

ð1Þ
ji dnjl

� �
(24)

After compression, the tree structure of Fig. 4 has sum coefficients at the root

node (level n¼ 0) and difference coefficients at all internal nodes, with all leaf

nodes being empty. Extra leaf boxes can be constructed by taking the sum

coefficients of the current leaf boxes, assuming vanishing difference coeffi-

cients and using the two-scale relations as for the reconstruction step.

In practical implementations the sum coefficients at level n + 1 are

collected into a vector ðsn+1
2l ,sn+1

2l +1ÞT , which can be converted into sum

and difference coefficients ðsnl ,dn
l ÞT by a matrix multiplication with the

orthogonal matrix U

U¼ hð0Þ hð1Þ

gð0Þ gð1Þ

 !
, (25)

to yield

snl

dn
l

� 	
¼ hð0Þ hð1Þ

gð0Þ gð1Þ

 !
sn+1
2l

sn+1
2l +1

 !
: (26)

which is Eqs. (21) and (22) in compact form. This operation is called

filtering. The reverse operation, unfiltering, is given by the transpose of U

sn+1
2l

sn+1
2l +1

 !
¼ hð0Þ hð1Þ

gð0Þ gð1Þ

 !T
snl

dn
l

� 	
, (27)
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which summarizes Eqs. (23) and (24). The matrix elements of h and g depend

on the polynomial order k and they are universal for a given scaling function,

e.g., Legendre polynomials, or interpolating polynomials. They can be pre-

computed and stored. Comparing Eqs. (19) and (20) with Eqs. (23) and (24)

one can see that the filter coefficients of the Haar wavelets are given by

U¼ 1ffiffiffi
2

p 1 1

�1 1

� 	
: (28)

An explicit derivation for higher polynomial orders is given in Ref. 39.

The representation error on an interval is given by39

jjf n+1� f njj2¼ jjdnl jj2: (29)

To maintain a global precision E of the MRA representation, i.e.,

jjf n+1� f njj2� Ejjf n+1jj2 (30)

all nodes with wavelet coefficient norm

jjdnl jj2� 2�n=2jjf n+1jjE (31)

may be removed from the tree. In practical calculations often the less

restrictive criterion

jjdnl jj2< E (32)

proved to yield satisfactory results for sufficiently regular functions.

2.4 Arithmetic operations in one dimension
Given an MRA representation f n and gn of functions f and g, respectively,

several arithmetic operations are possible.

2.4.1 Inner product
The inner product is given by

hf jgi¼
Z 1

0

dx f ðxÞgðxÞ¼
X
i

s0i0ðf Þs0i0ðgÞ+
X
nil

dnilðf ÞdnilðgÞ, (33)

where it is understood that if the tree structures of f n and gn do not agree,

coefficients of missing boxes are treated as zeros. Alternatively, the norm

can also be computed in the reconstructed state as

hf jgi¼
X
nil

snilðf ÞsnilðgÞ, (34)
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where the tree structures must be refined to match. The L2 norm of a single

function is computed accordingly.

2.4.2 Addition
Two functions f and g can be added to yield h by adding their coefficients in

compressed form

s0i0ðhÞ¼ s0i0ðf Þ+ s0i0ðgÞ, (35)

dnilðhÞ¼ dnilðf Þ+ dnilðgÞ: (36)

Addition in reconstructed form is also possible, if the tree structures match

snilðhÞ¼ snilðf Þ+ snilðgÞ: (37)

2.4.3 Differentiation
Formally we project the (unknown) derivative of the function f onto the

scaling function basis and perform integration by parts to get an expression

which depends on the function f itself

d

dx
f ðxÞ�

X
nil

jφn
ili φn

ilj
d

dx
f


 �
, (38)

snil ¼ φn
ilj

d

dx
f


 �
¼ f ðxÞφn

ilðxÞjxl+1

xl
�
Z xl+1

xl

dxf ðxÞ d
dx

φn
ilðxÞ: (39)

Inserting the MRA representation of f into the expression yields transition

matrices r for the transformation of the scaling function coefficients of the

trial function f to the scaling function coefficients of its derivative

φn
ilj

d

dx
f


 �
¼
X
i0l0

sni0l0 φn
i0l0 ðxlÞφn

ilðxlÞ�φn
i0l0 ðxl+1Þφn

ilðxl +1Þ
� 
�

�
Z xl+1

xl

dx φn
i0l0 ðxÞ

d

dx
φn
ilðxÞ

�

¼
X
i0l0

sni0l0 ri0i, l0l

(40)

The second term in curly brackets in Eq. (40) can be evaluated straightfor-

wardly and will vanish unless l ¼ l0Z xl+1

xl

dxφn
i0l0 ðxÞ

d

dx
φn
ilðxÞ ¼Kii0δll0 (41)
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The first term in curly brackets in Eq. (40) requires the evaluation of the

scaling functions at their boundaries. This term will introduce additional

contributions to the derivative from the neighboring boxes (for details of

the derivation see Ref. 39). The function values can be approximated as

weighted contributions from the left and the right of the boundary, so that

only three matrices r will be left, for the central box r0 and its left and right

neighbors r	1, effectively eliminating the indices l and l0 in Eq. (40)

½r1�ii0 ¼�bφið0Þφi0 ð1Þ, (42)

½r0�ii0 ¼ ð1� aÞφið1Þφi0 ð1Þ�ð1� bÞφið0Þφi0 ð0Þ�Kii0 (43)

½r�1�ii0 ¼ aφið1Þφi0 ð0Þ (44)

The weighting parameters a and b can be chosen freely, however, if they are

set to a¼ b¼ 1
2
, the approximation error is minimized. If both parameters are

set to zero all contributions from the neighboring boxes vanish. This can be

advantageous if the function f has discontinuities or cusps, because these

features can cause artefactual long-range oscillations in the derivative. In

general, function derivatives are numerically less stable and should be

avoided if possible. Integrals and inner products of derivatives are usually

stable. The algorithm for taking the derivatives of a function is to reconstruct

theMRA tree, loop over all leaf boxes and apply the rmatrices on the neigh-

bor boxes. The result will be the derivative of the input function in

reconstructed form.

2.4.4 Point-wise multiplication
Unlike addition, the point-wise multiplication is not closed in the fixed-k

MRA formulation. Consider the functions f(x) ¼ x and g(x) ¼ x, both

of which will be represented exactly in MRA with polynomials k ¼ 2

(i.e., constant and linear terms). The product h(x) ¼ f(x)g(x) ¼ x2 cannot

be represented exactly with k ¼ 2, irrespective of the refinement level.

Assuming both input functions are of the same order k, the product function

will need a polynomial order of 2k � 1.

Assuming that the result function will be represented accurately enough

on the joint MRA structures of the input functions, the multiplication is

performed in reconstructed form by converting the sum coefficients into

function values f(xi) and g(xi) of the Gauss-Legendre quadrature points xi,

point-wise multiplication on these points, and back-transformation into

sum coefficients of the result function
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f ðxjÞ¼
X
i

snilðf Þφn
ilðxjÞ, (45)

gðxjÞ¼
X
i

snilðgÞφn
ilðxjÞ, (46)

hðxjÞ¼ f ðxjÞgðxjÞ, (47)

snilðhÞ¼
X
j

wjhðxjÞ, (48)

where the last line is the Gauss-Legendre quadrature of the integral of

Eq. (3), with wj being the quadrature weights. Typically the number of

quadrature points is chosen to be k but any other (larger) number is also

possible. If the result function is not represented accurately in the given

MRA tree, local refinement may be triggered to reduce the error.

2.4.5 Integral operator application
An integral operator T can be applied on a function g as

f ðxÞ¼
Z

dx0Tðx�x0Þgðx0Þ: (49)

Formally this operation can be seen as a multiplication with a two-

dimensional function and followed by an inner product over one dimension.

Inserting the MRA expansion for g and projecting on the scaling function

basis ϕ(x) to compute the expansion coefficients for f yields

snilðf Þ¼
X
n0i0l0

hϕn
ilðxÞjTðx�x0Þjϕn0

i0l0 ðx0Þisn0i0l0 ðgÞ, (50)

where the brackets are understood to integrate over x and x0. Thus the
expansion coefficients snil of the result function f will depend on all scales n0,
translations l0 and polynomials i0 of the leaf nodes of the input function g.

Depending on the functional form of T(x, x0), its projection on the

scaling function basis might require different refinement depths for the

two dimensions. The so-called standard form uses a direct product given by

Tðx,x0Þ ¼
Xn
il

Xn0
i0l0

ϕn
ilðxÞϕn0

i0l0 ðx0Þsnn0ii0ll0 , (51)

where n and n0 may differ, leading to a coupling of different scales because

of the appearance of rectangular basis intervals (boxes). In contrast, the

nonstandard form requires n ¼ n0 to be identical, leading to square boxes.
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While the standard form seems more efficient because fewer boxes and thus

coefficients are required, the coupling of scales leads to less efficient

algorithms for the operator application.41 Using the two-scale relations of

Eqs. (23) and (24) the standard form may always be converted into the

nonstandard form by additional subdivisions. In the following we will

restrict the discussion to the nonstandard form.

Assume that a scale n is sufficient for the representation of the input

and result functions g and f, respectively, as well as the operator T itself.

The operator Tn ¼ PnTPn transforms the input into the result function

within the precision thresholds. Using the projectors Pn and Qn onto the

scaling function and wavelet spaces Vk
n and Wk

n, respectively, and using

Pn ¼ Pn�1 + Qn�1, we write

Tn¼PnTPn

¼ Pn�1 +Qn�1
� �

T Pn�1 +Qn�1
� �

¼Pn�1TPn�1 +Qn�1TPn�1 +Pn�1TQn�1 +Qn�1TQn�1:

(52)

Repeated insertions yield a telescopic series

Tn ¼T0 +
Xn�1

i

Ai +Bi +Ci
� �

, (53)

with

Ai¼QiTQi, (54)

Bi¼QiTPi, (55)

Ci¼PiTQi: (56)

The operator now acts on all scales on the sum and difference coefficients

of the function g. To apply the operator, the function tree of g of Fig. 4

needs to be completely filled with sum and difference coefficients. The

operator acts on each function node of g and creates result function nodes

on the same scale i.

The matrix elements r of the operator T are given in the scaling function

basis by (see Appendix of Ref. 29)

rnll0, ii0 ¼
Z

dxφn
i0l0 ðxÞTðxÞφn

ilðxÞ, (57)
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and the matrix elements α, β, and γ of the matricesA,B, andC, respectively,

are constructed using the two-scale relations and the matrix elements of a

level below

rn�1
ll0 γn�1

ll0

βn�1
ll0 αn�1

ll0

 !
¼ hð0Þ gð0Þ

hð1Þ gð1Þ

 !T
rn2l,2l0 rn2l,2l0 +1

rn2l +1,2l0 rn2l +1,2l0 +1

 !
hð0Þ gð0Þ

hð1Þ gð1Þ

 !
(58)

Note that all matrix elements in this equation are understood as matrices

with respect to the polynomial order k.

Using the nonstandard form for the integral kernel, the operator applica-

tion consists of three steps: First, project the input function g onto its scaling

function andwavelet basis on all internal nodes using the two-scale relations of

Eq. (25). Second, apply on all nodes to all scales of the input function the oper-

ator tensors of the left hand side of Eq. (58), excluding rnll0 on all levels but

including it at the root level n ¼ 0. This yields a temporary result function
~f , which has sum and difference coefficients on all scales

snl ð~f Þ
dn
l ð~f Þ

 !
¼
X
l0

rnll0 γnll0

βnll0 αn
ll0

� 	
snl0 ðgÞ
dn
l0 ðgÞ

� 	
: (59)

Third, sum all coefficients of ~f recursively down the tree (performing the

summation of Eq. (53)) to return the result function f in reconstructed form.

Fig. 6 shows the application of an operator on the input function (left) to

yield the output function (right). Formally the operator application scales as

l2, i.e., quadratically with respect to the system size. However, for the most

important operators, namely the Poisson and the bound-state Helmholtz

operator, the matrix elements in nonstandard form of Eq. (58) are isotropic,

they are translationally invariant, i.e., the matrix has a Toeplitz form with

rll0 ! rl�l0 , and they decay quickly away from the diagonal and can thus

be screened efficiently. This grants an effective linear scaling with respect

to the system size and is the key advance in MRA.

The most important operators that have to be applied are the inverse

of the Poisson and the bound-state Helmholtz (BSH) equation. These

equations read as

r2f ðxÞ¼ gðxÞ, (60)

ðr2 + κ2Þf ðxÞ¼ gðxÞ, (61)

respectively. The solution of the Poisson equation is needed to convert a

charge density into a potential, while the BSH equation is the key step in

the inversion of the Schr€odinger equation (see Section 3.1). Both equations
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are solved by a Green’s function approach, i.e., we search for the function

G(x � x0) solving

f ðxÞ ¼
Z

Gðx�x0Þgðx0Þdx0: (62)

The convolution kernels for the Poisson and the BSH equations in 3D

are explicitly given by

Gð r!� r
!0Þ ¼ 1

j r!� r
!0j , (63)

Gð r!� r
!0Þ ¼ e�μj r!� r

!0j

j r!� r
!0j ,

(64)

Input tree Operator

Output tree

0–0

1–0 1–1

2–0 2–1 2–2 2–3

3–2 3–3 3–4 3–5

0–0

1–0 1–1

2–0 2–1 2–2 2–3

3–0 3–1 3–2 3–3 3–4 3–5 3–6

1
2
3 4 5 6

Fig. 6 Operator sparseness of the 1D convolution operator e�x acting on a function
f(x) ¼ e�jx�1/3j. The blue tree to the left is the input tree in nonstandard form, with
the blue vertices indicating sum and difference coefficients, andwhite vertices indicating
empty leaf boxes. The input boxes are passed to the operator in the center generating
output boxes that are filled into the yellow output tree on the right, which is significantly
widened compared to the input tree. The output tree is in a mixed form, the coefficients
need to be summed down to yield a tree in the reconstructed state. The operator is
color-coded, with red and blue indicating an operator norm of 100 and 10�6, respec-
tively. The operator boxes are strictly Toeplitz and the norms decay quickly away from
the diagonal. The operator matrices are sparse due to the sparse input tree (only few
rows are processed), and due to the quick decay of the operator (each input box
contributes only to near neighbors). Application of the operator scales as OðNÞ with
respect to the system size.
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with μ ¼ iκ. The general d-dimensional kernels of the Poisson and BSH

equations are spherically symmetric and translationally invariant, they can

be constructed efficiently using a sum over Gaussian functions.44,45

This approach allows the construction of an efficient operator applica-

tion in higher dimensions since the Gaussians naturally separate. If a

d-dimensional function is represented, its coefficients are given in a tensor

format, e.g., the full format (see below for more details)

si! si1i2…id : (65)

The operator matrices r, α, β, γ are then 2d-dimensional tensors

ri0i ! ri0
1
i1i

0
2
i2…i0

d
id , (66)

and the operator application scales as k2d. Using the Gaussian representation

the operator tensors are linearized to

ri0
1
i1i

0
2
i2…i0

d
id �

XM
m

wmr
m
i0
1
i1
rmi0
2
i2
…rmi0

d
id
, (67)

and the operator application is reduced to Mdk4, where M is the numerical

rank of the operator in its sum representation.

The Poisson and the BSH kernels decay quickly and they can be applied

efficiently on a trial function. Long-range, low-frequency contributions of

the operator are handled by coarser scales, while the short range, high-

frequency contributions are handled by the finer scales. The vanishing

moments property of the wavelets of Eq. (16) also leads to a rapid decay

of the operator norm (see Fig. 6). With k vanishing moments the operator

matrices will decay asymptotically as jl � mj�k�1, with l and m being

translational indices of the input and output functions, respectively.29

2.5 Generalization to many dimensions
The wavelet formalism can be extended in a straightforward manner to few

dimensions but not to many dimensions. If the dimension d is small enough,

say d � 3, the one-dimensional scaling and wavelet functions are combined

to a product

φilðxÞ!φi1l1
ðxÞφi2l2

ðyÞ⋯¼
Y
i

φii li
ðxiÞ, (68)

and the coefficients sil and dil are given as a tensor
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si! si1i2⋯id : (69)

The wavelets and the difference coefficients (and thus the number of

d-dimensional intervals, or boxes) increase as 2d, explicitly written for d ¼ 2

ϕðxÞ+ψðxÞ!ϕðxÞϕðyÞ+ϕðxÞψðxÞ+ψðxÞϕðyÞ+ψðxÞψðyÞ : (70)

Both the data volume of the tensor and the number of refinement boxes

(indexed with the translation index l) increase exponentially with the

dimension, as kd, and as 2d, respectively.

If the dimension d exceeds 3 the tensor product approach quickly

becomes intractable due to the increase in data volume. To keep this increase

under control it is necessary to reduce both the number of boxes and of

the number of coefficients in each box. The former can be achieved by

making the working equations sufficiently regular so that no deep refine-

ment level n is necessary (see Section 3.2.2), the latter by using low-rank

approximations for the coefficient tensors, such as singular value decompo-

sition (SVD), discussed in the following section.

Most of the arithmetic operations described above can be readily gener-

alized to higher dimensions. The inner product of Eq. (33) is computed

in higher dimensions by interpreting the translational and polynomial

indices l and i as a multicomponent index l
!
and i

!

hf jgi¼
X
i
!

s0
i
!
0
ðf Þs0

i
!
0
ðgÞ+

X
n i
!
l
!
dn
i
!
l
! ðf Þdn

i
!
l
!ðgÞ:

(71)

The generalization of the addition and point-wise multiplication is per-

formed in an analogous way. The differentiation separates into the d dimen-

sions, such that for each box all 2d neighboring boxes must be processed;

the actual application of the differentiation operator is straightforward again.

By virtue of the Gaussian representation of their kernels, the convolution

operators also separate into the dimensions and the operation can be applied

in a straightforward manner.

2.6 Low-rank tensor approximations
The number of coefficients in each MRA box is kd, with k the polynomial

order and d the dimension. For a 6d wave function and k ¼ 5 with 100,000

boxes the total memory requirement is approximately 12 GByte of double

precision numbers. To reduce the number of coefficients the full tensor

si1i2⋯id may be rewritten by different approximations
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si1i2⋯id �
XR
r

σr s
r
i1i2⋯id=2

srid=2+ 1⋯id
, (72)

si1i2⋯id �
XR
r

σr s
r
i1
sri2⋯srid , (73)

si1i2⋯id �
XR1,R2,…,Rd�1

r1, r2,⋯rd�1

sr1i1 s
r1r2
i2

⋯srd�1

id
: (74)

The first approximation Eq. (72) is the singular value decomposition (SVD)

which can be applied to a square or rectangular matrix.36 The construction

of the SVD is stable and reasonably fast. If the rank r is truncated at a finite

threshold it is guaranteed that the overall error of the SVD approximation is

less than the truncation threshold. Significant savings in memory can be

achieved, since the numerical rank R is typically small compared to the full

rankR¼ k3. Tensor operations, such as contractions, matrix multiplications,

additions, or norm computations can be derived in this format and are fast.30

The second approximation Eq. (73) is called the separated representation

(SR),37 higher order SVD (HOSVD),46 or parallel factor analysis (parafac).47

Its construction is numerically less stable and very time-consuming. How-

ever, if such a representation is available, as it is the case for the construction

of the Poisson and BSH integral operators, it is the most efficient format

since it reveals most of the low-rank structure.

The third approximation Eq. (74) has been dubbed tensor train (TT),35 it

has a stable construction algorithm (namely a sequence of SVDs), and it

recovers sparsity in the tensor quickly. It is in general more compact than

SVD but algorithms using TT are often less efficient, therefore it is currently

used in MRA only in very few operations.

There are other tensor approximations, such as the Tucker

representation,48 which are not used in this work but have been studied

in the quantum chemical literature.49 Details on the low-rank representa-

tions are beyond the scope of the present review but they are of crucial

importance for the efficiency the high-dimensional algorithms in MRA.

3. Quantum chemistry in real space

3.1 The Schr€odinger equation in first quantization
The Schr€odinger equation of an arbitrary d-dimensional system is an

eigenvalue equation containing kinetic and potential energy terms
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ðT +V Þjψi¼Ejψi: (75)

The potential V can be a physical potential, or an effective one- or many-

body potential as defined in the various quantum chemical models. To solve

for the wave function ψ , the equation is rearranged and inverted to

ðT �EÞjψi¼�V jψi, (76)

jψi¼�ðT �EÞ�1
V jψi: (77)

The potential term V can assume any form, ranging from a local potential to

a nonlocal exchange term in Hartree–Fock, or the fluctuation potential in

correlated methods. For the solution of the inverted Schr€odinger equation
a guess for the wave function ψ is needed, and its solution is obtained

iteratively, even if the actual quantum mechanical equations are not itera-

tive. The efficiency of MRA now relies on the efficient application of

the inverse of the kinetic operatorT. The inverse is an integral operator with

a Green’s function kernel

ðT �EÞ�1
f ðrÞ¼�2GEf ðrÞ¼�2

Z
dr0Gðr� r0,EÞf ðr0Þ : (78)

The Hamilton operator of the molecular Schr€odinger equation reads as

Ĥ ¼
X
i

TðiÞ+
X
i

VnucðiÞ+
X
i<j

gij +
X
AB

ZAZB

rAB
, (79)

where i is the index of the ith electron and gij describes the electron–electron
repulsion. This so-called first-quantized formulation is in contrast to most of

the quantum chemical literature, where the Hamilton operator is given in

the so-called second quantization. In this case, the Schr€odinger equation
is given in matrix form, discretized by the use of a finite computational basis

Ĥ ¼
X
pq

hpqa
{
paq +

1

2

X
pqrs

gpqrsa
{
pa

{
q asar : (80)

Here hpq and gpqrs are matrix elements of the one- and two-particle operators,

respectively, and the creation and annihilation operators a† and a create and

annihilate electrons in the Fock space, e.g., in orbital p. The formulation of

quantum chemistry in second quantization has advantages over first quanti-

zation if a finite basis is used, since working equations may be derived auto-

matically by use of commutator relations between creation and annihilation

operators,50 and the matrix elements in a one-particle basis are easy to
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translate to a linear algebra fashion to be used on a computer. In contrast to

the first-quantized formulation, where the Hamilton operator is inverted by

using the Green’s function approach, in second quantization the Hamilton

matrix is diagonalized.

3.2 Molecular energies and properties in effective one-particle
methods

3.2.1 Hartree–Fock and density functional theory
In the Hartree–Fock model the molecular wave function is approximated as

an antisymmetrized product Φ of one-electron functions ϕ (orbitals). The

wave function is obtained as the set of orbitals that minimize the expectation

value of the Hamilton operator, i.e., the energy. To minimize the energy

a set of effective one-particle equations must be solved, the so-called

Hartree–Fock equations.51 The one-particle Fock operator F is defined as

F ¼T + J�K +Vnuc (81)

with

Tð r!Þ¼�1

2
Δ, (82)

Vnucð r!Þ¼�
X
A

ZA

j r!�R
!

A

j , (83)

Jð r!Þ¼
Z

d r
!0

X
i

jϕiðr 0Þj2

j r!� r
!0j ,

(84)

and the exchange operatorK being defined by its action on a test function f as

Kð r!Þf ð r!Þ¼
X
i

ϕið r!Þ
Z

dr 0
ϕ*
i ð r!0Þf ð r!0Þ
j r!� r

!0j : (85)

The Hartree–Fock procedure in MRA is the solution of the

equations29,52,53

ϕið r!Þ¼�2GEi J�K +Vnucð Þϕið r!Þ, (86)

with the orthonormality condition

hϕijϕji¼ δij : (87)

In practical implementations the Green’s functions GEi are applied on

the corresponding orbitals ϕi(r), followed by an orthogonalization step.
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A subspace solver may be used to accelerate the convergence of this iterative

procedure.54

The scaling of Eq. (86) is quadratic with respect to the system size,

because of the nonlocal exchange operator K and because of the orthogo-

nalization step. If local orbitals are used, the scaling drops to linear because of

the sparsity of the multiplication of functions in MRA, and only few matrix

multiplications remain that scale quadratic. Because the dimensions of these

matrices have only the size of the number of electrons (instead of the number

of basis functions), these operations are very fast.

Modification of Hartree–Fock to density functional theory (DFT) is rel-

atively straightforward. The exchange operator K of the Hartree–Fock the-
ory in Eq. (86) is replaced with the exchange-correlation (XC) potential vXC

of DFT.

F ¼T + J + vXC +Vnuc: (88)

The XC potentials, and the corresponding kernels and functionals, are avail-

able from external libraries.55 The various XC potentials require the elec-

tronic density ρ as input parameters (local density approximation, LDA),

and certain classes also use the density gradients σ (generalized gradient

approximation, GGA) and the kinetic energy density τ (meta-GGA):

ρð r!Þ¼
X
i

ϕið r!Þ
�� ��2, (89)

σð r!Þ¼ r! ρð r!Þ
� �


 r! ρð r!Þ
� �

, (90)

τð r!Þ¼ 1

2

X
i

r! ϕið r!Þ
��� ���2: (91)

Care has to be taken with respect to the numerical properties of the density ρ
and the density gradients σ. Numerical noise in ρ might turn it negative,

and the ratio of σ and ρ, which enters many XC functionals, might become

ill-defined.

3.2.2 Regularization of nuclear singularities
The nuclei in a molecule are usually represented as point charges, introduc-

ing singularities into the Schr€odinger equation. The singularities can make

the MRA scheme fail, since the error in the MRA representations decreases

slowly, the MRA representations might become very verbose, or even the

quadrature might fail if quadrature points fall into the singularity. There are

two basic strategies to handle the singularities: regularize the nuclear
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potential, e.g., through the use of pseudopotentials or by smoothing the

potential, or construct the wave function such that the singularity is canceled

out analytically, as it is done in the explicitly correlated methods.56–58

In the context of MRA, the smoothing strategy was used first for the

nuclear potential in Ref. 29

1

r
� uðr=cÞ=c, (92)

uðrÞ¼ erf ðrÞ
r

+
1

3
ffiffiffi
π

p e�r2 + 16e�4r2
� �

, (93)

with r¼ j r! j. The functional form is chosen such that the expectation

value of the potential is accurate, with the accuracy controlled by the

regularization parameter c.

The second strategy to handle the nuclear singularity is by constructing

an appropriate wave function, inspired by the explicitly correlated methods

in quantum chemistry. The local energy of the Schr€odinger equation

Hψ

ψ
¼E (94)

is finite everywhere, therefore the infinite potential must be canceled by the

only other term in the Schr€odinger equation available, the kinetic energy

operator acting on the wave function. To cancel the potential, the wave

function ψ must have a cusp at the coalescence point, which is determined

by the charge of the interacting particles and the angular symmetry of the

wave function, as discussed by Kato59

V �1

2
r!2

� 	
ψ ¼ f , (95)

where f is a regular function. Kato’s cusp condition may be incorporated

directly into the wave function ansatz via the one-particle basis.60,61 The

same ansatz is applicable not only for the electron–nuclear singularity but

also for the electron–electron singularity in correlated methods. Inclusion

of a termwhich satisfies the cusp condition into the correlated wave function

leads to the so-called explicitly correlated methods.56,62 The regularization

of the electronic singularity in MRA will be discussed in more detail in

Section 3.3.2.

The ansatz for the orbitals in effective one-electron methods, such as

HF or DFT is63
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jϕii¼RjFii: (96)

Following Seelig,61 the regularized orbitals jFii are called “nemo,” which

stands for “numerical exponential molecular orbitals.” The nuclear correla-

tion factor R is valid for all orbitals. It is built up from atomic functions

SA(r12)

R¼
Y
A

SAðr1AÞ: (97)

The functions SA(r1A) depend on the distance r1A of electron 1 to nucleusA,

and contain the nuclear cusp condition such that the singular potential Vnuc

is regularized and replaced by the nonsingular (albeit still discontinuous)

potential Unuc

Unuc ¼Vnuc +R�1 T ,R½ � ¼U
!

1 
 r! +U2, (98)

where U
!

1 and U2 are local potentials, with U
!

1 having the shape of a step

function. The leading term of SA(r) is

SAðrÞ¼ cð1�ZAr1AÞ+Oðr21AÞ (99)

where c is an arbitrary number, defined by the SCF procedure. The SCF

working equations are derived and their solution is discussed in

Section 3.2.1, so here only the regularization is introduced briefly. The

SCF working equations are rewritten as

T + J�K +Vnuc� Eið Þjϕii¼ 0 (100)

R T +R�1½T ,R�+ J�R�1KR+Vnuc� Ei
� �jFii¼ 0 (101)

yielding

T + J�R�1KR+Unuc� Ei
� �jFii¼ 0: (102)

This equation has no singularities anymore, and its solutions jFii accordingly
have no cusps at the nuclei.

The nuclear correlation factor SA may be chosen freely, as long as the

following requirements are fulfilled63

1. The correlation factor must represent the nuclear cusp, and its second

derivative must cancel the singular nuclear potential.

2. In a numerical calculation the correlation factor must not decay faster

than the actual HF or DFT orbitals because otherwise the nemo orbitals
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jFiiwill become numerically ill-defined. The orbitals decay as a function

of the energy of the highest occupied molecular orbital, namely as

e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2EHOMO

p
r .64

3. The regularized potential Unuc must be nonsingular, which is most

easily fulfilled if the SA are finite everywhere since their inverse will

be multiplied with their own first and second derivatives.

The actual choice of the nuclear correlation factor might therefore depend

on additional requirements in the actual application. A generally reasonable

choice is a Slater-type function

Sðr1AÞ¼ 1+
1

a�1
e�aZAr1A (103)

with the correlation length scale a (Fig. 7).

3.2.3 Time-independent properties in HF and DFT
3.2.3.1 First-order properties
Molecular properties are generally computed as derivatives of the energy

expectation value with respect to an external perturbation.2,65 Examples

are the dipole moments which are computed as the derivative of the energy

with respect to an external electric field, or the nuclear gradients as the

derivative with respect to nuclear displacements.

Given the exact solution of the Schr€odinger equation, the first derivative
of the energy expectation value may be computed as follows: The

Hellmann–Feynman theorem3,66 states that the derivative of the expectation

value of the energy equals the partial derivative of the Hamilton operator

dhEi
dX

¼ ∂ψ

∂X
Hj jψ


 �
+ ψ

∂H

∂X

����
����ψ


 �
+ ψ Hj j ∂ψ

∂X


 �
¼ ψ

∂H

∂X

����
����ψ


 �
, (104)
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Fig. 7 Left panel: functional form of the Slater-type nuclear correlation factor S(r1A) of Eq.
(103) for different correlation length scales a; right panel: regularized nuclear potential,
compared to the singular potential ZA/r.
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which holds if the wave function ψ is the exact eigenfunction of the

Hamilton operator H

∂ψ

∂X
Hj jψ


 �
+ ψ Hj j ∂ψ

∂X


 �
¼E

∂

∂X
ψ jψh i¼ 0: (105)

As noted by Coulson67 the Hellmann–Feynman theorem also holds for HF

or DFT wave functions, if the Brillouin theorem is fulfilled exactly, i.e., if

the orbitals are exact eigenfunctions of the Fock operator. In finite basis set

calculations this is in general not fulfilled, since orbitals are only eigenvectors

of the Fock matrix. In contrast the Brillouin condition is met in MRA up to

the requested precision.

Using the simple expression of Eq. (104) a number of first-order prop-

erties may be obtained with the derivative approach. The dipole moments μ
!

and nuclear gradients gXA
of nucleus A with respect to direction X are

μ
!¼ dhEi

dE
! ¼

X
i

hϕij r! jϕii, (106)

gXA
¼ dhEi

dXA

¼
X
i

hϕij
∂V

∂XA

jϕii, (107)

where E
!
is an external electric field, and XA stands for the displacement of

nucleus A in X direction. Nuclear gradients and dipole moments were

implemented early on by Harrison and coworkers in Ref. 68.

3.2.3.2 Second-order properties
Second-order properties can be computed as the second derivative of

the energy with respect to the required quantities. Important examples

are the second nuclear derivatives for computing vibrational frequencies,

i.e., the computation of the nuclear Hessian matrix, which can be obtained

by differentiating Eq. (107) with respect to another nuclear displacementYB
69

d2hEi
dXAdYB

¼
X
i

hϕijHXAYB jϕii+
X
i

hϕYB

i jHXA jϕii+
X
i

hϕijHXA jϕYB

i i, (108)

where superscripts indicate a derivative. The dipole derivatives for computing

the corresponding infrared intensities are given by69–72

d2hEi
dQkdE

!¼ dhμ!i
dQk

¼ 2
X
ij

hϕXj

i j r! jϕiiLjk, (109)
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where Ljk are the vectors of nuclear displacements j for the kth normal mode

Qk. Magnetic second-order properties have been computed by Jensen

et al.,73 specifically the magnetizability ζ and NMR shieldings σ as the

response of the energy with respect to the magnetic field B and the nuclear

magnetic moment MK on nucleus K

ζ¼ d2hEi
dB2

¼
X
i

hϕijHBBjϕii+
X
i

hϕB
i jHBjϕii+

X
i

hϕijHBjϕB
i i, (110)

σK ¼ d2hEi
dMKdB

¼
X
i

hϕijHMK Bjϕii+
X
i

hϕB
i jHMK jϕii+

X
i

hϕijHMK jϕB
i i:

(111)

These types of calculation are often plagued by basis set incompleteness,

manifesting itself in the gauge-origin problem, i.e., the unphysical depen-

dence of the magnetizability on the arbitrarily chosen gauge origin. In

LCAO this problem is handled by using gauge-invariant atomic orbitals

(GIAO).

For second-order properties the response of the orbitals with respect

to the external perturbation is required. Starting from the Hartree–Fock
(or Kohn–Sham) equations, here in noncanonical form,

Fjϕii¼
X
j

Eijjϕji (112)

the derivative to an external perturbation X can be written as

FX jϕii+FjϕX
i i¼

X
j

EXij jϕji+
X
j

EijjϕX
j i: (113)

Superscript X refers to the derivatives of the respective quantities. The

orbital response jϕX
i i to the external perturbation fulfills the orthogonality

condition

hϕX
i jϕji+ hϕijϕX

j i¼ 0, (114)

which can be achieved in linear response theories74 by imposing orthogo-

nality of the orbital response to the orbitals, i.e., the response jϕX
i i must

fulfill the condition

jϕX
i i¼QjϕX

i i, (115)

where the orthogonality projectorQ projects out all contributions from the

occupied space spanned by jϕii
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Q¼ 1�P¼ 1�
X
i

jϕiihϕij: (116)

In contrast to LCAOmethods, where the response orbitals or the correlated

wave function is expressed in virtual orbitals, orthogonal to the occupied

space by construction, in MRA orthogonality must explicitly be enforced.

The unperturbed Fock operator commutes with the orthogonality projector

Q, so rearrangement of Eq. (113) leads to the equation for the orbital

response jϕX
i i

T̂ � Ei
� �jϕX

i i¼�QFX jϕii� J�K +Vnucð ÞjϕX
i i+

X
j 6¼i

EijjϕX
j i: (117)

The structure of this nonlinear equation is similar to the SCF equations and

can be solved in the same manner using the bound-state Helmholtz operator

GEi . This general form of the coupled-perturbed Hartree–Fock (CPHF)

equations, also called modified Sternheimer equation,75 can be applied for

all kinds of external perturbations.

The extension to a regularized wave function as discussed in

Section 3.2.2 is straightforward if the nuclear correlation factor does not

depend on the perturbation. For the case of nuclear displacements this is

not true and the orbital response is expressed as

jϕX
i i¼RX jFii+RjFX

i i (118)

The orthogonality relation of Eq. (114) is converted to

hFX
i jR2jFji+ hFijR2jFX

j i¼�hFijðR2ÞX jFji, (119)

which introduces an additional metric into the working equations.69

For nuclear second derivatives the use of a regularized wave function is

mandatory, since the operators become highly singular.

3.2.4 Time-dependent properties in HF and DFT
By analogy to the time-independent properties, time-dependent properties

such as polarizabilities or excitation energies also require the response of the

wave function with respect to the external perturbation. The working

equations are derived starting from the equation

i
∂

∂t
ρðtÞ¼ FðtÞ,ρðtÞ½ �, (120)

where ρ(t) is the time-dependent density, and F(t) is the time-dependent

Fock operator containing the external perturbation f(t) as well as the
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time-dependent density ρ(t). An expansion of all quantities with respect to

the order of the perturbation, some rearrangement, and elimination of the

explicit time dependence yields an expression for the so-called response

vector jxi.38 The components jxii of the vector describe the response of

the electrons in orbital i to the external perturbation oscillating with the

frequency ω. Eq. (120) can be rearranged to yield the working equations

for the response jxii38,76

T � Ei�ωð Þjxii¼�Q
δF

δρð0Þ
∘~ρ

� 	
jφii� J�K +Vnucð Þjxii, (121)

where the ∘ symbol denotes a convolution. This equation is structurally

identical to the CPHF analog of Eq. (117), with only the perturbed Fock

operator exchanged, and it can be solved in an analogous way.

The quantity

δF

δρð0Þ
∘~ρ (122)

depends on the quantummechanical model chosen, explicit formulas for HF

and DFT are given in Refs. 38 and 77. The DFT kernels and their deriv-

atives are available from external libraries.55 Again, the numerical stability

of the XC kernels is very important, and the treatment of densities and

density gradients as described in Section 3.2.1 is mandatory.

If the excitation energy ω becomes larger than the energy of the highest

occupied molecular orbitals EHOMO, the Green’s functionG¼ (T�E�ω)�1

becomes complex, reflecting the physical fact that the electron is not bound

anymore. The computation of such states will always yield continuum states

approaching the Fermi level. Meta-stable states above the Fermi level may

be computed using a complex absorbing potential or similar approaches,

although this has not been tested yet.

3.3 Molecular energies and properties in many-body methods
3.3.1 MP2 and Coupled-Cluster in first quantization
With few exceptions the Coupled-Cluster literature is formulated in second

quantization which needs to be translated into first quantization when used

in MRA. The Coupled-Cluster wave function defined by excitation

operators into the virtual space
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CCj i ¼ eT HFj i,
T ¼T1 +T2 +T3 +⋯¼

X
ia

τiatia +
X
iajb

τiajbtiajb +
X
iajbkc

τiajbkc tiajbkc +…, (123)

where τia excites an electron from orbital i to a with the corresponding

amplitude tia, and similar for double and higher excitations. The real-space

analog to the amplitudes tia, tiajb and alike are the cluster functions τi and τij
which are computed explicitly in the MRA form. They can be expressed in

terms of virtual orbitals (and vice versa) as

jτii¼
X
a

jϕaitia, tia¼hϕajτii (124)

jτiji¼
X
ab

jϕaϕbitijab, t
ij
ab ¼hϕaϕbjτiji: (125)

Since the cluster functions are not orthogonal to the occupied space by con-

struction like the virtual orbitals, the orthogonality must be explicitly

enforce through the (strong) orthogonality projector Q and Q12 ¼ Q1Q2

of Eq. (116)

jτii¼Qjτii, (126)

jτiji¼Q12jτiji: (127)

The vector potential Ω that defines the Coupled-Cluster model can also be

expressed in first quantization.32,33 It is beyond the scope of the current

review to discuss all the diagrams but as an example the term D8b in the

notation of Ref. 78, which reads in second and first quantization as

gklcj t
c
i t
a
kt
b
l ¼Q12 gklτi jjτkτji

� �
, (128)

with the matrix element gklτi j ¼hτijjg12jkli. Explicit first-quantized expres-

sions for all diagrams of the CC2 model are given in Ref. 32. This yields

for the vector potentials Ωi and Ωij

jΩii¼ F� Eið Þjτiji+Q
X
n0

jSini¼ 0, (129)

jΩiji¼ F12� Eij
� �jτiji+Q12

X
n0

jDij
ni¼ 0, (130)

where certain terms in the diagrammatic expansion correspond to the

Fock operator term (namely S3a and S3b for the singles equation and
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D2a and D2b for the doubles equation). These equations can be inverted

in the usual way using Green’s function to determine the cluster functions

τi and τij.
The MP2 model can be derived as a special case of the Coupled-Cluster

formalism but also by solving the MP1 equation, which is given by

Hð1Þ �Eð1Þ
� �

jΦð0Þi ¼� Hð0Þ �Eð0Þ
� �

jψ ð1Þi: (131)

Again, this equation can be inverted and the first-order perturbed wave

function jψ (1)i (corresponding to the cluster function jτiji) is obtained as

jψ ð1Þ
ij i¼�GQ12g12jϕiϕji�G J12�K12 +Vnuc,12ð Þjψ ð1Þ

ij i, (132)

where J12, K12, and Vnuc, 12 denote the Coulomb, exchange and nuclear

potential terms for electrons 1 and 2. The final correlation energy is then

given in second and first quantization as

Ecorr ¼
X
iajb

hϕiϕjjgjϕaϕbitijab + hϕiϕjjgjϕaϕbitiatjb
� �

, (133)

Ecorr ¼
X
ij

hϕiϕjjgjτiji+ hϕiϕjjgjτiτji
� �

, (134)

where all terms are understood to be properly antisymmetrized. Since

there are no virtual orbitals the canonical scaling of MP2 and Coupled-

Cluster with respect to the system size is reduced by 2 orders of

magnitude, e.g., for MP2 from N5 in LCAO to N3 in MRA, where N

is some measure of the system size. However, the computational prefactor

is much larger in MRA.

3.3.2 Regularization of the wave function
In effective two-particle methods, such as MP2 or Coupled-Cluster, an

electron–electron cusp occurs in addition to the electron–nuclear cusp. Both
the interelectronic singularity and the electron–nuclear singularity are

delocalized in a three-dimensional subspace of the full six-dimensional space

of the two-electron coordinates. However, the interelectronic singularity is

much more severe than the nuclear singularity, since it couples the coordi-

nates of both electrons, which is diametrical to the Cartesian MRA repre-

sentation. A singularity in the working equations leads to a cusp in the wave

function,59 as was already discussed in the nemo ansatz in Section 3.2.2.

Close to the coalescence point the wave function depends linearly on the

interelectronic distance r12. Explicitly introducing such a term into the wave
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function removes the singularity from the working equations. The explicit

form of the correlation factor depends on the computational model, forMP2

and CC2 it reads as

f12¼ re

2
1� e�r12=re
� �

, (135)

which is the same correlation factor used in LCAO F12 theory.79 The

choice of the correlation length scale re does not change the cusp behavior,

since the leading term remains the same but it affects the convergence rate to

the basis set limit in LCAO calculations.

The perturbed first-order Hamilton operator in MP2 and the fluctuation

potential in Coupled-Cluster contain the singular interelectronic interaction

term g12 ¼ 1/r12, which can be canceled by commuting the correlation fac-

tor with the kinetic energy operator, yielding a regularized two-electron

potential U12
56

T , f12½ � ¼� 1

r12
+U12 (136)

The singularity affects primarily the doubles equations. In the singles equa-

tion in Coupled-Cluster one of the coordinates of the singularity is inte-

grated out and the singularity is thus regularized. The MP2 and CC2

working equations for the doubles cluster functions read as

jτiji¼�G J�K +Vnucð Þjτiji�GQ12g12jϕiϕji, (137)

jτiji¼�G J�K +Vnucð Þjτiji�GQt
12g12jtitji: (138)

The ansatz for the wave function is then

jτiji¼ juiji+Q12f12jϕiϕji, (139)

jτiji¼ juiji+Qt
12f12jtitji (140)

for MP2 and CC2, respectively, with the regularized cluster functions juiji.
The modified strong orthogonality projector Qt

12 is the most convenient

form of a strong orthogonality projector in Eq. (140) but other forms are

also possible, e.g., using Q12 directly.

Commuting the correlation factor f12 through the working equations

yields a new set of working equations for the regularized cluster function

juiji, similar to the original ones for the jτiji of Eqs. (137) and (138)

juiji¼�G J�K +Vnucð Þjuiji�GQ12~g
ij
12jϕiϕji, (141)

juiji¼�G J�K +Vnucð Þjuiji�GQt
12~g

ij
12jtitji: (142)
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The regularized Coulomb operator ~g12 depends on the electron pair ij and

is defined as

~g
ij
12 ¼ f12 F12� Eij

� �
+U12� K12, f12½ �+ F12,Q

t
12

� 

f12: (143)

In the case of MP2, where the regularized Coulomb operator is applied on

the reference jϕiϕji and no singles cluster functions are present, the first and

the last terms cancel and only the U potential and the exchange operator

commutator are left (thus removing the dependence on ij)30,32. The regu-

larized cluster functions juiji still have cusps at the nuclear sites, these can be

removed straightforwardly by using nemos.

3.3.3 Time-dependent properties in Coupled-Cluster
Accurate excitation energies can be computed using Coupled-Cluster

response theory.80 The excitation energies are given as the poles of the

response function,32 which can be computed as eigenvalues of the CC

Jacobian. The excited state cluster functions jxii and jxiji are (strongly)

orthogonal to the reference, and they can be determined by taking the func-

tional derivative of the ground-state equations (129) and (130), yielding

0¼ F� Ei�ωð Þjxii+ δjVτii (144)

0¼ F12� Eij�ω
� �jxiji+ δ Qt

12g12jtitji
� �

(145)

The variation δ of the potential terms are computed using the chain rule for

differentiation, they are given explicitly in Ref. 32. Similarly to ground-state

CC2 and MP2 the equations must be completely regularized to avoid the

computation of singular potentials on the grid. The regularization of the

response double vector jxiji
jxiji¼ jviji+ δQt

12jtitji+Qt
12f12jxitji+Qt

12f12jtixji, (146)

follows the ground-state ansatz by expanding the parentheses of Eq. (145). The

regularization with respect to the nuclear-electronic cusp is straightforward.

4. Discussion

4.1 Application examples
MRA can be used for a variety of chemical applications and number of

quantum chemical methods have been implemented in theMADNESS code.52

MRA is an efficient method to compute energies and properties of large

molecules with HF or DFT. The excited states of the retinal, the light
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absorbing molecule of the rhodopsin system in the eye, can be computed

using configuration interaction singles (CIS) (Fig. 8). Also ground-state cal-

culations including structure optimizations can be performed for molecules

as large as chlorophyll-a with 137 atoms and 482 electrons (Fig. 9). All these

calculations are performed at the basis set limit, and they are often very hard

in finite size LCAO calculations if a comparable precision is sought.

Fig. 8 11-cis-retinal (156 electrons), the light absorbingmolecule in the human eye, UV/
VIS spectrum computed with MRA/CIS.38

Fig. 9 Chlorophyll-a (482 electrons), structure optimized with MRA/LDA.
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External libraries, such as libxc55 or the PCMSolver library,81 can be

interfaced to the code and extend the functionality significantly. As an

example, the solvatochromatic shifts of the first excitations of the water mol-

ecule are shown in Table 2 using the CIS approximation and the polarizable

continuum model for solvation.

Being small enough for correlated methods, the water molecule may

serve as a test case for the comparison of different methods for computing

molecular properties. Table 3 shows a number of properties that can be

Table 2 Solvatochromatic shifts in eV of the first excited states of the
water molecule in water solution computed with MRA/CIS using the
polarizable continuum model.

State

Vacuum Solvated

MRA aVTZ daVTZ MRA aVTZ daVTZ

B2 8.66 8.66 8.66 9.01 9.01 9.01

A2 10.32 10.33 10.33 10.78 10.79 10.78

A1 10.88 10.95 10.89 11.07 11.14 11.06

B2 11.15 11.79 11.19 11.06 11.59 11.07

LCAO calculations were performed with the KOALA program,82 daVTZ basis with
double augmentation on oxygen only.

Table 3 Molecular properties of the water molecule.
Property Method MRA

Total energy (Eh) HF �76.066 936

PBE �76.388 681

B3LYP �74.691 437

Correlation energy (mEh) MP2 �298.70

CC2 �300.82

First excitation energy (eV) PBE 6.59

CIS 8.66

CC2 7.33

Dipole moment (a.u.) B3LYP 0.73

Optimized structure PBE 96.93 pm/104.06°

Vibrational frequencies (cm�1) PBE 1595/3701/3805

Infrared intensities (kmmol�1) PBE 70/2/51
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computed, including first- and second-order properties. The first excitation

energy can be computed with CIS, CC2, and with DFT in the Tamm–
Dancoff approximation (TDA). In LCAO, these methods have high

demands on the basis sets, since CC2 requires higher l-quantum numbers

than CIS and DFT, while DFT often predicts rather diffuse excited states.

Using MRA the basis set error is strongly reduced, and all methods can

be directly compared with respect to their method error without basis set

artifacts, such as incompleteness or pseudoconvergence.

While first-order properties can be computed very efficiently with the

Hellmann–Feynman theorem, second-order properties are computationally

more demanding. Vibrational frequencies and intensities require the solu-

tion of the CPHF equations for each nuclear displacement, resulting in a

higher scaling with respect to the system size compared to the ground-state

calculation. Excitation energies in the CIS and TDA approximation scale

linearly with respect to the number of excitations that are computed.

4.2 Precision
MRA promises numerical precision and freedom from basis set incomplete-

ness. The thresholds can be increased to achieve numerically exact results, at

the cost of computationally more expensive calculations. Note that this is

not necessarily true for LCAO, where overcompleteness of the basis may

prevent convergence to the basis set limit. In finite basis set calculations,

the size of the basis, corresponding to the computational effort, is set

by the user, defining the final precision. In MRA, the approach is inverted:

the computational effort is determined by the final precision set by the user.

The difference can be thought of as “defined contribution” of the former

compared to “defined benefit” of the latter.

There are several important remarks concerning the precision: if exten-

sive properties are computed, errors may accumulate. While the errors in

each function can be decreased arbitrarily, by accumulation of many small

contributions the total error may become greater than the threshold. This

is particularly true for correlated methods, where the number of pair func-

tions, and thus the total error, increases quadratically with system size, lead-

ing to an effective size-consistency error. The correlation energy of water is

shown in Table 4.MP2 andCC2 calculations are performedwith a precision

threshold of E ¼ 10�3 and E ¼ 10�4 and four correlated orbitals.32,83 The

total correlation energy is not yet converged to the basis set limit for the

lower precision calculations, and the error is larger than the threshold,

although all 10 pair energies are well below the precision threshold.
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The higher precision calculation meets the thresholds. In this case the error

per pair function is even an order of magnitude smaller than requested.

The size-extensitivity error is an important issue in correlated calcula-

tions. However, physically electron correlation is a local phenomenon.

Orbital localization makes the number of contributing pair functions per

orbital constant instead of linear because of the rapid decay with increasing

distance and will thus remove the size-consistency error after passing a pre-

cision threshold. This minimal precision is anticipated to occur at 0.1 mEh

error per pair function, and numerical size-consistency (up to chemical

accuracy) will then be achieved. Because of the high computational costs,

this point has not been passed yet, and future research will focus on this

problem.

The error accumulation problem does not occur if intensive properties,

e.g., excitation energies, are computed. Excitation energies are computed

as eigenvalues of the CIS or CC2 equations, they do not depend on the sys-

tem size, and no accumulation of small quantities occurs. Table 4 also shows

the first excitation energy of the water molecule. In contrast to the correlation

energy the excitation energy is converged to the basis set limit although the

underlying correlated wave function is not. Excitation energies benefit

greatly from the balanced description of the ground and excited state in

MRA,which is hard to achieve in LCAOwith (ground state) optimized basis

sets where even an augmented 5Z basis set is insufficient to reproduce the

basis set limit in CC2. This effect is even more pronounced for nonvalence

excited states, also in effective one-particle methods such as CIS, because

these states are significantly more diffuse than the ground state (see Table 2).

Furthermore, the precision of MRA depends on the regularity of the

wave function and of the operators. Ground and excited states are smooth

functions, containing only a nuclear cusp, and they can be represented accu-

rately with MRA where the convergence rate depends on the differentia-

bility of the represented function (see Eq. (7)). The orbital response to

nuclear displacements, however, is highly singular and features step func-

tions over many orders of magnitude. The corresponding perturbation

Table 4 Correlation and excitation energies of water.

Property

MRA LCAO

Limite 5 1023 e 5 1024 aVTZ aV5Z

Ecorr/mEh (MP2) 299.32 301.93 �269.84 �294.32 301.86

excitation energy/eV (CC2) 7.34 — 7.20 7.29 7.33
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operators are first and second derivatives of the already singular nuclear

potential. In such cases the precision must be significantly tightened, and

the convergence of the CPHF equations might even fail, e.g., for GGA

functionals, where additional derivatives of the perturbed density are

required.69

4.3 Performance
The scaling of quantum chemical algorithms with respect to system size is

typically two orders less than for LCAO methods. MP2 and CC2 scale as

N3, as opposed toN5 encountered in the canonical LCAO case. With local-

ized orbitals the scaling drops even further to linear or quadratic (this is also

true for LCAO). Effective one-particle methods (HF and DFT) are easily

competitive with LCAO. Fig. 9 shows the chlorophyll-a molecule with

482 electrons, computed with MRA/LDA on a 16 core workstation at

the basis set limit. The first excited state of retinal using CIS can be com-

puted with MRA faster and more precisely than with LCAO (Fig. 10).

In contrast, the CC2 excited states are currently inaccessible for molecules

with more than six atoms.

The main computational drawback for correlated methods is the massive

increase of CPU and memory requirements, growing exponentially with

the number of dimensions d (the “curse of dimensionality”). The number

of boxes and the number of coefficients in each box increase as 2d and kd,

Fig. 10 CPU times in days for the computation of the first excited state of toluene
and retinal. For large systems MRA is more efficient than LCAO calculations in large
basis sets.
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respectively, with k being the polynomial order. While for HF and DFT,

where d ¼ 3 is still moderate, this is not an insurmountable problem, for

MP2 and CC2, where d ¼ 6 is high, this becomes the computational

bottleneck. Low-rank tensor approximations can reduce the number of

coefficients but they require relatively complicated algorithms for simple

addition of two tensors, which is an operation performed billions of times

in the course of a quantum chemical calculation.

While the increase in computational requirements, in particular of mem-

ory, is massive for six dimensions as in MP2, it still is only a computational

prefactor which can eventually be brought down by faster algorithms for

low-rank tensors or by parallelization. For large systems the scaling with

respect to system size will dominate the computational footprint, and in this

respect MRA is advantageous compared to conventional methods, even for

correlated methods.

4.4 Handling
MRA is a real-space method. The handling of the equations in real space is

direct and does not require the translation into matrix equations. Often,

there is a one-to-one correspondence of the equations on paper and their

implementation in the MRA code. This allows the fast implementation

of new methods, without spending too much thought on the details of

the underlying MRA library or the parallel runtime.

Various types of function can be represented with equal precision, be they

orbitals, densities, or potentials. Finite basis sets, often Gaussian basis functions

designed for the representation of orbitals, can introduce severe imbalances

between these quantities. For example, MRA represents ground and excited

state functions equally well and while Gaussian basis sets often suffer from

imbalances in the basis. Since MRA does not use a predefined set of basis

functions but an adaptive basis it can be used for various quantummechanical

problems, not only for electronic structure. Solving the Schr€odinger equation
for the motion of nuclei to compute Franck–Condon factors would be

another example where MRA can be used. Due to the direct translation

of equations into code, MRA also qualifies for educational purposes.

5. Summary and outlook

In this review, quantum chemical methods based on multiresolution

analysis (MRA) have been presented. Currently ground and excited states

can be computed for HF and DFT, as well as for MP2 and CC2. First-

and second-order properties, such as dipole moments, nuclear derivatives,
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magnetic properties, and vibrational frequencies and intensities, are also

available for HF and DFT. In all methods singularities in the working equa-

tions can be analytically removed, which is of paramount importance to

make the computation of high-dimensional wave functions, as required

in correlated methods, tractable.63,83

An important aspect of correlated methods is the use of low-rank tensor

approximations, since the wavelet coefficient tensors in uncompressed form

would have an insurmountable memory footprint.30 In most operations of

the six-dimensional MRA calculation an SVD of the coefficient tensor is

used, and efficient algorithms for decomposition, contraction, addition,

and other operations of such tensors have been developed.

While energies and molecular properties can be computed in SCF

methods routinely, the computational load is much higher for correlated

methods, barring MP2 and Coupled-Cluster from being used on large

molecules. However, the computational scaling is lower than in the

corresponding LCAO implementations and there is no fundamental reason

that would prevent MRA methods from being used. With improving

computer resources and more efficient algorithms, especially on the tensor

representations, also correlated methods will become feasible as the com-

putational prefactor will drop. For illustration: the first computation of the

exact helium wave function took several days on 1000 nodes with 14 cores

each on the Jaguar XT5 supercomputer in 2011,30 but only 2 days on 1

node with 16 cores in 2014,83 for the most part due to improved algo-

rithms concerning the regularization of the wave function. Such high gains

on the performance should not be expected in the future but even a speed-

up of 2 or 4 will make MRA much more competitive and will allow the

routine computation at least of small molecules.

The next steps will be to make MRA faster and less memory-consuming.

Firstly, improved tensor representations and algorithms must be developed

and implemented in order to take the heavy load from correlated calculations.

Secondly, localization must be taken advantage of in all implementations. For

some methods this is already the case but it must be used throughout the

code. Localization will both make the calculations faster by decreasing the

scaling and increase the accuracy, by reducing the number of significant pair

functions (in correlated methods but also in the exchange term in Hartree–
Fock). Thirdly, MRA has the potential to be a black-box method, since

only the molecular geometry and an energy threshold is required for a cal-

culation. Automated generation of input parameters, such as the polynomial

order or the convergence thresholds make codes user-friendly by developer

benchmarking.
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MRA shows in many ways its complementary numerical properties

compared to the existing LCAO paradigm. MRA provides few digits of

the correct result, while LCAO provides many digits of the systematically

incorrect result. As a consequence, MRA cannot take advantage of error

cancelation, while LCAO is successfully doing so (depending on the actual

property). MRA can compute excited states accurately with virtually no

basis set incompleteness error and no imbalance in the description of ground

and exited states but has to be converged very tightly for computing the

nuclear Hessian without loss of precision. MRA features a low scaling with

respect to system size but as of today a high computational prefactor for

correlated methods.

MRA offers great potential not only as a complementary method to the

existing finite basis methods.While from today’s perspective it seems hard to

compete with small basis set calculations for exploratory purposes, MRA is

for DFT and HF already more efficient than large basis set calculations of

large molecules.With improved algorithms and faster computers, MRAwill

become more and more competitive with respect to LCAO. Its unique

numerical properties make MRA an important extension for the quantum

chemical toolbox.
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SECTION 2

Methodology
This section is devoted to state of the art mathematical innovations, necessary

to unify the choice of basis sets (Aquilanti et al.), improve wave-functions

(Randazzo and Ancarani, Gebremedhin et al.) and cater for the notorious

electron-nucleus cusp (Loos et al.)
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Abstract

In this survey we account for basic mathematical ingredients for dealing with quantum
chemical problems. We focus on comprehensive previous work (Coletti et al., 2013,
pp. 74–127, Ref. 1) documenting relationships with the Askey scheme, a classification
of the orthogonal polynomials sets of hypergeometric type. A reduction of the scheme
is proposed individuating nine fundamental functional sets which have their counter-
parts in quantum mechanics; they occur in the general Kepler–Coulomb problem:
as well known basis sets for expansions of orbitals in quantum chemistry and in the
treatment of specific atomic andmolecular applications. A novelty of the approach, with
respect to this extensively covered topic, is the establishment of this representation for
Kravchuk polynomials, on the mathematical side and, correspondingly, of the spherical
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top wavefunctions on the physical side: the latter are explicitly connected with the
Wigner’s rotation matrix of angular momentum theory. Novel presentations of the
Askey-type hierarchy of hypergeometrical orthonormal basis sets relevant in quantum
mechanics and the relationships connecting them are established by powerful tools: from
the mathematical viewpoint, the Askey duality and asymptotic analysis; from a physical
viewpoint, the symmetry by transposition and semiclassical limits. A new three-by-three
matrix visualization illustrates the set of correspondences to assist further work on the
path connecting classical and quantum physics and discrete and continuous mathemat-
ics that is presented elsewhere (Coletti et al., 2019, Ref. 46). This is pictured as a bridge
where Racah polynomials and harmonic oscillator wavefunctions are the corner stones,
while the rotationmatrix ofWigner is the keystone. Here, the path is illustrated as the steps
of a stairway that we define as the Jacobi ladder, where going up and down is insightful
for applications. Extension to the full Askey scheme, object of future work, is briefly noted:
some reference is made to our recent progress in spherical to hyperspherical manifold
representations involving the q-scheme of Askey and related orthogonal polynomials
as possible orthonormal basis sets in quantum mechanics.

1. Introduction

As extensively discussed in a previous essay,1 our investigation focusses

on exploiting the connection between atomic and molecular orbitals to be

used as basis sets in applied quantum chemistry and those advances in the

mathematics of special functions and orthogonal polynomials, not commonly

explicitly intercorrelated in the numerous expositions of the quantum theory

of angular momentum.2,3

A survey of the mathematical ingredients that were encountered in Ref. 1,

the special functions and in particular the orthogonal polynomials, is summa-

rized in Table 1. In this list of functions, we have included those that are defined

on discrete grids and others that span ranges of continuous variables. In discrete

approaches, the Sturm–Liouville theory for the differential equations to which
Schr€odinger equations belong has its counterpart in the theory of difference

equations, recurrence relationships and Jacobi (tridiagonal and symmetric)

matrices. According to Favard’s theorem, a recursion three-term relationship

defines an orthogonal polynomial set and plays the role of a difference equation.

We will encounter such relationships in the following sections.

Elsewhere4 within the ample realm of hypergeometric and generalized

hypergeometric functions, that practically covers most of solvable problems,

even beyond quantum mechanics, an exploratory treatment was presented

of the q-extension of the hypergeometric polynomial framework to cover
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non-Euclidean (elliptic and hyperbolic) manifolds. In other cases, e.g.,

spheroidal and sphero-elliptic Sturmians, explicit hypergeometric (i.e., finite

series) solutions: their properties and use were covered in previous and cur-

rent investigations1,2,5,6 beyond the hypergeometric scheme.

Purpose of the present account is to put into a general perspective the

theory of the basis sets for solving quantum mechanical problems, specifi-

cally those of atomic and molecular physics and of quantum chemistry,

governed by the Schr€odinger equation. In general, in the time-independent

formulation, problems are multidimensional and tackled by expansion of

products of one variable functions: the Schr€odinger equation is a second

order differential equation, its eigenfunctions span Hilbert spaces that can

be mapped into remarkably standard manifolds. The underlying theory is

a two-centuries-old theory, arising essentially through the work of Jacobi

and other great mathematicians: they provided the concept of orthogonal

polynomials sets. As expansion basis sets, these polynomials, when properly

normalized, constitute most of the complete sets to expand, for example as

far quantum chemistry is concerned, atomic orbitals, or in the case of

Table 1 The nine polynomial sets: Nomenclature and properties.

Polynomial Symbol
3 × 3 Matrix
elementa Seriesb N

I Racah Ra 11 R 4

II Dual Hahn Dh 21 R 3

III Hahn Ha 12 H 3

IV Meixner Me 13 H 2

V Kravchuk Kr 22 R 2

VI Jacobi Ja 31 C 2

VII Charlier Ch 32 H 1

VIII Laguerre La 23 C 1

IX Hermite He 33 C 0

aThese labels correspond to the matrix arrangement illustrated by the graphs in Fig. 2,
first column.
bLetter C indicates the classical series comprising the Hermite, the Laguerre, and the Jacobi
polynomials (Pn(x)N), whereN is the number of parameters, respectivelyN¼ 0, 1 and 2;
n is the order of polynomials (an integer) and x denote the continuous variable. For the
Hahn series H: N is 2 for Meixner and Kravchuk, and 3 for Hahn, the variable spans a
discrete grid, here quadratic.10 The Racah series denoted by R has quadratic grids for both
order and variable for the self-dual Racah polynomials; linear and quadratic grids for dual
Hahn; linear grids for both order and variable for the self-dual Kravchuk polynomial.
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molecules, the orthogonal polynomials centered in different space points.

We add that, when a molecular system is under the effect of fields, one

has the possibility of expanding the fields themselves in the same sets of

orthogonal polynomials making the calculations of all the involved integrals

analytical and so presumably advantageous for computational progress.

Themain mathematical ideas actually were developed also in connection

with one of the pillars of theoretical physics: the quantum theory of angular

momentum. The group theoretical construction leads to discrete sets of

orthogonal objects, differently called vector coupling or recoupling coeffi-

cients, or, in equivalent language, 3j, 6j,…, nj symbols of angular momentum

theory. The connection between the two areas became clear in the 1930s

when the one-century old Jacobi theory of orthogonal polynomials reached

its maturity.7,8 At that point it was clear that Jacobi polynomials play a leading

role and all other orthogonal polynomials, depending on a smaller number of

parameters, could be arranged in a way that one could in essence solve all the

problems in second order ordinary differential equations, which could be

expressed through the Gaussian hypergeometric series.

The computability of these polynomials as terminating series involving

a few parameters, with analytically well-defined properties, was thus

completed and into play entered then: the theory of hypergeometric func-

tions, the theory of orthogonal polynomials and the quantum theory of

angular momentum. Striking interconnections were emerging since the

late 1940s, when it was discovered that the Clebsch–Gordan coefficients

of group representation theory and that of angular momentum essentially

coincidedwith the set of discrete orthogonal polynomials named after Hahn.

When further investigation demonstrated that the most important ingredi-

ents of the theory of angular momentum, the Racah or 6j coefficients, could

also be expressed as orthogonal polynomials, this led to the discovery of

Racah polynomials, so aptly denominated, that were going to occupy the

upper level of the Askey scheme for orthogonal polynomials of discrete vari-

ables.9 Later, the work of many investigators compacted on one side, in

Russia by Nikiforov et al.10 and, on the other, in the United States by Askey

andWilson,11 leading to the possibility of visually arranging the knowledge at

the timewhich is still our daily vision in the applications: the Askey scheme of

hypergeometrical polynomials (a part of it is sketched in Fig. 1). Though

there were other approaches, a dense compilation of formulas appeared as

a report in 1998 by Koekoek and Swarttouw.12 The book by Varshalovich

and collaborators13 summarized most of what is needed in quantum angular

momentum theory, as firmly built by the school of Yutsis.14
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Fig. 1 visually gives a graphical impression of the arrangement of the

polynomial sets as a ladder: the level corresponds to the number of param-

eters in the defining hypergeometric functions,8 those at the same level are

equivalent: they are connected by duality relationships, and differ for the role

played by “variable” and “degree” parameters, i.e., for the corresponding

three-terms recurrence relationship and finite difference equations.

In the following section we proceed by exploring the systematic occur-

rence of orthogonal polynomials from the harmonic oscillator through the

theory of hydrogen atom in mathematically increasing dimensions; where

recent advances have involved hypergeometric approaches and specifically

Sturmian basis sets in momentum and configuration spaces.

2. The nine stepping stones: Spherical
and hyperspherical harmonics

The various steps in this search start from what is adequately covered

by the main textbooks on the subject. The present discussion should be

followed by consulting Table 1 and Fig. 2. As already noted, most textbooks

Fig. 1 A graphical summary, to be compared to the corresponding fig. 1 in Ref. 1.
Important differences are the arrangement as a staircase, suggesting the biblical quota-
tion. Details on the connections and emphasis on the central role for the Kravchuk
polynomial is given in the text. The last column indicates correspondence with quantum
mechanical systems.
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treat separately the various subjects that it is our purpose to connect.

The developments of orthogonal polynomials of hypergeometrical type

on one side and of their explicit relationships with the group theory

representation15 on the other side, eventually lead to the construction of

harmonics and hyperspherical harmonics16 that have been accounted for

extensively in the Nikiforov textbook10 and in various previous articles.17–19

Let us then summarize the main finding, namely, that the functions

which appear in the construction are essentially those that, from a Lie group

theory viewpoint, “quantize” spherical and hyperspherical manifolds. Our

preceding account1 gives the details at a state-of-the-art as we perceived

it a few years ago. Functions involved in the construction of harmonics

which are by definition sets of orthonormalizable functions are arranged

from those that “quantize” the circle, namely sinðmϕÞ or cosðmϕÞ, with
m ¼ …, �2, �1, 0, +1, +2, … and ϕ spans a circle by 2π. Such functions

are related to Chebyshev polynomials. When one considers spheres and

Fig. 2 The 3 � 3 matrix representation (first column) and the representation more sim-
ilar to the conventional Askey scheme (second column, but with the positions of
Kravchuk and Jacobi polynomials interchanged).
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hyperspheres one gets sequences of sets of Legendre and Gegenbauer poly-

nomials. All these are basically special cases of Jacobi polynomials obtained

when some of the parameters take specific values.1,3,20 The work developed

subsequently has tried to establish explicit relationships between hyper-

spherical harmonics and atomic and molecular orbitals. It was soon found

out that there was the possibility of building orthonormal basis sets. In addi-

tion these sets had the property of being complete, so to span the manifolds

on which the functions were defined and with very important analytical

properties; furthermore, they are computable in closed form. Among the

main properties, they were shown to overcome some of the shortcomings

(divergencies and cusps around nuclei and incorrect long range behavior) in

a fully analytically motivated way, even though in earlier applications not

enjoying sufficiently fast convergence properties.21 As soon as the possibility

was advanced of enjoying the fact that these sets of functions could be easily

transformed into alternative forms, the search started for the best way to

exploit them in a fruitful direction.1,3,6,20,22

Major effort was in parallel exerted on the construction of atomic

hydrogenic orbitals in increasing dimensions20 which, although not immedi-

ately important physically, were later supposed to provide orbitals to be used in

many-body problems where sets of functions of increasing dimensionality

might be needed. This search was accompanied by additional work on the

basic solvable problem inmolecular structure, that of theH+
2 ion23 as an exam-

ple of a two-centers quantum mechanical problem, and an archetype of

molecular orbitals.

Another key perspective looks for the physical application to quantum

mechanical problems: the relation between configuration and momentum

spaces offers a very advantageous paradigm where, through integral trans-

forms (in this case Fourier transforms), one can exploit the peculiar require-

ments of specific systems to be best suited for treatment in momentum rather

than in configuration space or vice versa.

Orthonormality and suitability of these functions as basis sets for the

representation of group theory offer the further advantage that the Lie

groups allow alternative reduction schemes, which, in turn, are sources of

alternative basis sets interconnected by well-defined orthogonal transfor-

mations. The main striking example is an outcome of Fock’s projection

of the hydrogen atom onto a hypersphere in a four-dimensional space: this

leads to a full classification of the hyperspherical harmonics involved as

full solutions to the problem1,3,6,22. Additionally, as mentioned before, by

Fourier transformation, one can also classify the eigenfunctions for hydrogen
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atom inmomentum space.1,3,6,22Hyperspherical harmonics, their transforma-

tions, their relationships with orthogonal polynomials of the hypergeometric

type provide alternatives interconnected by orthogonal transformations,

each transformation inserting or substituting labels which are associated

with the order of the polynomials (a discrete number) and the number of

nodes of the wavefunctions. These transformations, in the quantum mechan-

ical application for the hydrogen atom, connect for instance the sequence

n, l, m,24,25 arising naturally via separation in polar variables, to the sequence

n1, n2, m, obtained by the separation in parabolic variables.20,23

On the other hand orthogonal transformations corresponding to differ-

ent reduction schemes classify the type of changes in alternative sets of sep-

arable variables: for the application of these basis sets a great flexibility is

obtained in the search of those suitable for physically motivated situations

(like atoms in fields or orbitals onmany centers). Here the quantum numbers

introduced by fully defined matrix elements permit manipulations to be

exploited at the best: from a mathematical viewpoint through group theory,

from a physical viewpoint through combination rules for the addition, and

recoupling of angular momenta.

3. The classical series

3.1 The first angular stone: Hermite polynomials
As is well known, in early quantum mechanical applications to chemistry,

hydrogen-like orbitals and their modifications, i.e., Slater type orbitals, were

introduced.26 Recently, alternatives are vigorously pursued and variants

shown effective.27–30 Quantum mechanical problems may be solved by

proposing a linear combination of hydrogen-like orbitals and applying a var-

iational approach to obtain the best coefficients that minimize the energy.

This procedure may be slowly convergent and typically requires storage

of large matrices and long computing diagonalization times. This led to

the introduction of simpler basis sets useful to overcome these bottlenecks

and the most popular was the introduction of Gaussian basis sets, in a sense

a simplification of the solution of the harmonic oscillator in terms of

Hermite polynomials.

This gives us the clue to focus on Hermite polynomials, Hn(x), enjoying

Askey Nikiforov duality to be exemplified next. As known, Hermite polyno-

mials are the simplest hypergeometrical polynomials solving the Schr€odinger
equation for the harmonic oscillator and obtaining wavefunctions pertaining

to the equally spaced energy levels. We encounter here a number n which
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spans an infinite discrete manifold of those supported by a harmonic well.

The wavefunctions are oscillatory in character as a function of a continuous

variable, exhibiting a number of nodes increasing as the energy level increases.

Let n define the energy and the order of the polynomials, while the charac-

teristic points, for example the zeroes along the variable x, span discrete points

on the continuous x line. The quantities n and x play a key feature in the

modern view of orthogonal polynomials: they enjoy a duality and this is

the simplest example which can be found in the Nikiforov work and in

the Askey scheme. Hermite polynomials occupy then an important position

in the orthogonal polynomials as studied by mathematicians in the XIX and

early XX centuries. Askey duality was not amply considered until the middle

of the XX century, although it is well known that it represents the reciprocity

between configuration and momentum space, as we mentioned before and

will exemplify in some detail below.

Mathematically, the important observation regarding Hermite polyno-

mials is that they are solutions of a second order differential equation. Here

x is the variable and n is the index of the eigenvalues. Well known is a recip-

rocal property: the Hermite polynomials, like all other orthogonal polyno-

mials according to the inverse of Favard’s theorem, are also solutions of a

three-term difference equation which acts on a variable given as a discrete

set. In the case of Hermite polynomials, the difference equation is defined on

the grid labeled by n. Here are the two equations12:

1. Recurrence relation:

Hn+1ðxÞ�2xHnðxÞ+2nHn�1ðxÞ¼ 0 (1)

2. Differential equation:

y00ðxÞ�2xy0ðxÞ+2nyðxÞ¼ 0, yðxÞ¼HnðxÞ (2)

Eqs. (1) and (2) have remarkably identical coefficients: the above is the sim-

plest manifestation of (Askey and Nikiforov) duality.

The function identity y(x)¼Hn(x), when multiplied by exp(�x2) solves

a one-dimensional Schr€odinger equation, that can be recognized as that of

the harmonic oscillator, namely that for a potential quadratic in x and eigen-

values (energies) equally spaced, ordered by the quantum number n that also

counts the number of nodes.8 These aspects exemplify a feature typical of the

classical series, and therefore also of the Laguerre polynomials and Jacobi

polynomials, to be considered below.
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It is worth noting that the solution of Schr€odinger equation in config-

uration space for the two-dimensional hydrogen atom in parabolic coordi-

nates λ1 and λ2, i.e., the two-dimensional Sturmian basis set in parabolic

coordinates, is essentially a product over two Hermite polynomials

Hn1ðλ1Þ �Hn2ðλ2Þ where n1 and n2 are the parabolic quantum numbers

(eq. (3) in Ref. 1).

3.2 Laguerre polynomials and the Bohr atom
Let us now consider the radial eigenfunctions of the hydrogen atom. When

in configuration 3D space separation is carried out in polar coordinates, we

encounter Laguerre polynomials, LðαÞ
n ðxÞ (note that in Fig. 1 they appear as

Rn,l(r) to emphasize their connection as the radial part of hydrogenic (or

Sturmian) basis sets, see the following). Laguerre polynomials enjoy similar-

ities and differences with Hermite polynomials.

Let us denote the variable corresponding to x as r (with respect to x, r

now goes in the semidefinite range ½0, +∞Þ to be contrasted with the

ð�∞, +∞Þ of x). The counting of nodes, therefore the order of Laguerre

polynomials, is denoted by n and the corresponding eigenvalues span a non-

equidistant sequence of levels that pile up near the ionization limit, tending to

be an infinite but being denser and denser as l assumes higher and higher levels.

An additional parameter of Laguerre polynomials is that corresponding to the

orbital quantum number l, limited to be less than n: the mathematical notation

explicitly indicates that from a physical point of view we are dealing with the

orbital quantum number n, being the principal quantum number.

If we consider mapping the r variable into a range going from 0 to �∞
and approximate the long range potential as a harmonic one, it is physically

evident that the anharmonic Coulomb potential tends to harmonic: this can

be expressed by an explicit asymptotic relationship.

Similarly to the Hermite case, Laguerre polynomials enjoy a differential

equation: the well known application is, as mentioned before, to the hydro-

gen Schr€odinger second order differential equation with a Coulomb type

potential. Laguerre polynomials are the radial part of the eigensolutions

whereas the eigenvalues labeled by the principal quantum number of Bohr

(i.e., Rn, lðrÞ¼L
ð2l +1Þ
n�l�1 ðrÞ, apart from a phase factor in polar coordinates) the

energies of hydrogen-like atoms. Note again that in the case of parabolic

Sturmians in the physical three-dimensional space (and in spaces of higher

dimensions) the radial part of the wavefunction in λ1 and λ2 is given as a
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product of Laguerre polynomials (see eqs. (12) and (39) in Ref. 1 for the

d-dimensional and three-dimensional spaces, respectively).

For Laguerre polynomials, consider the three-term recursion relation-

ship in n obeyed by Ln(x)
12:

n+1ð ÞLα
n+1 xð Þ� 2n+ α+1�xð ÞLα

n xð Þ+ n+ αð ÞLα
n�1 xð Þ¼ 0 (3)

and the second order differential equation, which is of hypergeometric type,

contains one parameter more than for Hermite polynomials case12:

xy00 xð Þ+ α+1�xð Þy0 xð Þ+ y xð Þ¼ 0, y xð Þ¼Lα
n xð Þ: (4)

Exchange of roles leads to Charlier polynomials, unrecognized in applica-

tions as those to be correctly considered in the normalization of Sturmians.

These polynomials are also related to those of anharmonic Morse-like

oscillators.

3.3 Jacobi polynomials
The construction then culminates by introducing a further parameter and

meets the full Gauss hypergeometric function, interpreted as an eigenvalue

equation leading to Jacobi polynomials. These polynomials have thus a

higher position with respect to Laguerre polynomials which can be obtained

back by an asymptotic procedure. Analytical manipulation of the coefficients

characterizing the Jacobi polynomials yields the most general of continuous

type polynomials that allow the analytical solution of Schr€odinger equation
for the hydrogen atom.1

Since Legendre and Gegenbauer polynomial sets, as well as those of

Chebyshev, are particular cases of Jacobi polynomials, they permit construc-

tion of spherical and hyperspherical harmonics. The mathematical apparatus

for the expression of hydrogenic orbitals, including Sturmian orbitals,1 is

thus completed.

4. The second angular stone and the construction

4.1 Spin networks and polynomials
While these developments complete the list of basis sets of the theory of

orthogonal polynomials of hypergeometric type, including the most general

ones, around the middle of 19th century, important developments were

propitiated by quantum mechanics, in particular thanks to angular momen-

tum theory and due essentially to Wigner and Racah.15 More recently the
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designation “spin networks” has been adopted and popularized mainly in

quantum gravity contexts.17,25

As noted in Section 1, Hahn started studying and putting on a firm

basis the possibility that orthogonal polynomials could also be defined on

discrete manifolds. Consider in Hermite polynomials the variable x that goes

from �∞ to +∞ and the variable r in Laguerre polynomials that covers the

interval from 0 to +∞. If discrete variable x is allowed to be constrained to

have explicitly specific values on a grid of points, polynomials are obtained

obeying second order difference recursion relationships, which serve to define

discrete polynomials on a uniform grid. Furthermore, other polynomials con-

nected by Askey duality were similarly defined, where the grid on discretizing

the variable was instead taken as quadratic. In the theory of hydrogen atom,

the m quantum number that spans integers…, �2, �1, 0, +1, +2,… exem-

plifies the uniform grid; the l quantum number, whose integer values proceeds

in steps of l(l + 1) is instead an example of a quadratic grid.

From papers appeared in the middle of the 1940s, it was soon realized

that these objects were, in terms of polynomials, the mathematical counter-

parts of Wigner and Racah coefficients who introduced what are known as

vector coupling and recoupling coefficients or symbols (3j’s, 6j’s, etc.). Since

these coefficients are the elements of matrices connecting alternative quan-

tum mechanical representations of the vector coupling they are elements of

orthogonal transformations. From these connections, it emerges that Askey

duality when applied to Jacobi, Laguerre, or Hermite polynomials corre-

sponds to the exchange of labeling of rows and columns of orthogonal matri-

ces in angular momentum theory. The search then started toward

generalizations and the completeness of the classification.

4.2 The Hahn and Racah series
The Clebsch–Gordan or 3j coefficients are labeled by the quadratic grid in j

(explicitly in j( j + 1)) and by the projection quantum number mwhich goes

from negative to positive values according to a discrete equally spaced grid.

Again the physical motivation as eigenfunction of an angular momentum

operator which corresponds to that of a polynomial obeying a three-term

recursion relationship, clarifies the way that the Hahn and dual Hahn poly-

nomials are related by dualization: when the matrix of vector coupling coef-

ficients, corresponding to rows running along the allowed values of j and

columns corresponding to ranges of the allowed values for the projections,

dualization amounts to its matrix transposition.

We reach finally the top level of a construction (started from the har-

monic oscillator, progressing by considering polynomials) which the
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mathematicians worked out in analogy with the recoupling coefficients of

Racah that can also be written as 6j Wigner coefficients.

Racah coefficients serve to connect angular momenta through two alter-

native schemes for coupling three angular momenta: they can be considered

as matrices labeled by the intermediate values, e.g., j12 and j23, finally to be

coupled to the final sum of the three, say j4.

It is clear that the Racah coefficients play a top role in the scheme, the

highest point in the construction. They are labeled by discrete variables of

the quadratic type ( j12 and j23) and obey each a difference equation, formally

identical, so that the Racah coefficients are dual in j12 and j23.

From well-defined mathematical operations that were developed in par-

allel and with interchanges from Racah coefficients and polynomials, one

could obtain by asymptotic theory all the polynomials that have been

encountered so far, whereas, from a physical viewpoint, the limit is approx-

imately defined as semiclassical. It is then finally recognized that the proce-

dure we have been following is mathematically a process of additional sets of

discretization and, physically, a progressive sequence of quantizations. We

will turn now to the next step, where we will explicitly exhibit the construc-

tion in a visual way, useful for further comments and generalizations.

5. The reduced Askey scheme, up and down the ladder

The presentation of the previous section was centered on the progress

due to mathematicians of the classical theory of orthogonal polynomials

along a ladder from the Hermite polynomials9, through Laguerre polyno-

mials, up to the Jacobi polynomials; above that level the construction

proceeded mainly thanks to group theoretical development by Wigner

and Racah, who formulated them by founding the quantum mechanical

theory of angular momentum.

The procedure going up is that of progressive discretization, while the

opposite procedure is that of an asymptotic analysis going from discrete

sets to the continuum. It is known that while the first involves arbitrariness,

the asymptotics or semiclassical one is definitely more robust and can be for-

mulated in a more rigorous way. The full classification of the many sets

of polynomials that now include both the continuum and discrete type

is specifically the work of the Russian school of Nikiforov10 and of the

American mathematician Askey,11,12 as mentioned in Section 1. The con-

nection between this classification and angular momentum theory is

essentially due to Nikiforov school and in subsequent work including that
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by Suslov and others10, and has been a subject under focus in our already

cited previous investigations. The concern here is going to present in a com-

pact way additional remarks on the classification of hypergeometric polyno-

mials alongside the theory of quantum angular momentum.

5.1 The central triad
The third level of the reduced Askey scheme (Fig. 2, second column), or the

antidiagonal of the matrix representation in its most reduced form (Fig. 1,

first column), involves three of the nine “players” in the team, and is com-

posed by Jacobi polynomials, their duals in the Askey scheme, the Meixner

polynomials, and the central pivot of the game, the Kravchuk polynomials.

It is interesting to deal in some details with these three polynomial sets

because they contain in nuce most of the features which are common to

the other elements of the scheme. First of all let us consider the hyper-

geometric aspects. Basically, they are given as terminating series: the three

polynomials can be written explicitly as essentially the hypergeometric series

2F1 of Gauss. As it is well known this epoch-making discovery introduced

a terminating series which by specification of parameters and by limiting

procedure gave most of the special functions of mathematical physics.

The relationship with orthogonal polynomials arises when one of the entries

of the arguments of hypergeometric function is a negative integer number,

then this integer is the order of the polynomial. In particular the important

Jacobi polynomials are included. The Askey duality is simply an interchange

(analogous to the pair of Eq. (1) and (2) for the Hermite case) of the order of

polynomials with the continuous range of variable: Meixner in 1934 intro-

duced this set of polynomials that represented one of the main triggers

leading to the definitive formulation of the scheme. Thus, we have com-

pleted, from amathematical viewpoint, the three lower levels of the scheme.

Concerning the levels above the third, mathematicians, as mentioned

before, were motivated by the physicists Wigner and Racah essential con-

tributions in angular momentum theory for the parallel introduction of

Hahn and Racah polynomials at fourth and fifth levels, respectively.

5.2 The Wigner dmm0j (β) matrix elements
The three elements of the sets of orthogonal polynomials find their impor-

tant unique realization in a key object of angular momentum theory, the

Wigner d matrix, dlmm0 ðβÞ, which is related to the three sets of polynomials

at the third level in the following way. The j parameter plays the role of the
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order in the corresponding Jacobi polynomial, while the argument, the

angle β, is in strict correlation with the variable in the Jacobi polynomial

set; this variable is continuous and spans a finite range. Its dual, the Meixner

polynomial set, is put into correspondence with the exchange of the role of

x, β, and j quantities. The d matrix is self-dual in n, m, and dual in m0. As a
matter of fact its role in angular momentum theory (see the dedicated chap-

ter in Varshalovich13) proves that for given values of j and as a function of β
the reduced d matrix has rows and columns labeled by m and m0; being an

orthogonal matrix, its self-duality can be clearly understood as the exchange

of rows and columns of the matrix.

In view of the central role in the whole construction, we summarize

properties of the Wigner rotation matrix d
j
mm0 ðβÞ.13 Due to relationships

with the Jacobi and Meixner polynomials and then to spherical and hyper-

spherical harmonics this serves as exemplary of general characterizing

properties of these sets of functions.

1. Three-term recursion relationship inm/m0 in thematrix, as listed, e.g., by

Varshalovic13 (self-dual, note symmetry for exchange of rows and

columns)

�m�m0 cosβ
sinβ

d
j
m,m0 ðβÞ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð j+m0Þð j�m0 +1Þ

p
d
j
m,m0�1ðβÞ

�
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð j�m0Þð j+m0 +1Þ

p
d
j
m,m0 +1ðβÞ

� (5)

2. Recursion in j, 0� j�∞ (a finite difference equation, specialized for

α ¼ γ ¼ 0 from Ref. 13)

cosβ � d jm,m0 ðβÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið j2�m2Þð j2�m02Þp

jð2j+1Þ d
j�1
m,m0 ðβÞ+ mm0

jð j+1Þd
j
m,m0 ðβÞ

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð j+1Þ2�m2�½ð j+1Þ2�m02�

q
ð j+1Þð2j+1Þ d

j+1
m,m0 +1ðβÞ

(6)

3. Differential equation (it can be given in various forms, Gauss Hyper-

geometric equation for 2F1, Edmond’s equation for spherical top or equiv-

alently to Schr€odinger equation for an anharmonic Eckart oscillator)

� 1

sinβ

∂

∂β
sinβ

∂

∂β

� �
+
m2�2mm0 cosβ�m02

sin2β

� �
d
j
m,m0 ðβÞ¼ jð j+1Þd jm,m0 ðβÞ

(7)
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A key reference31 reports complete essential bibliography with graphical

illustrations that we will expand in a paper in preparation. Also Ref. 32

has a good semiclassical treatment, including implication for the physics

of rotations and torsions and of the geometry of intersecting cones of

processing vectors along different axes of quantization.

6. Concluding and additional remarks: Continuous and
discrete expansions

The celebrated Fock treatment (1935) demonstrated the use of

hyperspherical harmonics as orbitals for the solution of atomic andmolecular

structure problems, see Ref. 1 for unique properties and computational

advantages. In particular, our work over the years, partly covered in a paper1

until 2013, has addressed not only the development of Sturmian basis sets

(see also Ref. 16) which are essentially orthogonal polynomials of the clas-

sical series but also to highlight how the orbitals in the reciprocal (momen-

tum) space are hyperspherical harmonics.33–37 Not only they are continuous

sets of hypergeometric polynomials, but also the connections between dif-

ferent representations (or of different systems of separable coordinates) can

be all written as orthogonal polynomials of discrete type, of the Hahn and

Racah series.38–41

In order to give the complete picture, we found it useful to generalize to

the multidimensional hydrogenic Coulomb orbitals in dimensions higher

than physical. Multidimensional basis sets are used as a physical resource

for a variety of problems: quantum cosmology, quantum field theory, quan-

tum information science, not to mention that the dimensional dependence

of the entropic properties for the stationary states of the multidimensional

quantum systems is extensively studied for quantum information (see Ref.

42 and references therein).

As extensively remarked, multidimensional Sturmian basis sets in config-

uration space26,43–45 can be obtained as a product of Laguerre polynomials

(one of our nine players) and a multidimensional hyperspherical harmonic,

or, according to the chosen coordinate system, as the product of two

Laguerre polynomials (as in parabolic coordinates) and a lower dimensional

hyperspherical harmonic. These hyperspherical harmonics can, in turn, in

the most general case, be written as set of Jacobi polynomials (another

player in our scheme), and, in case of special values of the parameters

down to Gegenbauer, or further to Legendre, polynomials, or even to
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the Wigner D� matrix (e.g., occurring in the four-dimensional symmetric

harmonics on the sphere S3).

When we move to the momentum space perspective, Coulomb

Sturmian basis sets can be Fourier transformed to hyperspherical harmonics

(or Jacobi polynomials), for which it is easy to explicitly work out the super-

position coefficients allowing the passage from one coordinate system to

another (or, alternatively, from one spatial quantization scheme to a different

one, i.e., to different sets of quantum numbers). Indeed, such coefficients

are multidimensional integrals over a product of continuous orthogonal

polynomials, which, in the most general case, correspond to discrete Racah

polynomials (the upper level of our scheme), or generalized 6j coefficients.

Again, upon simplification down to lower dimensionality, these coefficients

asymptotically reduce to either Hahn (or dual Hahn) discrete polynomial

sets, that are essentially Clebsch–Gordan or 3j coefficients, or to the Wigner

d rotation matrices starting as our cornerstone in the conceptual scheme

that we have come to describe.

A useful application of hyperspherical harmonics is the analytical repre-

sentation of multidimensional functions, and their extensive use, specifically

for representing potential energy surfaces is considered in Ref. 46, see in

particular Refs. 47–58. Our survey of current advances in quantum chem-

istry, especially as far as the expansion of atomic and molecular orbitals is

concerned as a function of mathematically and physically motivated basis

sets, permits to focus on combined observations of relationships between this

area with other related ones. In particular, from the mathematical point of

view, it is expedient to present the important connections as far as con-

cerning the widely investigated area of recent mathematics: they involve

special functions and orthogonal polynomials, in turn related to the theory

of representation of groups, specifically continuous groups, and therefore

the Lie theory.

In this chapter, we have tried to provide a picture of our appreciation of

this aspect. The presentation started with an adaptation of the current gen-

eral scheme for orthogonal polynomials of hypergeometrical type as a ladder

that goes from Hermite up to Racah polynomials, immediately bringing

insight on further connections with the theory of angular momentum: in

turn, this feature has been more and more intimately connected to the area

of investigation of spin networks. Individuating the main characters of the

play as nine orthogonal polynomial sets of discrete variable and arranging

them as a matrix is a compact way of putting the pieces of the mosaic into

a unified scheme.17,59–70
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What we analyzed in this paper is limited to some aspects, essentially

focused on the leading role of the polynomial of Kravchuk type and its

equivalent in quantum mechanical language, the dmatrix. Aspects discussed

in Ref. 46 are the interconnections between the members of the set, which

from amathematical viewpoint can be considered as based on the asymptotic

theory of special functions: the corresponding operations in quantum

chemistry are the passage from the quantum to the classical limit through

the semiclassical regime. The construction has been conceived as a stair

going up fromHermite to Racah polynomials, which is essentially introduc-

ing progressively elements, corresponding to a process of successive dis-

cretization. In contrast, the opposite process, i.e., going down, is a more

rigorous one because it is based on well-defined mathematical relationships:

utilizing the asymptotic theory of functional analysis.

These connections between members of the sets is the object of a

complementary survey46. Such survey also considers well known aspects,

however needing compactness. For instance the explicit expression of the

objects as converging terminating series, needing some care for computa-

tion, are put into reference within the theory of hypergeometric generalized

series. Regarding computation, the direct sums may present calculation

difficulties, often dealt with, in modern research, by using the recurrence

property that all these functions, being orthogonal polynomials, obey. These

recurrence relations provide a useful computational tool and are seen to be

also in connection with the fact that, in the scheme, they are always associ-

ated by duality with difference equation, or, in the case of the lower steps of

the ladder, with differential equations of Schr€odinger type, the fundamental

tool in quantum theory. The concept of special duality that involves the

underlying theory is often usefully represented as a bidimensional plot, that

we define as the screen that also will be illustrated elsewhere for the crucial

member of the set, the Kravchuk polynomials.71,72

The centrality of the Kravchuk function was the theme of the paper and

it involved a slight modification of the sequences in the Askey scheme, inter-

changing its position with the Jacobi polynomial. As a matter of fact, Jacobi

polynomials are more centrally located if one conventionally considers the

whole scheme, involving continuous orthogonal polynomials, but not dis-

cussed here. They have been so far, in our opinion, not sufficiently exploited

from the viewpoint as expansion basis sets in solving quantum mechanical

problems. We thus believe that this continues to be an interesting topic

for further research.
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On the other hand the Askey scheme has extremely important amplifi-

cations when including passage from spherical to elliptic or parabolic mani-

folds. The literature on q-hypergeometrical polynomials is a subject of wide

interest in modern mathematics; these polynomials are less developed as

tools for expansion basis sets in quantummechanics. Some steps were under-

taken recently.4 Such theoretical progress shows perspective of advancing in

the use of discrete basis sets as computational analogues for continuous func-

tion, a technique that in our work has been named the “hyperquantization”

algorithm.73–81
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Abstract

Sturmian functions (SF) constitute a very useful spectral tool to deal with bound states or
break-up problems in atomic andmolecular physics. In their standard form for the three-
body case, the radial part of the wave function is proposed as an expansion in products
of one-dimensional generalized SF (GSF). Here, we present an alternative spectral
approach. It is based on solutions of a two-dimensional Sturmian eigenvalue problem
that is solved with a finite set of one-dimensional GSF. The resulting 2DSF basis set func-
tions depend simultaneously on two interparticle distances and possess a natural
reordering. Through calculations of the Helium ground and 41F excited states energy,
we compare the efficiency of the two equivalent sets of functions. The superiority of the
two-dimensional approach demonstrated here should be particularly useful to reduce
computational costs for applications in the continuum regime.

1. Introduction

The ab initio treatment of bound states for atomic and molecular sys-

tems entails a high demand on computational resources which grows rapidly

both with the number of particles and with the desired precision. As illus-

trated through many investigations spanning several decades, the chosen
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basis is of fundamental importance. The three-body Helium atom has very

often been used as a testbed for numerical methods, basis sets, as well as coor-

dinate systems (e.g., Refs. 1–8). Helium has been also systematically used as a

collision target providing ideal tests of numerical methods that solve the

notoriously difficult Coulomb three-body scattering problem and its cum-

bersome boundary conditions (e.g., Refs. 9–14); indeed, theoretical studies
of single and double ionization of atoms or molecules, in particular, are

usually treated considering at most two active electrons. Since

scattering states need to be described on much larger spatial domains,

computational demands are higher both with respect to memory size of

the Hamiltonian matrix representation, and the processor time to mani-

pulate and solve the related matrix equations. When polyatomic molecular

targets are involved, another issue makes things worse: as the orientation

is usually not experimentally detected, theoretical approaches need

to consider large numbers of molecular orientations before averaging

(e.g., Refs. 15,16, and references therein), and this automatically increases

the number of required calculations. The basis choice is thus even more

crucial for scattering problems.

Over the last decade, a Sturmian method based on generalized Sturmian

functions (GSF)17 has been proposed to deal with both bound and scattering

problems, in particular to solve the Coulomb three-body Schr€odinger
equation. Within the standard recipe18 for bound states the equation is

converted into a coupled set of two-dimensional radial equations that

is subsequently translated into an eigenvalue problem. The methodology

is similar for scattering problems but in this case the system is linear with

a unique solution (the scattering wave function) driven by some prepared

state.13,14 One very important characteristic of the GSF method is that

the asymptotic conditions for bound and scattering states can be dealt with

efficiently. Indeed, within the spectral method, the discrete and complete

basis set of GSF (one for each radial coordinate) is built with preselected

ad hoc bound or outgoing flux condition. This can be understood from

the one-dimensional Sturmian eigenvalue equation

T +U�Es½ �spðrÞ¼�βpVspðrÞ, (1)

where βp is the pth eigenvalue, T is the radial part of the total kinetic energy

operator, V is an adjustable generating potential, U is a potential (for example

the Coulomb potential) that mimics the interaction to be studied in a given

application and Es is an externally fixed energy (positive for scattering states
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and negative for bound states). Except for some rare cases for which the ana-

lytical form is available,19,20 GSF are generated numerically by solving Eq.

(1) as described for example in Ref. 21. The eigensolutions sp(r) form a com-

plete and orthogonal set, the orthogonality being with respect to the weight

function V (r),19 Z ∞

0

spðrÞV ðrÞsp0 ðrÞdr∝δpp0 :

They are ordered according to their nodal structure. While the choice of U

andV is arbitrary, the generating potentialV should vanish at least as fast asU

at large distances.18 Hence, when solving Eq. (1), one can impose at a given

radial distance r0 the desired asymptotic conditions through Es and U. All

Sturmian functions sp(r) will then have the same asymptotic behavior by

construction (their radial extension being regulated by the range of the gen-

erating potential). When angularly coupled, these one-dimensional GSF

(see Eqs. (4) and (5)) lead to a correct description in the three-body case:

with outgoing behavior in the hyperspherical radial coordinate for scattering

problems13,14 and an equivalent exponential fall off decay for bound states.

With the aim of tackling ever more computationally expensive scattering

problems, it is important to improve efficiency by looking for the best basis

functions. One lead is to define a basis through a two-dimensional rather

than a one-dimensional Sturmian equation (1). Taking two radial distances

r1 and r2, we thus propose an eigenvalue problem of the form

T12 +U12�Es½ �Spðr1, r2Þ¼�βpV12Spðr1, r2Þ, (2)

where, again, βp are the eigenvalues, T12 is the radial part of the total kinetic

energy operator, V12 is an adjustable generating potential, U12 is arbitrary

but should ideally include a substantial part of the potentials of the physical

problem, and Es is an externally fixed energy that governs the asymptotic

behavior. The boundary conditions are set at the origin of coordinates

(r1 ¼ r2 ¼ 0) and on the border of a square box of size r0.

From Eq. (2) we get two-dimensional basis elements Sp ordered

according to their nodal structure, with orthogonality property specified

by Eq. (8). The solution to a three-body problem can then be represented

in terms of the new basis that includes part of the correlation and has

an appropriate asymptotic behavior associated with the total energy Es.

By solving Eq. (2) with the GSF basis, we obtain two basis sets with the same

expansion capacities: the two-dimensional basis (noted 2DSF hereafter) and
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the original GSF. Solving the Schr€odinger equation with the 2DSF can be

viewed as an adequate reordering of the GSF basis, ruled by Eq. (2).

It is the aim of this contribution to define and explore such 2DSF by

comparing its performance with respect to products of one-dimensional

GSF. In principle, such an optimized basis should allow us to reduce the

matrix size of the calculations and thus increase as much as possible the

numerical performance of the spectral method. While we expect it to be

particularly valuable when dealing with scattering states involving two elec-

trons in the continuum, here we first present and apply the novel approach

to bound states.

2. Bound solutions for three-body problems

Three-body atomic and molecular bound states can be obtained

by solving the Schr€odinger equation in the coordinate representation.

In terms of two of the three relative position coordinate vectors we have,

in atomic units:

0¼ ½H�E�Ψðr13,r23Þ¼
� 1

2μ13
52

13�
1

2μ23
52

23�
1

m3

513:523 + ~Uðr13, r23, r12Þ�E

� �
Ψðr13,r23Þ,

(3)

where μ13 and μ23 are reducedmasses, and the total energyE of the system and

the wave function Ψ are to be determined. According to the system under

study, ~U can correspond to the direct sum of two-particle potentials, such

as Coulomb (e.g., Refs. 1,3,4) or screened potentials (e.g., Refs. 22,23), or

some molecular potential energy surface (e.g., Ref. 24). In this paper, we take

the Helium atom as a benchmark to explore, and we will look for the ground

and one of the excited state two electron (labeled 1 and 2) wave functions.

As usually done, we consider an infinitely massive nucleus (m3!∞) so that

we will drop the third term and suppress hereafter the index 3 from all expres-

sions (reduced mass calculations can be done similarly). The kinetic energy

operator T12¼ T1 + T2 is then separable in r1 and r2; the nonseparable poten-

tial ~U ¼�Z=r1�Z=r2 + 1=r12 where Z ¼ 2 is the sum of three Coulomb

potentials, 1/r12 representing the electron–electron repulsion.

Solutions of Eq. (3) associated to fixed values of the total angular

quantum numbers L and M can be written as
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ΨL,Mðr1,r2Þ¼
X
l1, l2

RL,M
l1, l2

ðr1, r2Þ
r1r2

YL,M
l1, l2

ðr̂1, r̂2Þ, (4)

where YL,M
l1, l2

are the bispherical harmonics,8 eigenstates of the total angular

momentum operator and its projection over the z axis with respective quan-

tum numbers L andM, whileRL,M
l1, l2

are the two-dimensional radial functions

(in reduced form) to be determined through some numerical method;

l1 and l2 are the angular momenta associated to each electron. Replacing

expression (4) into the Schr€odinger equation (3) one finds that the functions

RL,M
l1, l2

satisfy a coupled set of differential equations for the different pairs

(l1, l2) used in the expansion. The symmetry (antisymmetry) of the spatial

wave function can be selected in order to deal with singlet (triplet) two-

electron wave functions, and also preserve a well-defined parity which is

a good quantum number.

Eq. (3) has been solved for the benchmark Helium system by many

methods (see, e.g., Refs. 5–7,18,25–27). It is nowadays quite straightforward
to obtain accurate solutions and energies for the ground and excited states,

by expanding the wave function in appropriate basis sets and solving a finite

eigenvalue problem. Some of the mentioned expansions correspond to very

specific ansatz valid for ground state wave functions. Other use functions

depending explicitly on all interparticle coordinates (e.g., Refs. 5–7,28),
which is efficient and very accurate; the algebra, though, is not at all easy

to generalize to more than three particles.29

A very popular and easily implemented method is the Configuration

Interaction scheme. In a nutshell, it corresponds to using a one dimensional

basis to represent each radial coordinate of the solution; the radial functions

RL,M
l1, l2

ðr1, r2Þ are expanded in products of such one-electron basis functions.

Such an approach has the advantage of being simple and flexible; it can be

applied using, e.g., hydrogenlike30 or Slater-type functions31, GSF17,19 or

B-splines.32 Besides, the scheme is easily extrapolated to more complex sys-

tems (atomic or molecular) involving more than three particles. In all cases,

however, the computational cost increases with the basis size. The situation

is aggravated when one or two electrons are in the continuum since they

demand bigger basis sets per particle coordinate.

For purposes that will become clear later, it is worth looking at the radial

structure of typical solutions of the pure Coulomb three-body problem (3).

In Fig. 1 we illustrate, as a function of r1 and r2, density plots of the first partial
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term of the S wave, R0,0
0,0, for the Helium ground and first excited states

corresponding to the two-electron wave function in a radial domain of

20 a.u. per coordinate. Termswith higher l1 and l2 values have a similar struc-

ture but with the probability shifted to larger r1 and r2 values because of the

centrifugal barrier effect. The figure also shows the density corresponding to

the R0,3
3,0 term of the 41F state in a radial domain of 55 a.u. per coordinate:

a very asymmetrical distribution of the electron density is clearly apparent.

3. One-dimensional Sturmian functions

For a given pair (l1,l2) of angular momenta, the two-dimensional radial

functions RL,M
l1, l2

ðr1, r2Þ in Eq. (4) can be written in terms of a double summa-

tion over products of one-dimensional Sturmian functions

RL,M
l1, l2

ðr1, r2Þ¼
X
n1,n2

aL,Mn1,n2, l1, l2
sn1, l1ðr1Þsn2, l2ðr2Þ (5)

where aL,Mn1,n2, l1, l2
are the expansion coefficients to be determined and sn,l can

be defined in different ways.18,24 One particular and practical choice, widely

used in the literature (see, e.g., Refs. 19, 27,33–35, and references therein),

consists in taking U(r) ¼ V(r) ¼ �Z/r. The corresponding Coulomb

Sturmian Functions (CSF) are solutions of the equation

Fig. 1 Left: Density plots of the partial terms R0,00,0 corresponding to the ground and some

excited states of Helium obtained as “numerically exact” solutions of Eq. (3). Right: R3,03,0

partial wave term of the 41F state.
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�1

2

d2

dr2
+
lðl +1Þ
2r2

�Z

r
� ~E1d

� �
sn, lðrÞ¼ βn, l

Z

r
sn, lðrÞ (6)

where the energy ~E1d is a fixed parameter and βn,l are the eigenvalues to

be determined. The first 20 CSF, numerical solutions of Eq. (6), are shown

in Fig. 2 for l ¼ 0, ~E1d ¼�11:52 a.u. and homogeneous conditions at

r0 ¼ 20 a.u. The nodal structure clearly increases with the index n and

the orthogonal set sn,0 forms a basis within the interval r 2 [0, 20].

Although we do not use here the property, we emphasize that the

eigensolutions sn,l of Eq. (6) with boundary conditions sn, lð0Þ¼ sn, lð∞Þ¼ 0

are available in analytical form in real and also in momentum space represen-

tation. This rare situation opens up a number of possibilities. For example,

it provides a tool to control accuracy of the numerical method chosen to

solve Eq. (6). Also, within a Configuration Interaction scheme, CSF allow

for an elegant analytical approach to treat many-electron atoms.19 Finally,

let us mention that when CSF are used as basis functions in scattering

problems a number of matrix elements can be calculated analytically.

In previous contributions18,36,37 we have reproduced published CSF cal-

culations of three-body bound states; different angular quantum number per

radial coordinate, l1 and l2, were used for each radial component RL,M
l1, l2

.

When solving Eq. (3) with such a choice, the two radial kinetic

operators—including the centrifugal barriers—are already fully absorbed

0 5 10 15 20

r (a. u.) 

–0.5

0

0.5

1

Sn,0

Fig. 2 One-dimensional (radial) box-based Coulomb Sturmian functions (set to 0 at
r0 ¼ 20 a.u.).
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by the basis functions. In this work we adopt a different strategy that, to our

knowledge, has not been taken before. We use the same value l1¼ l2¼ 0 for

all radial functions; this is at the cost of having to deal with the centrifugal

barrier matrix elements in the numerical treatment of the Hamiltonian H.

This choice, however, has the important advantage of reducing the number

of two-dimensional matrix elements associated with the electron–electron
repulsion potential, and simultaneously simplifies the algebra of the compu-

tational codes.

A linear combination of products of these one-dimensional CSF is used,

as indicated in expansion (5), to represent the solutions RL,M
l1, l2

. We show, in

Fig. 3, density plots associated to simple products of one-dimensional CSF.

We clearly see how the nodal structure forms a kind of grid; this has to be

contrasted with the complex nodal structure of the one-dimensional CSF

shown in Fig. 1.

For the three-body bound application below, we use N1d Sturmian

functions per radial coordinate for all radial functions RL,M
l1, l2

, which makes

a total of N2d ¼N 2
1d radial basis elements. When imposing symmetrization,

however, redundancies in the expansion must be avoided leading to

Fig. 3 Density plots of two-dimensional radial functions obtained as products of one-
dimensional (radial) Coulomb Sturmian Functions, corresponding to (bottom panels)
(n1, n2) ¼ (1, 1), (1, 3), (1, 5), and (top panels) (3, 5), (4, 5), and (5, 5).
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N2d ¼ 1
2
N1dðN1d�1Þ for S ¼ �1 when l1 ¼ l2 and N 2

1d for l1 6¼ l2. We also

define a value for Lmax that fixes the maximum number for the single par-

ticle angular momentum quantum number; it defines pairs of l1 and l2
satisfying together with L the triangle selection rule. For example, for

L ¼ 0 we have l1 ¼ l2 ¼ 0, 1, …, Lmax. Applying the Galerkin method38

to Eq. (3) yields finally a linear generalized eigenvalue problem of size

N2d(Lmax + 1). For L > 0 we do not have a formula for the size of the

system since many pairs (l1, l2) can be used, each corresponding in general

to a different N2d value. Parity is another quantity to be conserved

through the appropriate selection of the (l1,l2) pairs included in the

expansion (see, e.g., Ref. 35).

In the next section we present the two-dimensional eigenvalue problem

to replace the single CSF products used in the expansions of the radial com-

ponents of the three-body wave functions. Our proposal consists in defining

a two-dimensional radial basis set to represent the function RL,M
l1, l2

with a

smaller number of basis elements than the one-dimensional case, i.e., to

reduce the value of N2d.

4. Two-dimensional Sturmian functions

Similarly to CSF functions sn,l(r), defined as solutions of Eq. (6), we

could propose a two-dimensional Sturmian basis set Sn, l1, l2ðr1, r2Þ. Here,

instead, for a given symmetry S, we define SðSÞn ðr1, r2Þ—named 2DSF

hereafter—as the solutions to the equation

�1

2

d2

dr21
�1

2

d2

dr22
�Z

r1
�Z

r2
+Uðr1, r2Þ� ~E2d

� �
SðSÞn ðr1, r2Þ¼

βðSÞn V ðr1, r2ÞSðSÞn ðr1, r2Þ,
(7)

where ~E2d is an externally fixed (energy) parameter and βðSÞn are the eigen-

values. We could include centrifugal barriers into Eq. (7) and use one set

per partial wave term Rl1, l2 , but we prefer to choose l1 ¼ l2 ¼ 0 and use the

same set for all partial waves (if desired for a given application, we may add

toU some approximation of the barriers). As for the one-dimensional case,

there are infinite ways of defining the potentials U and V, according to

the asymptotic behavior and spatial extension one wishes to represent.

Besides, depending on the ultimate application of the basis (ground state,

highly excited states, single, or double continuum solutions) one selects
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appropriately ~E2d. Since we are now in a two-dimensional frame, taking a

positive (negative) value of ~E2d does not imply that both electrons possess a

positive (negative) energy state behavior. For example, for ~E2d < 0 the

complete spectrum of eigenvalues βðSÞn also has a continuous part, which

we are discretizing through the quadrature related to the Galerkin

method.39 It corresponds to the “physical” situation where one electron

is bounded while the other is in the continuum, with a combined total

negative energy. A similar situation appears in the many electron (coordi-

nate separable) approach discussed in Ref. 19, with an energy value sum of

each electron’s contribution. Though interesting, such an approach was

seen to suffer from lack of completeness.40

Solutions of the generalized eigenvalue problem given by equation (7)

can be performed in the same way as for atomic orbitals18: through the

Galerkin method. In can be easily shown that the solutions satisfy an

orthonormality relation

Z ∞

0

dr1

Z ∞

0

dr2S
ðSÞ
n0 ðr1, r2ÞV ðr1, r2ÞSðSÞn ðr1, r2Þ¼ δn0,n (8)

and constitute a complete set in the whole two-dimensional radial space, with

a well-defined symmetry with respect to the r1$ r2 coordinate exchange.

Fig. 4 shows typical bound solutions SðSÞn ðr1, r2Þ presenting similar struc-

tures to the helium eigenstates. The plots belonging to the upper panels

correspond to the first five symmetric basis elements, while the lower ones

are the sixth to tenth asymmetric ones, in order of appearance; this natural

Fig. 4 Density plots of the first ten two-dimensional Sturmian eigenfunctions SðSÞn ðr1, r2Þ,
solutions of the eigenvalue problem (7). Upper (lower) plots: symmetric (antisymmetric)
square modulus of the two-dimensional basis elements.
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order is related to the nodal structure of the 2DSF and the corresponding

eigenvalue values βðSÞn . In order to grasp the physical meaning of these eigen-

values, one should see the discrete set of potentials βðSÞn V all adopting a

bound (or single continuum discretized through quadrature) state at the fixed

energy ~E2d. In other words, the energy ~E2d corresponds to the nth

eigenenergy of the physical problem characterized by the potential βðSÞn V ,

where the real value of βðSÞn decreases with n.

Similarly to the radial basis functions that have a well-defined symmetry,

we must also impose symmetry on the angular basis and consequently, the

total wave functions. For singlet states (which are symmetric in all space)

we can combine symmetric radial functions with symmetric angular ones

that correspond to eigenfunctions of the parity operator with eigenvalue

Π¼ 1, while the product of both antisymmetric radial and angular functions

correspond to parity eigenfunctions with eigenvalue Π¼�1. Triplet states,

on the other hand, can be written as a product of antisymmetric radial wave

functions with angular symmetric ones forΠ¼ 1 and vice versa forΠ¼�1.

In the illustration below we consider singlet solutions corresponding to

Π ¼ 1, which can be written in the form:

ΨL,Mðr1,r2Þ¼
X
l1, l2,n

bL,Ml1, l2,n

Sð1Þn ðr1, r2Þ
r1r2

ffiffiffi
2

p YL,M
l1, l2

ðr̂1, r̂2Þ+YL,M
l1, l2

ðr̂2, r̂1Þ
h i

, (9)

where the coefficients bL,Ml1, l2,n
have to be determined through the Galerkin

method as done with the 1DSF basis.

5. Results and discussion

This work considers as test cases the ground state and the excited

41F state of the Helium atom. We compare the two bases, 1DSF and

2DSF, by looking at the energy convergence as a function of the radial

basis size. For the 1DSF representation of the ground state we choose as

parameter ~E1d ¼�λ2=2, where λ ¼ 4.8, according to the definition used

in Ref. 27 which optimizes diagonalization for the l1 ¼ l2 ¼ 0 pair. We

have to clarify, however, that our box-based CSF are obtained numerically

by imposing homogeneous boundary conditions at r0 ¼ 20 a.u. constitut-

ing a sufficiently large domain for the He ground state (all CSF are forced

to be zero at that distance, as seen in Fig. 2). Our CSF then have a behavior
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similar to the analytical ones for the first basis elements (n¼ 1 up to n� 14)

and a different one for the larger ones (n � 15).

We then use 20 1DSF per coordinate to solve the 2DSF equation (7) and

obtain 20 � 20 ¼ 400 basis elements. Employing symmetrization to the

basis, we obtain 210 symmetric elements and 190 asymmetric ones, for both

the 1D and 2DSF. This construction gives us two mathematical tools with

the same expansion capacities; this means that, for example, in singlet states

cases, we will obtain the same eigenstates and eigenenergies with the 210

elements, the difference being in the expansion coefficients. The 2DSF

convergence turns out, however, to be much faster than in the 1DSF case

(see results below), whichmeans that using fewer than 210 basis elements we

will obtain a better energy for the 2DSF than for the 1DSF expansion.

We have numerically explored a few possibilities for the arbitrary

(symmetric) potentials U(r1, r2) and V (r1, r2). Their choice affects the

spatial shape and extension of the resulting 2DSF basis set. The potential

U should, ideally, be close to the physical problem one wishes to study,

here the interelectronic Coulomb potential 1/r12. For the ground state

we first use Uðr1, r2Þ ¼V ðr1, r2Þ ¼ r�1
> with r> ¼Max(r1, r2), and set ~E2d ¼

�2:879028 a.u. which corresponds to the exact energy value when only

the l ¼ 0 component of the 1/r12 partial wave expansion is included. The

choice of this potential and ~E2d is motivated by the fact that it provides,

as first basis element, exactly the s-wave solution of the ground state

(the latter is then exactly obtained with just one 2DSF basis element).

It turns out that, while being optimal for the l ¼ 0 partial wave it makes

the next partial waves converge too slowly, simply because the other 2DSF

basis elements have probabilities distributions that differ from the Helium

ground state. A second, better adapted, choice consists in taking the same

U but a Yukawa potential V ðr1, r2Þ ¼ r�1
> e�αr> where α¼ 1 is optimized by

a coarse variational procedure (this kind of adjustment is similar to that

performed for one-dimensional GSF18); it allows us to maintain the nodal

behavior of the basis elements close to the region of interest. This is the

choice retained for the results presented hereafter. As the parameter ~E2d

is concerned, we explored the domain between the l ¼ 0 value and the

exact He ground state energy and found a flat minimum for α ¼ 1.

Although showing no improvement in basis efficiency, we have also

considered two other options for U that mathematically approach the

electron–electron repulsion 1/r12: (r1+r2)
�1 which represents the exact

interaction in the Wannier region (mutual electrons angle equal π) and
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ðr21 + r22Þ�1=2
which corresponds to replacing r12 by the hyperradius (mutual

electrons angle equal π/2). Other choices of U and V, which could be pos-

sibly more efficient, will be explored in a near future.

In Table 1 we compare the minimum number of basis elements (1DSF or

2DSF) needed to obtain a given energy value, for several values of the max-

imum number of partial waves included.

In order to appreciate the differences between the 1DSF and 2DSF con-

vergence we show in Fig. 5 the relative error in the energy for different

Table 1 Minimum 1DSF and 2DSF radial basis size requirements to
achieve a given value (fourth column) for the Helium ground state as
taken in Ref. 35, for different values of Li (i ¼ 1, 2) (the maximum
angular momentum quantum numbers considered for each electron).

Li

He ground state energy requirements

N2d 1DS N2d 2DS (l 5 0) Ref. 35

0 136 13 �2.87902

1 120 80 �2.90050

2 120 79 �2.90275

3 136 94 �2.90331

4 120 79 �2.90350

5 105 74 �2.90358

10050

#  Radial basis elements

100

10–2

10–4

10–6

ΔE
/E

 

Lmax

1DSF    0
1DSF    5
2DSF    0
2DSF    1
2DSF    2
2DSF    3
2DSF    4
2DSF    5

Fig. 5 Relative error of the ground state energy obtained with the 1DSF (red) and 2DSF
(black) basis set as a function of the number of radial basis elements for different values
of the maximum number l¼ 0,…,5 of included partial waves. The reference (exact)
values are taken from Ref. 27.
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partial waves, as a function of the number of radial basis elements. The

behavior of the 1DSF error is practically the same for the maximum value

of angular l momentum included equal to 0 and 5, the l ¼ 1, 2, 3, and 4

curves (not shown) lying between them. Starting from very large errors,

it progressively and steadily decreases until the maximum number of

radial elements considered is reached (here we show 100). The 2DSF, on

the other hand, starts with a much smaller error, corresponding to a very

accurate description of the eigenstate with few basis elements. For l ¼ 0

it rapidly reaches a minimum value, while the l 6¼ 0 curves behave similarly

to the 1DSF case but between one and two orders of magnitude lower in the

whole abscissa range. For l¼ 0 we observe a monotonous error decrease as a

function of the number of basis elements, while for l > 0 the staggered

behavior indicates there is still room for improvement in relation with

the ordering of elements. The fact that the l 6¼ 0 relative error curves are

higher than the l ¼ 0 case is simply related to our choice, when generating

the basis elements, of not including the corresponding centrifugal barriers

in the eigenvalue Eq. (7). For the ground state, the l ¼ 0 contribution is

dominant and the more important relative error for the smaller l 6¼ 0

contributions is not a problem.

For the 41F excited state the procedure is similar. We use an optimized

value of ~E1d given by λ ¼ 0.63 and r0 ¼ 55 a.u. For this case, the spatial

electron distribution is very asymmetric due to the first partial wave pair

(l1, l2) ¼ (0, 3) domination which contributes with more than 99.9% to

the state energy. The presence of the centrifugal barrier in one coordinate

encourages one electron to be close to the nucleus while the other is far

away, as shown in Fig. 1. This has two rather evident consequences:

(i) an independent particle model description gives accurate energy values;

(ii) singlet and triplet states are quasi-degenerate. For reason (i), only a few

1DSF basis elements are needed to obtain a good representation of the

energy and eigenfunction. For the 2DSF expansion, this is even more dra-

matic; only one element would be needed if the potentials involved in the

generating equation are properly chosen. To prove this, for the 41F excited

state, we have thus added the term lðl +1Þ=ð2r2>Þ with l ¼ 3, in order to

include a centrifugal barrier for the outer electron only. By further setting
~E1d ¼�2:03125 a.u. (close to the known exact value), the first 2D Sturmian

basis element is very similar to the solution and convergence is achieved with

only one radial element, while the 1DSF needs at least 91 elements to reach

the value � 2.0312 a.u. This situation with a domination by the first partial

wave term is observed for other excited states for which convergence with
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the 2DSF is seen to be very fast. The strongly asymmetric cases are the

simplest to treat in comparison with situations where both electrons play

a similar role, as in the ground state; it is for such cases that the electron–
electron correlation plays a major role, slowing down the convergence,

and providing the best ground to compare the efficiency of the two basis.

For the Helium states considered above the energies were known a priori,

so that we could use their value as an input in the 2DSF equation. While an

appropriate choice of ~E1d or ~E2d is desirable, the efficiency of the 1DSF or

2DSF basis sets is not so sensitive to the energy parameter value; it can nev-

ertheless be optimized in a few iterations for the s-wave component, for exam-

ple. Contrary to atomic or molecular bound states for which one endeavors to

optimize the energy values, for break-up problems the energies are fixed by

some (experimental) conditions. As an example, for double ionization pro-

cesses on Helium, when both electrons are in the continuum the total energy

is a known quantity that can be shared in a predefined way.9–14 If the degree

of reduction of required matrix elements, going from 1DSF to 2DSF, was

the same as what we observed here for bound states, the gain in efficiency

would be tremendous. The investigation of the E > 0 case is ongoing.

6. Summary and concluding remarks

We have introduced a novel two-dimensional Sturmian Function

(2DSF) approach to deal with the coupled set of two-dimensional differen-

tial equations arising from the partial wave decomposition of the three-body

Schrodinger equation. For illustration, it has been applied for energy calcu-

lations of the ground and 41F excited states of the Helium atom. The com-

parison demonstrated that one can achieve important reduction of computer

resources with respect to the original 1DSF method.

The advantages of the 2DSF over the 1DSF basis can be explained by the

fact that it corresponds to the solutions of a two-dimensional radial equation

which may include the main characteristics of the physical system one wishes

to study. Besides, the 2DSF basis set introduces a natural way of ordering

the elements according to the nodal structure, a procedure which is somewhat

arbitrarywhen considering products of 1DSF.We can say that the 2DSF equa-

tion arranges the information in an efficient way (more efficient than the

1DSF) that, when applied to atomic problems, results to be very convenient.

The present two-dimensional approach is not limited to the archetypical

three-body Helium discrete states (for which there are many very accurate

methods) since it can be applied to more general three-body potentials like,
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for example, with three-body states of the nucleus of molecular systems

in the Born Oppenheimer approximation.24 More importantly, it could

provide a great numerical benefit in scattering applications, like ionization

of atoms and molecules treated in a two active electrons approach; indeed,

for such problems, large number of one-dimensional basis elements are

needed to achieve convergence in the corresponding three-body Coulomb

continuum regime.
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Abstract

In multiple-scattering methods, overlap integrals of cluster wavefunctions for an inter-
stitial region, which lies inside the Watson sphere and outside all the enclosed
ionspheres, are discussed. When the potential inside this interstitial region is taken to
be constant, and hence, obeys the Helmholtz equation, the resulting solutions are
known to involve Bessel functions. Normalizing the cluster wavefuntions inside this intri-
cate region naturally leads to two-center integrals of various Bessel-type functions. In
this article, all of the numerous types of integrals that might arise are exhaustively pres-
ented. Analytical expressions that are suitable for efficient computation of the overlap
integrals are worked out by employing known addition theorems for the Bessel func-
tions. These integrals require careful attention as they otherwise lead to an artificial sin-
gularity that may not cancel.
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1. Introduction

The muffin-tin approximation of the electron-moleculepotential,

first suggested by Slater,1 is “spherically symmetric within spheres surrounding

the atoms, and constant outside.” Later work also implemented terminating

the outside region by a “Watson sphere”2 that encloses all the spheres,

outside of which the potential is once again taken to be spherically symmetric.

This approximation has been implemented in various forms to tackle elec-

tronic structure calculations giving rise to enormous amount of literature.

For theoretical and computational details that are pertinent to the present

article one may, for example, refer to Refs. 3–9. However, there is hardly

any work reported that addresses the challenges associated with the normal-

ization of the wavefunction for this potential. Earlier studies,5,7 partly due

to lack of powerful computers, resorted to approximating the normalization

of the total wavefunction using a first-order perturbation theory that takes into

account small changes to the potential and total energy of the system. How-

ever, this type of approximation is not very useful, especially in the crucial

early stages of a self-consistent calculation where the potential varies signifi-

cantly between consecutive iterations. The main source of difficulty is the

normalization integral of the interstitial region.

The interstitial region where the potential is constant, naturally admits a

linear combination of spherical Bessel functions (BFs) as a solution. The con-

tribution to the normalization from this intricate region thereby involves

two-center overlap integrals over the BFs that are particularly challenging.

This article discusses these overlap integrals in some detail. We shall follow

closely the notation presented in the excellent paper3 that discusses the

scattered wavefunction method developed by Johnson. In the scattered

wavefunction treatment of a molecule or cluster, the whole space is geomet-

rically partitioned into three regions:

(I) Ionic: The region inside nonoverlapping spheres centered on the ions,

(II) Interstitial: The region outside the ionspheres and inside the Watson

sphere which encloses the entire molecule,

(III) Extramolecular: The region outside the Watson sphere.

The ionspheres, which are labeled by i, j¼ 0, 1,…, are of radius bj, centered

at Rj with local position rj such that r¼Rj +rj overall. The Watson sphere,

which is labeled w and is of radius bw, encloses all the ionspheres. Ionsphere 0

and theWatson sphere are by definition concentric at the origin, and hence,

r ¼ r0 ¼ rw. In this paper, r ¼ jrj and r̂ ¼ r=r will represent magnitude and
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unit vector, respectively. Relative positions will also be represented by

Rji ¼ Ri �Rj. The situation is sketched in Fig. 1.

The potential V� II in interstitial region II is a constant given by the vol-

ume average of the total potential on that region, which leads to the follow-

ing Schr€odinger equation

�1

2
r2 +V� II �E

� �
ΨIIðrÞ¼�1

2
r2 + κ2
� �

ΨIIðrÞ¼ 0, (1)

where κ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 E�V� II jjp

. Atomic units are used throughout this paper. Par-

titioning of the space as shown in Fig. 1 will inevitably necessitate enforcing

continuity of the wavefunction across the boundaries of all the spheres. As a

result, the wavefunction ΨII(r) generally needs to be expanded in spherical

BFs centered on each sphere as follows

ΨIIðrÞ¼
X
j¼0

X
L

A
j
LKLðκ, rjÞ+

X
L

Aw
LILðκ,rwÞ, E<V� II , (2)

ΨIIðrÞ¼
X
j¼0

X
L

A
j
LNLðκ, rjÞ+

X
L

Aw
L JLðκ,rwÞ, E>V� II : (3)

We have used a composite index L � {l, m} and the following notation

ILðκ,rÞ¼ ilðκrÞYLðr̂Þ, KLðκ,rÞ¼ klðκrÞYLðr̂Þ,
JLðκ,rÞ¼ jlðκrÞYLðr̂Þ, NLðκ,rÞ¼ ηlðκrÞYLðr̂Þ, (4)

where j and η are the spherical BFs of the first and second kind whereas

i and k are the spherical modified BFs of the first and second kind, respect-

ively.10YLðr̂Þ�Ym
l ðr̂Þ is a spherical harmonic (SH) function. A

j
L and A

w
L are

I

I

II

II

III

III

j0 Rj

r
rj

bj

bw

Fig. 1 Partitioning of space into (I) ionic, (II) interstitial, and (III) extramolecular regions.
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known expansion coefficients determined by matching the wavefunction

and its radial derivative across all the spherical boundaries. Every term on

the right-hand side of Eqs. (2) and (3) is a solution to Eq. (1).

Although all the equations in this article are written down for the com-

plex SH,11,12 they also remain valid for the less common real SH,13,14 unless

otherwise stated. Readers interested in real SH only are urged to ignore all

the complex conjugation operations.

2. Addition theorems

The main topic of this article is the consideration of the overlap inte-

grals over the intricate region II as part of the total wavefunction normali-

zation process. Calculation of these integrals requires a translation of the

spherical BFs from one center to another. The necessary additions theorems

(AdTs) are discussed below. Further information about the derivation of

these AdTs is given in the appendix of Ref. 3.

AdT for I and J are single range and, for the purpose of this paper, are

compactly expressed as

JLðκ,rÞ¼
X
L1

J LL1
J½ � κ,Rj

� �
JL1

ðκ, rjÞ, (5)

ILðκ,rÞ¼
X
L1

ILL1
I½ � κ,Rj

� �
IL1

ðκ, rjÞ, (6)

where the summation on L1 is a full open sum. The translation coefficient J
is given by

J LL1
J½ �ðκ,rÞ¼ 4π

X
m2

Xl2min

l2¼l + l1,�2

ð�1Þs=2 L L1j jL2h i JL2
ðκ,rÞ, (7)

with s ¼ l1 + l2 � l. The above formula is written in terms of the Gaunt

coefficients11,15 of the SH which are defined as

L1 L2j jL3h i¼
Z

Y �
L1
ðr̂ÞYL2

ðr̂ÞYL3
ðr̂Þ dr̂ : (8)

The SHs are also known to satisfy the following orthonormality conditionZ
Y �
L0 ðr̂ÞYLðr̂Þ dr̂ ¼ δL0L ¼ δl0lδm0m: (9)
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The expression for I in Eq. (6) can be obtained from Eq. (7) by simply

replacing J! I and s ¼ 0.

The AdT for N, on the other hand, is a double range expression of the

radial variables which can be written as the following two equivalent

formulas

NLðκ,rÞ¼
X
L1

N LL1
N½ � κ,r>ð Þ JL1

ðκ,r<Þ (10)

¼
X
L1

N LL1
J½ � κ,r<ð ÞNL1

ðκ,r>Þ, (11)

where the> and< signify the greater and lesser of rj and Rj. For Z denoting

either one of J or N

N LL1
Z½ � κ,rð Þ¼ 4π

X
m2

Xl2min

l2¼l + l1,�2

ð�1Þs=2 L1 Lj jL2h iZ�
L2
ðκ,rÞ, (12)

where s¼ 3l2 + l� l1. Notice that this s and the one given in Eq. (7) are both

even integers. Finally, the AdT for K closely resembles that of N. Namely,

KLðκ,rÞ¼
X
L1

KLL1
K½ � κ,r>ð ÞIL1

ðκ,r<Þ (13)

¼ð�1Þl
X
L1

KLL1
I½ � κ,r<ð ÞKL1

ðκ,r>Þ, (14)

where

KLL1
Z½ � κ,rð Þ¼ 4πð�1Þl1

X
m2

Xl2min

l2¼l + l1,�2

L1 Lj jL2h iZ�
L2
ðκ,rÞ, (15)

with Z now denoting either one of I or K.

In Eqs. (7), (12), and (15), the summation limit l2min ¼
maxðjl� l1j, jm2jÞ whereas the range of m2 is different for real and complex

SH functions and must be inferred from the selection rules of the

Gaunt coefficients. In Eq. (8), m1 ¼ m2 + m3 for complex SH, while for

real SH functions, according to their description given in Ref. 13,

for example, m1 takes distinct values from the set m1 2 m2 +m3,m3�m2,f
m2�m3,�m3�m2g. Notice that the shown arrangement of the summa-

tions on m2 and l2 automatically conforms to the requirement of the

selection rules of the Gaunt coefficients that the quantity (l1 + l2 + l) be

an even integer.
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3. Integrals of the interstitial region

All of the overlap integrals of the interstitial region that occur upon

substitution of Eq. (3) into
R
ΩII ΨIIðrÞj j2d3r will be discussed in some detail

in this section. The following subsections exhaust all of the possibilities up to

complex conjugation of the given overlap integrals. Analogous integrals for

the bound state of Eq. (2) are not included here as they can be done easily by

following the same procedure.

3.1 Watson–Watson

wL0jwLh i¼
Z
ΩII

d3r J�L0 ðκ,rÞJLðκ,rÞ: (16)

When the interstitial region is explicitly decomposed into the interior of the

Watson sphere minus the ionspheres, one obtains

wL0jwLh i¼
Z Ωw

Ω0

d3r J�L0 ðκ,rÞJLðκ,rÞ

�
X
i6¼0

Z Ωi

0

d3ri J
�
L0 ðκ,Ri + riÞJLðκ,Ri + riÞ:

(17)

Employing Eq. (5) and orthonormality of the SH in Eq. (9) gives the

following final form

wL0jwLh i¼ δL0L

Z bw

b0

j2l ðκrÞ r2dr

�
X
i6¼0

X∞
l1¼0

Xl1
m1¼�l1

J �
L0L1

J½ �ðκ,RiÞJ LL1
J½ �ðκ,RiÞ

( )Z bi

0

j2l1ðκrÞ r2dr:

(18)

3.2 Watson–central ionsphere

wL0j0Lh i¼
Z
ΩII

d3r J�L0 ðκ,rÞNLðκ,rÞ: (19)
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This can be written as,

wL0j0Lh i¼
Z Ωw

Ω0

d3r J�L0 ðκ,rÞNLðκ,rÞ

�
X
i 6¼0

Z Ωi

0

d3ri J
�
L0 ðκ,Ri + riÞNLðκ,Ri + riÞ:

(20)

Apparently, Eq. (10) is needed since Ri > ri, for i 6¼ 0. After substitution of

Eq. (10) and using orthonormality of the SH the final form is

wL0j0L� �¼ δL0L

Z bw

b0

jlðκrÞηlðκrÞ r2dr

�
X
i6¼0

X∞
l1¼0

Xl1
m1¼�l1

J �
L0L1

J½ �ðκ,RiÞN LL1
N½ �ðκ,RiÞ

( )Z bi

0

j2l1ðκrÞ r2dr:

(21)

3.3 Watson–noncentral ionsphere

wL0j jLh i¼
Z
ΩII

d3r J�L0 ðκ,rÞNLðκ, rjÞ: (22)

Following similar formulations as above gives

wL0j jLh i¼
Z Ωw

Ω0

d3r J�L0 ðκ,rÞNLðκ,r�RjÞ

�
X
i 6¼0

Z Ωi

0

d3ri J
�
L0 ðκ,Ri + riÞNLðκ,ri +Ri�RjÞ:

(23)

Let us consider the two integrals above separately. The radial part of the first

integral must be broken into two pieces and Eqs. (10) and (11) properly

implemented according to the relative values of r versus Rj. The result isZ Ωw

Ω0

d3r J�L0 ðκ,rÞNLðκ,r�RjÞ¼N LL0 N½ �ðκ, �RjÞ
Z Rj

b0

j2l0 ðκrÞ r2dr

+N LL0 J½ �ðκ,�RjÞ
Z bw

Rj

jl0 ðκrÞηl0 ðκrÞ r2dr:

(24)
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The second integral in Eq. (23) will depend on whether i¼ j or not. If i¼ j,

employing Eq. (5) givesZ Ωi

0

d3ri J
�
L0 ðκ,Ri + riÞNLðκ,riÞ¼J �

L0L J½ �ðκ,RjÞ
Z bj

0

jlðκrÞηlðκrÞ r2dr:
(25)

For the case i 6¼ j, let us use Rji ¼ Ri �Rj. Since these are nonoverlapping

spheres, both Rji > bi and Rji > bj are always true which makes Eqs. (5) and

(10) relevantZ Ωi

0

d3ri J
�
L0 ðκ,Ri + riÞNLðκ,Rji + riÞ

¼
X
L1

J �
L0L1

J½ �ðκ,RiÞN LL1
N½ �ðκ,RjiÞ

Z bi

0

j2l1ðκrÞ r2dr:
(26)

Collecting all the terms gives

wL0j jL� �¼N LL0 N½ �ðκ, �RjÞ
Z Rj

b0

j2l0 ðκrÞ r2dr

+N LL0 J½ �ðκ, �RjÞ
Z bw

Rj

jl0 ðκrÞηl0 ðκrÞ r2dr�J �
L0L J½ �ðκ,RjÞ

Z bj

0
jlðκrÞηlðκrÞ r2dr

�
X

i 6¼f0, jg

X∞
l1¼0

Xl1
m1¼�l1

J �
L0L1

J½ �ðκ,RiÞN LL1
N½ �ðκ,RjiÞ

8<
:

9=
;
Z bi

0
j2l1ðκrÞ r2dr:

(27)

3.4 Central ionsphere–central ionsphere

0L0j0Lh i¼
Z
ΩII

d3rN�
L0 ðκ,rÞNLðκ,rÞ: (28)

As usual one can decompose the region as

0L0j0Lh i¼
Z Ωw

Ω0

d3r N�
L0 ðκ,rÞNLðκ,rÞ�

X
i 6¼0

Z Ωi

0
d3ri N

�
L0 ðκ,Ri + riÞNLðκ,Ri + riÞ:

(29)
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Since alwaysRi> bi, a substitution will be made from Eq. (10) which leads to

0L0j0Lh i¼ δL0L

Z bw

b0

η2l ðκrÞ r2dr

�
X
i6¼0

X∞
l1¼0

Xl1
m1¼�l1

N�
L0L1

N½ �ðκ,RiÞN LL1
N½ �ðκ,RiÞ

( )Z bi

0

j2l1ðκrÞ r2dr:

(30)

3.5 Central ionsphere–noncentral ionsphere

0L0j jLh i¼
Z
ΩII

d3rN�
L0 ðκ,rÞNLðκ, rjÞ: (31)

Decomposing the region gives

0L0j jLh i¼
Z Ωw

Ω0

d3r N�
L0 ðκ,rÞNLðκ,r�RjÞ

�
X
i 6¼0

Z Ωi

0

d3ri N
�
L0 ðκ,Ri + riÞNLðκ,Ri�Rj + riÞ:

(32)

Following similar reasoning as in Section 3.3, the final result is

0L0j jL
� �

¼N LL0 N½ �ðκ, �RjÞ
Z Rj

b0

ηl0 ðκrÞjl0 ðκrÞ r2dr

+N LL0 J½ �ðκ, �RjÞ
Z bw

Rj

η2l0 ðκrÞ r2dr�N�
L0L N½ �ðκ,RjÞ

Z bj

0
jlðκrÞηlðκrÞ r2dr

�
X

i 6¼f0, jg

X∞
l1¼0

Xl1
m1¼�l1

N�
L0L1

N½ �ðκ,RiÞN LL1
N½ �ðκ,RjiÞ

8<
:

9=
;
Z bi

0
j2l1
ðκrÞ r2dr:

(33)

3.6 Noncentral ionsphere–same noncentral ionsphere

jL0j jLh i¼
Z
ΩII

d3rN �
L0 ðκ, rjÞNLðκ, rjÞ: (34)

This integral is the most difficult of all. The reason is, following a similar

procedure used in the above cases immediately reveals that it leads to a

singular, radial integral. The only remedy will be to express it off-center,

specifically on the ion j itself, as shown below
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jL0j jLh i¼
Z Ωw ½̂r j�

Ωj

d3rj N
�
L0 ðκ, rjÞNLðκ, rjÞ

�
X
i6¼j

Z Ωi

0

d3ri N
�
L0 ðκ,Ri�Rj + riÞNLðκ,Ri�Rj + riÞ:

(35)

The complication in the first integral arises because the radius of the Watson

sphere is a function of the angle of the rj vector which essentially renders it be

a triple integral. One may try to circumvent this by extending the upper

bound of the integral to infinity and rewriting as follows

Z Ωw ½̂r j�

Ωj

d3rj N
�
L0 ðκ, rjÞNLðκ, rjÞ

¼
Z ∞

Ωj

d3rj N
�
L0 ðκ, rjÞNLðκ, rjÞ�

Z ∞

Ωw

d3r N�
L0 ðκ,r�RjÞNLðκ,r�RjÞ

¼ δL0L

Z ∞

bj

η2l ðκrÞ r2dr�
X
L1

N�
L0L1

J½ �ðκ, �RjÞN LL1
J½ �ðκ, �RjÞ

Z ∞

bw

η2l1ðκrÞ r2dr:

(36)

However, the respective boundary terms at infinity will not cancel!

This point has been missed in previous work.5 To see this more clearly,

let us break the first radial integral into two and write the above equation

as follows

Z Ωw ½̂r j�

Ωj

d3rj N
�
L0 ðκ, rjÞNLðκ, rjÞ¼ δL0L

Z bw

bj

η2l ðκrÞ r2dr

+
X
l1

δL0L δl1l�
Xl1

m1¼�l1

N�
L0L1

J½ �ðκ, �RjÞN LL1
J½ �ðκ, �RjÞ

( )Z ∞

bw

η2l1ðκrÞ r2dr:

(37)

The quantity in curly brackets must be identically zero in order to

nullify the last singular integral. However, since the direction of translation

for both coefficients N is the same (�R̂j) and also the independent sum-

mation is only over m1, it is clear the term in curly brackets is generally

nonzero.

Since it is now evident that the integral is difficult to express

without singular terms, we will discuss another method of doing the integral

numerically more economical than a triple integral. Let us first write
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Z Ωw ½̂r j�

Ωj

d3rj N
�
L0 ðκ, rjÞNLðκ, rjÞ¼

Z
dr̂ j Y

�
L0 ðr̂ jÞYLðr̂ jÞ

Z
bj

ηl0 ðκrjÞηlðκrjÞ r2j drj:

(38)

Assume Rj is in the (global) ẑ direction. This assumption can be made

because only one ionsphere is involved and, as far as Eq. (38) is concerned,

Rj affects only the upper limit of the radial integral. This assumption

allows the integral over the azimuthal angle ϕj[0, 2π] to be evaluated,

after which it becomes a δm0m due to the SH orthonormality. Further

simplification can also be gained if the order of the ensuing double integral

is reversed (by preserving the same two-dimensional integration area) as

follows

Z Ωw ½̂r j�

Ωj

d3rj N
�
L0 ðκ, rjÞNLðκ, rjÞ

¼ δm0m

Z bw +Rj

bj

drj r
2
j ηl0 ðκrjÞηlðκrjÞ

Z uðrjÞ

�1

dxj P
�m
l0 ðxjÞP�ml ðxjÞ:

(39)

P� is a “normalized” Legendre polynomial. Specifically,

P�ml ðxÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l+1Þ

2

ðl�mÞ!
ðl +mÞ!

s
Pm
l ðxÞ, (40)

where P is the associated Legendre polynomial.12 The integration upper

limit u is determined by imposing rj +Rj

		 		¼ bw. Using rj.Rj ¼ rjRjxj, the

result is

uðrjÞ¼
1, if bj � rj � bw�Rj,

b2w�R2
j � r2j


 �
=2Rjrj, if bw�Rj � rj � bw +Rj,

(
(41)

which implies, � 1 � u(rj) � 1. The inner integral can thus be done analyt-

ically, as will be shown below, reducing the overall task into a single integral.

To this end, let us define the inner integral and linearize as follows

Iml1l2ðxÞ¼
Z x

�1

P�ml1ðyÞP�ml2ðyÞ dy

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 + 1Þð2l2 + 1Þ

p Xlmin

l¼l1 + l2,�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl�2mÞ!
ðl+2mÞ!

s
Cl0

l10l20
C

lð2mÞ
l1ml2m

S2ml ðxÞ,

(42)
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where lmin ¼ maxðjl1� l2j, j2mjÞ,C is the Clebsch–Gordan coefficient and
S is a primitive of P defined as

Smn ðxÞ¼
Z x

�1

Pm
n ðyÞ dy, �1� x� 1: (43)

Eq. (42) follows from the Clebsch–Gordan series for the SH functions.11 It

can be shown that the S polynomials satisfy the following recursion relation

which is particularly favorable for expedited execution of Eq. (42)

ðn+1Þðn�mÞSmn ðxÞ¼�ð2n�1Þ 1�x2
� �

Pm
n�1ðxÞ

+ðn�2Þðn+m�1ÞSmn�2ðxÞ, n�m^m� 0:

(44)

The above recursion can be started with a proper choice of either one of the

following two options

SmmðxÞ¼ 2ð�1Þm ð2mÞ!
m!

Bx+1

2

m

2
+ 1,

m

2
+ 1


 �
, (45)

Smm+1ðxÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p

m+2
Pm+1
m+1ðxÞ, (46)

where B is the incomplete Beta function.12 To the best of the authors’

knowledge, the above three equations are given for the first time here.

For the very important case of m ¼ 0, an even simpler three-term recursion

identity is also available16

ðn+1ÞSnðxÞ¼ ð2n�1ÞxSn�1ðxÞ�ðn�2ÞSn�2ðxÞ, n� 2, (47)

along with S1(x) ¼ (x2 � 1)/2 and S0(x) ¼ x + 1, where the notation

SnðxÞ� S0nðxÞ has been used. Finally, negative m values can be recovered

from the following relation which carries over from a well-known

property of P

S�m
n ðxÞ¼ ð�1Þm ðn�mÞ!

ðn+mÞ! S
m
n ðxÞ: (48)

The above relation is given for the sake of completeness because

I�m
l1l2

ðxÞ¼ Iml1l2ðxÞ due to the symmetry property P��m
l ðxÞ¼ ð�1ÞmP�ml ðxÞ.

Hence, after substituting Eq. (39) into Eq. (35) and further simplification,

the final form is
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jL0j jLh i

¼ δm0m δl0l

Z bw�Rj

bj

η2l ðκrÞ r2dr +
Z bw +Rj

bw�Rj

ηl0 ðκrÞηlðκrÞIml0l uðrÞð Þ r2dr
" #

�
X
i 6¼j

X∞
l1¼0

Xl1
m1¼�l1

N�
L0L1

N½ �ðκ,RjiÞN LL1
N½ �ðκ,RjiÞ

( )Z bi

0

j2l1ðκrÞ r2dr,

(49)

where the argument u(r) is given in Eq. (41). In the first integral, the

orthonormality relation Iml0lð1Þ¼ δl0l has been used for the special case

u(r) ¼ 1. It is now apparent that due to the presence of the I function the

second radial integral above can only be done numerically. If this proves

to be computationally expensive, one can optionally store it for all the

required quantum numbers m, l0 and l given particular values of κ and Rj.

Due to the symmetry of this radial integral, it suffices to store its

corresponding values for l � l0 and 0 � m � l only.

3.7 Noncentral ionsphere–different noncentral ionsphere

j0L0j jLh i¼
Z
ΩII

d3rN�
L0 ðκ, rj0 ÞNLðκ, rjÞ: (50)

The region can be decomposed as

j0L0j jLh i ¼
Z Ωw

Ω0

d3r N�
L0 ðκ,r�Rj0 ÞNLðκ,r�RjÞ

�
Z Ωj 0

0

d3rj0 N
�
L0 ðκ, rj0 ÞNLðκ, rj0 +Rj0 �RjÞ

�
Z Ωj

0

d3rj N
�
L0 ðκ, rj +Rj�Rj0 ÞNLðκ, rjÞ

�
X

i 6¼f0, j0, jg

Z Ωi

0

d3ri N
�
L0 ðκ,ri +Ri�Rj0 ÞNLðκ,ri +Ri�RjÞ:

(51)
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Defining R<¼ minðRj 0,RjÞ and R>¼ maxðRj 0,RjÞ, the radial part of the
first integral can be divided into three terms as followsZ Ωw

Ω0

d3r N�
L0 ðκ,r�Rj0 ÞNLðκ,r�RjÞ

¼
X
L0
1
L1

N�
L0L0

1
N½ �ðκ, �Rj0 ÞN LL1

N½ �ðκ, �RjÞ
Z

dr̂

Z R<

b0

dr r2J�L0
1
ðκ,rÞJL1

ðκ,rÞ

+
X
L0
1
L1

N�
L0L0

1
J½ �ðκ, �R<ÞN LL1

N½ �ðκ, �R>Þ
Z

dr̂

Z R>

R<

dr r2N�
L0
1
ðκ,rÞJL1

ðκ,rÞ

+
X
L0
1
L1

N�
L0L0

1
J½ �ðκ, �Rj0 ÞN LL1

J½ �ðκ,�RjÞ
Z

dr̂

Z bw

R>

dr r2N�
L0
1
ðκ,rÞNL1

ðκ,rÞ:

(52)

Hence, the final result is

j0L0j jLh i

¼
X∞
l1¼0

Xl1
m1¼�l1

N�
L0L1

½N � κ, �Rj0

 �

N LL1
½N � κ, �Rj

� �8<
:

9=
;
Z R<

b0

j2l1ðκrÞ r2dr

+
X∞
l1¼0

Xl1
m1¼�l1

N�
L0L1

½ J � κ, �R<ð ÞN LL1
½N � κ, �R>ð Þ

8<
:

9=
;
Z R>

R<

ηl1ðκrÞjl1ðκrÞ r2dr

+
X∞
l1¼0

Xl1
m1¼�l1

N�
L0L1

½ J � κ, �Rj0

 �

N LL1
½ J � κ,�Rj

� �8<
:

9=
;
Z bw

R>

η2l1ðκrÞ r2dr

�N LL0 ½N � κ,Rjj0

 �Z bj0

0

ηl0 ðκrÞjl0 ðκrÞ r2dr�N�
L0L ½N � κ,Rj0j


 �Z bj

0

jlðκrÞηlðκrÞ r2dr

�
X

i6¼f0, j0, jg

X∞
l1¼0

Xl1
m1¼�l1

N�
L0L1

½N � κ,Rj0i


 �
N LL1

½N � κ,Rji

� �8<
:

9=
;
Z bi

0
j2l1ðκrÞ r2dr:

(53)

4. Conclusion

All the necessary integrals pertinent to the overlap integral of the solu-

tions to the interstitial region have been worked out. Although only the

continuum cases are discussed, the corresponding bound state integrals

can be straightforwardly done. The AdTs for the bound case are already
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included in this article. All of the integrals given in Section 3 have been

programmed by us using real SH functions. Early numerical tests indicate

that all of them exhibit good convergence and that the convergence is

not very sensitive to the spatial proximity of the ionspheres. However, a

direct numerical check of the integrals separately is difficult to obtain due

to the complicated nature of the integrals. The only valid check comes when

all of it is put together as part of a relevant theoretical method and applied to

test cases of small molecules and clusters. Such an endeavor is underway and

results will be reported in the future.

Appendix

Most of the necessary radial integrals are summarized here.5 For Z
representing the BFs i, k, j, or η, one hasZ

ZnðκrÞ½ �2 r2dr ¼ r3

2
ZnðκrÞ½ �2�Zn�1ðκrÞZn+1ðκrÞ

� 

: (A.1)

The mixed integrals are

Z
inðκrÞknðκrÞ r2dr¼ r3

4
2inðκrÞknðκrÞ+ in�1ðκrÞkn+1ðκrÞ+ in+1ðκrÞkn�1ðκrÞ½ �,

(A.2)Z
jnðκrÞηnðκrÞ r2dr ¼

r3

4
2jnðκrÞηnðκrÞ� jn�1ðκrÞηn+1ðκrÞ� jn+1ðκrÞηn�1ðκrÞ½ �:

(A.3)

All of these integrals remain valid for the n ¼ 0 case with the following

definitions

i�1ðxÞ¼ i0ðxÞ+ k0ðxÞ¼ coshðxÞ
x

, (A.4)

k�1ðxÞ¼ k0ðxÞ¼ e�x

x
, (A.5)

j�1ðxÞ¼�η0ðxÞ¼
cosðxÞ

x
, (A.6)

η�1ðxÞ¼ j0ðxÞ¼ sinðxÞ
x

: (A.7)
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Abstract

We describe a method for imposing the correct electron–nucleus (e-n) cusp in molec-
ular orbitals expanded as a linear combination of (cuspless) Gaussian basis functions.
Enforcing the e-n cusp in trial wave functions is an important asset in quantum Monte
Carlo calculations as it significantly reduces the variance of the local energy during
the Monte Carlo sampling. In the method presented here, the Gaussian basis set is
augmented with a small number of Slater basis functions. Note that, unlike other
e-n cusp-correction schemes, the presence of the Slater function is not limited to
the vicinity of the nuclei. Both the coefficients of these cuspless Gaussian and cusp-
correcting Slater basis functions may be self-consistently optimized by diagonalization
of an orbital-dependent effective Fock operator. Illustrative examples are reported for
atoms (H, He, and Ne) as well as for a small molecular system (BeH2). For the simple case
of the He atom, we observe that, with respect to the cuspless version, the variance is
reduced by one order of magnitude by applying our cusp-corrected scheme.

Advances in Quantum Chemistry, Volume 79 # 2019 Elsevier Inc.
ISSN 0065-3276 All rights reserved.
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1. Introduction

In the last decade, the advent of massively parallel computational plat-

forms and their ever-growing number of computing nodes has unveiled new

horizons for studying quantum systems. It is now widely recognized that

there is an imperative need to develop methods that take full advantages

of these new supercomputer architectures and scale up to an arbitrary num-

ber of cores. A class of methods known to scale up nicely is stochastic

approaches, and especially quantum Monte Carlo (QMC) methods which

are steadily becoming the go-to computational tool for reaching high accu-

racy in large-scale problems (see, for example, Refs. 1–5). In practice, to

make QMC feasible for large systems, it is essential to resort to accurate trial

wave functions leading both to an efficient sampling of the configuration

space and to low energy fluctuations. A precious guide to build up such

functions is to take into account the universal features known about the

exact many-electron wave function.6–13

In standard QMC implementations, the trial wave functions are usually

defined as14–16

ΨTðRÞ¼ e JðRÞ
X
I

cID
"
I ðR"ÞD#

I ðR#Þ, (1)

where Dσ
I and Rσ are determinants and coordinates of the spin-σ electrons,

respectively. The fermionic nature of the wave function is imposed using a

single- or multideterminant expansion of Slater determinants17–22 made of

Hartree–Fock (HF) or Kohn–Sham (KS) molecular orbitals (MOs)

ϕiðrÞ¼
XN
μ

cμi χμðrÞ (2)

built as a linear combination ofNGaussian basis functions χμ(r). J(R) is called
the Jastrow factor and its main purpose is to catch the bulk of the dynamic

electron correlation.

At short interparticle distances, the Coulombic singularity dominates all

other terms and, near the two-particle coalescence points, the behavior of

the exact wave function Ψ becomes independent of other details of the sys-

tem.13 In particular, early work by Kato,23,24 and elaborations by Pack and

Brown,25 showed that, as one electron at ri approaches a nucleus of charge

ZA at rA, we have
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∂hΨðRÞi
∂ri

����
ri¼rA

¼�ZAhΨðRÞijri¼rA
, (3)

where hΨðRÞijri¼rA
is the spherical average of Ψ(R) about ri ¼ rA.

To remove divergences in the local energy at the electron–nucleus (e-n)
coalescence points, cusp conditions such as (3) must be satisfied. (Note that

the use of pseudopotentials also removes such divergences as routinely done

in QMC calculations, but at the price of introducing systematic errors such as

the pseudopotential localization error.) These divergences are especially

harmful in DMC calculations, where they can lead to a large increase of

the statistical variance, population-control problems, and significant biases.15

There are two possible ways to enforce the correct e-n cusp. One

approach is to enforce the e-n cusp within the Jastrow factor in Eq. (1). This

has the disadvantage of increasing the number of parameters in J(R), and

their interdependence can be tricky as one must optimize the large number

of linear and nonlinear parameters contained in J(R) via a stochastic (noisy)

optimization of the energy and/or its variance. However, it is frequently

done in the literature thanks to some recent progress.26–28 Another method

is to enforce the cusp within the multideterminant expansion of Eq. (1).

However, because one usually employs Gaussian basis functions29 (as in

standard quantum chemistry packages), the MOs ϕi(r) are cuspless, i.e.,

∂hϕiðrÞi
∂r

����
r¼rA

¼ 0: (4)

One solution would be to use a different set of basis functions30 as, for

instance, Slater basis functions.31–33 However, they are known to be trouble-

some, mainly due to the difficulty of calculating multicentric two-electron

integrals which require expensive numerical expansions or quadratures.Nev-

ertheless, some authors34 have explored using wave functions built with

Slater basis functions35 while imposing the right e-n cusp afterward. (Note

that it is also possible to enforce the correct e-n cusp during the SCF process

although it is rarely done.36) These types of calculations can be performed

with an electronic structure package such as ADF.37 However, as far as

we know, it is hard to perform large-scale calculations with Slater basis func-

tions and the virtual space is usually poorly described.Moreover, the available

Gaussian bases are usually of better quality than Slater-based ones due to the

extensive knowledge and experience gathered by quantum chemists over the

last 50 years while building robust, compact and effective Gaussian basis sets.
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Conventional cusp-correction methods usually replace the part of χμ(r)
or ϕi(r) close to the nuclei within a cusp-correction radius by a polynomial

or a spline function which fulfills Kato cusp conditions and ensures a well-

behaved local energy.38–41 For atoms, one can also substitute Gaussian core

orbitals by tabulated Slater-based ones.42–44 In the same vein, Toulouse and

Umrigar have fitted Slater basis functions with a large number of Gaussian

functions and replaced them within the QMC calculation.28 However, it is

hardly scalable for large systems due to its lack of transferability and the ever-

growing number of primitive two-electron integrals to compute.

Here, we propose to follow a different, alternative route by augmenting

conventional Gaussian basis sets with cusp-correcting Slater basis functions.

Mixed Gaussian-Slater basis sets have been already considered in the past

with limited success due to the difficultly of computing efficiently mixed

electron repulsion integrals.45–52 However, we will show that, because

of the way we introduce the cusp correction, the integrals required here

are not that scary. For the sake of simplicity, we will focus on the HF for-

malism in the present study, although our scheme can also be applied in the

KS framework.

2. Cusp-corrected orbitals

A sufficient condition to ensure that Φ fulfills the e-n cusp (3) is that

each (occupied and virtual) MO ~ϕiðrÞ satisfies the e-n cusp at each nuclear

position rA:

∂h ~ϕiðrÞi
∂r

����
r¼rA

¼�ZAh ~ϕiðrÞi
��
r¼rA

: (5)

Note that this is true only if no linear term in r is introduced within the

Jastrow factor. Without loss of generality, we also assume that the basis func-

tions have been already orthogonalized via the standard procedure,53 i.e.,

hχμjχνi ¼ δμν, where δμν is the Kronecker delta.
54

Here, we enforce the correct e-n cusp by adding a cusp-correcting

orbital to each MO:

~ϕiðrÞ¼ϕiðrÞ+ P̂φiðrÞ, (6)

with

φiðrÞ¼
XM
A

~cAi ~χ
i
AðrÞ, (7)
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where M is the number of nuclear centers and

~χ iAðrÞ¼
ffiffiffiffiffi
~α3
i

π

r
exp ½�~αijr� rAj� (8)

is a 1s Slater function centered on nucleus A with an orbital-dependent

exponent ~αi. In Eq. (6), the projector

P̂ ¼ Î�
X
μ

jχμihχμj (9)

(where Î is the identity operator) ensures orthogonality between ϕi(r) and

the cusp-correcting orbital φi(r).

It is easy to show that ensuring the right e-n cusp yields the following

linear system of equations for the coefficients cAi:

X
B

�δAB
ZA

∂r~χ
i
AðrAÞ�~χ iAðrAÞ+

X
μ

~S
i

BμχμðrAÞ
" #

~cBi ¼ϕiðrAÞ, (10)

where δAB is the Kronecker delta
54 and the explicit expression of the matrix

elements ~S
i

μA ¼hχμj~χ iAi is given in Appendix and

∂r~χ
i
AðrAÞ�

∂~χ iAðrÞ
∂r

����
r¼rA

: (11)

Eq. (10) can be easily solved using standard linear algebra packages and pro-

vides a way to obtain a cusp-corrected orbital ~ϕiðrÞ from a given MO ϕi(r).

For reasons that will later become apparent, we will refer to this procedure as

a one-step (OS) calculation. In the next section, we are going to explain how

one can optimize self-consistently the coefficients ~cAi.

3. Self-consistent dressing of the Fock matrix

So far, the coefficient ~cAi have been set via Eq. (10). Therefore, they

have not been obtained via a variational procedure as their only purpose is to

enforce the e-n cusp. However, they do depend onϕi(rA), hence on theMO

coefficients cμi. We will show below that one can optimize simultaneously

the coefficients ~cAi and cμi by constructing an orbital-dependent effective

Fock matrix.

The key point is to assume that ~ϕiðrÞ is an eigenfunction of the Fock

operator f̂ , as we require
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f̂ j ~ϕii¼~εi j ~ϕii: (12)

Note that, even at convergence of a conventional HF or KS calculation, the

equality (12) is never fulfilled (unless the basis happens to span the exact

orbital). This under-appreciated fact has been used by Deng et al. to design

a measure of the quality of a MO.55

Next, we project out Eq. (12) over hχμj yielding
X
ν

Fμνcνi +
X
A

~cAi ~F
i

μA�
X
λ

Fμλ ~S
i

λA

 !
¼~εicμi, (13)

where

Fμν¼hχμj f̂ jχνi, ~F
i

μA¼hχμj f̂ j~χ iAi: (14)

In the general case, because we must use basis functions with nonzero deriv-

atives at the nucleus, finding the matrix elements ~F
i

μA is challenging and

costly. However, because we are interested in the e-n cusp, we have found

that a satisfactory approximation is

~F
i

μA�
X
λ

Fμλ ~S
i

λA � ~h
i

μA�
X
λ

Hc
μλ
~S
i

λA (15)

where

Hc
μν ¼hχμjĥjχνi, ~h

i

μA¼hχμjĥj~χ iAi, (16)

and ĥ is the core Hamiltonian. (The expression of the matrix elements ~h
i

μA

are given in Appendix.) Note that, in Eq. (15), it is important to use the same

approximation for both terms (~F
i

μA � ~h
i

μA and Fμν � Hμν
c ) in order to pre-

serve the subtle balance between the two terms.

The eigenvalue problem given by Eq. (13) can be recast asX
ν

~F
i

μνcνi¼~εicμi, (17)

where we have “dressed” the diagonal of the Fock matrix

~F
i

μν ¼ Fμμ + ~D
i

μ, if μ¼ ν,
Fμν, otherwise,

�
(18)
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with

~D
i

μ¼ c�1
μi

X
A

~cAi ~h
i

μA�
X
λ

Hc
μλ
~S
i

λA

 !
: (19)

The process is repeated until our convergence criterion is met, i.e., the larg-

est absolute value of the elements of the commutator ~F iP�P~F i is lower

than a given threshold, where ~F i is the dressed Fock matrix [Eq. (18)]

and P is the density matrix with

Pμν ¼
Xocc
i

cμicνi: (20)

In the remainder of this chapter, we will refer to this procedure as self-

consistent dressing (SCD).

Similar to the Perdew–Zunger self-interaction correction,56 the orbitals
~ϕiðrÞ are eigenfunctions of different Fock operators and therefore no longer
necessarily orthogonal. Practically, we have found that the e-n cusp correc-

tion makes the cusp-corrected MOs ~ϕi slightly nonorthogonal. However,

this is not an issue since one evaluates the energy via MC sampling which

only requires the evaluation of theMOs and their first and second derivatives

in QMC.

Obviously, as evidenced by Eq. (18), when cμi is small, the dressing of

the Fock matrix is numerically unstable. Therefore, we have chosen not to

dress the Fock matrix if cμi is smaller than a user-defined threshold τ. We

have found that a value of 10�5 is suitable for our purposes, and we use

the same value for the convergence threshold. Moreover, we have found

that setting39

~αi¼ϕiðrAÞ
ϕ
∘

iðrAÞ
ZA (21)

(where ϕ
∘

i (r) corresponds to the s-type components of ϕi(r) centered at rA)

yields satisfactory results. In the case where ϕ
∘

i (rA)¼ 0, theMO is effectively

zero at r ¼rA and, therefore, does not need to be cusp corrected. As in con-

ventional self-consistent calculations, it is sometimes useful to switch on the

convergence accelerator DIIS,57,58 and we have done so in some cases. The

general skeleton of the algorithm is given in Algorithm 1.
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ALGORITHM 1 Skeleton of the e-n cusp-correction algorithm.
c and ~c gather the coefficients cμi and ~cAi, respectively. τ is a
user-defined threshold.
1: procedure ENCUSPCORRECTION

2: Do a standard HF or KS calculation
3: to obtain MO coefficients c and density matrix P
4: ⊲ Main loop over MOs
5: for MO i ¼ 1, …, N do
6: for nuclear center A ¼ 1, …, M do

7: Compute ϕi(rA) and ϕ
∘

i(rA)
8: and determine ~α i via Eq. (21)

9: Evaluate ∂r~χ
i
AðrAÞ

10: for nuclear center B ¼ 1, …, M do

11: Evaluate ~χ iBðrAÞ
12: end for
13: end for

14: Compute dressing integrals ~S i and ~h i (if required)
15: (see Appendix)
16: Compute ~cAi via Eq. (10)
17: if one-step calculation go to 34
18: ⊲ Start SCF loop for ith MO

19: while max j~F iP�P~F i j> τ do
20: Compute Fock matrix F
21: for basis function μ ¼ 1, …N do
22: if jcμij > τ then
23: Dress the diagonal of the Fock matrix:

24: ~F
i
μμ ¼ Fμμ + ~D

i
μ (see Eq. (19))

25: end if
26: end for

27: Diagonalize ~F i to obtain c
28: Compute new density matrix P
29: for nuclear center A ¼ 1, …, M do
30: Update the value of ϕi(rA)
31: end for
32: Update ~cAi by solving Eq. (10)
33: end while
34: Store Gaussian coefficients cμi and
35: Slater coefficients ~cAi of ith MO
36: end for
37: ⊲ Return useful quantities for QMC calculation
38: return c and ~c
39: end procedure
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4. Illustrative examples

4.1 Atoms
Let us illustrate the present method with a simple example. For pedagogical

purposes, we have computed the wave function of the hydrogen atom

within a small Gaussian basis (decontracted STO-3G basis). In Fig. 1, we

have plotted the local energy associated with this wave function as well as

its OS and SCD cusp-corrected versions. The numerical results are reported

in Table 1. As expected, the “cuspless” local energy (red curve) diverges for

small rwith a variational energy off by 4.3 millihartree compared to the exact

value of � 1/2. The OS cusp-correcting procedure which introduces a

Slater basis function of unit exponent (but does not reoptimize any coeffi-

cients) cures the divergence at r ¼ 0 and significantly improves (by roughly

one order of magnitude) both the variational energy and the variance.

Moreover, we observe that the long-range part of the wave function is also

improved compared to the Gaussian basis set due to the presence of the

Slater basis function which has the correct asymptotic decay. The SCD

cusp-correcting procedure further improve upon the OS scheme, and we

reach a variance lower than 10�8 after only three iterations. The values of

the coefficients of the Gaussian and Slater functions reported in Table 1

0 1 2 3 4 5
−1

− 1
2

0

−1

− 1
2

0

Fig. 1 Local energy EL(r) for various wave functions of the H atom. The cuspless wave
function is obtained with the decontracted STO-3G Gaussian basis set (red curve), and
the OS and SCD cusp-corrected wave functions (blue and orange curves, respectively) are
obtained using α

�
H ¼ 1.
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clearly show that, as expected, the Gaussian functions are getting quickly

washed away and replaced by the Slater function.

In Fig. 2, we have plotted the cuspless HF 1s core orbitals of the helium

(left) and neon (right) atoms, and their cusp-corrected versions obtained with

various schemes. For the He atom, we compare the cusp-corrected orbitals

produced by the OS and SCD procedures. One can clearly see that the qual-

itative difference between the cusp-corrected orbitals is small (at least graph-

ically). For the Ne atom, one cannot graphically distinguished between the

two cusp-correcting schemes. Fig. 3 reports the local energy of the cuspless

and cusp-corrected HF wave functions as an electron is moved through

the nucleus of a Ne atom located at the origin. (The other electrons have been

positioned randomly.) The right panel of Fig. 3 corresponds to a zoom around

the originwhere the local energy associatedwith the cuspless wave function is

strongly oscillatory and ultimately diverges toward�∞ as r! 0.We observe

that the cusp-correcting algorithm removes both the divergence of the local

energy at the origin but also smooths out its erratic oscillations in the neigh-

borhood of the origin, while remaining identical to the local energy obtained

with the cuspless wave function for large r. In particular, one can see that the

node (i.e., zero) of thewave function around r¼�2 is not significantly altered

by the addition of the Slater basis function (albeit not strictly identical).

Table 2 reports the energy and the corresponding variance of the

He atom computed at the VMC and DMC level. The trial wave function

is the HF wave function computed in the 6-31G basis with or without

cusp correction. Similar to the case of the H atom discussed above, the

OS and SCD schemes reduce significantly both the variational energy

and the variance. The energy decreases by roughly 2.8 and 3.1 millihartree

Table 1 Variational energy and its variance for various wave functions of the H atom.

Basis
Cusp
correction Iteration Energy Variance max |c| ~c

Gaussian — � 0.495741 2.23 � 10�1 0.66158 0

Mixed OS � 0.499270 4.49 � 10�2 0.07486 1.95629

Mixed SCD #1 � 0.499270 4.49 � 10�2 0.07486 1.95629

#2 � 0.499970 3.07 � 10�6 0.00254 2.00225

#3 � 0.500000 4.88 � 10�9 0.00006 1.99691

The energy is obtainedwith the decontracted STO-3GGaussian basis set. TheOS and SCDcusp-corrected
energies are obtained by adding a Slater basis function of unit exponent (~αH ¼ 1) to the Gaussian basis set.
The energy and variance at each iteration of the SCDprocess is also reported. max jcj is themaximum abso-
lute value of the Gaussian basis coefficients and ~c is the value of the coefficient of the Slater function.
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Fig. 2 Cuspless and cusp-corrected HF 1s core orbitals ϕ1s(r) of the He (left) and Ne (right) atoms obtained with various schemes. The Gaussian
basis set is Pople’s 6-31G basis and the Slater basis functions have α

�
He ¼ 2 and α

�
Ne ¼ 10. For the Ne atom, the OS and SCD cusp-correction

schemes yield indistinguishable curves.



(compared to the uncorrected scheme) using OS and SCD, respectively.

Likewise, we observe that the variance is reduced by one order of magni-

tude by applying our cusp-corrected schemes, the difference between OS

and SCD being negligible.

4.2 Molecules
As a molecular example, we consider the beryllium hydride molecule BeH2

at experimental geometry. The Gaussian basis set is Pople’s 6-31G basis

and the Slater exponents have been obtained via Eq. (21). The two HF

valence orbitals (ag and b1u) of this linear molecule are depicted in Fig. 4.

−4 −2 0 2 4
−80

−60

−40

−20

0

Fig. 3 Local energy EL(r) of the cuspless and cusp-corrected HF wave functions as an
electron is moved through the nucleus of a Ne atom located at the origin. The other
electrons have been positioned randomly. The Gaussian basis set is Pople’s 6-31G basis
and the Slater basis function has an exponent α�Ne ¼ 10.

Table 2 Energy and corresponding variance of the He atom computed with various
methods.

Cusp correction

Energy (a.u.) Variance (a.u.)

Deterministic VMC DMC VMC DMC

— � 2.855 160 � 2.855 12(6) � 2.903 9(1) 3.99(3) 4.47(18)

OS � 2.857 89(6) � 2.903 4(3) 0.605(6) 0.498(2)

SCD � 2.858 17(9) � 2.903 2(2) 0.610(3) 0.498(1)

The trial wave function is the HF wave function computed in the 6-31G basis. The error bar corres-
ponding to one standard deviation is reported in parenthesis.
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Fig. 4 Cuspless and cusp-corrected HF valence (ag and b1u) orbitals of the BeH2 molecule obtained with the 6-31G basis set. For the ag orbital,
we have α

�
Be ¼ 3:7893 and α

�
H ¼ 1:1199, while for the b1u orbital, α�H ¼ 1:2056. The black line corresponds to the difference between the

cuspless and cusp-corrected orbitals magnified by one order of magnitude. Note that the three nuclei lie on the z axis.



Note that the cusp-correcting scheme does not correct the second MO

on the Be nucleus because the value of this MO is effectively zero on

this center.

The corresponding local energies as an electron is moved through the

nuclei (marked with thin black lines) of the BeH2 molecule are represented

in Fig. 5. (The other electrons have been positioned randomly.) Similarly to

the results of the previous section, the cusp-correcting scheme removes the

divergences of the local energy at the nuclei. Note, however, that a discon-

tinuity appears in the local energy at the nuclear centers (see inset graphs of

Fig. 5). It is well known that these discontinuities do not lead to any prob-

lems withinQMC calculations. Note also that the node of the wave function

around z¼�3/4 is significantly shifted due to the introduction of the Slater

basis function.

5. Conclusion

Wehave introduced a procedure to enforce the electron–nucleus (e-n)
cusp by augmenting conventional (cuspless) Gaussian basis sets with cusp-

correcting Slater basis functions. Two types of procedure have been presented.
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Fig. 5 Local energy EL(r) of the cuspless and cusp-corrected HF wave functions as an
electron is moved through the nuclei (marked with thin black lines) of the BeH2molecule
at experimental geometry. The other electrons have been positioned randomly. The
Gaussian basis set is Pople’s 6-31G basis and the Slater exponents have been obtained
via Eq. (21). Note that the three nuclei lie on the z axis.
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In the one-step (OS) procedure, the coefficients of the Slater functions are

obtained by ensuring the correct e-n cusp at each nucleus. We have also

designed a self-consistent procedure to optimize simultaneously the coeffi-

cients of the Gaussian and Slater basis functions by diagonalization of an

orbital-dependent effective Fock operator.

The same procedure could potentially be employed to correct the long-

range part of the electronic densitywith obvious applicationwithinDFT.We

are currently working on a similar methodology to enforce the electron–
electron cusp in explicitly correlated wave functions. We hope to be able

to report on this in the near future.

Appendix. Dressing integrals

Thanks to the approximation (15), we eschew the calculations of

two-electron integrals and we only need to consider three types of one-

electron integrals in order to dress the Fock matrix in Eq. (13): overlap,

kinetic energy and nuclear attraction. (For a OS calculation, only the for-

mer is mandatory.) Their particularity is that they are “mixed” integrals as

they involve one Gaussian function (with arbitrary angular momentum)

and one (momentumless) Slater function.59,60 Note that one can easily gen-

eralize the present procedure and consider a (contracted) linear combina-

tion of 1s Slater functions.

A.1 Overlap integrals
We must find mixed Gaussian-Slater overlap integrals of the form

~SaB¼hχaj~χBi¼
Z

χaðrÞ~χBðrÞdr, (A.1)

where ~χBðrÞ is given by Eq. (8) (where we have removed the superscript i for

the sake of clarity) and

χaðrÞ¼ ðx�AxÞaxðy�AyÞayðz�AzÞaz exp �αjr�Aj2� �
(A.2)

is a primitive Gaussian function of exponent α and angular momentum

a ¼ (ax, ay, az) centered in A ¼ (Ax, Ay, Az), its total angular momentum

being given by a ¼ ax + ay + az. Contracted integrals can be obtained by a

straightforward summation of the primitive integrals weighted by their con-

traction coefficients.59–61
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We shall start by reporting the expression of the fundamental integral ~S0B

(where 0 ¼ (0, 0, 0)). Higher angular momentum integrals can be obtained

by differentiation with respect to the center coordinates.

Using the Gaussian representation of a Slater function

expð�ζrÞ¼ ζffiffiffi
π

p
Z ∞

0

exp �u�2r2�ζ2u2

4

� �
du, (A.3)

we obtain

~S0B¼
~β5=2

π

Z ∞

0

exp �
~β2u2

4

� � Z
exp �αjr�Aj2� �

exp �u�2jr�Bj2� �
dr

	 

du

¼
~β5=2

π

Z ∞

0

exp �
~β2u2

4

� �
π

α+ u�2

	 
3=2

exp � α u�2

α+ u�2
AB2

� �
du

¼ π~β3=2

2α2jABj

ffiffiffiffiffi
~β2

4α

s
+

ffiffiffiffiffiffiffiffiffiffiffiffiffi
αjABj

p0
@

1
Aerfc

ffiffiffiffiffi
~β2

4α

s
+

ffiffiffiffiffiffiffiffiffiffiffiffiffi
αjABj

p0
@

1
Aexp

~β2

4α
+ ~βjABj

� �8<
:

�
ffiffiffiffiffi
~β2

4α

r
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

αjABjp !
erfc

ffiffiffiffiffi
~β2

4α

r
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

αjABjp !
exp

~β2

4α
�~βjABj

� �)
,

(A.4)

where AB ¼ A �B and erfc(x) is the complementary error function.54 It is

easy to show that the use of the Gaussian representation (A.3) allows us to

reduce the integral to the conventional Gaussian-type function case, which

has been extensively discussed in the literature.53, 62 One only needs to per-

form the last integration that can be easily performed using a computer alge-

bra system such as MATHEMATICA.63

A.2 Kinetic energy integrals
The same technique is applied to the kinetic energy integral

~T aB¼�1

2
hr2χaj ~χBi, (A.5)

which yields

~T 0B ¼ π~β5=2

2α3=2jABj 1+
~β2

4α
�

ffiffiffiffiffi
~β2

4

s
jABj

0
@

1
Aerfc

ffiffiffiffiffi
~β2

4α

s
� ffiffiffi

α
p jABj

0
@

1
Aexp

~β2

4α
�~βjABj

� �8<
:

� 1+
~β2

4α
+

ffiffiffiffiffi
~β2

4

s
jABj

0
@

1
Aerfc

ffiffiffiffiffi
~β2

4α

r
+

ffiffiffi
α

p jABj
 !

exp
~β2

4α
+ ~βjABj

� �9=
;:

(A.6)
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A.3 Nuclear attraction integrals
For the nuclear attraction integrals of the form

~VaB¼hχaj jr�Cj�1j~χBi, (A.7)

in addition to theGaussian representation of the Slater function (see Eq. (A.8)),

we also use the well-known Gaussian representation of the Coulomb

operator:

1

r
¼ 2ffiffiffi

π
p
Z ∞

0

exp �v2r2
� �

dv: (A.8)

We obtain

~V 0B¼ 2~β5=2

Z ∞

0

1

α+ u�2
F0 ðα+ u�2Þ αA+ u�2B

α+ u�2
�C

����
����
2

" #

exp � α u�2

α+ u�2
jABj2

� �
exp �

~β2u2

4

� �
du,

(A.9)

where F0(t) is the Boys function.
64–66 To the best of our knowledge, this

expression cannot be integrated further (expect in some particular cases) but

it can be efficiently evaluated by numerical quadrature using the Gauss-

Legendre rule. In the case of the nuclear attraction integrals, due to the form

of the integrand in Eq. (A.9), we use the conventional Gaussian recurrence

relations to evaluate higher angular momentum integrals. These involve the

evaluation of the generalized Boys functions Fm(t) which can be computed

efficiently using well-established algorithms.64–66 We refer the reader to

Ref. 62 for more details.
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SECTION 3

Atomic and
molecular electronic
structure
This section presents a highly accurate correlated atomic wave-function

(Ruiz), progress in Natural Orbital theory (Piris et al.), two different effective

potential approaches (Mendez et al., Staroverov andOspadov) and Fock-space

correlated NaH (Musial et al.)
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Abstract

Configuration Interaction (CI) calculations on the ground state of the B anion are carried
out using a small basis set of Slater orbitals [7s6p5d4f3g]. About 1600 configurations
have been selected according to their contribution to the total energy. One set of expo-
nents is optimized for the whole expansion. Using a CI computer program with Slater
orbitals from our previous publication (Ruiz and Tr€oger, 2018), written with the purpose
of calculating the ground state of carbon atom, we have obtained an energy of
�24.65090936 a.u. for the ground 3P state of the boron anion. For the electron affinity
(EA) of the boron atom we have considered a previous similar calculation on the 2P gro-
und state of boron atom obtaining 293.2 meV, which is comparable to other theoretical
calculations and the experimental value 279.723(25) meV. The low-lying 3P excited
states of the boron anion have been determined employing a shorter wave function
expansion consisting of about 1000 configurations. These states have the energies
�24.57876395 a.u., �24.54146848 a.u. and �24.50013781 a.u., respectively.

Advances in Quantum Chemistry, Volume 79 # 2019 Elsevier Inc.
ISSN 0065-3276 All rights reserved.
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1. Introduction

The boron anion B� is the least stable of the weakly bound anions.

While H�, C�, O�, F� are stable, Li� is weakly bound1 and He�, Be�

are metastable. This is probably due to the accommodation of the odd elec-

tron in the outermost orbital and to the nuclear charge screened by the

doubly occupied inner shells. Commonly, the binding energy of the atomic

anions is very small and comparable to the correlation energy of the system.

Since for the anion the nuclear charge Z is smaller than the number of elec-

trons, the situation is different than for the other ions of the isoelectronic

sequence but in principle it does not introduce real difficulties in the

computations. However, the single occupied orbital is diffuse and that has

consequences in the standard one-electron basis sets. Therefore, it is com-

monly accepted that highly correlated wave functions are required to achieve

good agreement with the experiment. The different strategies have in com-

mon the start with a powerful method like Multiconfigurational Hartree-

Fock (MCHF),2 CoupledCluster (CC) theory3 or Configuration Interaction

(CI)4,5 to pick up a great part of the correlation energy and a further improve-

ment adding relativistic corrections, or those due to the Born-Oppenheimer

approximation. Other methods like MCDHF6 include relativistic correc-

tions7 or explicitly correlated wave functions.8

Among all these methods, the CI method is very important for the cal-

culation of negative ions and electron affinities (EA) defined as the difference

between the energy of the atom and the corresponding ion. CI is a system-

atic predictive method to calculate accurately the energy of both neutral

atom and the ion, and subsequently the EA. As investigated by various

authors,6 the impact of higher correlations, relativistic effects and higher rel-

ativistic effects are very small on EA. These effects may cancel with each

other when subtracting the total energies of atomic systems with the same

charge. Therefore EAs obtained by CI are close to the experimental values

and the CI method is a good strategy for EAs. Usually EAs are expressed in

meV. The unit conversion is 1 a.u.¼27.2113961 eV.

In this work, a six-electron atomic CI computer program designed for

the carbon atom is used for the B�. This program is quite flexible and

adequate to perform such calculations. Once the wave function for the gro-

und state of carbon atom has been obtained, we have carried out the cal-

culations with the atomic charge Z ¼5 and selected the configurations

which contribute>10�9 a.u. to the total energy. These configurations differ
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slightly from the ones employed in the case of the carbon atom, presented

in our previous paper.9 The methodology followed here is the same as in

Ref. 9, and will therefore not be repeated in detail here.

In addition, using a shorter wave function and after optimization of the

orbital exponents, the low-lying states of the boron anion have been calcu-

lated. No results of these states have been found in the bibliography. Data on

the anions is scarce and cannot be found in either atomic data bases, or in

tables of estimated energy values. Finally, the EA of the boron atom is cal-

culated using the energy obtained here for the 3P ground state of B anion and

the ground state energy of the boron atom of a previous work using the same

methodology.

2. Configuration interaction

The shortcomings and advantages of the CI method have been

described in detail in our previous work.9 Summarizing briefly, the method

endeavors to recover rapidly a major part of the correlation energy but con-

verges extremely slowly for obtaining highly accurate energy values. This is

due to the shortcomings of the CI wave-function whose form does not fulfill

the electronic cusp-condition. Therefore the CI wave function needs a huge

number of Slater determinants to converge. Conversely, correlated methods

that include explicitly rij, named explicit correlated methods, introduced by

the pioneering work of Hylleraas in 1929,10 converge faster to the exact

solution of the Schr€odinger equation. Nevertheless, in this work we employ

the CI method as a first step toward Hylleraas-Configuration Interaction

(Hy-CI) calculations on the ground state of the boron anion.

The CI wave function is constructed as a linear combination of Nconf

configurations, where the coefficients Cp are determined variationally by

solving the eigenvalue problem that follows from the Schr€odinger equation:

Ψ¼
XNconf

i¼1

CpΦp: (1)

The configurationsΦp are symmetry adapted since they are eigenfunctions

of the square of the angular momentum operator L̂2. Every configuration

is then a linear combination of function terms and these ones are a linear

combination of Slater determinants:

Φp¼ Ô L̂2
� �Âψpχ: (2)
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In this work, the symmetry adapted configurations are constructed a

priori, so that they are eigenfunctions of L̂2. The Slater determinants are

constructed with the help of the anti-symmetrization operator Â, which acts

not only over the spatial orbitals but also over the spin function part.

The configurations are also eigenfunctions of the square of the spin oper-

ator Ŝ2. Here, χ is a spin eigenfunction. In the case of the 3P ground state of

carbon atom, a triplet state (S¼1), we have chosen for convenience a spin

eigenfunction with MS ¼0:

χ¼ αβ�βαð Þ αβ�βαð Þ αβ+ βαð Þ: (3)

This spin function differs only by a sign from the singlet one S¼1 for six

electrons and in this way the computer program can be used for singlet or

triplet states by simply changing one sign. There are more spin

eigenfunctions for S¼1, namely, the ones with MS ¼1 and MS ¼�1,

but they are all degenerate with respect to the energy. This means, it is indif-

ferent which one we use and since they are orthogonal, it is sufficient to use

only one of them.

As discussed in the case of the Li-atom in Ref. 11 and calculations of the

Be-atom12,13 it is also sufficient to consider only one spin-function. The spa-

tial part of the basis-functions consists of Hartree products of Slater Type

Orbitals (STOs):

ψp ¼
Yne
k¼1

ϕ rk, θk, φkð Þ: (4)

Every Slater orbital ϕ is represented by only one orbital s, p, d, f, g or i,

therefore this is named the minimal basis set. The un-normalized STOs are

defined:

ϕ r, θ, φð Þ¼ rn�1e�αrYm
l θ, φð Þ (5)

where Yl
m are the spherical harmonics. The Schr€odinger equation to be

solved is:

ĤΨ ¼EΨ : (6)

The atomic Hamiltonian for a fixed nucleus written in Hylleraas coor-

dinates, see Ref. 12, for a CI wave function reduces effectively to:
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Ĥ ¼�1

2

Xn
i¼1

∂
2

∂r2i
�
Xn
i¼1

1

ri

∂

∂ri
�
Xn
i¼1

Z

ri
+
Xn
i<j

1

rij
+
Xn
i¼1

1

r2i
li li +1ð Þ (7)

where li are the angular quantum numbers of the orbitals. From the varia-

tional principle we have to solve the following matrix eigenvalue problem:

H�ESð ÞC¼ 0 (8)

where the matrix elements of the HamiltonianH and overlap Smatrices are:

Hkl¼
Z

ΦkĤΦldτ,

Skl¼
Z

ΦkΦldτ:
(9)

The matrix elements are sums of one- and two-electron integrals. Their

expressions and calculation have been described in previous papers, see Refs.

9,11–13. The diagonalization procedure employed for the calculation of the

ground state of B� is the inverse iteration technique,14 concretely a subrou-

tine by Sims and Hagstrom, see Ref. 15. Using this method only one eigen-

value is obtained rapidly. For the excited states of B�we need to calculate all

eigenvalues and select and optimize the one of interest among them using

the LAPACK library.

In this work we use un-normalized non-orthogonal orbitals STOs. The

basis set is [7s6p5d4f3g] constructed with a single STO for every electron. In

this work we make the restriction of choosing the same orbital exponent per

pair of electrons.

The ground state leading configuration of the B anion is 1s2 2s2 2p2, in

our nomenclature sssspp (i.e., s(1)s(2)s(3)s(4)p(5)p(6)). The other configura-

tions with large contributions to the energy for the P-symmetry (L¼1) six-

electron state are, ordered by decreasing energy contribution, sssppd, sspppp,

ssssdd, ssppdd, pppppp, sssddd, ssssff, ssspdf, ssssgg, ssspfg, ssffpp, and ssggpp.

Other important configurations for the ground state of carbon atom are

of the form: ppd, pdf and pfg and all their permutations. The permutations

of these configurations were also included, see discussion in Ref. 9. In addi-

tion to these configurations, others have been tried and sorted out because of

their very low energy contribution.

We systematically selected the CI configurations according to their

energy contribution. This was done by calculations on blocks constructed

for all possible configurations. In these blocks all excitations are included
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from single, double, … up to the maximum number of excitations, in this

case sextuple, whereas sextuple excited configurations seldom showed even

a moderate contribution. The eigenvalue equation was diagonalized upon

each addition of a configuration. In this manner, the contribution of every

single configuration and of each block of a given type to the total energy

was evaluated. If the energy difference was less than a chosen threshold

jEi�1 �Ei j<1.10�9 a.u., the new configuration was discarded. In this man-

ner, all configurations were checked, leading to a relatively compact CI

wave function. The construction of configurations and the list of them

are given in Table 1 of Ref. 9.

Table 1 Selected CI wave function expansion for the 3P ground state of boron anion.
Conf. n Nconf Nconf,tot Energy (a.u.) Virial

sssspp 3 97 97 �24.50848407 1.99996

ssspsp 3 49 146 �24.53940516 2.00010

spsssp 3 15 161 �24.54035998 1.99997

ssppss 3 3 164 �24.54168658 2.00003

spspss 3 4 168 �24.54172826 2.00002

ssssdd 3 5 173 �24.54514648 2.00025

sssdsd 3 5 178 �24.54519466 2.00022

sspppp 3 12 194 �24.56638010 2.00004

spsppp 3 24 218 �24.56859440 2.00014

ppsspp 3 28 246 �24.58884325 2.00061

ppspsp 3 4 250 �24.58948248 2.00060

ppppss 3 2 252 �24.58951245 2.00060

pppppp 3 3 255 �24.59009209 2.00061

sspdpd 3 3 258 �24.59143898 2.00074

sdsppd 3 16 274 �24.59146757 2.00075

ssddpp 3 4 278 �24.59202874 2.00077

ddsspp 3 7 285 �24.59269634 2.00087

ssppdd 3 2 287 �24.59271212 2.00087

ppssdd 3 2 289 �24.59276221 2.00087
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Table 1 Selected CI wave function expansion for the 3P ground state of boron
anion.—cont’d
Conf. n Nconf Nconf,tot Energy (a.u.) Virial

ppddpp 3 1 290 �24.59277819 2.00087

ddpppp 3 1 291 �24.59279493 2.00087

sssppd 3 12 303 �24.61122828 2.00193

sssdpp 3 2 305 �24.61505726 2.00223

sspdps 3 2 307 �24.61681815 2.00184

spsdps 3 3 310 �24.61705992 2.00188

spsspd 3 6 316 �24.61727618 2.00189

pdsssp 3 18 334 �24.61752166 2.00190

sspspd 3 8 342 �24.61799043 2.00177

pdspss 3 3 345 �24.61802067 2.00177

sppdss 3 2 347 �24.61810438 2.00178

sdppss 3 3 350 �24.61811594 2.00177

sdsspp 3 4 354 �24.61812413 2.00177

sdspsp 3 25 379 �24.61824554 2.00177

pdspss 3 4 383 �24.61837401 2.00177

sssddd 4 3 386 �24.61847883 2.00179

ssddsd 4 7 393 �24.61857578 2.00179

sssff 4 2 395 �24.61868593 2.00181

ssspdf 4 5 400 �24.61909233 2.00185

sspdsf 4 12 412 �24.61950653 2.00188

ssdpf 4 5 417 �24.61975352 2.00191

ssfpd 4 5 422 �24.62014007 2.00196

sspdsf 4 10 432 �24.62015962 2.00196

sspfsd 4 11 443 �24.62040930 2.00196

ssdfsp 4 7 450 �24.62082077 2.00196

sssspp 4 52 502 �24.63072600 2.00186

ssspsp 4 22 524 �24.63123634 2.00178

spsssp 4 7 531 �24.63131765 2.00179

Continued
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Table 1 Selected CI wave function expansion for the 3P ground state of boron
anion.—cont’d
Conf. n Nconf Nconf,tot Energy (a.u.) Virial

ssssdd 4 4 535 �24.63161275 2.00178

sssdsd 4 4 539 �24.63188975 2.00176

sspppp 4 15 554 �24.63249813 2.00188

spsppp 4 14 568 �24.63285279 2.00186

ppsspp 4 28 596 �24.63478458 2.00161

pppppp 4 3 599 �24.63480659 2.00161

sspdpd 4 14 613 �24.63520108 2.00156

sppdsd 4 3 616 �24.63520594 2.00156

ssddpp 4 5 621 �24.63533134 2.00154

ssppdd 4 3 624 �24.63539247 2.00154

ppssdd 4 4 628 �24.63540477 2.00154

ddsspp 4 17 645 �24.63598190 2.00158

sdsdpp 4 4 649 �24.63600196 2.00158

sssppd 4 28 677 �24.63889963 2.00146

sssdpp 4 12 689 �24.64009023 2.00135

sspdps 4 7 696 �24.64018911 2.00133

spsdps 4 26 722 �24.64027581 2.00134

sspspd 4 8 730 �24.64036408 2.00139

sdsspp 4 8 738 �24.64038998 2.00139

sdspsp 4 15 753 �24.64046163 2.00139

spsspd 4 14 767 �24.64056098 2.00140

pdsssp 4 30 797 �24.64069580 2.00140

sppdss 4 7 804 �24.64071683 2.00140

pdspss 4 6 810 �24.64073097 2.00140

sssspp 5 69 879 �24.64271695 2.00107

ssspsp 5 71 950 �24.64406074 2.00099

spsssp 5 25 975 �24.64419029 2.00099

ssssdd 5 17 992 �24.64424970 2.00099

sssdsd 5 10 1002 �24.64429613 2.00098
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Table 1 Selected CI wave function expansion for the 3P ground state of boron
anion.—cont’d
Conf. n Nconf Nconf,tot Energy (a.u.) Virial

ssssff 5 2 1004 �24.64434268 2.00098

sssfsf 5 3 1007 �24.64436652 2.00098

sspppp 5 9 1016 �24.64480699 2.00096

spsppp 5 5 1021 �24.64494121 2.00095

ppsspp 5 5 1026 �24.64535014 2.00093

pppppp 5 12 1038 �24.64540847 2.00092

sssppd 5 5 1043 �24.64588366 2.00087

sssdpp 5 19 1062 �24.64621151 2.00085

sspspd 5 19 1081 �24.64632752 2.00084

pdsssp 5 5 1086 �24.64633936 2.00084

pdspss 5 3 1088 �24.64634061 2.00084

sssfsf 5 1 1089 �24.64634780 2.00084

sspdpd 5 5 1104 �24.64648970 2.00082

ssddpp 5 14 1118 �24.64659836 2.00083

ssppdd 5 2 1120 �24.64660130 2.00083

ssspdf 5 4 1124 �24.64661332 2.00083

sssfdp 5 8 1132 �24.64677110 2.00082

sssdpf 5 8 1140 �24.64687864 2.00081

sssfpd 5 9 1149 �24.64692039 2.00081

sspfsd 5 6 1155 �24.64695261 2.00080

ssdpsp 5 7 1162 �24.64709080 2.00080

ssssgg 6 5 1167 �24.64709932 2.00080

sssgsg 6 1 1168 �24.64709985 2.00080

ssspfg 6 3 1171 �24.64710840 2.00080

sssgpf 6 14 1185 �24.64721094 2.00081

sdsdpp 5 5 1190 �24.64721714 2.00081

ssddsd 5 1 1191 �24.64722052 2.00081

ddsspp 5 9 1200 �24.64788184 2.00081

ddspsp 5 5 1205 �24.64788952 2.00081

Continued
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Table 1 Selected CI wave function expansion for the 3P ground state of boron
anion.—cont’d
Conf. n Nconf Nconf,tot Energy (a.u.) Virial

ddppss 5 1 1206 �24.64798616 2.00082

sssspp 6 38 1244 �24.64842751 2.00077

ssspsp 6 11 1255 �24.64845708 2.00077

spspss 6 2 1257 �24.64846022 2.00077

spsssp 6 5 1262 �24.64846650 2.00077

ssppss 6 1 1263 �24.64846714 2.00077

ssssdd 6 7 1269 �24.64847771 2.00077

sssdsd 6 1 1270 �24.64849334 2.00077

ssssff 6 6 1276 �24.64849892 2.00077

sssfsf 6 1 1277 �24.64849959 2.00077

ssssgg 6 1 1278 �24.64850213 2.00077

sssgsg 6 1 1279 �24.64850292 2.00077

sspppp 6 9 1288 �24.64867595 2.00077

spsppp 6 2 1291 �24.64868825 2.00077

ppsspp 6 2 1303 �24.64886678 2.00078

pppppp 6 2 1305 �24.64887293 2.00078

sssppd 6 5 1310 �24.64888562 2.00078

sspdps 6 4 1314 �24.64893924 2.00078

spsspd 6 10 1324 �24.64895582 2.00078

sdsspp 6 4 1328 �24.64895740 2.00078

ssddpp 6 6 1334 �24.64899353 2.00078

sspdpd 6 7 1341 �24.64900380 2.00078

ddsspp 6 6 1347 �24.64924979 2.00076

ddspsp 6 3 1352 �24.64925438 2.00076

ssspdf 6 7 1356 �24.64926117 2.00075

sssfpg 6 3 1358 �24.64927258 2.00075

sssfpd 6 4 1371 �24.64935520 2.00074

ssssgg 7 1 1372 �24.64935602 2.00074
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Table 1 Selected CI wave function expansion for the 3P ground state of boron
anion.—cont’d
Conf. n Nconf Nconf,tot Energy (a.u.) Virial

sssspp 7 5 1385 �24.64940443 2.00075

ssssdd 7 2 1387 �24.64940591 2.00075

sssppd 7 4 1392 �24.64942797 2.00074

sspppp 7 6 1398 �24.64943602 2.00074

ppsspp 7 11 1409 �24.64952294 2.00073

sdsspp 7 3 1412 �24.64953857 2.00073

ddsspp 7 4 1416 �24.64959242 2.00073

sssdpf 7 7 1423 �24.64960725 2.00072

sssfpg 7 4 1427 �24.64964179 2.00072

sspdsf 7 1 1428 �24.64964210 2.00072

sspdps 7 4 1432 �24.64965136 2.00072

ssddpp 7 5 1436 �24.64966636 2.00072

ssffpp 7 11 1447 �24.64989477 2.00073

ssggpp 7 4 1451 �24.64989739 2.00073

sdsdpp 6 4 1455 �24.64992495 2.00073

ddspsp 6 1 1456 �24.64992651 2.00073

pppppp 3 1 1457 �24.64993177 2.00073

ssggpp 7 3 1463 �24.64997059 2.00073

sssgpf 7 5 1468 �24.65000687 2.00073

ssssff 7 5 1474 �24.65000855 2.00073

ssdfsp 7 2 1480 �24.65004730 2.00072

sspfsd 5 1 1481 �24.65005241 2.00072

ssspdf 5 9 1495 �24.65009465 2.00072

pdsssp 6 2 1497 �24.65010019 2.00072

spsspd 7 6 1504 �24.65011489 2.00072

sspspd 7 5 1520 �24.65019499 2.00072

sssppd 6 16 1538 �24.65027807 2.00069

Continued
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3. CI calculations for the B2 anion

We have used a CI computer program written for six-electron atomic

systems in Fortran 95.9 Numerical calculations have been conducted with

double precision arithmetic. The program is an extension of our four-

and five-electron CI programs.

In this work we start with a full-CI wave function for a basis n¼3

(or [3s2p1d]) testing all possible configurations and retaining those that

contribute >1.10�9 a.u. (at the beginning of the calculation almost all

of them). First for a relatively short expansion the orbital exponents are

optimized. The method of optimization consists in parabolic fitting,

Table 1 Selected CI wave function expansion for the 3P ground state of boron
anion.—cont’d
Conf. n Nconf Nconf,tot Energy (a.u.) Virial

ppssdd 3 11 1545 �24.65029810 2.00069

ssddpp 6 5 1556 �24.65046440 2.00065

ddsspp 4 3 1559 �24.65046589 2.00065

sssddd 3 3 1560 �24.65046737 2.00065

sspppf 6 3 1565 �24.65049782 2.00065

sspfpp 5 1 1566 �24.65066905 2.00064

sssfpd 7 8 1574 �24.65068348 2.00064

dfsssp 7 9 1591 �24.65075860 2.00064

ddspsp 4 3 1595 �24.65077673 2.00064

fgsssp 5 5 1603 �24.65078404 2.00064

ffsspp 5 15 1622 �24.65089173 2.00067

sssddg 5 1 1623 �24.65089327 2.00067

ssdfsp 6 3 1626 �24.65089912 2.00067

ssfgsp 6 2 1628 �24.65090089 2.00067

ssffpp 6 2 1630 �24.65090924 2.00067

ssggpp 6 2 1633 �24.65090924 2.00067

ssgpgp 6 1 1634 �24.65090936 2.00067

Nconf is the number of symmetry adapted configurations and n is the basis set indicated by the highest
principal quantum number, i.e., n ¼3 means [3s2p1d]. The orbitals exponents are α¼α0 ¼4.9821441,
β¼β0 ¼1.1401381, γ¼γ ´ ¼0.9726643 for all the expansion.
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where a minimum is sought for every exponent and a new cycle is started

using a smaller step-size. The optimization is considered converged when

the improvement in the energy is <1.10�9 a.u. The exponents are then

kept fixed and used for the larger expansion. A set of three exponents is

used (one for the K-shell, another for the electrons of the inner L-shell

and another for the pair of outer electrons of the L-shell), and kept equal

for all configurations. This technique accelerates computations, while still

producing sufficiently accurate wave functions to determine the bound

state properties. During the calculations and optimizations we use the

virial theorem to control the quality of the wave function and guide the

numerical optimization:

σ¼� Vh i
Th i : (10)

The following step is to add all the possible configurations with n¼4,

n¼5, n¼6 and n¼7. The resulting wave function is then very compact.

In Table 1 the truncated CI wave function expansion is shown. The con-

figurations with larger contribution are the ground state configuration sssspp,

the open shell configuration ssspsp, the sssppd and sssdpp 3P configurations,

followed by the configuration with inner 1S excitations ppsspp, afterwards

we find the sspppp, which shows the quasi-degeneracy of the s and p orbitals

of the L-shell; the configurations ssssdd contributed less as would be expected

by the low li quantum numbers, and higher excitations sspdpd, ddsspp and

ssffpp follow among others.

If we order the energy for the basis set n, we encounter the angular energy

limits, assuming the wave function is saturated for these limits. The contribu-

tion to the total energy decreases with increasing n, see Table 2. That the n ¼7

contribution of is still not close to zero indicates that thewave function has not

fully converged. We would need to add more terms with n ¼8 and higher.

Table 2 Angular energy limits to the energy for the 3P ground state of boron anion.
n Basis set Nconf Energy (a.u.) Virial 2Diff. (μhartree)

n ¼3 [3s2p1d] 383 �24.61837401 2.00177 0

n ¼4 [4s3p2d1f] 810 �24.64073097 2.00140 22357

n ¼5 [5s4p3d2f1g] 1206 �24.64798616 2.00082 7255

n ¼6 [6s5p4d3f2g] 1371 �24.64935520 2.00074 1369

n ¼7 [7s6p5d4f3g] 1634 �24.65090936 2.00067 1554

n is the basis set indicated by the highest principal quantum number. The unit 1 μhartree¼1�10�6 a. u.
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We estimate that the contribution to the energy of the h, i and higher orbital

configurations is about 1.0�10�3 a.u. (millihartree).

Using about 1600 selected configurations we have obtained an energy

for the 3P ground state of B� �24.65090936 a.u. which compares very well

with other CI and MCHF calculations. The difference in energy in our

calculations may be due to the missing higher angular momentum orbitals

i, h,… On the other hand, we use a smaller number of configurations than

the other methods, giving value to our appropriate selection of configura-

tions with respect to the energy contribution and a powerful optimization

computational procedure, see Refs. 11–13. A comparison with the available

calculations of boron anion is shown in Table 3.

4. Evaluation of the electron affinity of the boron atom

The electron affinity (EA) is defined as the energy difference between

the 3P ground state of the boron anion B� and the 2P ground state of the

Table 3 Comparison of variational upper bonds to the energy of the 3P ground state of
boron anion calculated by different methods.
Method Authors Year Ref. Basis set Nconf Energy (a.u.)

MCHF(CAS) Froese

Fischer et al.

1995 2 n ¼7 7891 �24.612326

MCHF(CAS) Froese

Fischer et al.

1995 2 n ¼9i 9502 �24.612465

MCHF

(core pol.)

Froese

Fischer et al.

1995 2 n ¼7h 28532 �24.633960

MCHF

(core pol.)

Froese

Fischer et al.

1995 2 n ¼9h 29274 �24.634643

CI This work 2019 STO

[7s6p5d4f3g]

1634 �24.65090936

FCI (SD) Almora-Dı́az

et al.

2010 16 STO (l¼20) �24.65580432

FCI

(SDTQQnSx)

Almora-Dı́az

et al.

2010 16 STO(l¼24) 40.6 M �24.66401395

Estimated

exact

Nonrel. 1993 16 �24.664039(2)

Orbitals basis l ¼24 is [24s23p22d21f20g19h18i17k16l15m14n13o12q11r10t9u8v7w6x5y4z].16 Abbre-
viations: MCHF(CAS), Multiconfiguration Hartree-Fock with complete active space;MCHF(core pol.),
MCHF including core polarization and core rearrangement.
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B atom. We have calculated the EA employing a previous calculation of the

ground state of boron atom using the same methodology and computer pro-

gram but a smaller basis set and smaller number of configurations and our

present calculation of the boron anion, which is very accurate. This is indeed

meaningful because the calculation of ions requires a larger basis than the one

of the neutral atom, see discussion in Ref. 6. Nevertheless, we plan in the

future to calculate the ground state of the boron atom more accurately using

a larger basis set and larger number of configurations.

The calculation of the EA is presented in Table 4. As a result we have

obtained 293.20 meV which is comparable with other results of the litera-

ture, see Table 5. The most accurate calculations of the EA in Table 5

correspond to very extensive strategies and include several corrections. Con-

versely, our EA is simply calculated as the difference between two energies.

However, our EA value is slightly larger than the most accurate experi-

mental result obtained from photodetachment 279.723(25) meV.23 This

difference may be due to the small basis n ¼5, l ¼2 used in our neutral

B atom calculation. Considering f- and g-Slater orbitals, the value should

be improved. In this work, relativistic effects have been neglected. These

effects together with higher relativistic effects should play a small role in

the calculation of the EA.

Indeed, as the nuclear charge is the same for the neutral atom and the

anion, the electronic cusp effects represented by the interelectronic distance

r12 may cancel in the inner shell1 and the same happens with relativistic and

high relativistic effects. Therefore, the CI treatment leads to a result which is

competitive with experiment and more advances theories. This fact can be

valuable when the EA is not as well-known as in the case of the boron atom.

5. Excited states

Finally, using a shorter wave function expansion of about 1000 con-

figurations and n ¼4, we have optimized the exponents for the second, third

and fourth eigenvalues of the energy, obtaining the up to our knowledge,

Table 4 Electron affinity (EA) of the boron atom.
Energy (a.u.) Method Basis set Nconf Ref.

Boron anion �24.650909 CI [7s6p5d4f3g] 1554 This work

Boron atom �24. 640134 CI [5s4p3d] 3957 22

EA 293.20 meV
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Table 5 Comparison of calculated electron affinity (EA) of the boron atom.
Author Ref. Year Method Basis set B Basis set B2 N(B) N(B2) EA (meV)

Schaefer und Harris 4 1968 CI 250

Kendall and Dunning 5 1992 MRSD-CI 258

Wijesundera 17 1997 MC-DF 260

Li et al. 6 2012 MCDHF 260.37

Sundhold and Olsen 18 1990 MCHF 266.8(30)

Raghavachan 19 1985 MP 269

Froese Fischer et al. 2 1995 MCHF(CAS) n ¼9i n ¼9i 2965 9502 272.3

Froese Fischer et al. 2 1995 MCHF n ¼9h n ¼9h 6932 29274 277.39

Froese Fischer et al. 2 1995 Predicted 279.5(20)

Eliav et al. 7 CCSDT relativistic 4-comp. 279

Feller et al. 3 CCSD(T)+corrections 279.3(4)

Noro et al. 20 1991 MRCI(SD) 280

Gdanitz 8 r12-MR-ACPF spdfgh 282

This work 2019 CI n ¼5, l ¼2 n ¼7, l ¼5 3957 1554 293.20

Experimental 21 1985 277(10)

Experimental 23 1998 279.723(25)

Abbreviations: CCSDT, Coupled Cluster; MC-DF, Multiconfigurational Dirac-Fock; MC-DHF, Multiconfigurational Dirac–Hartree–Fock; MP, M€oller-Plesset per-
turbation theory; MRCI, Multireference CI; r12-MR-ACPF, explicitly correlated Multireference Averaged Coupled-Pair Functional.



the first values for the low-lying excited states of the boron anion. The cal-

culations are presented in Table 6. We observe that the value of the orbital

exponent of the outer electrons decreases when increasing the excitation,

characteristic of diffuse orbitals. The states are also very close in energy.

The energy conversion used in Table 6 is 1 a.u.¼219474.63068 cm�1.

6. Summary and perspectives

The calculation of atomic anions does not represent any difficulty for

the CI method with Slater orbitals having the possibility of optimizing the

orbital exponents. In this way, the diffuse outer orbital is well described, in

contrast to standard methods based in one-electron fixed basis sets. The EA

of the boron atom has been extensively studied and is well-known, see also

references included in Ref. 3. Nevertheless, the strategy of most methods is

quite complex. Missing high correlations or truncation errors and relativistic

effects does not adversely affect the results, as they are known to have a small

impact in the calculation of the EA of the boron atom, mostly due to can-

celation effects. The CI method offers a systematic approach to calculate

accurately the EA, especially when this is not known. In any case, the present

investigation can be improved by increasing the basis set of the orbitals and

the number of configurations in both neutral atom and anion.

Another reason why the CI method is appropriate for the calculation of

the spectra of ions is that with the CI method not only low-lying but

Rydberg excited states can be obtained in a systematic way. In this work

we have presented only the 3P excited states, i.e., with the same symmetry

as the ground state. The determination of excited states of other symmetries

is very promising, since these are not known either theoretically nor

experimentally.

Table 6 Energy and orbital exponents for the ground and low-lying 3P excited states of
the boron anion.
State Energy (a.u.) α5α0 β5β0 γ5γ0 Virial 2Diff. (cm21)

3P �24.60942625 4.9821441 1.2635381 0.8492643 1.93 0

23P �24.57876395 4.8620655 1.3782524 0.5961229 1.98 6729.60

33P �24.54146848 4.7613251 1.3391757 0.5344229 2.02 8185.41

43P �24.50013781 4.6805287 1.3379760 0.4251931 2.06 9071.04

The number of configurations for the excited states is N ¼984 and the basis n ¼4.
n is the basis set indicated by the highest principal quantum number. Diff. in cm�1.
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Finally, one of the reasons for doing a CI calculation is to explore the

basis set of STO orbitals and the construction of the configurations in order

to perform future Hy-CI calculations.
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Abstract

The basic concepts relevant to the approximate natural orbital functional (NOF) theory
are presented. We discuss in detail the reconstruction that leads to Piris NOF (PNOF)
approximations focusing on the electron pairing, namely, the independent pair model
PNOF5 and the inter-pair electron correlationmodel PNOF7. It is shown that PNOF7 is an
ideal candidate to study model systems for strong correlation such as the Hubbard
model and hydrogen rings. Analytic first- and second-order energy derivatives are
presented for any given nuclear perturbation. Results for equilibrium geometries and
harmonic vibrational frequencies corresponding to a selected set of molecules are
reported.
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1. Introduction

In 1975, Gilbert1 extended the Hohenberg–Kohn theorem to nonlocal

external potentials. He showed that a nondegenerate ground-state N-particle

wavefunction is a universal functional of the one-particle reduced density

matrix (1RDM). This work together with those of Levy2 and Valone3 laid

the foundations of 1RDM functional theory. Unfortunately, current compu-

tational schemes based on the exact constrained search formulations are several

times more expensive than solving directly the Schr€odinger equation4;

therefore, the construction of the functional requires a practical approach.

A handy prescription relies on the fact that the ground-state energy can be

cast as an exact functional of the ground-state two-particle reduced density

matrix (2RDM). This approach uses the one-to-one mapping between the

2RDMs and the nondegenerate ground-stateN-particle wavefunctions of a

Hamiltonian with at most two-body interactions.5 The existence theorem of

the 1RDM functional implicitly establishes a one-to-one correspondence

between the ground-state 1RDMs and 2RDMs, so the 1RDM functional

must match the well-known 2RDM functional. Actually, we must only

reconstruct the electron–electron potential energy Vee in terms of the

1RDM since the noninteracting part of the electronic Hamiltonian is a

one-particle operator.

So far, the exact reconstruction ofVee has resulted in an unattainable goal.

A convenient approach is to approximately reconstruct the 2RDM. How-

ever, this does not fully reconstruct the ground-state energy only the

2RDM. Approximating the energy is more involved because the theorems

for the exact energy functionals do not apply for 2RDM reconstructions.

The point is that approximate 2RDMs, in terms of the 1RDM, lead to

energy functionals that still depend on the 2RDM.6 An undesired implica-

tion of such dependence is that the functional N-representability problem

arises.7,8 That is, we have to observe the requirement that the 2RDM

reconstructed in terms of 1RDM must satisfy the same N-representability

conditions9 as those imposed on unreconstructed 2RDMs. Otherwise, there

might not exist anN-electron fermionic system compatible with the energy

functional, therefore the energy can even drop below the exact value. In

summary, we are no longer really dealing with the 1RDM functional theory

but with an approximate one-particle theory, where the 2RDM continues

to play a dominant, though hidden, role.
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Most of the approximate functionals currently in use are notN-represent-

able.10 It has been generally assumed that there is noN-representability prob-

lem for approximate functionals, as it is believed that the N-representability

conditions of Coleman11 on the 1RDM are sufficient on their own.

However, the N-representability constraints for acceptable 1RDM are insuf-

ficient to guarantee that the reconstructed 2RDM is N-representable and

therefore the approximate functional is notN-representable either. Recently,

the discovery of a systematic way to derive pure-state N-representability

conditions for the 1RDM has allowed new insights12,13 to be gained, as well

as to open a newway to develop functionals.14,15 The application of pure con-

ditions restricts the 1RDM variational space that leads to improvements in

energy but it is obvious that it does not improve the reconstruction of the

approximate functional per se. A 1RDM that represents a pure state does

not guarantee that an approximately reconstructed Vee will be pure-state

N-representable. The pure-state N-representability problem for an approxi-

mate functional is related to the N-representability of the 2RDM which

determines Vee.

Apart from the special case of the Hartree–Fock (HF) approximation,

none of the known approximate functionals are explicitly given in terms

of the 1RDM, including the venerable functional that accurately describes

two-electron closed-shell systems.16 There are energy expressions that seem

to be properly expressed in terms of the 1RDM, however, these functionals

violate the functionalN-representability.10 One can obtain quite reasonable

results for some systems using them but there is noN-particle density matrix

that supports their existence.

In most applications, the spectral decomposition of the 1RDM is used

to express it in terms of the naturals orbitals (NOs) and their occupation

numbers (ONs). In this representation, the energy expression is referred to

as a natural orbital functional (NOF). It is worth noting that NOs are the

orbitals that diagonalize the 1RDM corresponding to an approximate

energy, such as those obtained from an approximate wavefunction. These

energies are not invariant with respect to unitary transformations of the

orbitals and the resulting functionals are only implicitly dependent on

the 1RDM, through NOs and ONs. It is therefore misleading to talk

about a functional of the 1RDM due to the existing dependence on the

2RDM, it is more appropriate to speak of a NOF. A detailed account

of the state of the art of NOF approximations (NOFAs) can be found

elsewhere.17,18
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Most of the currently-in-use approximate NOFs are primitive functionals

which involve only two-index JKL integrals. Recently, two more accurate

expressions that include 4-index integrals have been proposed.19–21 On the

other hand, almost all NOFs are based on reasonable physical arguments.18

The PNOFi (i ¼ 1–7) family of functionals19,22,23 rely on the reconstruction

of the 2RDM subject to necessary ensemble N-representability conditions.

The case of PNOF5 is quite remarkable. The latter was proposed24 using

perfect-pairing conditions in order to satisfy the sum rules for the 2RDM.

Two years after, the natural geminals of PNOF5 were analyzed25 and it

was realized26 that this NOF corresponds to the energy obtained from a

wavefunction of an antisymmetrized product of strongly orthogonal geminals

when the expansion of the N/2 geminals is limited to two-dimensional sub-

spaces with fixed signs for the expansion coefficients of the corresponding

geminals. Shortly afterward, this ansatz was extended to include more orbitals

in the description of the electron pairs.27 This finding demonstrated that

PNOF5 is a pure-state N-representable functional.28

Looking closely at the constraints imposed on the ONs during the recon-

struction of the PNOF5 2RDM, one realizes that the resulting ONs

meet the requirements for pure-state N-representability conditions8 to hold.

Since the 1RDM’s N-representability conditions are embedded in the

PNOF5 reconstruction of the 2RDM, the resulting 1RDM by contraction

of the so constructed 2RDM will necessarily be pure-state N-representable.

Consequently, one needs to impose only ensemble N-representability con-

straints to the 1RDM in order to generate the variational Euler equations

for the energy minimization. This is a great advantage with respect to impos-

ing externally the 1RDM pure-state N-representability conditions as con-

straints on bounds of the domain of trial 1RDMs during the variational

procedure, because the number of the latter increases drastically with the

number of NOs.

This chapter continues with the presentation of the basic concepts and

notations relevant to a NOF (Section 2). The following Section 3 is devoted

to presenting the PNOF approach. The electron pairing approach for

PNOF approximation is then presented in a subsection here. Section 4 is

devoted to the intra-pair and inter-pair electron correlations in two model

systems. Thus, we analyze the 1D Hubbard model with different numbers

of sites (Section 4.1), and hydrogen chains with different ring sizes

(Section 4.2). The chapter ends in Section 5 with a discussion on the geom-

etry optimization. Analytic expressions for first- and second-order energy

derivatives are obtained in Sections 5.1 and 5.2, respectively. Finally, after
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discussing some computational aspects (Section 5.3), results for equilibrium

geometries and harmonic vibrational frequencies corresponding to a selected

set of molecules are reported in Sections 5.4 and 5.5, respectively.

2. Natural orbital functional

The electronic energy for N-electron systems is an exactly and

explicitly known functional of the 1RDM (Γ) and 2RDM (D), namely,

E¼
X
ik

HkiΓki +
X
ijkl

kljijh iDkl, ij: (1)

In Eq. (1), Hki and kljijh i denote the one-electron matrix elements of the

kinetic energy and external potential operators and the two-electron matrix

elements of the Coulomb interaction, respectively. The spin-orbitals ij i
constitute a complete orthonormal set of single-particle functions. The

RDMs are Hermitian, positive semidefinite, and bounded. We employ

the L€owdin normalization convention in which the trace of the 1RDM

equals the number of electrons and the trace of the 2RDM gives the number

of electron pairs in the system.

For Ŝz eigenstates, only density matrix blocks that conserve the number

of each spin type are nonvanishing. Specifically, the 1RDMhas two nonzero

blocks Γαα and Γββ, whereas the 2RDM has three independent nonzero

blocks,Dαα,Dαβ, andDββ. The parallel-spin components of the two-matrix

must be antisymmetric, but Dαβ possesses no special symmetry.29

The contraction relation between 1RDM and 2RDM implies that the

energy functional is ultimately a functional of D. Attempts to determine

the energy by minimizing E D½ � are formidable due to the complexity of

the necessary and sufficient conditions for ensuring that the two-matrix

corresponds to an N-particle density matrix.9 Let us replace the last term

in Eq. (1), which is an explicit functional of the 2RDM, by an unknown

functional of the 1RDM,

E Γ½ � ¼
X
ik

HkiΓki +Vee Γ½ �: (2)

In Eq. (2),Vee Γ½ � is universal in the sense that it is independent of the external
field. The existence of E Γ½ � is well-established, however, until now it has

been impossible to find a practical expression of it. The obstacle lies in

the construction of the functional Vee capable of describing a quantum-

mechanical N-electron system: the functional N-representability problem.
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We have no choice but to approximate the functionalVee Γ½ �. In fact, most of

the functionals currently in use are constructed in the representation where

the 1RDM is diagonal, which leads to a NOF. Accordingly, the spectral

decomposition of the 1RDM is used to approximate the electronic energy

in terms of the NOs ij if g and their ONs nif g, namely,

E¼
X
i

niHii +
X
ijkl

D½ni, nj,nk,nl� kljijh i (3)

where D[ni, nj, nk, nl] represents the 2RDM reconstructed from the ONs.

We neglect any explicit dependence ofD on the NOs themselves given that

the energy functional already has a strong dependence on the NOs via the

one- and two-electron integrals. In this vein, it is worth noticing that our

NOs are the ones that diagonalize the 1RDM of our approximate energy

functional. Since the latter still depends on the 2RDM, the resulting energy

will not be invariant with respect to unitary transformations of the orbitals,

which prevents the existence of the corresponding extended Fockian matrix

for the energy minimization by direct diagonalization.

Restriction of the ONs to the range 0� ni� 1 represents a necessary and

sufficient condition for ensemble N-representability of the 1RDM11 under

the normalization condition
P

ini¼N . On the other hand, the construction

of an N-representable functional (3) is related to the N-representability

problem ofD, hence, any approximation must comply at least with tractable

necessary conditions for the N-representability of the two-matrix. For

simplicity, we will address only singlet states in this chapter. To avoid spin

contamination effects, the spin restricted theory will be employed, in which

a single set of orbitals is used for α and β spins: φα
p rð Þ¼φβ

p rð Þ¼φp rð Þ, and
the parallel spin blocks of the RDMs are equal as well.

3. Piris natural orbital functional (PNOF)

A systematic application of N-representability conditions in the recon-

struction of D has led to the PNOF series.22 Within this reconstruction, the

energy for singlet states reads as

E¼
X
p

np 2Hpp +Jpp

� �
+
X

p,q;p 6¼q

nqnp�Δqp

� �
2Jpq�Kpq

� �
+ΠqpLpq

� �
(4)

where Jpq¼ pqjpqh i, Kpq ¼ pqjqph i, and Lpq¼ ppjqqh i are the usual direct,

exchange and exchange-time-inversion integrals, respectively. Consequently,
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the functional (4) belongs to the JKL-only family of NOFs. Δ is a real

symmetric matrix, whereas Π is a spin-independent Hermitian matrix.

Appropriate forms of matrices Δ and Π lead to different implementations

of the NOF known in the literature as PNOFi (i ¼ 1–7).19,22,23 The perfor-
mance of these functionals is comparable to those of themost reliable quantum

chemistry methods in many cases.30

There is no hint to determine the sign of Πqp therefore, a large number

of possible combinations of these signs looms up for those terms containing

Lpq in Eq. (4). Making an adequate choice of the Πqp signs is known as the

phase dilemma.31 In the simplest case of two electrons, an accurate NOF is

known from the exact wavefunction16 that allows the resolution of this

dilemma. The knowledge of this NOF for two-electron systems is a good

motivation for using electron pairs as basic units, besides being an important

requirement that must be fulfilled by any NOFA.

3.1 The electron pairing approach
The electron pairing approach came to the NOF with the proposal of

PNOF5.24 So far this is the only NOF that has been obtained by top-down

and bottom-up methods.27 The existence of a generating N-particle

wavefunction confirms that PNOF5 is a pure-stateN-representable functional.

According to the electron pairing approach,32 the orbital space Ω is

divided intoN/2mutually disjoint subspacesΩg, so each orbital belongs only

to one subspace. Consider each subspace contains one orbital g below the

levelN/2, andNg orbitals above it, which is reflected in additional sum rules

for the ONs: X
p2Ωg

np¼ 1, g¼ 1,2,…,N=2:
(5)

Taking into account the spin, each subspace contains only an electron pair,

and the normalization condition for Γ is automatically fulfilled:

2
X
p2Ω

np¼ 2
XN=2

g¼1

X
p2Ωg

np¼N : (6)

Coupling each orbital g below the N/2 level with only one orbital above it

(Ng ¼ 1) leads to the perfect orbital pairing. It is important to note that

orbitals satisfying the pairing conditions (5) are not required to remain fixed
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throughout the orbital optimization process.33 The simplest way to satisfy

the constraints imposed on the two-particle cumulant leads to PNOF527:

Δqp¼ n2pδqp + nqnp 1�δqp
� �

δqΩg
δpΩg

Πqp¼ npδqp +Πg
qp 1�δqp
� �

δqΩg
δpΩg

Πg
qp ¼

� ffiffiffiffiffiffiffiffi
nqnp

p
, p¼ g or q¼ g

+
ffiffiffiffiffiffiffiffi
nqnp

p
, p,q>N=2

�
, δqΩg

¼ 1, q2Ωg

0, q62Ωg

� (7)

It is worth noting that Δqp and Πqp are zero between orbitals belonging

to different subspaces, therefore the 2RDM reconstruction of PNOF5

corresponds to an independent pair model. Given this functional form of

the auxiliary matrices Δ and Π, the energy (4) of the PNOF5 can be

conveniently written as

Epnof 5¼
XN=2

g¼1

Eg +
XN=2

f 6¼g

Efg

Efg ¼
X
p2Ωf

X
q2Ωg

nqnp 2Jpq�Kpq

� �� 	
Eg ¼

X
p2Ωg

np 2Hpp +Jpp

� �
+

X
q,p2Ωg,q6¼p

Πg
qpLpq:

(8)

The first term of Epnof5 is the sum of the N/2 electron-pair Eg energies,

whereas the second term contains the contribution to the HF mean-field

of the electrons belonging to different pairs. Several performance tests have

shown that PNOF5 yields remarkably accurate descriptions of systems

with near-degenerate one-particle states and dissociation processes.34 In this

sense, the results obtained with PNOF5 for the electronic structure of

transition metal complexes are probably the most relevant.30

Since the energy is not invariant with respect to a unitary transformation

of the orbitals, an approximate NOF provides two complementary repre-

sentations of the one-electron picture. Namely, the NO representation

and the canonical orbital representation.35 Both sets of orbitals represent

unique correlated one-electron pictures of the same energy minimization

problem, ergo, they complement each other in the analysis of the molecular

electronic structure. The orbitals obtained in both representations have

shown28 that the electron pairs with opposite spins continue to be a suitable

language for the chemical bond theory.

PNOF5 takes into account the important part of the electron correlation

corresponding to the intra-pair interactions. However, no inter-pair electron
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correlation is accounted for. To include the missing interactions, PNOF623

and PNOF719 were proposed. The latter was recently31 improved by an

adequate choice of sign factors for the inter-pair interactions, which provides

a robust description of nondynamic correlation effects. Consequently, we

will limit ourselves to this interacting pair model in this chapter.

Let us maintain Δqp ¼ 0 and consider nonzero the Π-elements between

orbitals belonging to different subspaces. In Ref. 19, the generalization of

the sign convention adopted for Πg
qp in Eq. (7), namely ΠΦ

qp ¼ΦqΦp with

Φq¼
ffiffiffiffiffiffiffiffi
nqhq

p
if q, p > N/2, and ΠΦ

qp¼�ΦqΦp otherwise, led to a new

functional denoted as PNOF7. The resulting energy is

Epnof 7¼Epnof 5 +
XN=2

f 6¼g

X
p2Ωf

X
q2Ωg

ΠΦ
qpLpq: (9)

It is obvious that a possible option that favors decreasing of the energy is to

consider all the phase factors negative, i.e., ΠΦ
qp ¼�ΦqΦp. In Ref. 31, we

analyzed several examples with strong static correlation. Comparing with

accurate diagonalization calculations, our results indicated that all negative

inter-pair factors is a better option. Hence, hereafter we will restrict our

work to the latter.

All the results corresponding to NOFAs have been computed using the

DoNOF code developed by M. Piris and co-workers.

4. Model systems

Simple correlated electron models are suitable for robust validation

of approximate NOFs. In this section, we analyze the one-dimensional

Hubbard model with different number of sites, and hydrogen chains with

different ring sizes, in order to test the NOFs given by Eqs. (8) and (9) in

strong nondynamic correlation regimes.

4.1 Hubbard model
Despite its simplicity, the Hubbard Hamiltonian captures the basic nature of

the electron correlation. Motivated by the pitfalls obtained with standard

electronic structure methods even in the simple two site nonsymmetric

Hubbardmodel, we suggested usingNOFAs. Recently,36,37 we have shown

that developing functionals that satisfy at least with the analytically necessary

N-representability conditions of the 2RDM is essential to obtain consistent
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results throughout the different correlation regions contained in the

Hubbard model. In this vein, below we vary the system’s size and employ

exact results in order to test the usefulness of the studied NOFAs.

Let us focus on the one-dimensional Hubbard model in its simplest

form, i.e.,

H ¼�t
X

hμ,υi,σ
ðc{μ,σcυ,σ + c{υ,σcμ,σÞ+U

X
μ

nμ,αnμ,β: (10)

Here Greek indexes μ and υ denote sites, hμ, υi indicates only near-neighbor
hopping, t > 0 is the hopping parameter, σ ¼ α, β, nμ,σ ¼ c{μ,σcμ,σ where

c{μ,σ cμ,σ
� �

corresponds to fermionic creation(annihilation) operator and U is

the electron–electron interaction parameter. U/t quantifies the compromise

between kinetic energy and Coulomb repulsion, so it will be employed as

a dimensionless parameter to explore different correlation regimes.

Fig. 1 shows the difference in dimensionless energy values E/t with

respect to exact result obtained from Full Configuration Interaction (FCI)
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Fig. 1 Differences, as a function of U/t, in E/t values with respect to FCI obtained for the
one-dimensional Hubbard model by using different NOFAs. From top to bottom, the
plots correspond to the one-dimensional Hubbard model with periodic boundary
conditions with 10 sites, 12 sites, and 14 sites.
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calculations. Exact results are obtained from a modified version of the

code developed by Knowles and Handy,38,39 and the code DMN developed

by Matito and Feixas.40

In contrast with many other NOFAs studied in Refs. 37 and 36 all the

methods shown in Fig. 1 are able to describe the U=t! 0 and U=t!∞
correlation limits. The former is well described by mean-field theories since

it corresponds to weak correlation due to lacking two-electron interactions,

so the tight-binging model is recovered. Conversely, correlation effects

become increasingly significant as U/t gets larger, since electrons try to keep

away one from each other by half-filling the sites. Although the performance

of theNOFAs shown in Fig. 1 does not deteriorate significantly with the size

of the system, both CGA and MBB approximations (defined elsewhere36)

show a deficiency related to producing energies below the exact ones.

Hence they are not N-representable and they cannot represent any physical

quantum state. Among the results obtained by using PNOF approaches,

PNOF7 outperforms the independent pair model PNOF5 whatever the

number of sites and the correlation regime. A quasi-exact description of

the model is obtained whenever U/t ≫ 1, so PNOF7 describes accurately

the Wigner crystallization that takes place in this regime.

4.2 Hydrogen rings
Periodic and nonperiodic hydrogen chains can be considered as the simplest

examples of strong electronic correlation in low dimensions. In contrast

with the Hubbard model, long-range electronic interactions are included.

Besides, since more spatial dimensions are considered, this system exhibits

a noticeable increase in correlation energy compared to one-dimensional

systems.

Let us consider a periodic chain of hydrogen atoms and vary the number

of atoms (as done in the Hubbard model with the sites) at an internuclear

distance of RH�H¼ 2.0 Å. In Fig. 2, we show the relative energies obtained

by using PNOF5 and PNOF7 with respect to FCI, increasing the rings of

hydrogen atoms from 2 to 16. We use minimal basis in all the calculations,

and the PSI4 suite of programs41 to obtain FCI energies.

According to Fig. 2, the relative errors shown by PNOF5 get larger as the

size of the chain increases, so PNOF5 is not expected to give an accurate

description of the electron correlation in the presence of many inter-pair

interactions. In contrast, when inter-pair electron correlation is considered,

the relative errors with respect to FCI do not increase with the number of
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hydrogens. In fact, the largest error obtained by using PNOF7 is below

0.007 Hartree and it remains small and constant with increasing size of

the system. According to its performance, PNOF7 captures the physics that

appears in strongly correlated systems, therefore it could be used to study

strongly correlated systems beyond small molecules, e.g., periodic polymers

or heavy-element-containing molecules. Note that inter-pair interactions

are introduced in PNOF7 meeting the particle-hole symmetry. The poor

performance obtained by the independent pair model PNOF5 comparing

to PNOF7 demonstrates that fully correlated methods are indeed needed

to describe strongly correlated systems.

5. Geometry optimization

Geometry optimization is, together with single-point energy calcula-

tions, the most used procedure in electronic structure theory. Energy

gradients are primarily employed to locate and characterize critical points

on the energy surface in electronic structure theory, especially minima

and saddle points, but are also essential for the study of high-resolution

molecular spectroscopy, or geometry-dependent molecular properties such

as electrostatic moments.42
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Fig. 2 Relative differences with respect to exact diagonalization energies obtained
by using PNOF5 and PNOF7 for the hydrogen rings at RH�H ¼ 2.0 Å with varying size.
Calculations are performed using minimal basis.
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5.1 Energy gradient
Analytic energy gradient expressions have been recently published for

NOFAs.43 The derivative of the total energy (in the atomic orbital (AO)

representation) with respect to the coordinate x of nucleus A reads as

dE

dxA
¼
X
μυ

Γμυ
∂Hμυ

∂xA
+
X
μυηδ

Dμη,υδ
∂ μηjυδh i
∂xA

+
∂Enuc

∂xA
�
X
μυ

λμυ
∂Sμυ

∂xA
(11)

where λ is the matrix of Lagrange multipliers,43Enuc is the nuclear energy

and Sμυ represents the overlap matrix elements in the AO representation.

Eq. (11) gives the general expression to obtain the energy gradients for

any NOF, so that an explicit reconstruction of the 2RDM in terms of

the 1RDM is the only requirement for specific approximations.

5.1.1 Separability
According to Eq. (11), the bottleneck of computing NOF gradients is due to

Dμη,υδ, which involves
43 a formal scaling ofM5 beingM the number of func-

tions present in the given basis set. In the following, we show that for some

approximations it is possible to reduce the computational cost by summing

over molecular orbital (MO) indices separately. Indeed, it is known that

for the HF approximation Eq. (11) scales as M4. When electron correlation

is considered, the same technique can be used whenever the cumulant matri-

ces are factorized. The latter is best explained with an example. To this end we

use the cumulant matrix corresponding to PNOF5 (Eq. 7). First, let us focus

on the transformation of theΔmatrix to the AO representation, such that the

term accompanying the Coulomb integrals Jpq reads as

X
p,q

npnq�Δpq

� �
CμpCυpCηqCδq¼DμυDηδ�

XN=2

g¼1

Dg
μυD

g
ηδ (12)

whereDg
μυ ¼

P
pEΩg

npCμpCυp andDμυ ¼
PN=2

g¼1D
g
μυ. Eq. (12) scales as L �M4,

where L is a prefactor equal to the number of orbitals up to the N/2 level.

The remaining cumulant part is given by the Π matrix as

X
p,q

ΠpqCμpCυpCηqCδq¼
XN=2

g¼1

D
� g

μυD
� g

ηδ (13)

whereD
� g

μυ¼
P

pEΩg ,p6¼g

ffiffiffiffi
np

p
CμpCυp� ffiffiffiffi

ng
p

CμgCυg. Note that Eq. (13) has the

same computational cost as Eq. (12), so overall the cost corresponding to
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Dμη,υδ is reduced considerably by using separability of MO indexes.

The factorization of PNOF5 described above can be easily extended to

PNOF7. To do this we have to consider the inter-pair correlation terms

accompanying Lpq integrals as

X
p,q

ΠpqCμpCυpCηqCδq¼
XN=2

g¼1

D
� g

μυD
� g

ηδ�
X
g

ϕg
μυ

 ! X
f

ϕf
ηδ

 !
+
X
g

ϕg
μυϕ

g
ηδ

(14)

where ϕg
μυ ¼

P
pEΩg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np 1�np
� �q

CμpCυp. Recall that formally the computa-

tional cost corresponding to PNOF5 and PNOF7 is the same, so a more

complex functional form does not necessarily imply higher computation time.

Let us an example to illustrate the gain when computing energy gradi-

ents. As it is shown in Table 1, the computation time is significantly

reduced if separability is employed for both PNOF5 and PNOF7, indepen-

dently of the number of orbitals considered in the calculation (determined

by M and Ng).

5.2 The Hessian
According to the derivation carried out in Ref. 44, second derivatives of the

NOF energy (in the MO representation) are obtained by differentiating Eq.

(11) with respect to coordinate y of nucleus B

d2Eel

dxAdyB
¼
X
i

ni
∂
2Hii

∂xA∂yB
+
X
ijkl

Dkl, ij
∂
2 ijjklh i
∂xA∂yB

+ 2
X
ij

U
yB
ij λ

xA
ij +UxA

ij λyBij +U
xAyB
ij λij


 �
+ 2

X
ijkl

UxA
ij U

yB
kl Yijkl

+
X
m

nyBm
∂Hmm

∂xA
+2
X
ij

UxA
ij

∂λij
∂nm

+
X
ijkl

∂Dkl, ij

∂nm

∂ ijjklh i
∂xA

0
@

1
A

(15)

Table 1 Computation time (s) obtained using the cc-pVTZ basis set for the energy
gradient of C2H4.

Without separability With separability

PNOF5 (Ng ¼ 1) 14 8

PNOF7 (Ng ¼ 20) 37 28

Ng determines the number of weak orbitals coupled with each strongly occupied orbital in each subspace.
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Yijkl ¼ njδjlHik +2
X
mn

Dln, jm imjknh i+4
X
mn

Dmn, jl ikjmnh i (16)

where the derivatives of the matrix of Lagrange multipliers read as

λxAij ¼ nj
∂Hij

∂xA
+2

X
mkl

Dkl, jm

∂ imjklh i
∂xA

∂λij
∂nm

¼ δmjHij +2
X
rkl

∂Dkl, jr

∂nm
irjklh i

(17)

In Eq. (15), the first two terms contain the explicit derivatives of the core

Hamiltonian and two-electron integrals, respectively. The next two terms

arise from the derivatives of NO coefficients with respect to the nuclear

perturbation, described by the coefficients U (see Eq. 8 in Ref. 44). nyBm
represents the change in ON m due to perturbation yB, hence the last term

in Eq. (15) describes the contribution from the perturbation of the ONs.

In contrast to first-order energy derivatives, the calculation of the analytic

Hessian requires the knowledge of NOs and ONs at the perturbed geom-

etry. Both magnitudes are obtained from the solution of coupled-perturbed

equations, which are summarized elsewhere.44

5.3 Computational aspects
For any approximate NOF the evaluation of analytic energy gradients does

not require resorting to linear-response theory. The gradient computation is

therefore analogous to that which is performed at the HF level of theory

with the corresponding savings of computational time. The bottleneck of

gradient evaluation is the computation of the two-electron contribution,

since 12 gradient components arise from each two-electron integral. The

latter are computed on-the-fly to avoid calculating negligible contributions.

In contrast to first-order derivatives (11), coupled-perturbed equations

must be solved to evaluate the Hessian expression (15), so the corresponding

computational cost increases dramatically. In fact, previous calculations

involving coupled-perturbed equations in NOFAs have been applied only

to very small systems,45 e.g., single atoms or molecular dimers. Second-order

energy derivatives are computationally much more demanding in terms of

storage capacity than the evaluation of the total electronic energy or gradi-

ents. Indeed, derivative of two-electron integrals are 45 times greater in num-

ber than usual four-index integrals.46 In order to overcome these drawbacks,

in the following we use the numerical differentiation procedure to obtain the

Hessian, specifically the 6Na point formula (Na being the number of atoms).
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The use of analytic gradients to compute the second derivatives has been

developed efficiently before,46 where it has been assured that an analytic eval-

uation of the second derivatives is not necessarily much more efficient than a

numerical differentiation of analytic gradients.

5.4 Equilibrium geometries
In this section, we carry out a NOF study of the ground-state equilibrium

geometries for a selected set of spin-compensated molecules in order to test

PNOF5 and PNOF7 beyond the energy. This set of molecules includes the

following 14 systems: HF, H2O,NH3, CH4, N2, CO,HOF,HNO,H2CO,

HNNH, H2CCH2, HCCH, HCN, and HNC. For comparison, we have

included coupled cluster singles and doubles (CCSD)47 and high-quality

empirical equilibrium structures obtained from least-squares fits involving

experimental rotational constants and theoretical vibrational corrections.48

We use HF geometries as starting points to PNOF optimizations. All calcu-

lations are carried out using Ng ¼ 1 and the correlation-consistent polarized

triple-zeta (cc-pVTZ) basis set.49

Tables 2 and 3 show the errors in bond lengths and bond angles with

respect to empirical structural data. According to the mean errors shown

in these tables, PNOF5 and PNOF7 provide ground-state equilibrium

structures comparable to those of the CCSD. PNOF5 underestimates

some inter-atomic distances, while overestimating it in other cases, with

a slight tendency to the latter as evidenced by the mean signed value

Δ¼ 0:1 pm. PNOF5 tends to overestimate bond angles according to a

mean absolute error of Δ¼ 0:07 degrees, in contrast with CCSD

(Δ¼�0:09 degrees).

PNOF7 produces larger errors than PNOF5 for the studied equilibrium

geometries. Indeed, PNOF7 retrieves most of static correlation effects

but it lacks inter-pair dynamic correlation that are important in equili-

brium region (vide supra). Hence, we expect that including gradients

corresponding to second-order Møller–Plesset perturbative (MP2) correc-

tions in the NOF-MP2 method,19,20 the bond distances and angles will

be corrected. A work in this direction is underway.

5.5 Harmonic vibrational frequencies
Second-order energy derivatives make the calculation of harmonic vibra-

tional frequencies commonplace. Analogous to the procedure described

in Ref. 50, the Hessian is obtained by numerical differentiation of analytic

gradients and immediately after it is converted to mass weighted Cartesian

coordinates (MWC), i.e.
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∂
2E

∂xA∂yB

� 

MWC

¼ 1

mAmB

∂
2E

∂xA∂yB
: (18)

We obtain a set of 3Na eigenvectors corresponding to normal modes, and

3Na eigenvalues corresponding to the harmonic vibrational frequencies of

Table 2 Errors in the equilibrium bonds (in pm) at PNOF5, PNOF7, and CCSD levels of
theory calculated by using the cc-pVTZ basis set with respect to empirical structural data.
Molecule Bond PNOF5 PNOF7 CCSD EMP.

HF H–F �0.2 0.2 �0.3 91.7

H2O O–H 0.1 0.5 �0.2 95.8

NH3 N–H 0.6 0.9 �0.3 101.2

CH4 C–H 1.5 1.7 �0.1 108.6

N2 N–N �0.7 0.2 �0.4 109.8

CO C–O �1.1 �0.6 �0.3 112.8

HNO N–O 0.0 1.7 �0.9 120.9

H–N �0.7 �0.5 �0.3 105.2

H2CO C–O 0.2 1.1 �0.5 120.5

C–H 0.4 0.4 �0.4 110.1

HNNH N–N �0.1 1.3 �0.7 124.6

N–H 0.1 0.4 �0.4 102.9

H2CCH2 C–C 0.9 1.9 �0.4 133.1

C–H 1.1 1.3 �0.4 108.1

HCCH C–C �0.1 0.7 �0.4 120.4

C–H 0.7 0.9 �0.4 106.1

HCN C–N �0.5 0.4 �0.4 115.3

C–H 0.5 0.7 �0.6 106.5

HNC C–N �2.3 �0.2 �0.4 116.9

N–H �1.3 0.4 �0.4 99.5

HOF O–F 3.6 8.2 �1.9 143.4

H–O �0.3 0.3 �0.5 96.8

Δ 0.1 1.0 �0.5

Δabs 0.8 1.1 0.5

Δ and Δabs correspond to the mean signed error and mean absolute error, respectively.
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the molecule. Unfortunately, there are six eigenvalues corresponding to over-

all translation and rotation that are not exactly zero at a general point of the

energy surface.51 In fact, for displacements that are not rigorously orthogonal

in the 3Na dimensional vector space to the gradient vector, the potential is not

quadratic, so rotational and translational contaminant modes may arise. The

Eckart–Sayvetz conditions are an indicator of this contamination,52 thereby

they can be employed to ensure separation of the vibrational motions via pro-

jection techniques. Thus, the Hessian is projected in order to restrict the dis-

placements to be orthogonal to the 3Na dimensional vectors corresponding to

the rotations and translations of the system, i.e., displacements satisfying the

Eckart–Sayvetz conditions are the only ones allowed.

We have made a comparison between harmonic vibrational frequencies

obtained by using CCSD, MP2, and PNOF7, with respect to experimental

fundamentals. CCSD, MP2 and experimental values are obtained from

Ref. 53. Harmonic vibrational frequencies correspond to the set of mole-

cules H2O, NH3, CH4, N2, CO, HNO, H2CO, HNNH, H2CCH2,

HNC, HCCH, HOF, LiH, HF, C2H2, H2O2, Li2, LiH, HCN, F2, CO2,

H2, PH3, SiH4, H2S, HCl, Na2, P2, Cl2, NaCl, CS, SiO, ClF, and HOCl.

All calculations are carried out by using the cc-pVTZ basis set49 and the

maximum Ng value allowed by the basis set.

Fig. 3 shows the distribution of the errors for the above mentioned set

of molecules. According to these plots, PNOF7 shows good agreement

Table 3 Errors in the equilibrium bond angles (in degrees) at PNOF5, PNOF7, and CCSD
levels of theory calculated by using the cc-pVTZ basis set with respect to empirical
structural data.
Molecule Bond angle PNOF5 PNOF7 CCSD EMP.

H2O H–O–H 0.23 �0.09 �0.47 104.51

NH3 H–N–H 0.45 �0.92 �0.89 107.25

HOF H–O–F 0.27 �1.35 0.43 97.94

HNO H–N–O �0.53 �0.67 0.00 108.27

H2CO H–C–O �0.09 �0.51 0.29 121.63

HNNH H–N–N 0.82 0.44 �0.04 106.36

H2CCH2 H–C–C �0.15 0.14 0.03 121.43

Δ 0.07 �0.42 �0.09

Δabs 0.36 0.59 0.31

Δ and Δabs correspond to the mean signed error and mean absolute error, respectively.
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with CCSD and MP2. The latter has several errors between 150 and

200 cm�1, whereas the distributions corresponding to both CCSD and

PNOF7 show most of the results with errors below 100 cm�1. Regarding

the average values, there are no significance differences between the

three methods: Δ PNOF7ð Þ¼ 104 cm�1 over, Δ MP2ð Þ¼ 104 cm�1,

and Δ CCSDð Þ¼ 100 cm�1. It is worth noting that the large differences

between experimental fundamental frequencies and theoretically deter-

mined harmonic vibrational frequencies are systematic, so scaling factors

can be used to correct anharmonic effects in the determination of

those values.54

6. Closing remarks

In this chapter, we have focused on electron pairing NOF approxima-

tions, namely, the independent pair model PNOF5 and the inter-pair electron

correlation model PNOF7. PNOF7 has shown to be an ideal candidate to

study model systems for strong correlation such as Hubbard model with

different number of sites and hydrogen rings. Analytic first- and second-order-

energy derivatives were presented for any given nuclear perturbation. The

former does not require resorting to linear-response theory, whereas

coupled-perturbed equations must be solved to attain the analytic Hessian

at the perturbed geometry. Consequently, energy gradients can be computed

at a computational scaling near to the HF approximation. The equilibrium

geometries compare well to those obtained with CCSD. Besides, the analytic

gradients have been employed to compute harmonic vibrational frequencies,

which turns out to agree with MP2 and CCSD when PNOF7 is employed.
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Abstract

We investigate the feasibility of using pseudopotentials to generate the bound and con-
tinuum orbitals needed in collisional calculations. By examination of several inelastic
processes in the first Born approximation, we demonstrate the inconveniences of this
approach. Instead, we advocate use of effective potentials obtained with the depurated
inversion method (DIM). In this contribution, we extend this method to molecular
systems. Calculations of single first-order photoionization and proton-impact ionization
using the DIM show fair agreement with experimental results for both atoms and
molecules.
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1. Outline

Inelastic transition calculations require the representation of the bound

and continuum states involved in the collisional processes. The hypothetical

existence of an effective one-electron local potential accounting for these

states would allow more direct generation of the orthogonal wavefunctions

for the interacting particles. This approach should include individual nl-orbital

potentials, a feature missing from most of the standard density functional

methods. The idea of replacing a many-body, nonlocal interaction by an

effective one-electron equation opens up the possibility of studying extremely

complex systems with high accuracy.

In this context, one promising idea emerges from the pseudopotential

approximation (PPA), in which all the complexity of the wavefunctions near

the core—that usually consumes a huge numerical effort—is avoided. For

instance, density functional theory codes using pseudopotentials, such as

the PARSEC, for example,1,2 permit the use of an equally spaced grid involving

a relatively small number of points. Otherwise, the use of realistic potentials

describing the nucleus Coulomb potential requires a high density of points

concentrated at the origin to describe what the pseudopotentials cast aside.

Thus, if PPA was applicable in the field of collision theory, one would save

an enormous amount of computational resources.

Another interesting approach is the depurated inversion method

(DIM),3–5 which allows accurate, effective potentials to be obtained by

substituting the coupled multielectron equations into a Kohn–Sham-type

equation. In the first step, the potential is obtained through inversion of

the one-electron equation. Next, a careful optimization of the potential is

carried out, eliminating poles, and imposing the appropriate boundary

conditions analytically. In that way, the DIM potentials are parametrized

in simple analytical expressions.

In the present work, we explore the possibility of implementing an effec-

tive potential approximation in the atomic collision theory to describe inelas-

tic processes. In particular, we examine several collisional processes involving

a single electron transition: photoionization, excitation, ionization, and elec-

tron capture. A wide variety of ab initio methods have been implemented

to compute scattering cross sections for atomic targets, from the early

implementations of the first Born approximation (FBA),6,7 to more sophisti-

cated fully quantum mechanical methods, e.g., Refs. 8–11. Whether for

atoms or molecules, we shall present cross sections and compare with some
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experimental data. We do not wish, here, to present a detailed comparison

with existing calculations. The main purpose is to illustrate the effective

use of the DIM in collision applications. To this end, several simplifications

are made (1) The calculations are constrained to Hamiltonians describing

only the moving projectile, the target, and the active electron; (2) The

transition-matrix elements are only considered in first perturbative order.

If the first-order fails, it would not make any sense to extend the calculation

to higher terms of the series. For simplicity, we will restrict our calculations

only to the FBA framework, which is known to give reasonable agreement

with the experimental cross section in the intermediate—high projectile

energy range. Moreover, within this energy range and approximation

order, the Hartree–Fock orbitals are known to provide the correct high

energy limit.

We examine the above mentioned inelastic processes for two atoms

with a single outer electron: hydrogen and lithium. In this context, we

inspect the influence of the target description in the cross sections when

the PPA and DIM approaches are implemented. Furthermore, these effects

have been previously studied in other perturbative approaches, i.e., the

continuum distorted wave eikonal-initial-state (CDW-EIS), for various

targets (for example, see Refs. 12, 13). The DIM approach is further tested

in the case of many-electron atoms by comparing photoionization cross

sections with experimental measurements.

On the other hand, the description of molecular systems constitutes a real

challenge due to their nonspherical symmetry and multicenter character.

Many ab initio and semiempirical theoretical approximations14–16 have been

developed to this end over the last century. In this work, we present an

extension of the DIM method for simple molecular systems, providing a

new parametric expression for the potentials. The target description is once

again tested by examination of its performance in first-order collisional

processes, and the methane molecule being taken as an example.

2. Theory

2.1 Pseudopotential approximation
The pseudopotential approximation consists in replacing the Coulomb

potential in the many-electron system Hamiltonian with a smooth function

so that the electron wavefunctions oscillating rapidly in the core region are

replaced by nodeless pseudo-orbitals having the right energy and the same
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outer range properties. In general, the pseudopotentials VPP can be defined

through a pseudocharge ZPP as

VPPðrÞ¼�ZPPðrÞ
r

, (1)

ZPPðrÞ¼
f ðrÞ, r� rc

1, r> rc
,

�
(2)

where rc is a cutoff radius that separates the core, r � rc, from the valence

region, r > rc, of the target and f(r) is a continuous function with a constant

value at the origin. Fig. 1 illustrates a pseudopotential (solid line) and its

corresponding pseudo-wavefunction for the 3s orbital of argon. Notice that

the pseudopotential behaves as�r�1 (dot-dash line) in the valence region, as

defined in Eqs. (1) and (2). The pseudo-wavefunction agrees with the one-

electron Hartree–Fock (HF) orbital (dashed line) in the outer region, losing

all information about the atomic structure close to the origin.

In Section 3, we analyse the feasibility of implementing pseudopotentials

in collisional processes calculations for two simple atomic targets: hydrogen

and lithium. For each atom, the following pseudopotentials are examined

Name Source Type Refs.
A abinit GGA 17, 18
P parsec Troullier Martins 1, 2

ð3Þ

The hydrogen atom has only one electron, and the corresponding

pseudopotential is not essential. However, the hydrogen pseudopotentials from

(3) reproduce with high accuracy the main features of the wavefunctions, even

for excited states.

0.01 0.1 1 10
r (a.u.)

–1.5

–1

–0.5

0

V 3s

rcAr

–1/r
0.01 0.1 1 10

r (a.u.)

–0.5

0

0.5

1

u 3s

HF
PARSEC

A B

Fig. 1 (A) Pseudopotential, (B) pseudo-wavefunction and HF orbital for the 3s orbital of argon.
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Wewill now proceed to examine the pseudocharges and its one-electron

solutions for the lithium atom closely. First, we study the spatial and

momentum representation of the pseudocharges. The momentum-space

equivalent of Z(r) is given by the Fourier transform

~ZðkÞ¼ 1ffiffiffiffiffi
2π

p
Z +∞

�∞
ZðrÞ e�ikr dr: (4)

The pseudocharges from (3) for the 2s orbital of lithium are illustrated in Fig. 2.

For comparison, we include the potential obtained from implementing the

depurated inversion method described in Section 2.2. The pseudocharges

vanish at the origin, avoiding the divergence of theCoulomb potential. How-

ever, this feature comes at a price: the pseudocharges in the spatial represen-

tation are repulsive around r ¼1 a.u., and their momentum picture fails to

represent the target for high k, showing an incorrect oscillatory behavior

for values greater than kc ¼ (2πrc)
�1 � 0.7 a.u..

Secondly, we inspect the behavior of the bound pseudo-orbitals obtained

from solving the one-electron Schr€odinger equation with a pseudopotential.

As usual, the bound state wavefunctions can be written as

ψnlmðrÞ¼
unlðrÞ
r

Ym
l ðr̂Þ, (5)

where unl(r) are the reduced radial wavefunctions, and Ym
l ðr̂Þ are the spher-

ical harmonics. Similarly, the Fourier transform of these functions is given by

~ψ nlmðkÞ¼
χnlðkÞ
k

Ym
l ðk̂Þ: (6)

0.01 0.1 1 10
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0

1
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rc

A

0.01 0.1 1 10 100
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k

DIM
ABINIT
PARSEC

kc

B

Fig. 2 Pseudo and DIM charges for the 2s orbital of lithium. (A) Spatial and
(B) momentum representation.
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The spatial and momentum representations of the 2s radial pseudo-

wavefunctions of lithium corresponding to the pseudocharges from (3) are

displayed in Fig. 3. Although the pseudo-orbitals are very different from the

DIM 2swavefunction, the transformed χ(k) seems to have similar character-

istics. However, a closer inspection of the tail region of these functions

(see the inset of the figure) shows the existence of several nodes. We will

see later that these discrepancies have significant consequences in the cross

sections for most of the collisional processes examined.

Finally, the pseudopotential approach not only affects the representation

of the bound orbitals but also determines the form of the continuum wave-

functions. For large r, the free state orbitals of an electron in the presence of a

Coulomb potential can be written as

uklðrÞ! sin kr� l
π

2
�η ln2kr + σl + δl

� �
, (7)

where k is the particle wave number, η is Sommerfeld’s parameter, σl is the
Coulomb phase shift, and δl is the wave phase shift with respect to the

Coulomb wave.

Comparisons between the DIM (solid line) and the pseudo (dashed) con-

tinuum ks wavefunctions for lithium are shown in Fig. 4, close to the origin

(left) and asymptotically (right). The pseudo and DIM wavefunctions behave

similarly away from the nucleus. The asymptotic phase shiftΔ accounts for the

differences between the potentials. As the energy of the free electron increases,

Δ diminishes. However, the orbitals in the core region are different even with

increasing energy; the first maximumof theDIMwavefunctions is consistently

smaller than of the pseudo-orbitals, which is understood since the Coulomb-

type attraction of the nuclei is stronger than the pseudopotential in that region.
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Fig. 3 Pseudo and DIM bound state wavefunction for the 2s orbital of lithium in
(A) spatial and (B) momentum representation.
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2.2 Depurated inversion method potentials
The depurated inversion method3–5 consists of assuming that the many-

electron atom orbitals can be represented by the solution of Kohn–Sham-

type equations, in which the nl effective potentials are given by

VnlðrÞ¼ 1

2

1

unlðrÞ
d2unlðrÞ
dr2

� lðl+1Þ
2r2

+ εnl, (8)

where unl and εnl are the nl orbital wavefunctions and energies, respectively.
In this work, the atomic structure is approximated with the Hartree–Fock
method, which is computed with the HF codes by C. Froese Fischer19 and

the NRHF code by Johnson.20 The computation of Eq. (8) poses various

numerical problems. The nodes and asymptotic decay of the wavefunctions

unl(r) introduce significant numerical errors in the inversion procedure

(see Ref. 5 for further details). The nodes of the orbitals produce huge

unphysical poles, while the rapid asymptotic decay of the internal wave-

functions generates large divergences in the tail region of the potentials.

The depuration method is implemented to tackle these unphysical features.

An effective potential with a Coulomb-type shape Vr(r) ¼ �Zr(r)/r is

defined, and we enforce the correct boundary conditions fitting the inverted

potential with the following analytical expression

ZrðrÞ¼
Xn
j¼1

zje
�αj rð1+ βjrÞ+1 ! ZN , r! 0

1, r!∞

�
(9)

where
P

zj ¼ZN �1 (ZN here stands for the nuclear charge). The parameters

αj and βj are optimized to reproduce the HF values accurately.
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Fig. 4 Continuum ks wavefunctions with energies E near the origin (left) and in the
asymptotic region (right), calculated with the DIM potential (solid line) and the ABINIT

pseudopotential (dashed line).
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3. Collisional processes in atoms

The most significant advantage of the pseudopotential method is its

simplicity. However, it is worth determining the validity of this approach

when used for computing collisional processes. In this section, we perform

a thorough examination of the pseudopotentials for hydrogen and lithium

by comparing the cross sections of four inelastic processes: proton-impact

excitation, proton-impact ionization, charge exchange, and photoioniza-

tion. The initial and final states of the targets are obtained by solving the

corresponding Schr€odinger equation. For the hydrogen atom, we compare

the pseudopotential results with the exact analytical solutions. Furthermore,

in order to assess the applicability of the depurated inversion method, we

compute the photoionization of more complex many-electron atoms and

compare our findings with experimental data.

3.1 Proton-impact excitation
The proton-impact excitation of target X is defined as

H+ +X!H+ +X∗: (10)

The excitation cross section σ of the target from the initial bound state ψ i to

the excited state ψ f may be written as

σ¼ μ2

4π2
k f

ki

Z
Tf i

�� ��2dΩ, (11)

where μ is the reduced mass of the proton–atom system, ki and kf are the

initial and final relative momenta, and

Tf i ¼hψ f jV jψ ii (12)

is the transition-matrix or T-matrix. If the initial and final states of the tran-

sition are described by the Hartree–Fock method, the orbitals will give the

correct high energy limit in the first-order approximation (this is not the case

for the charge exchange process). Hence, we will concentrate our comput-

ing efforts in the first perturbative order of the transition-matrix element

through the FBA, given by

TFBA
f i ¼ ~V ðpÞF f iðpÞ: (13)

186 Alejandra M.P. Mendez et al.



The term Ff i(p) is the form factor

Ff iðpÞ¼ 1

ð2πÞ3=2
Z

~ψ∗
f ðkÞ~ψ iðk+pÞ dk, (14)

where p is the momentum transfer vector

p¼ pminv̂ + η, (15)

pmin ¼ εf �εi
v

! ∞, v! 0

0, v!∞
,

�
(16)

v̂ is the ion velocity, η is the transversal momentum transfer, so that v̂ � η¼ 0,

whereas εi and εf are the binding energies corresponding to the initial and

final states. A more comprehensive formulation of the FBA can be found,

for instance, in Ref. 21.

The first Born proton-impact excitation cross sections of hydrogen and

lithium from the ground states are shown in Fig. 5. The pseudopotential results

for the f1¼ 2s, 2p and f2¼ 3s, 3p, 3d final states of hydrogen agree excellently

with the analytical expression. For lithium, the pseudopotential cross sections

agree in a broad velocity range with the DIM calculations, except for low

proton-impact velocities. This disagreement arises from the form factor. For

low impact velocities, themomentum transfer vector is large (16). As discussed

earlier, in this region the bound momentum orbital ~ψ ðk+pÞ is not described
adequately by the pseudopotentials. An alternative expression for the form fac-

tor can be considered by implementing the peaking approximation

Ff iðpÞ� ~ψ iðpÞ~ψ ∗
f ð0Þ+ ~ψ f ðpÞ~ψ ∗

i ð0Þ: (17)
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Fig. 5 Proton-impact excitation cross section from the ground state for (A) hydrogen
and (B) lithium.
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Therefore, in order to have the correct form factor, it is necessary to obtain

an accurate description of the initial bound state at large momentum values,

which is not the case for the pseudostates (see Fig. 3B) and hence their failure

when used in the cross section calculation.

3.2 Proton-impact ionization
The transition matrix (12) for the proton-impact ionization of X,

H+ +X!H+ +X + + e�, (18)

can also be written in terms of the first-order Born approximation. In this

case, the final state ψ f in Eq. (14) is an outgoing continuum wavefunction

ψ�
kf
, while εf ¼ k2f =2 is the energy of the ionized electron.

The single-differential proton-impact ionization cross sections dσ/dεf of
hydrogen and lithium at a proton velocity of vp ¼ 1 a.u. are shown in Fig. 6.

In the case of hydrogen, the pseudopotential and analytical results agree for all

the electron energy range, except at very high values. On the other hand, for

lithium, the cross sections computed with pseudopotentials only agree at low

energies.Once again, assuming thatψ�
kf
(k) can be approximated by a planewave,

the form factor is reduced to the Fourier transform of the initial bound state

Ff iðpÞ� ~ψ iðp�k f Þ: (19)

Then, as kf increases, so does pmin, and the form factor is not well represented

by the pseudopotentials. The significant discrepancies shown in Fig. 6 provide

another demonstration of how a wrong description of the momentum space

wavefunction may produce huge errors in collisional processes calculations.

0.01 1 100

Electron energy (keV)

10
–1

10
0

10
1

10
2

dσ
/d

ε f 
(M

b/
eV

)

Analytic
ABINIT
PARSEC

H

0.01 1 100

Electron energy (keV)

10
1

10
2

10
3

dσ
/d

ε f 
(M

b/
eV

)

DIM
ABINIT
PARSEC

Li

A B

Fig. 6 Single differential proton-impact ionization cross section from the ground state
of (A) hydrogen and (B) lithium at vp ¼ 1 a.u.
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3.3 Proton-impact charge exchange
The proton-impact charge exchange of target X is defined as

H+ +X!H+X +: (20)

The charge transfer cross section by the collision of a proton (electron cap-

ture) is computed with the first-order Brinkman–Kramers approximation.22

Accordingly, the matrix element is defined by

TBK
f i ¼ ~ψ ∗

f ðWf Þ εf �
W 2

f

2

" #
~ψ iðWiÞ, (21)

where Wi and Wf are the momentum transfer vectors

Wi¼Wi0v̂ + η, Wi0¼ v

2
�pmin (22)

Wf ¼Wf 0v̂ + η, Wf 0 ¼ v

2
+ pmin, (23)

and they satisfy the condition Wi +Wf ¼ v, and pmin is defined in Eq. (16).

The charge exchange cross sections of hydrogen and lithium in the

ground state are illustrated in Fig. 7. The cross section of hydrogen is

described with high accuracy by the pseudopotential approach for a wide

range of proton velocities. However, this process constitutes a symmetrical

resonance, i.e., εf¼ εi, and the agreement may be misleading. For the lithium

case, the pseudopotentials fail utterly to describe the electron capture correctly

at low and high velocities. For low and high vp values, the momentum transfer

vector becomes large, and therefore, the cross sections calculated with

pseudopotentials disagree completely for most of the energy values.
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Fig. 7 Proton-impact electron capture cross section for (A) hydrogen and (B) lithium in
the ground state.
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3.4 Photoionization
The single photoionization is defined as

ħω+X!X + + e: (24)

Considering a perturbative photon field, the initial bound ψ i and final con-

tinuum ψ�
kf
states of the target are not significantly distorted; therefore, the

relevant matrix element of the photoionization process is given by

TPh
k ¼

Z
ψ�
kf
ðrÞ �iε̂λ � rr½ �ψ iðrÞ, (25)

where ε̂λ is the polarization versor and k f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðω+ εiÞ

p
, as imposed by

energy conservation.

The first-order photoionization cross sections of hydrogen and lithium

are shown in Fig. 8. The pseudopotentials results for the hydrogen atom

agree with the exact analytical expression results only for low photon ener-

gies, failing at larger values. These discrepancies can be understood consid-

ering the continuum wavefunction ψ�
kf
(r) as a plane wave. Consequently,

the matrix element Tk
Ph is reduced to

TPh
k �� ε̂λ � kf

� �
~ψ i

kf
� �

, (26)

and it is determined entirely by the behavior of the bound target pseudostate

in the momentum representation. For hydrogen, the pseudo-orbital from

PARSEC in the Fourier space coincides with the exact analytical solution

for the entire range of k, which explains the excellent agreement in the cross

section results. For lithium, the pseudopotential cross sections disagree with
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Fig. 8 Single photoionization cross section for (A) hydrogen and (B) lithium.
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the DIM results for all energy values. The large oscillations in the cross sec-

tions are originated by the spurious oscillatory structure of the bound state

for large k values (see inset of Fig. 3B).

3.5 DIM Photoionization of many-electron atoms
In order to assess the applicability of the depurated inversion method for

atoms with a more complex structure, we compute the photoionization

of many-electron targets with the DIM potentials4 and compare our

results with experimental values. The first-order photoionization cross

section of nitrogen and neon are shown in Fig. 9. Experimental data

from23–26 is illustrated with hollow symbols. The DIM photoionization

cross sections of these atoms agree excellently with the experimental

values for low, medium and high photon energies. For neon, discre-

pancies start to be noticeable for low and intermediate energy. An accu-

rate photoionization description of heavier atoms requires the inclusion

of many-body effects that can be relevant, such as orbital relaxation due

to the creation of a hole, collective response of inner shell electrons27 and

correlation effects.

4. Depurated inversion method for molecules

The depurated inversion method described above is extended here to

determine effective potentials for molecules; methane is taken as an example.

Furthermore, the molecular description of CH4 given by DIM is tested by

computing two collisional processes within the FBA.
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Fig. 9 Single photoionization cross section for (A) nitrogen and (B) neon.
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4.1 Theory
Without loss of generality, we will present the DIM theoretical grounds for

hydride compounds. The Hamiltonian of an N-electron X Hn molecule

within the Born–Oppenheimer approximation is given by

H¼�
XN
i¼1

1

2
r2

ri
�
XN
i¼1

ZN

ri
+
XN
i¼1

VHðriÞ+
XN
i<j

1

rij
, (27)

VHðriÞ¼�
Xn
j¼1

1

ri�RHj

�� �� , (28)

where ZN is the nuclear charge of the heavier atom, and RHj
are the coor-

dinates of the hydrogens respect to the X atom. The corresponding

Schr€odinger equation HΨ¼EΨ is solved and the orbitals are expressed

as in Eq. (5) considering the single-center expansion (SCE). The orbitals

and energies are found by solving the Hartree–Fock equations. The compu-

tation of these equations generally relies on the use of finite basis sets for the

representation of the molecular orbitals (MOs). Usually, the MOs are

expressed as a linear combination of atomic orbitals (LCAO),

Ψi¼
X
j

cjiϕj, (29)

which can be constructed with Gaussian-type orbitals (GTO) basis sets.

The inverted molecular potential expression, analogous to Eq. (8),

obtained from GTO basis sets present more difficulties than the atomic case.

In addition to the asymptotic divergences and the poles, large unphysical

oscillations arise.28–31 These prominent oscillations originate from undula-

tions present in the MOs due to the finite number of the basis set. The sec-

ond derivative, necessary to evaluate the inversion formula, amplifies these

features.28,31 In some cases, the oscillations are huge, e.g., near an electro-

negative atom like Cl. The appearance of these oscillations in the inverted

potentials forces us to incorporate further actions in the depuration scheme.

To illustrate this procedure, we consider the 1s orbital of the carbon

atom. We solved the Hartree–Fock equations using the 6-311G basis set

with GAMESS code32,33 and obtained inverted potentials by implementing

Eq. (8). The resulting Z6�311G
1s charge is shown in Fig. 10A with a dot-

dashed line. The charge oscillates significantly at low distances and diverges

for higher r values. The same calculation was repeated using the universal

Gaussian basis set (UGBS), which has a more significant amount of prim-

itives. The corresponding inverted charge ZUGBS
1s is exhibited in the figure

192 Alejandra M.P. Mendez et al.



with a dashed line. Although the charge still diverges around r � 1a.u., the

oscillations are now circumscribed near the nucleus. Finally, the differen-

tial Hartree–Fock equations for the carbon atom were solved using the

finite-differences (FD) method. The 1s inverted charge obtained with this

procedure, ZFD
nl (solid line) shows no oscillations since no basis sets have

been used to construct the orbital; however, the charge still diverges for

r > 1a.u., as it usually does for all HF calculations.

The oscillations pattern will vary for each basis set used in the calcula-

tions. We may define oscillation profiles as

pBSnl ¼ZBS
nl �ZFD

nl , (30)

whereZBS
nl is the inverted charge of the atom using a particular basis set “BS”

and ZFD
nl is the effective charge obtained from the inversion of the finite-

difference wavefunctions. In the previous example, the basis set considered

for calculating the 1s orbital of carbon were 6-311G and UGBS. The oscil-

lation profiles for the 1s orbital, using Eq. (30) for these basis sets, are shown

in Fig. 10B. Since the orbital profiles for each atomic basis set are distinctive,

once they are determined for the atomic case, they can be removed in

further molecular calculations. An example of this procedure is given

in the following section.

4.2 Example: Methane
In order to illustrate the implementation of the DIM for molecules, we con-

sidered CH4, which is highly symmetric, and therefore, can be described

with an angular averaged potential.34 We computed the HF molecular

orbitals and energies of CH4 employing the UGBS basis sets of carbon

and hydrogen, which considers angular momenta up to L ¼ 1. Methane

calculations with this basis set should include polarization functions
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Fig. 10 (A) Effective charges for the 1s orbital of carbon. (B) Basis-set oscillation profiles.
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(at least d-functions) to increase the accuracy of the molecular energies.35,36

However, to isolate the effects of the basis set, we computed the atomic oscil-

lation profiles and the molecular orbitals on the same footing. The charges

obtained by direct inversion are given in Fig. 11 with dashed lines. Since the

molecular orbitals are given by LCAO of carbon and hydrogen, the oscillations

of the inverted charges are a consequence of the finite basis set of these atoms.

To remove the most critical oscillations, first, wemust determine the oscillation

profiles produced by the atomic carbon basis set. We use Eq. (30) to determine

the pUGBS
1s , pUGBS

2s , and pUGBS
2p profiles of carbon. Then, we remove the oscilla-

tions by subtracting the carbon pUGBS
nl profiles from the corresponding inverted

charges ZUGBS
i of CH4. The oscillations are removed for all orbitals except for

the 2a2, which presents small oscillatory residues from the hydrogen basis set.

Since the residual fluctuations are minimum and near the nucleus, we

proceeded to implement the depuration scheme as described in Section 2.2.

We define a new parametric DIM charge equation,

ZðrÞ¼
X
j

Zje
�αj r +ZHe

�ð ln r� lnβÞ2=ð2γÞ +1: (31)
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Fig. 11 (A) 1a1, (B) 2a2, and (C) 2t1 effective charges of CH4; direct inversion (dashed line)
and depurated inverted (solid line).
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In contrast to the approximation proposed for atoms (9), a second term has

been added to the formula to account for the presence of the hydrogens.

This expression allows us to conveniently adjust both the location and

width of the screened hydrogenic potential without affecting the correct

charge value at the origin. The optimized parameters for the methane mol-

ecule are given in Table 1, and the corresponding DIM charges are shown

in Fig. 11, with solid lines. The orbital energies obtained with these charges

are also given in the table.

4.3 Collisional processes
The orientation of the molecular targets is important for determining the

cross sections of collisional processes. However, it is generally not pre-

established in the experiments. Thus, the spherically averaged description

of the system assumed by the DIM potential makes sense. In the following,

we examine two collisional processes in the first-order approximation:

proton-impact ionization and single photoionization.

Proton-impact ionization
Results for the proton-impact ionization cross section for CH4, calculated

under the first Born approximation, are given in Fig. 12. The initial bound

and the final continuum states of the molecule needed for the T-matrix

computation (Eq. (12)) were calculated with the DIM potentials from

Table 1 Energies and fitting parameters for the DIM effective charges (Eq. (31)), for CH4.

nl E Z α β γ

1a1 �11.1949 1.925280 0.641982

0.953120 5.571510

2.121600 1.500440

2a2 �0.9204 2.912200 3.149990

2.087800 0.771371

1.23640 2.329570 0.053420

2t1 �0.5042 0.901953 2.895140

1.112030 0.388649

2.986017 2.931210

1.30182 2.169850 0.012616
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Section 4.2. The ionization cross section for high and intermediate energies

shows good agreement with the experimental results. The failure at low

energies is ascribed to the validity of the first Born approximation and

not to our DIM approach.

Photoionization
The photoionization cross section for CH4, calculated with the DIM poten-

tials in a first-order approximation, is shown in Fig. 13 (solid lines). Good

agreement with the experimental results (symbols) is found for high energy

values and at the threshold. The curve between �15 and �300 eV shows

the photoionization from the outer n ¼ 2 shell, while the discontinuity
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Fig. 12 Proton-impact ionization cross section for CH4. Solid line: first-order DIM
theoretical calculations. Symbols: experiments from Refs. 37 and 38.
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Fig. 13 Single photoionization cross section of CH4. Solid line: first-order DIM theoretical
calculations. Symbols: experiments from Refs. 39–41.
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at 300 eV corresponds to the threshold of the 1a1 inner shell orbital. For low

and intermediate photon energies, the agreement between our calculations

and the experimental values from Refs. 39–41 is not that good.

Phenomena such as molecular orbital relaxation, possible collective contribu-

tions, and correlation effects must be considered in further calculations. On the

other hand, for the 1a1 inner shell photoionization, these effects are not

significant, and we obtain a perfect agreement with the experimental results.

5. Concluding remarks

In this work, we explored the possibility of using pseudopotentials

within the single electron model to calculate inelastic transitions. The first

Born approximation was used to calculate proton-impact excitation, ioni-

zation, electron capture, and photoionization. Two simple atoms were

studied, having a single electron in the outer shell. For hydrogen, we found

excellent agreement for all the collisional processes, for low and intermedi-

ate energies. In the case of lithium, the only process that can be calculated

with reasonable accuracy is the proton-impact excitation. We concluded

that the range of validity is restrained to minimal momentum transfers.

The depurated inversion method, on the other hand, accurately reproduces

photoionization experimental results for many-electron atoms.

We extended the DIM for molecular systems. In this case, the inversion

procedure produces huge oscillations due to the finite size of the basis sets

involved in the Hartree–Fock orbital calculations. An additional step is

included during the depuration scheme. In order to determine the oscilla-

tion profile for a particular basis set, we computed the inverted atomic

charges in a finite-differences framework. By subtracting the charges, it is

possible to isolate the oscillations corresponding to this particular basis set.

We used the DIM method to determine the effective potentials for CH4.

These potentials are implemented in first-order proton-impact ionization

and photoionization cross sections calculations. For both processes, we

found good agreement with the experimental results. The main discrepan-

cies can be attributed to the fact that only first-order is considered in the

perturbation theory.
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Abstract

The exchange-correlation potential of the Kohn–Sham density-functional scheme is the
difference between the Fermi potential—an effective potential appearing in the one-
electron Schr€odinger equation for the square root of the electron density—and the
Pauli potential, i.e., vXC(r) ¼ vF(r) � vP(r). We show that, for a given external potential
and electron number, knowledge of vF(r) alone is sufficient to generate the corresponding
vP(r) and vXC(r). The Fermi potential itself can be computed from the system’s interacting
two-electron reduced density matrix or modeled directly. The unified treatment of these
three potentials provides a practical method for accessing accurate functional derivatives
of the exchange-correlation, Pauli kinetic, and Levy–Perdew–Sahni energy functionals
without having to tackle functional differentiation and numerical challenges of other
construction techniques.
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1. Motivation

Density-functional theory (DFT) of electronic structure can be put into

practice in different ways such as the Kohn–Sham scheme,1–3 the generalized

Kohn–Sham method,4 the orbital-free DFT,5–7 the Levy–Perdew–Sahni
formalism8, and other variants.9 All of these techniques are based on the

Hohenberg–Kohn theorems10 and have the same general setup: the total

electronic energy E is treated as a functional of the electron density ρ(r); this
functional, E[ρ], is partitioned in some way; minimization of E[ρ] leads to an

Euler–Lagrange equation whose solution produces the ground-state density

ρ(r) and hence E[ρ]. The partitioning is arbitrary, provided that the parts

add up to E[ρ]. Most of these terms are defined by conveniently chosen ana-

lytic expressions but there always remains at least one term which must be

approximated. Here, we will focus on two variants of DFT, namely, the

Kohn–Sham scheme1, 2 and the Levy–Perdew–Sahni8 formalism, and limit

our discussion to singlet ground-state systems.

In the Kohn–Sham scheme, the total electronic energy functional is

partitioned as

E½ρ� ¼Ts½ρ�+
Z
ρðrÞvðrÞ dr+EH½ρ�+EXC½ρ�, (1)

where Ts[ρ] is the kinetic energy of a system of noninteracting electrons

having the ground-state density ρ(r), EH[ρ] is the Hartree electrostatic self-

repulsion energy of ρ(r), and EXC[ρ] is the unknown exchange-correlation

energy functional. The corresponding Euler–Lagrange equation is11

�1

2
r2 + vðrÞ+ vHðrÞ+ vXCðrÞ

� �
ϕiðrÞ¼ EiϕiðrÞ, (2)

where the eigenfunctions ϕi(r) are such that ρðrÞ¼Pocc:
i jϕiðrÞj2,

vHðrÞ¼ δEH½ρ�
δρðrÞ ¼

Z
ρðr0Þ
jr� r0j dr

0 (3)

is the Hartree potential, and

vXCðrÞ¼ δEXC½ρ�
δρðrÞ (4)

is the exchange-correlation potential.
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In the Levy–Perdew–Sahni formalism, the total energy functional is

partitioned as

E½ρ� ¼TW½ρ�+
Z

ρðrÞvðrÞ dr+EH½ρ�+G½ρ�, (5)

where

TW½ρ� ¼
Z jrρðrÞj2

8ρðrÞ dr (6)

is the von Weizs€acker kinetic energy and G[ρ] is an unknown functional.

The Euler–Lagrange equation corresponding to Eq. (5) may be cast as8

�1

2
r2 + vðrÞ+ vHðrÞ+ vFðrÞ

� �
θðrÞ¼ μθðrÞ, (7)

where θðrÞ¼ ffiffiffiffiffiffiffiffi
ρðrÞp

, μ is the chemical potential, and

vFðrÞ¼ δG½ρ�
δρðrÞ (8)

is the Fermi potential,12 also referred to as the “effective potential for the

boson problem.”13

The unknown functionals of the Kohn–Sham and Levy–Perdew–Sahni
schemes are related by the equation

G½ρ� ¼EXC½ρ�+Ts½ρ��TW½ρ�: (9)

The same relation stated in terms of functional derivatives reads

vFðrÞ¼ vXCðrÞ+ vPðrÞ, (10)

where

vP rð Þ¼ δ Ts ρ½ ��TW ρ½ �ð Þ
δρ rð Þ (11)

is the Pauli potential.13–18 For one- and singlet two-electron systems, where

TW[ρ] ¼ Ts[ρ] and vP(r) ¼ 0, the Kohn–Sham and Levy–Perdew–Sahni
schemes are identical.

Much insight into the workings of various density-functional schemes

can be obtained by analyzing the effective multiplicative potentials arising

as functional derivatives of the unknown components of the total energy
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functional. In the Kohn–Sham and Levy–Perdew–Sahni schemes, these are

the exchange-correlation and Fermi potentials, vXC(r) and vF(r), defined

by Eqs. (4) and (8). These potentials are themselves functionals of ρ(r)
and therefore they encode essentially the same information as the parent

functionals EXC[ρ] and G[ρ]. The Pauli potential, vP(r), furnishes informa-

tion about the shell structure of electron densities in many-electron atoms19

and is closely tied with the functional derivative δTs[ρ]/δρ(r),
20 which is of

interest in orbital-free DFT.5–7

Since the exact functionals EXC[ρ] and G[ρ] are generally unknown as

explicit functionals of ρ(r), their functional derivatives can be constructed

only by indirect methods. The two most common techniques used for

this purpose are the Kohn–Sham inversion procedure, in which the potentials

(or related quantities) are fitted to ground-state electron densities via the

Kohn–Sham equations (see, e.g., Refs. 21–25 and references therein), and

the optimized effective potential (OEP) method,26–31 where one solves an

integral equation for vXC(r). Unfortunately, the Kohn–Sham inversion and

OEP techniques are less robust than desired for practical calculations.24, 32

Moreover, fitting vXC(r) and vF(r) to finite-basis-set densities of Coulombic

systems may produce results that look nothing like the potentials

corresponding to the basis-set-limit densities of the same systems. For instance,

exchange-correlation potentials fitted to electron densities generated in stan-

dard Gaussian basis sets diverge at large r and oscillate elsewhere.33–35

Here we show that it is possible to construct accurate exchange-

correlation, Fermi and Pauli potentials for a given system from the system’s

reduced density matrices (RDM) without using numerically problematic

techniques. The constituent parts of this construction procedure were

developed in a series of our earlier papers.36–47 This contribution synthesizes

them into a unified method and provides new insights into the relationship

between vF(r), vP(r), and vXC(r).

2. Procedure

The Fermi, Pauli, and exchange-correlation potentials are related

through Eq. (10). This means that if any two out of these potentials are

known, the third one is trivially determined. The point of this work is to

emphasize a nonobvious fact implied by the method of Ref. 43 that the Fermi

and external potentials are sufficient to calculate the associated Pauli and

exchange-correlation potentials in a straightforward manner. First wewill dis-

cuss how Fermi potentials can be constructed and then how to generate vP(r)

and vXC(r) from a given vF(r).
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2.1 Fermi potential
The Fermi potential of a given system can be constructed in more than one

way, all of which would give the same result if everything were done using a

complete basis set. When one employs a finite basis set at any step, compli-

cations arise. For example, one can easily invert Eq. (7) to obtain a formula

for the Fermi potential corresponding, in a complete basis set, to a given

ground-state density ρ(r),

vFðrÞ¼ 1

4

r2ρðrÞ
ρðrÞ �1

8

jrρðrÞj2
ρ2ðrÞ � vðrÞ� vHðrÞ+ μ: (12)

The problem with this method is that when ρ(r) is generated using a finite

Gaussian basis set, the output of Eq. (12) oscillates wildly and diverges at large

r33–35,45 andmay not be what one wants: a realistic finite-basis-set approxima-

tion to the Fermi potential associated with the exact (basis-set-limit) density.

Recently we showed45 that, if one wishes to obtain Gaussian-basis-set

approximations to Fermi potentials of real atoms and molecules, one needs

a more sophisticated approach than Eq. (12). Our proposed solution is a

different formula for vF(r) that requires an interacting two-electron RDM

(2-RDM). The derivation of that formula is not difficult45 but we will

not reproduce it here and will only define all of the ingredients and state

the final result.

Consider a system of N interacting electrons in a singlet ground state

described by a 2-RDM, Γ(r1,r2; r01,r02), generated at some level of ab initio

theory. Let M be the dimension of the space spanned by the one-electron

basis set used. From the 2-RDM one can always derive the corresponding

one-electron RDM (1-RDM)

γðr1,r01Þ¼
2

N �1

Z
Γðr1,r2; r01,r2Þ dr2 (13)

and diagonalize the latter to obtain the natural orbitals χk(r) and their occu-
pation numbers 2nk (0 � nk � 1), such that

γðr,r0Þ ¼ 2
XM
k¼1

nkχkðrÞχ*kðr0Þ: (14)

The 1-RDM determines the electron density

ρWFðrÞ¼ 2
XM
k¼1

nkjχkðrÞj2 (15)
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and the Pauli kinetic energy density of the interacting electrons

τWF
P ðrÞ¼ τWFðrÞ� τWF

W ðrÞ, (16)

where

τWFðrÞ¼
XM
k¼1

nkjrχkðrÞj2 (17)

and

τWF
W ðrÞ¼ jrρWFðrÞj2

8ρWFðrÞ : (18)

For practical calculations, we rewrite Eq. (16) in the form45

τWF
P ðrÞ¼ 2

ρWFðrÞ
XM
k<l

nknljχkðrÞrχ lðrÞ� χ lðrÞrχkðrÞj2: (19)

The 2-RDM determines the exchange-correlation hole

ρXCðr1,r2Þ¼
2Γðr1,r2; r1,r2Þ

ρðr1Þ �ρðr2Þ (20)

and its “potential”

vholeXC ðr1Þ¼
Z

ρXCðr1,r2Þ
jr1� r2j dr2, (21)

as well as the kernel of the generalized Fock operator

Fðr1,r01Þ¼ ĥðr1Þγðr1,r01Þ+2

Z
Γðr1,r2; r01,r2Þ

jr1� r2j dr2, (22)

where ĥðrÞ¼�1
2
r2

r + vðrÞ. Just like the 2-RDM, the generalized Fock oper-

ator can be diagonalized to give

Fðr,r0Þ ¼ 2
XM
k¼1

λk fkðrÞ f *k ðr0Þ, (23)

where the factor of 2 arises from the summation over spin. The

eigenfunctions fk(r) and eigenvalues λk are then assembled into the quantity
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EWFðrÞ¼ 2

ρWFðrÞ
XM
k¼1

λkj fkðrÞj2, (24)

which may be interpreted as the average local ionization energy of the

system.48, 49

With all the ingredients defined as above, the formula for the Fermi poten-

tial derived in Ref. 45 reads

vFðrÞ¼ vholeXC ðrÞ� EWFðrÞ+ τWF
P ðrÞ
ρWFðrÞ + μ, (25)

where μ is a constant formally determined by the condition8

lim
r!∞

vFðrÞ¼ 0, (26)

which holds for almost all spatial directions.50 The principal advantage of

Eq. (25) over Eq. (12) is that the former, unlike the latter, assigns similar

Fermi potentials to Gaussian and non-Gaussian electron densities.

The Fermi potential can also be written as a sum of vXC
hole(r), τP

WF(r)/ρWF(r)

and an integral over many-electron conditional amplitudes.51 That integral

can be reduced47 to a simpler form involving the 3-RDM at most and the

entire sum can then be regarded as yet another exact expression for vF(r).

We have not explored that approach because our Eq. (25) is simpler and

already serves the purpose.

2.2 Pauli and exchange-correlation potentials from the Fermi
potential

The Kohn–Sham version of DFT assumes the existence of a system of N

noninteracting electrons moving in some external potential vs(r) such that

the ground-state density of that system, ρKS(r), is equal to the ground-state

density of the interacting system,

ρKSðrÞ¼ ρWFðrÞ: (27)

Referring to Eq. (2), the potential vs(r) is given by

vsðrÞ¼ vðrÞ+ vHðrÞ+ vXCðrÞ (28)

and the noninteracting electron density (for a singlet ground state) by

ρKSðrÞ¼ 2
XN=2

i¼1

jϕiðrÞj2, (29)
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where the summation is over the lowest-eigenvalue solutions of Eq. (2). The

eigenfunctions ϕi(r), called the Kohn–Sham orbitals, allow one to express

the Pauli kinetic energy density of the noninteracting electrons as

τKSP ðrÞ¼ 2

ρKSðrÞ
XN=2

i<j

jϕiðrÞrϕjðrÞ�ϕjðrÞrϕiðrÞj2 (30)

and the Kohn–Sham average local ionization energy as

EKSðrÞ¼ 2

ρKSðrÞ
XN=2

i¼1

EijϕiðrÞj2: (31)

Then, as we showed in Ref. 43, the exchange-correlation potential is

given by

vXCðrÞ¼ vholeXC ðrÞ+ EKSðrÞ� EWFðrÞ+ τWF
P ðrÞ
ρWFðrÞ�

τKSP ðrÞ
ρKSðrÞ : (32)

Using Eq. (25), we rewrite Eq. (32) as

vXCðrÞ¼ vFðrÞ+ EKSðrÞ� τKSP ðrÞ
ρKSðrÞ�μ: (33)

Comparison of Eqs. (10) and (33) leads to the following expression for the

Pauli potential:

vPðrÞ¼�EKSðrÞ+ τKSP ðrÞ
ρKSðrÞ + μ: (34)

The right-hand side of Eq. (33) contains two types of terms: those deter-

mined by the interacting 2-RDM and those determined by the Kohn–Sham
orbitals and orbital energies. The terms of the first group form the Fermi

potential, while the terms of the second group constitute the Pauli potential.

This natural decomposition of the exchange-correlation potential suggests

the following method for computing all three potentials: first construct

vF(r) and then use it as a fixed part of Eq. (33) to solve iteratively the

Kohn–Sham eigenvalue problem, Eq. (2). That this method can actually work

is implied by our previous reports,38, 39, 43 where we calculated exchange-

correlation potentials from 2-RDMs in essentially the same manner.
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2.3 Algorithm
For the sake of completeness, we describe below the proposed algorithm for

the unified construction of Fermi, Pauli, and exchange-correlation potentials.

1. Construct the Fermi potential for the system of interest either by using

Eq. (25) (i.e., from a 2-RDM) or by direct approximation.

2. Generate an initial guess for the Kohn–Sham orbitals and orbital energies

(e.g., by solving the Kohn–Sham equations using an approximate density

functional).

3. Use the currentϕi(r) and Ei to construct vP(r) by Eq. (34) and vH(r) by Eq.
(3) using ρKS(r).

4. Use the Fermi potential from step 1 and the Pauli potential from step 3 to

construct the exchange-correlation potential as vXC(r) ¼ vF(r) � vP(r).

5. Solve the Kohn–Sham eigenvalue problem with the current vH(r) and

vXC(r) to obtain a new set of ϕi(r) and Ei. Shift the Kohn–Sham spectrum

by setting the eigenvalue of the highest occupied orbital to EN/2 ¼ μ, as
explained below.

6. If the Kohn–Sham orbitals and orbital energies are converged, then vP(r)

and vXC(r) are also converged. In that case, stop and print the potentials.

Otherwise, return to step 3 and continue.

With commutator-based direct inversion of the iterative subspace,52 the

self-consistent field (SCF) iterations of steps 3–6 can be converged as tightly

as the density-functional integration grid permits. In this work, we used a

saturated grid and terminated the algorithm when the Kohn–Sham density

matrix elements from two consecutive iterations differed by less than 10�10

in the root-mean-square sense.

The potentials vF(r) and vXC(r) obtained by this method from a 2-RDM

are supposed to recover the ab initio density ρWF(r) via Eqs. (2) and (7), respec-

tively. That indeed would be the case if all of the calculations were performed

in a complete basis set. In a finite basis set, the densities jθ(r)j2 and ρKS(r) agree
with ρWF(r) only approximately with a small discrepancy that tends to zero in

the basis-set limit.43–45 The metric which we use to characterize this

discrepancy is

Δρ ¼
Z

jρKSðrÞ�ρWFðrÞj dr, (35)

where ρKS(r) is the Kohn–Sham density at convergence.

If a finite basis set is used, the Hartree potential should be constructed in

step 3 using ρKS(r) rather than ρWF(r) to ensure mutual cancelation of vH(r)
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and vP(r) in the asymptotic region because the asymptotic behavior of vXC(r)

should be determined by that of vF(r). If vH(r) is constructed from ρWF(r),

the procedure is unlikely to converge at all.

In order that vF(r), vP(r), and vXC(r) vanish as they should in the r!∞
limit, the individually nonvanishing terms in Eqs. (25) and (34) must be

such that

lim
r!∞

EWFðrÞ¼ lim
r!∞

EKSðrÞ¼ EN=2 ¼ μ, (36)

where EN/2 is the eigenvalue of the highest occupied Kohn–Sham orbital.

The shift of the Kohn–Sham spectrum applied in step 5 constrains all of

the equalities in Eq. (36) to be satisfied automatically.

There remains the question of how to calculate the chemical potential μ.
When the Fermi potential is constructed from a 2-RDM, the value of μ is

fixed by Eq. (26) and, theoretically, could be found as the r!∞ limit of

EWFðrÞ.48 In practical finite-basis-set calculations, this limit is sensitive to

the choice of the most diffuse basis function, so a more robust approach

is needed. We take μ ¼ �I, where I is the first ionization energy obtained

from the 2-RDM via the extended Koopmans theorem53–55 using the

method of Ref. 56. In particular, for Hartree–Fock (HF) wavefunctions,

I ¼�EHF
N=2. If the Fermi potential is modeled by an analytic expression that

obeys Eq. (26), the corresponding μ is unknown. In such cases, we satisfy Eq.
(36) by setting μ to whatever value of EN/2 comes out of the Kohn–Sham
eigenvalue problem. Note that the shifting of the Kohn–Sham spectrum

by μ is optional because it has no effect on the converged ρKS(r).

3. Numerical examples

The above algorithm was implemented locally in theGaussian suite of

programs.57 Apart from the extension enabling the use of directly modeled

Fermi potentials, this implementation is the same as that of Ref. 43.

3.1 Calculations with Fermi potentials generated from ab initio
wavefunctions

The many-electron systems chosen to illustrate our method include the Be

atom and two linear molecules (LiF and CNO�) at their equilibrium geom-

etries. These three systems represent most of the chemical elements of the

first full row of the periodic table. The Fermi potentials were generated from
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HF, complete active space (CAS) SCF and full configuration interaction

(FCI) wavefunctions using the correlation-consistent polarized core-valence

contracted Gaussian basis sets, cc-pCVXZ (X ¼ D, T, Q).58, 59 Relevant

details about these systems and wavefunctions are collected in Table 1.

The small Be atomwas chosen over larger alternatives to demonstrate the

magnitude of differences between Fermi, Pauli, and exchange-correlation

potentials generated at various ab initio levels. Fig. 1 shows that the Fermi

potentials of Be constructed from the same type of wavefunction (in this

case, HF) using different basis sets are almost indistinguishable, as are the

Table 1 Information about the wavefunctions used for generating the Fermi potentials.
System State Method Basis set E (Eh) μ (Eh) Δρ (e)

Be 1S HF cc-pCVDZ �14.572338 �0.3091 0.0096

HF cc-pCVTZ �14.572873 �0.3093 0.0112

HF cc-pCVQZ �14.572968 �0.3093 0.0043

CAS(4,6) cc-pCVTZ �14.630318 �0.3488 0.0052

FCI cc-pCVTZ �14.662368 �0.3419 0.0052

LiF 1Σ+ CAS(8,8) cc-pCVTZ �107.125911 �0.4371 0.0161

CNO� 1Σ+ CAS(16,12) aug-cc-pCVQZ �167.338475 �0.1592 0.0190

Internuclear distances in the molecules: rLiF ¼ 2.96a0, rCN ¼ 2.23a0, rNO ¼ 2.38a0.
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Fig. 1 Fermi, Pauli, and exchange-correlation potentials generated fromHFwavefunctions
of the Be atom using various basis sets. The exact exchange-only Kohn–Sham potential is
from Ref. 27.
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associated vP(r) and vXC(r) generated from those Fermi potentials. Another

general result illustrated by Fig. 1 is that exchange-correlation potentials

generated from atomic HF wavefunctions are excellent approximations36, 37

to the exact exchange-only Kohn–Sham potentials obtained by numerical

solution27 of the integral OEP equation.

Fermi, Pauli, and exchange-correlation potentials generated from wave-

functions of different types show more variation depending on the fraction

of the correlation energy included. For atoms such as Be, differences between

potentials generated at the HF and post-HF levels of theory are relatively small

(Fig. 2) but would be much larger for systems where the single-determinantal

approximation is inadequate.44, 45 Fig. 2 also shows that exchange-correlation

potentials derived from correlated wavefunctions are very close to the exact

numerical benchmarks.

Figs. 3 and 4 display examples of molecular Fermi, Pauli, and exchange-

correlation potentials generated from correlated wavefunctions. Each of the

potentials of CNO� looks like an amalgamation of the corresponding

potentials of the three constituent atoms. The Fermi and Pauli potentials of

CNO� have similar shapes and much greater magnitudes than vXC(r) near

the nuclei. By contrast, the Pauli potential of LiF is flat around the Li nucleus,

and both vF(r) and vP(r) remain positive in a much larger region of space than

would be the case for an isolated Li atom or the Li2 dimer. We also note that
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Fig. 2 Fermi, Pauli, and exchange-correlation potentials generated from various
wavefunctions of the Be atom using a fixed basis set. The exact vXC(r) is from Ref. 60.
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the noninteracting electron configurations of LiF and CNO� are 1σ2 2σ2 3σ2

4σ2 1π4 and 1σ2 2σ2 3σ2 4σ2 5σ2 6σ2 1π4 7σ2 2π4, respectively, which means

that Figs. 3 and 4 show the potentials along the intersection of the nodal planes

of two degenerate highest occupied Kohn–Sham orbitals.
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wavefunction of the LiF molecule.
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Our approach does not allow us to obtain the total electronic energy of

the system independently of the wavefunction method. One can only com-

pute the kinetic correlation and Kohn–Sham exchange-correlation energies

by combining appropriate wavefunction and Kohn–Sham quantities, as has

been demonstrated elsewhere.38, 43, 44

3.2 Calculations with model Fermi potentials
The fixed Fermi potential used in our method for constructing Pauli and

exchange-correlation potentials does not have to come from an ab initio

wavefunction. One can also approximate vF(r) directly. To illustrate this

strategy, we tested two simple model Fermi potentials,

vAF ðrÞ¼
1:60r2 + 0:75

0:25r8 + 0:30
� 1

0:50+ r
, (37)

and

vBF ðrÞ¼
1:20r2 + 0:30

0:20r6 + 0:15
� 1

1:00+ r
, (38)

for a four-electron system with an external potential of the Be atom. The

first terms on the right-hand sides of Eqs. (37) and (38) are analogous to

Finzel’s analytic approximations61 to Pauli potentials (which are positive

everywhere), while the second term simulates the � 1/r asymptotic decay

of vF(r). Both models were devised as deliberately imperfect fits of ab initio

Fermi potentials of the Be atom. Of course, a model Fermi potential is

unlikely to be a functional derivative.62

Fig. 5 shows the Pauli and exchange-correlation potentials obtained from

the model Fermi potentials of Eqs. (37) and (38) using the cc-pCVTZ basis set

of the Be atom.Model A gives rise to a vP(r) that is more positive and a vXC(r)

that is more negative than the respective potentials of Fig. 2, whereas model

B gives a less positive vP(r) and a less negative vXC(r) than in Fig. 2. Because the

maxima of vF(r) and vP(r) in model B are not aligned as in model A, the vXC(r)

obtained from model B has a second bump near r ¼ 0.7a0, a feature that is

absent in model A. We have also experimented with model Fermi potentials

of other shapes but found that the Kohn–Sham SCF iterations do not con-

verge unless vF(r) is sufficiently close to the true Fermi potential of the Be

atom, at least when using basis sets and density-functional integration grids

designed for that system.
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4. Concluding remarks

We have shown that the Fermi and external potentials of a many-

electron system suffice to construct the Pauli and exchange-correlation

potentials. The process involves solving the Kohn–Sham equations by iter-

ation using the expression for vXC(r) given by Eq. (33). The Fermi potential

may be computed by Eq. (25) from an interacting 2-RDM or approximated

directly. This unified approach reduces the problem of constructing accurate

Pauli and exchange-correlation potentials to the task of constructing accu-

rate Fermi potentials.

Calculations reported in this work and elsewhere43–45 indicate that Fermi,

Pauli, and exchange-correlation potentials derived from 2-RDMs rapidly

converge with respect to the basis set, and that potentials obtained using

standard Gaussian basis sets are excellent approximations to the corresponding

potentials of the basis-set limit. Molecular Fermi, Pauli, and exchange-

correlation potentials exhibit42, 44 significantly more variation than atomic

potentials between HF and post-HF levels of ab initio theory because electron

correlation plays a greater role in systems with more than one atomic nucleus.

The representation of vXC(r) by the difference of Fermi and Pauli poten-

tials, each of which has a physical meaning on its own, offers a new vantage

point for analyzing exact exchange-correlation potentials. This perspective
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Fig. 5 Pauli and exchange-correlation potentials generated from two model Fermi
potentials for a four-electron atomwith Z¼ 4 using the cc-pCVTZ basis set of the Be atom.
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is related to and complements the fruitful Kohn–Sham potential decompo-

sition analysis developed by Baerends and coworkers.51, 63 Treating vXC(r) as

a combination of the Fermi and Pauli potentials may also facilitate direct

approximation of exchange-correlation potentials and aid the analysis of

derivative discontinuities64 and other nonintuitive effects65, 66 arising in the

Kohn–Sham DFT.
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Abstract

The Fock space coupled cluster theory provides a description of the states obtained by
attachment of one ((1,0) sector) or two ((2,0) sector) electrons to the reference system. If
the reference is assumed to be a doubly ionized cation then the results relate to a cation
or a neutral molecule, respectively. In the current work the above scheme is applied to
extensive ab initio calculations of the potential energy curves (PECs), and the spectro-
scopic constants of NaH and its cation for the eight lowest lying states, adopting as a
reference system the doubly ionized structure, i.e., NaH2+. Such a computational strat-
egy relies on the fact that the closed shell reference (NaH2+) dissociates into the closed
shell fragments. This is advantageous since the restricted Hartree–Fock function can be
used as the reference in the whole range of interatomic distances. This scheme offers a
first principle size-extensive method without anymodel or effective potential parameters
for the description of the bond breaking processes. The computed PECs and spectro-
scopic constants stay very close to the experimental values, with accuracy exceeding
that of other theoretical approaches (in most cases) including those based on the effec-
tive core potentials.
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1. Introduction

The growing interest in studies of chemical reactions in cold or

ultracold conditions creates a demand for the accurate determination of both

short and long-range interatomic potentials.1,2 Classes of chemical com-

pound that are particularly useful in studies of collision phenomena include

alkali metal diatomics and alkali hydrides. The latter molecules as well as

their cations also play an important role in the processes occurring in the

atmospheres of planets, dwarf stars, and the interstellar medium, hence they

are intensively studied by astrophysicists.3 In the current work, focus is

on a representative example of MeH molecules (Me—alkali metal atom);

the sodium hydride NaH and its cation NaH+. In Ref. 4 we developed a

particularly useful method to study the process of breaking a single bond.

Here we are going to apply this method to investigate a dissociation of

the NaH molecule.

Generally, dissociation of the standard single bond is still not a trivial task.

The ideal situation occurs when the closed shell molecule dissociates into

closed shell fragments.4,5 In such ideal cases, the restricted Hartree–Fock
(RHF) reference function can be used for the whole range of interatomic

distances. However, this is not generally the case for real chemical bonds.

The conditions mentioned above may nevertheless be met in cases when

we dissociate a double positive ion (in our case NaH2+), instead of the neu-

tral molecule or its ion (i.e., NaH, NaH+). This can be done if we are able to

describe the molecular ion or neutral molecule on the basis of the doubly

ionized reference, on condition that the applied method is able to describe

the system after attachment of one or two electrons to the reference in order

to describe the original structure. Thus, the EA (electron attachment) and

DEA (double electron attachment) strategies avoid use of the unrestricted

Hartree–Fock (UHF) reference. The latter has well-known disadvantages

connected with broken symmetry problems and difficulties in reaching

convergent solutions around the critical geometries. Generally, the EA

calculations can be illustratively written as: AB�!EA AB� which in our case

takes the form: NaH2+ �!EA NaH +. The same applies to the DEA scheme:

generally AB��!DEA
,AB2�, in our case NaH2+ ��!DEA

NaH

In the framework of the coupled cluster (CC) method,6–9 we can con-

sider EA and DEA schemes formulated within Fock space (FS) theory.4,10,11

This technique seems particularly suitable for the bond breaking problem

owing to its size-extensivity which is crucial for the correct reproduction
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of the atomic excitation energies in the dissociation limit. In our previous

works, these methods were applied successfully to the alkali metal molecular

ions and neutral molecules.4,12–16 Contrary to previous studies of the alkali

hydride cation NaH+ and alkali hydride molecule NaH,17–22 mostly based

on the effective potential methods, in this work we apply the size-extensive

FS-CC (1,0)(� EA-EOM-CC—equation of motion CC23–28) and FS-CC

(2,0)4 methods with all electrons correlated. These are all the first principle

electron computational schemes capable of producing potential energy

curves (PECs) and spectroscopic constants for the selected states of NaH

and NaH+. These approaches introduce no auxiliary parameters with basis

sets of the order of several hundred functions which is impossible using

the standard scheme via full configuration interaction (FCI). The standard

computational scheme used in calculations of PECs for the alkali hydride

molecules (or alkali hydride ions) relies on replacement of inner-shell

electrons with effective or model potentials. In this manner the computa-

tional task is reduced to the two-electron problem (or one in case of alkali

hydride ions). Thanks to the rigorous FS-CCSD (2,0) method, we were

able, e.g., to reach an accuracy better than 0.01 eV both for the dissociation

and adiabatic excitation energies for the Li2 molecule.12

In Sections 2 and 3, we give a brief overview of the computational

methods applied, with computed PECs and molecular constants for the

eight lowest lying states of the NaH and NaH+ systems.

2. Synopsis of the theory

Within the coupled cluster6–9 formalism the reference wave function

Ψ is obtained by an action of the exponential eT:

Ψ¼ eTΦ0 (1)

where T is a cluster operator being a sum of operators responsible for the

single (S) and double (D) excitations at the CCSD level used in this work,

and Φ0 is the reference function, i.e., a Slater determinant constructed from

the RHF orbitals. Note that by the reference system in our calculations

we understand the doubly ionized structure NaH2+ both RHF and CCSD

solutions are obtained.

A principal idea of multireference approaches10 is to solve the eigenvalue

equation for the so-called effective Hamiltonian operator, Heff ¼ PHΩP:

HeffΨ0 ¼EΨ0 (2)
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defined within a model space; P—projection operator; Ω—valence univer-

sal wave operator (Ω ¼ {eS}P, S—cluster operator); Ψ0—model function.

The model space in the FS formalism10,11,29 is obtained as a direct sum of

the particular sectors M� ði, jÞ:

Mðk, lÞ ¼ �i¼k, j¼l

i, j¼0
M� ði, jÞ (3)

Generally, the sector M� ði, jÞ is a configurational subspace obtained by the

creation of the i particles within themp active virtual orbitals and j holes within

the mh active occupied orbitals. The model space is defined by giving the

top sector (k, l) and the sizes of the active particle (mp) and active hole (mh)

spaces. For the double electron attached states, i.e., (2,0) sector, we have:

Mð2,0Þ ¼�i¼2

i¼0
M� ði,0Þ (4)

Thus, in this case the active space is defined only by the number of active

particle levels, so providing the number mp (hereafter denoted by m) is

enough to define the active space. The model space is spanned by the m2

Φαβ configurations obtained by distributing the two added electrons among

the m valence levels in all possible ways.

The characteristic feature of the FS approach is the hierarchical structure

of the CC solutions. Hence, in order to solve the FS equations for the (k, l)

sector, all solutions for lower rank sectors (i, j) with i � k and j � l must be

known. In the current case: (0,0) and (1,0) sectors. The (0,0) sector corre-

sponds to the above mentioned single reference solution for the reference

system, i.e., the NaH2+ ion. The (1,0) sector is spanned by the Φα config-

urations formed by placing an additional electron in one of the m valence

levels.

Energy values of double electron attached states are obtained by the

diagonalization of the Heff within the Φαβ configurational space:

H
ð2,0Þ
eff ¼Pð2,0ÞHeS

ð0,0Þ + Sð1,0Þ + Sð2,0ÞPð2,0Þ (5)

where P(2,0) is defined as:

Pð2,0Þ ¼
X
αβ

jΦαβihΦαβj (6)
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The S(0,0)(�T), S(1,0), and S(2,0) are cluster operators. A given superscript

indicates sector. Limiting the cluster expansion to double components, the

(1,0) and (2,0) sector operators are expressed as:

Sð1,0Þ ¼ S
ð1,0Þ
1 + S

ð1,0Þ
2

(7)

Sð2,0Þ ¼ S
ð2,0Þ
2

(8)

The S
ð2,0Þ
1 operator does not contribute in the above equation since it cannot

be defined within the DEA formalism.

It should be explained that the solutions for the S(1,0) sector of the Fock

space CC method10 can be obtained using the EA-EOM-CC formalism,11,24

i.e., the EOM scheme applied to the single electron attached states.30,31 It is

well known that the eigenvalues obtained with the EA-EOM-CC scheme

are identical to those of FS-CC (1,0) for the principal electron affinities.

In general, the FS-CC equations do not very readily converge, due to

intruder state problems when using the standard approach, i.e., via the

effective Hamiltonian formalism. The remedy for this is the intermediate

Hamiltonian (IH)30,32–34 formulation of the FS-CCmethod. In this formal-

ism the iterative solving of the FS equations is replaced with a diagonaliza-

tion of the IH matrix. In case of EA, i.e., (1,0) sector, the IH matrix is just

H (� e�THeT).30,31 Hence, the EA-EOM-CC is preferred in most cases for

one-valence sectors. Results, in their vast majority were obtained with the

EA-EOM-CCSD (S ¼ singles, D ¼ doubles) model but exceptionally

we are also applying the more advanced model, i.e., full EA-EOM-CCSDT

(T¼ triples). It means solving the CC equations for the reference state at the

CCSDT level and then solving the EA-EOM-CC equations, assuming that

the R(k) operator also includes the R3 operator.

In order to omit similar (i.e., intruder state) problems in the (2,0) sector

we also applied the IH strategy described in detail in a paper devoted to the

FS-CCSD (2,0) method.4 In this case DEA-EOM-CC and FS-CC (2,0)

give different eigenvalues, but the IH formalism provides identical results

to the standard Heff based FS method.

3. Results and discussion

All calculations are done using the ACES235 package supplemented

with the local version of the IH-FS-CCSD (2,0) and EA-EOM-CCSDT
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modules.24 The results are collected in Figs. 1–4 and in Tables 1–3. In all

single and double electron attachment calculations the orbitals are obtained

by the RHF solution for the NaH2+ system. We used the unANO-RCC+

basis set, i.e., uncontracted ANO-RCC36 with two additional diffuse func-

tions for s, p, d shells for Na15 and uncontracted ANO-RCC for H in NaH

calculations (denoted as unANO-RCC+). The NaH+ results appear to be

more sensitive to the hydrogen basis set, and so to get satisfactory accuracy

we added diffuse functions for the s, p, d shells for the H atom (acronym

unANO-RCC++), using an even tempered scheme. In all cases the spher-

ical harmonic polarization functions were used with all electrons correlated.

The size of the basis set for NaH is 166 (unANO-RCC+) and 205

(unANO-RCC++) in case of NaH+. The active space for the FS-CCSD

(2,0) part has been set to m ¼ 49 in size, (i.e., 49 lowest virtual orbitals have

been selected as active). An additional increase in m does not significantly

affect the results. Note that the resulting size of the main model space is

equal to 2401, i.e., that many configurations span the subspace in which

the effective Hamiltonian is to be diagonalized.

In Table 1 we compare the total energies of the NaHmolecule at infinite

interatomic distance (last column) with the sum of energies for the Na and

H atoms. Note this gives identical results, since the FS-CCSD (2,0) method

is size-extensive,10,30 which is crucial for generating correct PECs. The

atomic energies are important in the current calculations since for the

size-extensive methods the energies of the electronic states should converge

to the atomic values at infinite distance.

The respective spectroscopic constants (obtained with help of the

LEVEL-8 program of Le Roy37) are collected in Tables 2 and 3. The

computed constants are compared with other recent theoretical and/or

experimental values,17–22,38–44 wherever the latter are available.

Table 1 Energy of the electronic states [a.u.] at the dissociation limit of the NaH
molecule compared to atomic energies in the unANO-RCC+ basis set.

Config.
H H energy Config. Na

Na energy
EA-EOM-CCSD H+Na energy

NaH energy
(R5∞(200 Å))
IH-FS-CCSD(2,0)

1s �0.499984 [Ne]3s �162.143194 �162.643178 �162.643178

1s �0.499984 [Ne]3p �162.066494 �162.566478 �162.566478

1s �0.499984 [Ne]4s �162.026623 �162.526607 �162.526607
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Table 2 Spectroscopic constants of NaH for eight lowest lying electronic states
obtained using the IH-FS-CCSD (2,0) method in unANO-RCC+ basis set.
Sym. Re [Å] De [cm

21] Te [cm
21] ωe [cm

21] ωexe [cm
21] Ref.

X1Σ+ 1.898 15594 – 1152.4 17.8 This work

1.883 15502 – 1171.8 Theor.17

1.888 15814 – 1175.3 20.2 Theor.18

1.856 15489 – Theor.19

1.889 15785 – 1176.1 21.2 Exp.38

1.887 15797 – Exp.40

13Σ+ 6.263 4 15589 This work

6.508 3 Theor.17

21Σ+ 3.194 10002 22426 317.3 �3.3 This work

3.171 9993 22567 320.0 Theor.17

3.152 10011 Theor.19

3.194 317.6 Exp.41

3.193 10041 22713 Exp.40

23Σ+ 9.398 1 32426 This work

10.58 2 Theor.17

11Π 2.779 222 32205 170.6 34.4 This work

2.804 121 32432 Theor.17

2.775 226 182 42.8 Theor.18

13Π 2.375 1174 31283 438.4 41.3 This work

2.380 1073 31480 430.3 Theor.17

2.376 1140 431 42.8 Theor.18

31Σ+ inner 2.378 634 40544 This work

2.403 575 44951 Theor.19

31Σ+ outer 6.288 6512 34666 209.4 1.3 This work

6.281 6348 34859 213.9 Theor.17

6.257 6391 35164 218.3 Exp.43

33Σ+ 2.481 1236 39942 394.8 45.2 This work
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Table 3 Spectroscopic constants of NaH+ for eight lowest lying electronic states
obtained using the EOM-CC methods in unANO-RCC++ basis set.
Sym. Re [Å] De [cm

21] Te [cm
21] ωe [cm

21] ωexe [cm
21] Ref.

X2Σ+ 2.588 644 – 285.1 32.6 EA-EOM-CCSD

2.581 651 – 287.7 32.8 EA-EOM-CCSDT

2.693 458 – 266.6 37.4 Theor.20

2.593 496 – 266.7 Theor.21

2.645 1008 – 451.7 Theor.22

22Σ+ 4.175 3760 65368 328.4 5.8 EA-EOM-CCSD

4.170 3737 65292 328.1 5.8 EA-EOM-CCSDT

4.185 3621 65113 321.2 7.6 Theor.20

4.159 3712 65026 345 Theor.21

4.127 3726 66476 346.8 Theor.22

32Σ+ 6.702 4670 78277 195.9 2.2 EA-EOM-CCSD

6.687 4694 78260 196.3 2.2 EA-EOM-CCSDT

6.689 4675 78077 196.1 1.8 Theor.20

6.683 4725 78071 196.0 Theor.21

6.879 3291 79413 185.5 Theor.22

12Π 4.554 886 82061 176.0 6.1 EA-EOM-CCSD

4.548 897 82058 179.0 6.6 EA-EOM-CCSDT

4.688 716 82040 156.3 10.4 Theor.20

4.572 929 81870 169.9 Theor.21

42Σ+ Repulsive

52Σ+ 10.668 649 85313 77.0 2.7 EA-EOM-CCSD

10.699 650 85052 76.6 4.8 Theor.20

10.647 653 85104 75.9 Theor.21

22Π Repulsive

62Σ+ 12.421 1713 93000 89.7 0.7 EA-EOM-CCSD

12.573 1804 92670 88.2 1.0 Theor.20

12.541 1844 92659 92.3 Theor.21
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3.1 NaH molecule
In Fig. 1 we show the PECs for all eight states of NaH divided into three

groups each correlating to a different dissociation limit: Na(3s) + H(1s)

(X1Σ+, 13Σ+), Na(3p) + H(1s) (21Σ+, 23Σ+, 11Π, 13Π), Na(4s) + H(1s)

(31Σ+, 33Σ+). In the cases where p atomic levels are involved some of

the molecular states are degenerate, and so the total number of state

eigenfunctions amounts to 10. All of them represent bound states, but in sev-

eral cases the well depth is very small (e.g., two lowest tripletΣ states). In two

cases we are able to compare the computed PECs with the experimental

curves extracted from Ref. 45.

In Fig. 2 we have plotted the experimental X1Σ+ curve. We observe it

coincides very well with that of the present work. Similarly, in the same fig-

ure we present the experimental curve corresponding to the 21Σ+ state, sup-

erimposed on its theoretical counterpart from the current work. The

experimental points are available in a limited range only, but, as we can

see, the respective parts overlap each other quite well. Note that the

31Σ+ state displays two potential wells: one, shallow, at the R ¼ 2.378 Å

and the second, deeper, at R ¼ 6.288 Å.
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Fig. 1 Potential energy curves of the NaH molecule with the IH-FS-CCSD (2,0) method
for the three lowest dissociation limits in the unANO-RCC+ basis set.
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The experimental data are only available for the singlet Σ states. The

agreement with experiment of the computed molecular constants is quite

satisfactory (see Table 2). For example, the deviations of theoretical dissoci-

ation energy values,De, from the experiment is ca. 200 cm�1 for the ground

state, 40 cm�1 for the 21Σ+ and 120 cm�1 for the 31Σ+. The equilibrium

bond length for two excited states, 21Σ+ and 31Σ+, differs from experiment

by 0.001 and 0.031 Å, respectively. The experimental bond length in the

second case is equal to 6.257 Å, which means that the error is below

0.5%. A reasonably good agreement is observed for the harmonic frequen-

cies too. The computed values differ from available experimental values by

24, 0, and 9 cm�1 for the three states.

We can also compare our results with other theoretical studies.17–19 In

Table 2 we list the results obtained by Olson and Liu17 with a limited CI

approach, by Yang et al.18 with the MRCI (multireference CI) approach,

and by Khelifi19 using the pseudopotential representing the inner shells

and the full CI approach for two valence electrons. The most elaborate

approach seems to be the MRCI scheme used in Ref. 18 applied only to

three states: the ground 1Σ+ state and the two lowest Π states. For both
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Fig. 2 Potential energy curves of the NaH molecule with the IH-FS-CCSD (2,0)/unANO-
RCC+ method for the two states: - comparison with experiment.
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excited Π states (experiment unavailable) the current results stay close to

those of Ref. 18. The calculations based on the pseudopotential approach

were obtained for a number of singlet Σ states out of which only the three

lowest ones are studied in the current work. An interesting situation occurs

for the 31Σ+ state for which our calculations indicate a double-well poten-

tial, while the pseudopotential-based data18 report only one minimum

corresponding to the inner well found in our work. On the other hand

the results in Ref. 17 point to a single well, corresponding to the outer min-

imum found in the current work. It is worth noting that our computed con-

stants concerning inner and outer wells remain very close to those reported

in Refs. 18 and 17, respectively.

Test CISD calculations for the two-electron problem (all inner-shell

electrons frozen). The results are not encouraging (see improvement,

below). For example, the values for the equilibrium geometry for the states,

X1Σ+, 21Σ+, and 31Σ+, differ from experiment by 0.035, 0.18, and 0.15 Å,

whereas the current results are off by 0.01, 0.001, and 0.03 Å, respectively.

Similar behavior is observed for the harmonic frequencies and excitation

energies. This indicates that in the effective reduction of the entire electron

problem to the valence one, the effective core potential is required.

3.2 NaH+ cation
TheNaH2+ reference has also been adopted in studies of the electronic states

of the NaH+ cation. In this case the EA-EOM-CC method (equivalent to

the FS-CC-SD (1,0) approach) has been applied to recover the NaH+ states

from the di-cationic reference. For the five lowest energy states (X2Σ+,

22Σ+, 32Σ+, 12Π, and 42Σ+), both the EA-EOM-CCSD and EA-EOM-

CCSDT models were applied, while for the remaining three, 52Σ+, 22Π,
62Σ+, only the simpler version (EA-EOM-CCSD) was used.

The PECs displayed in Fig. 3 correlate to six dissociation limits: Na+ +

H(1s) (X2Σ+), Na(3s) + H+ (22Σ+), Na+ + H(2p) (32Σ+, 12Π), Na+ + H(2s)

(42Σ+),Na(3p) +H+ (52Σ+, 22Π), andNa(4s) +H+ (62Σ+). Note that two of

them,Na+ +H(2p) andNa+ +H(2s), for obvious reasons correspond to the

same energy. The size-extensivity property of the applied computational

scheme ensures the proper dissociation limits for each electronic state.

Two of them, 42Σ+ and 22Π, are repulsive, consistent with the results of

other theoretical work.20–22 It should be mentioned that some PECs shown

in Fig. 4 are computed with the state-of-the-art EOM approach with full

inclusion of the triple excitations both at the CC and EOM levels. As
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Fig. 3 Potential energy curves of the NaH+ molecular ion with the EA-EOM-CCSD
method for the six lowest dissociation limits in the unANO-RCC++ basis set.
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Fig. 4 Potential energy curves of the NaH+ molecular ion with the EA-EOM-CCSD and
EA-EOM-CCSDT methods for the four lowest dissociation limits in the unANO-RCC++
basis set.
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observed, the two curves (CCSD and CCSDT) stay parallel in each consid-

ered state, hence qualitatively the PECs are very similar to each other at both

levels of approximation.

In Table 3 we present the spectroscopic constants obtained in the current

work. Since the experimental data are unavailable, we compare them with

other theoretical works.20–22 As mentioned in the introduction, the standard

computational approach for cations of the alkali metals diatomics and alkali

metal hydrides relies on reducing the n-electron problem to the single valence

electron. That method was used in Refs. 20 and 22 whereas in Ref. 21 the

MRCI scheme was applied, limited to the single and double excitations with

frozen sodium 1s electrons. The inclusion of full triples allows us to estimate

the role of more advanced correlation effects. Generally, the inclusion of the

full triples operator reduces the optimum bond length—on average—by ca.

0.008 Å and increases the De value by 16 cm
�1 with negligible effect on the

harmonic and anharmonic frequencies.

Results presented here are much closer to those obtained via

pseudopotential-based calculations. This can be seen for the ground state De

values, where the difference between the current results and those based on

the pseudopotential is between 150 and 200 cm�1 20,22 with over 360 m�1

difference for the MRCI.21 A large discrepancy occurs for the De values for

the 32Σ+ state (20–30 cm�1 20,22 compared to 1400 cm�1 21). Similar behavior

is observed for the Te values with the differences not exceeding 200 cm�1 for

the pseudopotential results and over 1000 cm�1 for the MRCI ones.

4. Conclusions

First principle quantum chemical methods are applied in the theoretical

study of the PECs and spectroscopic constants of the eight lowest lying elec-

tronic states of the NaH molecule and its cation. Computational strategy

used here relies on the adoption of the NaH2+ dication as a reference, which

dissociates into a proton and a closed shellNa+ cation. Because of this, a con-

venient RHF approach could be used in the whole range of interatomic dis-

tances. At the correlated level the FS-CCSD (2,0) scheme is used which

provides results pertinent to the neutral NaH molecule at each point.

The adopted approach treating the dissociation process exclusively in terms

of the closed shell calculations generates smooth PECs demonstrating cor-

rect size-extensive asymptotic properties. The comparison of the theoretical

and experimental PECs displayed in Fig. 2 indicates the full compatibility of

the theoretical and experimental data. It should be mentioned that this work
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shows for the first time the double-minimum character of the 31Σ+ curve,

whereas the previous papers report a single minimum, corresponding either

to our inner or outer minima, respectively.

The electronic states of the NaH+ cation are recovered by applying the

EA-EOM-CC (equivalent to the (1,0) sector of the FS-MRCC) scheme to

the NaH2+ reference. Two CC models were considered: standard, CCSD,

and extended; CCSDT, with full inclusion of triple excitations. Resulting

curves show correct asymptotic behavior and due to closed shell reference,

the solutions are readily obtained, even for long interatomic distances.

The results obtained agree well with theoretical values available in the

literature and with experimental data. The reported data bring a new insight

into the possibility of using all electron ab initio calculations to study the

nature of chemical bonds without limitation to one- or two-electron

approximations.
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SECTION 4

Excited states and
other applications
This section begins with two correlated excited state approaches (Coriani

et al. and Faraji et al.), density descriptors are then presented by Etienne

et al., followed by a Quantum Monte Carlo application to surface reactions

(Sharma and Hoggan) and a study of the H atom, released from confinement

(Sarsa et al.)
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Abstract

An extensive analysis has been carried out of the performance of standard families of
basis sets with the hierarchy of coupled cluster methods CC2, CCSD, CC3, and CCSDT in
computing selected Oxygen, Carbon, and Nitrogen K-edge (vertical) core excitation and
ionization energies within a core-valence separated scheme in the molecules water,
ammonia, and carbon monoxide. Complete basis set limits for the excitation energies
have been estimated via different basis set extrapolation schemes. The importance of
scalar relativistic effects has been established within the spin-free exact two-component
theory in its one-electron variant (SFX2C-1e).
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1. Introduction

Core-level spectroscopy, including techniques such as near-edge

absorption fine structure and X-ray photoelectron spectroscopies, is widely

used in various areas of contemporary research, such as in surface science,

organic electronics, and medical biological research.1 It is considered a pow-

erful tool to gain insight into the electronic structure ofmolecular species. The

recent improvements of the synchrotron radiation sources and the emergence

of the free-electron laser have further broadened the range of phenomena and

systems that can be studied by core-level spectroscopy, see e.g., Refs. 1–9.
An essential requirement for a successful application of core-level tech-

niques is the availability of reliable computational methods that allow for a

proper interpretation of the resulting spectra. Several quantum chemical

approaches exist for the calculation of core-excited/ionized states. While

referring to Ref. 10 for a recent review, we mention here as examples the

symmetry-adapted cluster configuration interaction (SAC-CI),11 the GW

approximation (self-energy approximated by Green-function G and screened

Coulomb W) to the Bethe–Salpeter equation,12,13 the static-exchange

(STEX) approach,14 and the restricted and unrestricted algebraic diagram-

matic construction scheme (ADC)15–18 up to third order exploiting the

core–valence separation (CVS)19 approximation. Large systems are often

treated with time-dependent density functional theory (TD-DFT),20–26 but

the results are plagued by the self-interaction error and the arbitrary depen-

dence on the choice of the exchange-correlation functional. Indeed, unless

short-range corrected hybrid functionals are used,27 core-excited states calcu-

lated by TD-DFT with conventional functionals often reproduce experi-

mental spectra qualitatively well, but the self-interaction error and the small

gap between occupied and unoccupied electronic levels inherent in the

TD-DFT formalism lead to underestimation of core-excited states. Therefore

absolute core excitation energies obtained by conventional TD-DFT are typ-

ically corrected by shifting them tens of eVs in order to agreewith experiment.

Among the time-independent DFT-based approaches for core excitations, we

mention the recently proposed, and remarkably accurate, variational orthog-

onality constrained density functional theory method of Evangelista and

coworkers,28,29 see also the work of Glushkov, Assfeld and coworkers on

orthogonality constrained/local Hartree–Hock Self-Consistent-Field.30–33

Over the last decade, we have made a significant effort to extend the

applicability of the coupled cluster linear response (CC-LR)34,35 and

equation-of-motion coupled cluster (EOM-CC)36–38 formalisms to the
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computation of core-level spectroscopies.6,39–50 The CC ansatz is known to

provide a systematic hierarchy of models with increasing accuracy, allowing

for the prediction of molecular properties and spectra with controlled accu-

racy within the hierarchy.35,51,52

With the introduction in 2015 of CVS and restricted-excitation-window

schemeswithin CC-LR and EOM-CC,43,44,53 the use of CCmethods for the

determination of core-absorption spectra and core ionization energies has

become as straightforward as it is for UV–vis excitations. Since the computa-

tional determination of spectroscopic observables related to the interaction of

the sample with X-ray radiation displays strong dependence on the level of

theory and size of the basis sets, a systematic approach becomes particularly

attractive. An important component to this end is a rigorous assessment of

the basis set requirements and the relative accuracy of the various CC approx-

imations, when computing core spectra using the different members of the

CC(-LR) hierarchy. This study is meant as a contribution in this direction,

in the spirit of a similar study conducted within the ADC formalism.18

2. Methodology and computational details

Calculations of core excitation energies, oscillator strengths (in length

gauge) and ionization energies (IE) have been performed for the hierarchy of

CC methods: coupled cluster singles and approximate doubles (CC2),

coupled cluster singles and doubles (CCSD), coupled cluster singles, doubles

and approximate triples (CC3), and coupled cluster singles, doubles and triples

(CCSDT). All methods are extensively described in the literature, see

e.g., Refs. 54–60, and we refrain therefore from repeating their derivation

here. We limit ourselves to draw the reader’s attention to Ref. 43 for the

description of how the core-valence separation scheme used here has been

implemented within CC-LR/CC-EOM, to Ref. 61 for a new, more effi-

cient, implementation of CC3, and toRefs. 62 and 63 for efficient implemen-

tation of the CCSDT method. Scalar-relativistic effects have been taken into

account in CCSDT using the spin-free exact two-component theory in its

one-electron variant (SFX2C-1e).64–66

All calculations up to CC3 have been run with a development version of

the Dalton code,67 whereas the CFOUR68 code was used for the CCSDT

core excitation and ionization energies, respectively. Accurate experimental

equilibrium geometries were adopted for all three systems: Re (CO) ¼
1.12832 Å for CO; Re (NH) ¼ 1.011 Å and αHNH ¼ 106.7° for ammonia;

Re (OH) ¼ 0.9570 Å and αHOH ¼ 104.5° for water.
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3. Results and discussion

3.1 Excitation energies
We start our discussion with a detailed comparison of the computed exci-

tation energy values using the different basis sets across the CC hierarchy

and with respect to the experimentally derived values. To this end, we plot

in Figs. 1–4 the trends within each basis set family and method for the con-

sidered excitation energies. We will focus our discussion primarily on core

excitations that are individually resolved in the experimental spectra: the

1s ! 3s (a1) and 1s ! 3p (b2) transitions in water, the 1s ! π* transition

for both C and O of CO, and the first three core excitations in NH3.

The third intense peak in the X-ray absorption spectrum of H2O is known

to originate from the overlap of core transition into a1 and b1 states and will

be commented upon in Section 3.3. The full set of numerical values of the

core excitation energies is available on arXiv.69

Within each series of correlation consistent (cc) basis sets (regular, single

augmented and double augmented), we observe an almost monotonically

decreasing trend (toward the experimental value) while increasing the basis

set cardinal number.

In the cc-pVDZbasis, the excitation energies are always overestimated, by

2–5 eV depending on the case, with respect to both the other members of the

series and the experimental values. By further increasing the cardinal number,

the differences within each series reduce to tenths or hundredths of an eV. In

other words, any Dunning set of X� 3 is reasonably accurate, and the results

are significantly improved by inclusion of the first level of augmentation.

Double augmentation has moderate effects for the chosen core excitations.

For the 1s ! 3s(a1) in water, for instance, the differences between the

CCSD results obtained for X ¼ 2 (DZ) and X ¼ 3 (TZ) in the series

cc-pVXZ are always of the order of 3 eV, and slightly lower than 2 eV

for the cc-pCVXZ series, progressively reducing to tenths and hundredths

of an eV when increasing X. With reference to the experimental value for

the same excitation, the basis sets with X ¼ 2 overestimate the edge by

ca. 3.5–4.5 eV (depending on the basis); for X� 3, the deviation is reduced

to ca. 1.0–1.2 eV for the (x-aug-)cc-pVXZ sets, and to ca. 1.5–1.7 eV for

the (singly and doubly augmented) cc-pCVXZ sets.

The trend observed for the first excitation is roughly the same also for

the second one. However, for the third and fourth core excitations of water

(third peak in the experimental spectrum), aswell as any higher lying excitations
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of more diffuse/Rydberg character than those considered here, it becomes of

paramount importance to include additional diffuse functions.39,47,50

Among the Pople basis sets, the 6-311++G** set emerges as remarkably

accurate in basically all cases (states and methods) despite its moderate size, as

Fig. 1 H2O, Oxygen K-edge. Basis set convergence of the first two vertical core excita-
tion energies with different CC methods and basis sets. The horizontal green line
indicates the experimental ω1 value and the red line the experimental ω2 value.
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also previously observed for the ADC family of methods.17 Use of Cartesian

d functions is to be slightly preferred.

TheCCSDmodel systematically overestimates all core excitation energies

(roughly of the same amount for all excitations), allowing for a “rigid–shift”
correction. The CC2 core excitation energies tend to be smaller than the

CCSD ones, and they can be both red-shifted and blue-shifted compared

Fig. 2 CO, Carbon K-edge. Basis set convergence of the first two vertical core excitation
energies with different CC methods and basis sets. The horizontal green line indicates
the experimental ω1 value and the red line indicates the experimental ω2 value.
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to their experimental counterparts. For the first excitation, they are, at

first sight, also closer to the experimental value, but the peak separation

is underestimated. As we will see in Section 3.3, this, together with the

results for intensities, actually results in a poor comparison of the CC2

spectral profile with the experimental one, at least for the three systems

considered here.

Fig. 3 CO, Oxygen K-edge. Basis set convergence of the first two vertical core excitation
energies with different CC methods and basis sets. The horizontal green line indicates
the experimental ω1 value and the red line indicates the experimental ω2 value.
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3.2 Extrapolation toward the complete basis set (CBS) limits
As observed in Section 3.1, the results in the cc basis sets show a monoton-

ically decreasing behavior when increasing the cardinal number. The cc basis

sets are known to yield a systematic convergence toward the complete basis

set limit for the correlation energy of the ground state, as well as for other

Fig. 4 NH3, Nitrogen K-edge. Basis set convergence of the first two vertical core
excitation energies with different CC methods and basis sets. The horizontal green line
indicates the experimentalω1 value and the red line indicates the experimentalω2 value.
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molecular properties, and various extrapolation formulae have been pro-

posed in the literature. Some of these formulae tend to overestimate the

limit, and others to underestimate it. Inspired by the analysis performed

by Wenzel et al. for the ADC hierarchies,17 we have considered whether

two popular extrapolations formulae, namely the X�3 formula70 and the

exponential formula,71

EX¼ECBS +AX�3; (1)

EX¼ECBS +Ae�ðX�1Þ +Be�ðX�1Þ2 (2)

can be applied to obtain an estimate of the CBS values of the core excitation

energies considered in this study. In Eqs. (1) and (2), ECBS is the resulting

estimated energy of the CBS limit, and EX is the calculated energy using

the basis set with cardinal number X.

The two formulae have been applied in different ways in the literature

for different properties. One can fit directly the results of each basis set series,

imposing the functional forms inEqs. (1) and (2). Alternatively, one can derive

the CBS limits via either a two-point strategy (on the X�3 formula) or three

point strategy (on the exponential formula), using the energy values relative to

the two (three) highest values of the cardinal numbers: X ¼ Q, 5 for the

two-point extrapolation, and X ¼ T, Q, 5 for the three point extrapolation.

In the following, we have considered both strategies.

Notice that in standard basis set extrapolation schemes,70,71 the exponen-

tial and X�3 formulae apply to Hartree–Fock and correlation energies,

respectively. Since a separation of the excitation energies into HF and cor-

relation contributions is not straightforward, we apply the formulae directly

to the computed excitation energies. It is also important to bear in mind that

these extrapolation formulae are not rigorous expressions for the basis set

dependence of energies, but serve as an estimate of the trend.

In Fig. 5 we show the results obtained for one selected basis set family,

the aug-cc-pCVXZ one, for all four CC methods in the case of the water

molecule. The trends observed for CO (both edges) and NH3 are

completely analogous and can be found in the document on the arXiv.69

The CBS values obtained directly from the two points X�3 or three points

exponential procedures are basically identical, and only marginally different

from those obtained by fitting with the exponential regression over the

entire series. This difference is slightly larger than what was observed by

Wenzel et al.17 for the ADC methods.

By fitting the results with a X�3 formula, on the other hand, we could

not reproduce the behavior of the excitation energies.
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3.3 Spectral bands
For comparison and assignment of the experimental spectra, the intensi-

ties of the absorption bands are required, and they are here obtained from

the computed oscillator strengths. The full set of oscillator strengths

obtained for the different basis sets at the CC2 and CCSD levels are avail-

able on the arXiv.
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Spectral simulations based on oscillator strengths for the molecules H2O

and NH3 computed in the cc-pCVXZ, aug-cc-pCVXZ, and d-aug-cc-

pCVXZ bases are shown in Figs. 6 and 7. They were obtained using a

Lorentzian broadening function with a half-width-half-maximum of 0.01 a.u.

For the first two transitions of water, the CCSD oscillator strengths

are practically the same as soon as one set of augmenting functions is added,

and little affected by variation of the cardinal number, the largest differences in
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the spectra being due to variations in the position of the peaks. The situation is

quite different for the third peak, which results from the combination of two

excitations and hasRydberg character:many basis sets are insufficiently diffuse

to yield an accurate description of the oscillator strengths, which are strongly

overestimated. Inspection of the symmetry of the excited states also reveals

that the third and fourth excited states contributing to the third spectral band

0
401 402 403 404 405

Energy (eV)

In
te

ns
ity

 (
a.

u.
)

406 407 408

aCD
aCT
aCQ
aC5
Expt

aCD
aCT
aCQ
aC5
Expt.

409

5

10

15

20

25

30

35
CD
CT
CQ
C5

0
400 401 402 403 404

Energy (eV)

In
te

ns
ity

 (
a.

u.
)

Energy (eV)

In
te

ns
ity

 (
a.

u.
)

Energy (eV)

In
te

ns
ity

 (
a.

u.
)

405 406 407 408 409

400
0

5

10

15

20

0

5

10

15

20

401 402 403 404 405 406 407 408 409 400 401 402 403 404 405 406 407 408 409

dCD
dCT
dCQ
Expt.

dCD
dCT
dCQ
Expt.

Energy (eV)

In
te

ns
ity

 (
a.

u.
)

Energy (eV)

In
te

ns
ity

 (
a.

u.
)

400
0

5

10

15

20

0

5

10

15

20

401 402 403 404 405 406 407 408 409 400 401 402 403 404 405 406 407 408 409

5

10

15

20

25

30

35
CD
CT
CQ
C5

Fig. 7 NH3, Nitrogen K-edge. Spectral profiles (first 3 bands) at the CC2 (left) and CCSD
(right) level in the cc-pCVXZ, aug-cc-pCVXZ, and d-aug-cc-pCVXZ basis sets. The aug-
mented bases results are compared with the experimental spectrum,72 which has been
shifted and rescaled to roughly overlap with the first computed band (X > D).

252 Johanna P. Carbone et al.



switch position energetically in the different basis sets. An efficient strategy to

have a good representation of the third band on H2O is to include Rydberg

type functions, as done in Ref. 39. The CC2 oscillator strengths are more

erratic, showing a relative intensity of the peaks at large variance compared

to the experimental one, even in the larger basis sets. The CC2 spectra at

the O K-edge of H2O are “compressed,” due to the underestimation of

the separation between the bands, as it can be appreciated in Fig. 6.

For carbon in CO both the CCSD and the CC2 intensity of the first

transition grows slightly within each series as the cardinal number increases.

The intensity of the second transition is roughly constant, while large

variations are observed for the intensities of the third peak, in particular

at CC2 level. For oxygen, the intense peak has similarly almost constant

intensity for all bases at CCSD level, while in the CC2 case some variations

are recorded around an average value lower than the CCSD value. The

intensities of the second and third peak are extremely low for both methods,

and in the CC2 case sometimes even lower than the limit of detection.

Finally, in the case of ammonia (see Fig. 7), at both levels relatively large

variations in intensity are observed for the second state (the most intense

transition) for the bases lacking diffuse functions, and almost constant values

for the other Dunning series. The intensities of the first state are roughly

constant with the exception of in the smallest bases, which yield slightly

overestimated values. Regarding the third state, the intensity decreases in

the singly augmented sets and is almost constant for the doubly augmented

ones, an indication of the greater sensitivity of this state to the presence of

diffuse functions. The best agreement with the experimental profile is

found for the d-aug-cc-pCVQZ basis set (we did not compute the aug-

cc-pCV5Z and d-aug-cc-pCV5Z oscillator strengths). At CC2 level, there

is in general a greater variation in the intensity, which is significantly smaller

than in the CCSD case. Also at the N K-edge of NH3, the peak separation is

underestimated, yielding “squeezed” spectral profiles, compared to both

CCSD and experiment.

3.4 Ionization energies
Tables 1 and 2 contain the results of the core ionization energies for different

basis sets in the CC hierarchy up to CCSDT.

Inspection of the results clearly reveals, also for the IE, the inaccuracy of

the double zeta basis sets for the core IE: for all three edges (C, N, andO) and

at all CC levels the X¼D basis sets overestimate the IEs by in between 1 and

3 eV. The largest improvement is observed for X ¼ T, whereas going
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beyond triple-ζ has either moderate or negligible effect, and so also does the

inclusion of single augmentation.

Moving along the CC hierarchy, we note that the CCSD IEs are signif-

icantly larger (1.5–4 eV) than the CC2 ones for both O and N, whereas

for the C K-edge they are just slightly smaller (a few tenths of eV). Inclusion

of triple excitations at the approximate CC3 lowers the IEs by�2.5–2.8 eV
for O, by �1.6–1.9 eV for N, and �1.0 eV for C. Inclusion of the full

treatment of triples by CCSDT, on the other hand, increases the CC3 results

by a constant amount (independent of the basis set) of �0.7 eV for the

Table 1 Core ionization energies of water and ammonia using different standard basis
sets and the hierarchy of CC methods CC2, CCSD, CC3, and CCSDT.

H2O NH3

Basis set CC2 CCSD CC3 CCSDT CC2 CCSD CC3 CCSDT

VDZ 539.15 543.31 541.21 541.77 406.58 408.66 407.15 407.45

VTZ 537.56 540.67 538.54 539.04 404.65 406.30 404.69 404.90

VQZ 537.57 540.77 538.33 538.94 404.69 406.40 404.60 —

V5Z 537.55 540.85 538.25 — 404.70 406.49 404.59 —

CVDZ 539.15 542.70 540.46 540.97 406.07 408.16 406.50 406.76

CVTZ 537.92 541.14 538.90 539.40 405.05 406.82 405.12 405.33

CVQZ 537.91 541.26 538.76 — 405.04 406.89 405.04 —

CV5Z 537.90 541.35 538.70 — 405.04 406.95 — —

aVDZ 539.88 544.08 541.31 542.31 406.59 409.01 407.24 407.71

aVTZ 537.61 541.00 538.49 539.23 404.70 406.51 404.72 405.02

aVQZ 537.59 540.91 538.31 539.02 404.71 406.49 404.61 404.89

aV5Z 537.56 540.89 538.24 — 404.71 406.52 — —

aCVDZ 539.27 543.45 540.56 541.51 406.09 408.52 406.60 407.02

aCVTZ 537.98 541.47 538.87 539.61 405.10 407.03 405.17 405.47

aCVQZ 537.93 541.40 538.73 539.46 405.06 406.98 405.05 405.34

aCV5Z 537.91 541.38 538.69 — 405.05 406.97 — —

6-311G 538.16 541.07 539.15 — 405.19 406.77 405.32 —

6-311G** 537.99 540.92 539.01 — 405.02 406.61 405.15 —

6-311++G** 538.09 541.46 538.97 — 405.09 406.92 405.19 —

Experimental values are 539.78 eV for H2O and 405.6 eV for NH3.
72
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O edge, �0.3 eV for the N edge; the C-edge IEs, on the other hand, are

further reduced by 0.1 eV.

Comparing with the experimental results, we observe that in the case of

Carbon both CC2 and CCSD overestimate the IE; CC3 and CCSDT either

overestimate or underestimate the IE, depending on the basis set, by a few

tenths of eV.

The core IEs of the two types of Oxygen K-edge (H2O and CO) are

significantly underestimated (ca 2 eV) at the CC2 level, and overestimated

(1.5–2 eV) at the CCSD level. For X � T, the CC3 results are 1.0–1.5 eV
lower than experiment. The CCSDT results in the largest core-valence set

are about �0.3 eV from experiment (and relativistic effects are +0.3 eV).

The N-edge IE is underestimated by 0.5–1.0 eV at the CC2 level, and

overestimated by 1.0–1.5 eV at the CCSD level. The CC3 estimates are

Table 2 Carbon monoxide.

Basis set

Carbon Oxygen

CC2 CCSD CC3 CCSDT CC2 CCSD CC3 CCSDT

VDZ 299.02 299.32 298.53 298.49 542.01 546.59 543.89 544.72

VTZ 297.17 296.98 295.99 295.88 539.92 543.71 541.19 541.83

VQZ 297.26 297.08 295.98 295.88 539.92 543.68 541.66 541.66

V5Z 297.27 297.12 — — 539.89 543.67 — —

CVDZ 298.46 298.81 297.80 297.73 541.40 545.97 543.14 543.91

CVTZ 297.64 297.54 296.48 296.38 540.28 544.18 541.55 542.19

CVQZ 297.65 297.59 296.44 296.34 540.25 544.18 — —

CV5Z 297.66 297.61 — — 540.24 544.18 — —

aVDZ 299.04 299.34 298.49 298.46 542.16 546.83 543.98 543.93

aVTZ 297.20 297.04 296.00 295.90 539.96 543.79 541.18 541.86

aVQZ 297.28 297.11 295.999 295.90 539.94 543.71 541.02 541.68

aV5Z 297.29 297.14 — — 539.90 543.69 — —

aCVDZ 298.50 298.84 297.80 297.76 541.54 546.20 543.22 544.12

aCVTZ 297.68 297.62 296.53 296.43 540.32 544.27 541.57 542.25

aCVQZ 297.66 297.61 296.44 296.36 540.27 544.21 541.44 542.12

aCV5Z 297.66 297.62 — — 540.25 544.19 — —

Core ionization energies of oxygen and carbon using different standard basis sets and the hierarchy of CC
methods CC2, CCSD, CC3, and CCSDT. Experimental values are 296.2 eV for C and 542.5 eV for O.72
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very similar to the CC2 ones, and around �0.5 eV off in the core-valence

bases. The agreement with experiment is further improved by full inclusion

of triple excitations: in the aug-cc-pVQZ basis the CCSDT IE is �0.26 eV

lower than the experimental IE.

The importance of scalar relativistic effects is illustrated in Table 3. As pre-

viously observed,39,46,48 the relativistic effect is core-specific and practically

Table 3 Comparison of relativistic and nonrelativistic results for the IEs (eV).
Nonrel SFX2C-1e ΔRel Nonrel SFX2C-1e ΔRel

O(H2O) N(NH3)

CCSD/aVTZ 541.03 541.39 0.36 406.51 406.73 0.22

CCSD/aVQZ 540.91 541.30 0.39 406.50 406.71 0.21

CCSD/aV5Z 540.90 541.28 0.38 406.52 406.73 0.21

CCSD/aCVTZ 541.48 541.86 0.38 407.03 407.24 0.21

CCSD/aCVQZ 541.40 541.79 0.39 406.99 407.20 0.21

CCSD/aCV5Z 541.38 541.77 0.39 406.98 407.19 0.21

CCSDT/aVTZ 539.23 539.61 0.38 405.02 405.23 0.21

CCSDT/aVQZ 539.02 539.40 0.38 404.89 405.10 0.21

CCSDT/aCVTZ 539.61 540.00 0.39 405.47 405.68 0.21

CCSDT/aCVQZ 539.46 539.85 0.39 405.34 405.55 0.21

O(CO) C(CO)

CCSD/aVTZ 543.79 544.17 0.38 297.04 297.14 0.10

CCSD/aVQZ 543.71 544.10 0.39 297.11 297.21 0.10

CCSD/aV5Z 543.69 544.07 0.38 297.14 297.24 0.10

CCSD/aCVTZ 544.27 544.65 0.38 297.62 297.72 0.10

CCSD/aCVQZ 544.21 544.59 0.38 297.61 297.71 0.10

CCSD/aCV5Z 544.19 544.57 0.38 297.62 297.72 0.10

CCSDT/aVTZ 541.86 542.25 0.39 295.90 295.99 0.09

CCSDT/aVQZ 541.68 542.06 0.38 295.90 295.99 0.09

CCSDT/aCVTZ 542.25 542.63 0.38 296.43 296.53 0.10

CCSDT/aCVQZ 542.12 542.50 0.38 296.36 296.46 0.10
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the same independent of the chosen method and basis set. The effect is to

increase the IEs in all cases, which can be ascribed to the contraction, and

thereby stabilization, of the core orbitals.

4. Concluding remarks

We have carried out a coupled cluster investigation of the perfor-

mance of the standard hierarchy CC2-CCSD-CC3-CCSDT in connection

with conventional Dunning correlation consistent and Pople basis sets to

yield accurate vertical core excitation energies (and strengths) and core ion-

ization energies for N, C, and O K-edges in the prototypical molecules

H2O, CO, and NH3. Complete basis set limit values have been derived.

The use of singly augmented triple-zeta basis sets is sufficiently accurate

for the low-energy core excitations, which are of limited or no Rydberg

character. The Pople set 6-311++G** set provides results of quality almost

comparable as the aug-cc-pVTZ set, but at lower computational cost.
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Spectra. Phys. Rev. Lett. 2006, 97, 143001.

22. Ekstr€om, U.; Norman, P. X-ray Absorption Spectra From the Resonant-Convergent
First-Order Polarization Propagator Approach. Phys. Rev. A 2006, 74, 042722.

23. Tu, G.; Rinkevicius, Z.; Vahtras, O.; Ågren, H.; Ekstr€om, U.; Norman, P.;
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Abstract

Singlet fission has been explored as an alternative mechanism to enhance the perfor-
mance of solar cells. In this work, we use a nonorthogonal configuration interaction
approach to study the singlet fission process in solid 2-methylene-2H-indene, an
identified potential singlet fissionmolecule. Results of the electronic coupling calculations
in pairs of molecules show that this molecule is suitable for the efficient formation of the
1TT state (�40 meV). We report, for the first time, a comparison of the nonorthogonal
configuration interaction approach with two other theoretical methodologies: restricted
active space with two spin flips and the ab initio Frenkel–Davydov exciton model.
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1. Introduction

Singlet fission (SF) is a multiexciton generation phenomenon that

occurs in organic molecules and in which the first singlet excited state of

a molecule splits into two triplets in an overall spin-allowed process by

forming the so-called 1TT state (Fig. 1).1,2 Since SF may give rise to the

generation of four charge carriers per absorbed photon, this multiexciton gen-

eration process has been explored as an alternative scheme to enhance the effi-

ciency of current solar cells and overcome the so-called Shockley–Queisser

limit.3,4 Nevertheless, the number of molecules known experimentally to

exhibit this process is limited. Furthermore the mechanistic details of the pro-

cess are not yet well-understood and are the subject of an active area of

research.5–10 The lack of materials and poor understanding of the process have

limited the technological development of SF-enhanced solar cells. Finding

proper materials and obtaining a deeper comprehension of how SF occurs

in organic solids may lead to its further implementation in solar cell

technology11.

In order for SF to be an efficient process, the following criteria must

be fulfilled1,12: (1) SF has to occur faster than any other competing process

(e.g., radiative decay or intersystem crossing); (2) the process should prefer-

ably be isoergic or slightly exoergic (although endoergic SF has been

observed in tetracene13–15) which means fulfilling the energetic requirement

Fig. 1 Schematic representation of singlet fission. Upon absorption of a photon, a
singlet excited molecule (S1) transfers part of its energy to a neighbor to form two
triplets (1TT) that are coupled into a singlet.
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E(S1) � 2E(T1); and (3) the T2 state in the molecule should be higher in

energy than S1, and at least twice the energy of T1 to avoid triplet–triplet
annihilation. Additionally, some properties are desired from these materials,

such as high stability under continuous radiation, low cost associated to their

production for practical applications and long-lived triplets to ensure that

the charge carriers can be harvested. Theoretical simulations can assist the

design of SF-enhanced solar cells and be used to optimize the SF process

in organic solids that fulfill the above mentioned requirements.16,17 The

mechanism underlying SF is still unclear;18,19 the schematic representation

in Fig. 1 is generally accepted but the understanding of how the 1TT state is

formed from the singlet excited state is still a matter for debate. Different

mechanisms have been proposed: one in which the 1TT state is formed

directly from the singlet excited state via a two-electron transfer (blue arrow

in Fig. 2) or a transition in which the charge transfer (CT) states act as inter-

mediates (red arrows in Fig. 2). Alternatively, if the CT states are too high in

energy, a “mediated” mechanism (green arrows in Fig. 2) can occur in

which CT configurations appear in the wave functions of the initial and final

states facilitating the process. Therefore, studying the influence of the CT

states in the mechanism of SF is essential. Additionally, vibrations and

molecular motions have been suggested as playing active roles in SF.20–23

Fig. 2 Direct (blue arrow), intermediate (red arrows), and mediated (green arrows) mech-
anisms between the different states (singlet excited, S0S1; charge transfer, D+

0 D
�
0 /D

�
0 D

+
0 ;

and multiexciton state, 1TT) in singlet fission.
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In order to study SF, a rate constant (kE) associated with the process

can be approximated by means of the Fermi’s golden rule24:

kE � 2π

ħ
jVμνj2ρðEÞ (1)

where Vμν represents the electronic coupling between two (diabatic)

states, μ and ν, and ρ(E) denotes the density of states per unit of energy

E. Different ways to evaluate the electronic coupling exist,16,25 and in

this work, we use a nonorthogonal configuration interaction (NOCI)

approach;26–29 advantages of this method are that it is conceptually simple

and yet considers orbital relaxation effects as well as (static) electron cor-

relation. In cases where the orbitals of the excited states differ significantly

(e.g., for CT states), lengthy CI expansions can be avoided using the

NOCI approach and if the states of interest have multireference charac-

ter, NOCI is expected to outperform methods based on single reference

wave functions. With the NOCI approach, a solid is described in terms

of molecular states. Therefore we calculate, for different electronic states

of each molecule in an ensemble, molecular wave functions that are sub-

sequently combined into basis functions which describe a particular com-

bination of molecular states. The final wave function for the ensemble is

then written as an expansion of these many-electron basis functions

(MEBFs). The NOCI approach is attractive for the description of SF

since the wave function is constructed with MEBFs that describe all

the states involved and, moreover, the interaction between the photo

excited state and the multiexciton state can be directly calculated. The

molecular wave functions can be chosen to be complete active space

self-consistent field (CASSCF) wave functions in which both the orbitals

and CI coefficients are fully optimized. Each molecular wave function is

optimized with its own set of orbitals and represents a specific electronic

state I of molecule A (ΨI
A), such as the ground state (ΨS0

A ), the lowest sin-

glet excited state (ΨS1
A ), the lowest triplet state (ΨT

A), the cationic ground

state (ΨD+
0

A ), and the anionic ground state (ΨD�
0

A ). The MEBFs (jΦμi) are
then constructed as spin-adapted antisymmetrized products of the molec-

ular wave functions:

jΦμi¼
X
σ

κσÂ
YN
A

jΨI
Aiσ (2)
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whereN is the number ofmolecules in the ensemble, κσ are the corresponding
spin-coupling coefficients, and the summation over σ indicates that several

antisymmetrized products of molecular wave functions with different Ms

eigenvalues are combined such that the resulting MEBFs are spin

eigenfunctions. In practice, for example for a pair of molecules, a MEBF is

generated from the molecular CASSCF wave functions as:

Â
X
i

CA
i Δ

A
i

 ! X
j

CB
j Δ

B
j

 !
¼
X
ij

CA
i C

B
j ÂjϕA

μ…jjϕB
ν…j

¼
X
ij

CA
i C

B
j jϕA

μ…ϕB
ν…j:

(3)

In this notation, Ci and Cj denote the CI coefficients of the molecular

CASSCF wave functions, Δ is a Slater determinant, and ϕ indicates the

occupied spin orbitals in the Slater determinant for molecules A and B.

In principle, the number of molecules included in the ensemble is not

limited. However, our preliminary investigation following the protocol

outlined in Ref. 26, for a pair of molecules taken from the structure reported

in Ref. 26, resulted in an electronic coupling between the photo excited and

the multiexciton state of 9 meV, compared to 12 meV reported for a cluster

of three molecules; this indicates that the size of the ensemble only margin-

ally affects the electronic coupling. Therefore, in this work we focus on the

study of pairs of molecules.

In a pair of molecules named as A and B, several MEBFs can be

constructed, e.g., one MEBF describing both molecules in their ground

state (jΦS0S0i); two MEBFs in which one of the molecules is in the lowest

singlet excited state (jΦS0S1i and jΦS1S0i); one MEBF representing the

two triplets coupled into a singlet (jΦ1TTi); and two MEBFs describing the

charge transfer states (jΦD+
0
D�

0
i and jΦD�

0
D+

0
i). The three spin singlet MEBFs

constructed from the molecular wave functions with S ¼ 0 are formed as:

jΦS0S0i¼ ÂjΨS0
A Ψ

S0
B i (4a)

jΦS0S1i¼ ÂjΨS0
A Ψ

S1
B i (4b)

jΦS1S0i¼ ÂjΨS1
A Ψ

S0
B i (4c)

whereas the MEBFs constructed from the molecular wave functions with

S > 0 (i.e., ΨT, ΨD+
0 , and ΨD�

0 ) are expressed as linear combinations of

the antisymmetrized products of those molecular functions, in such a

way that the total Ms and S are equal to 030:
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Φ1TTj i ¼ 1ffiffiffi
3

p Â ΨT
A

� �
Ms¼+1

ΨT
B

� �
Ms¼�1

��� E
+

1ffiffiffi
3

p Â ΨT
A

� �
Ms¼�1

ΨT
B

� �
Ms¼+1

��� E

� 1ffiffiffi
3

p Â ΨT
A
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� �
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0
D+

0

��� E
¼ 1ffiffiffi

2
p Â ΨD�

0

A

� �
Ms¼+1=2

ΨD+
0

B

� �
Ms¼�1=2

����
�

� 1ffiffiffi
2

p Â ΨD�
0

A

� �
Ms¼�1=2

ΨD+
0

B

� �
Ms¼+1=2

����
�
:

(5c)

Then, the total NOCI wave function (ΨNOCI) describing the ensemble

is expressed as a linear combination of the different MEBFs:

ΨNOCI ¼
X
μ

CμjΦμi (6)

in which the coefficients Cμ are determined using variational theory and

can be related to a weight for each MEBF that indicates the importance

of a particular combination of molecular electronic states in the description

of an electronic state of the ensemble. To perform such a calculation

the Hamiltonian hΦμjĤjΦνi and overlap hΦμjΦνi matrix elements are

needed. The MEBFs are mutually nonorthogonal, since they are con-

structed from independent and fully optimized molecular wave functions.

Note that each jΦμi consists of multiple determinants and therefore for

the calculation of hΦμjĤ jΦνi a large number of Hamiltonian matrix ele-

ments over determinant pairs has to be evaluated; this becomes the main

computational challenge. The Hamiltonian and overlap matrix elements

can be then used to calculate the electronic coupling, according to26

Vμν¼
hΦμjĤ jΦνi�ðhΦμjĤ jΦμi+ hΦνjĤ jΦνiÞ

2
� hΦμjΦνi

1�hΦμjΦνi2
(7)
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where Φμ and Φν denote the initial and final (diabatic) states of interest,

respectively, which in the case of SF correspond to the photo excited states

and the two coupled triplets. The Hamiltonian in Eq. (7) is the Hamiltonian

for the ensemble within the Born–Oppenheimer approximation. Please

note that the MEBFs are denoted as jΦi whereas the electronic states are

denoted by Φ.

The chapter is structured as follows: in Section 3.1, we compare the

NOCI method with two other methodologies, restricted active space with

two spin flips (RAS-2SF)31–33 and the ab initio Frenkel–Davydov exciton

model (AIFDEM)34–36 for a tetracene dimer. Then in Section 3.2, we iden-

tify a potential SF molecule from a group of candidates and, finally, in

Section 3.3 we perform a comparison of the NOCI, RAS-2SF and

AIFDEM methods applied to the identified molecule. Our conclusions

are given in Section 4.

2. Computational details

The identification of suitable SF molecules requires the evaluation of

excitation energies. T1, S1, and T2 (vertical) excitation energies for a set of

candidates (Fig. S2) were calculated with various methodologies: (1) time-

dependent density functional theory (TD-DFT);37 (2) scaled-opposite-spin

configuration interaction singles with a perturbative account of double exci-

tations (SOS-CIS(D));38 (3) CASSCF with correction to the energy using

second-order perturbation theory (CASSCF/CASPT2),39; and (4) the

second-order algebraic diagrammatic construction scheme40 (ADC(2)) of

the polarization propagator. TD-DFT, SOS-CIS(D), and ADC(2) calcula-

tions were performed using Q-Chem 5.0,41 whereas the CASSCF/

CASPT2 calculations with the MOLCAS 8.042 code. The active spaces

selected for each of the molecules are specified in Table S1. Unless otherwise

stated, the basis set used is cc-pVDZ.

A crystal structure of the potential SF molecule is proposed, and all the

relevant geometries of the identified pairs of molecules are given in

Supplementary Materials in the online version at https://10.1016/bs.aiq.

2019.05.004. Additionally, the molecules in the identified pairs in the

optimized crystal structure were replaced by an optimized molecule at

the ωB97X-D/cc-pVDZ level of theory, by arranging them as in the

respective crystal structure distance and angle. Electronic couplings were
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calculated for the pairs of molecules obtained by the periodic DFT calcu-

lations and for the pairs in which the molecules were replaced, in order to

study the influence of different structural arrangements in the electronic

couplings.

Molecular wave functions of the CASSCF-type with an active space of

four electrons in four orbitals (CASSCF(4,4)) describing the S0, S1, T1,D
+
0 ,

and D�
0 states for the different molecules in each pair were calculated using

the GAMESS-UK package.43 MEBFs representing the following electronic

states of the pairs of molecules were generated: jΦS0S0i, jΦS1S0i, jΦS0S1i,
jΦ1TT i, jΦD+

0
D�

0
i and jΦD�

0
D+

0
i. Two diabatic states, ΦS 1½ � and ΦS 2½ � , were

constructed from a 2 � 2 NOCI calculation in the basis of the jΦS0S1i
and jΦS1S0i MEBFs, whereas the diabatic state Φ1TT corresponds to the

jΦ1TT i MEBF. The influence of the charge transfer states is explored by

adding the corresponding MEBFs to the ΦS 1½ � and ΦS 2½ � states (resulting in

4 � 4 NOCI calculations) and to the Φ1TT (resulting in a 3 � 3 NOCI cal-

culation). To investigate the importance of each MEBF in the diabaticΦS 1½ � ,

ΦS 2½ � , and Φ1TT states, the weights (ωi) of the MEBFs were calculated using

the Gallup and Norbeck scheme,44 ωi¼ jCij2/(S�1)ii, whereCi corresponds

to the CI coefficient of the ith MEBF and (S�1)ii denotes the iith element of

the inverse of the overlap matrix in the MEBF basis. The NOCI method-

ology has been implemented in the package GronOR.45 The calculation of

the Hamiltonian matrix elements is performed by means of the factorized

cofactor method which is described in Ref. 46.

For the RAS-2SF and AIFDEMmethodologies we follow the protocols

as outlined in Refs. 47 and 36, respectively. The RAS-2SF calculations for

the dimer arrangements were performed with an active space of four elec-

trons in four orbitals (RAS(4,4)-2SF) using a high-spin quintet as the initial

reference.33 The resulting dimer wave functions (jΦi) are then described in

terms of different configurations: local excited (jΨLEi), multiexcitonic

(jΨ1TT i), and charge transfer states or charge-resonance (jΨCTi);

jΦi¼CLEjΨLEi+C
1TT jΨ1TT i+CCT jΨCT i (8)

whereCLE,C
1TT , andCCT are the corresponding amplitudes of the LE, CT,

and 1TT configurations. The importance of each configuration in

the different states is described by the corresponding weights (ωi), calculated

as the square of their amplitudes (ωLE ¼ jCLEj2,ω1TT ¼ jC1TT j2, and ωCT¼
jCCTj2). Based on these weights, ΦS[1]

and ΦS[2]
states are assigned to those

wave functions with large ωLE, whereas the Φ1TT corresponds to the one
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with large ω1TT . Then, the norm of the one-particle transition density

matrix (jjγjj2) is used to estimate the couplings between singlet excited

and 1TT states.48

The nonorthogonal AIFDEM methodology follows, in principle, the

same protocol as the NOCI approach. For each pair of molecules, molecular

wave functions are generated and then, MEBFs describing the electronic

states of the ensemble are constructed as direct products of those molecular

wave functions. In AIFDEM, Hartree–Fock wave functions are used for the
description of the S0, D

+
0 , and D�

0 states and CIS wave functions for the S1
and T1 states.

34 As in NOCI, six different MEBFs were generated: jΦS0S0i,
jΦS1S0i, jΦS0S1i, jΦ1TT i, jΦD+

0
D�

0
i, and jΦD�

0
D+

0
i. Then, the total wave func-

tion of the ensemble is expanded as a linear combination of the MEBFs, and

the CI coefficients (Cμ in Eq. (6)) are determined using variational theory.

The resulting CIS and Hartree–Fock energies were corrected, as outlined in
the protocol in Ref. 36, by shifting the diagonal elements of the Hamiltonian

matrix in the orthogonalized49 basis to match reference values calculated for

an optimized molecule at the ωB97X-D/cc-pVDZ level of theory. The

hΦS0S1 jĤ jΦS0S1i and hΦS1S0 jĤjΦS1S0i elements were shifted to match the

vertical S1 excitation energy, whereas the hΦ1TT jĤ jΦ1TT i element was

shifted to twice the T1 excitation energy. It has been shown in a benchmark

study that among various popular functionals, the ωB97X-D functional

gives the best description of excited state properties when compared to

high-level wave function methods.50–52 The ΦD+
0
D�

0
and ΦD�

0
D+

0
energy

reference values were approximated as the sum of three terms: ionization

potential (IP), electron affinity (EA), and the Coulombic attraction (CA).

IP and EA were calculated from the energies of the neutral, cationic, and

anionic form of a molecule at the ωB97X-D/cc-pVDZ level of theory,

whereas the CA was determined as the electrostatic attraction between

the centers of mass of the molecules in the corresponding cationic and

anionic ground states. The weights of each MEBF were calculated similarly

to the NOCI approach. The RAS-2SF and AIFDEM calculations were

carried out using Q-Chem 5.0.41

3. Results and discussion

3.1 Comparing NOCI, RAS-2SF, and AIFDEM for tetracene
A pair of tetracene molecules, an extensively studied singlet fission

molecule,53,54 has been used to compare the NOCI approach with RAS-

2SF and AIFDEM before studying unexplored systems. Fig. 3 shows the
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orientation of the tetracenes in the tetracene dimer arrangement. The

methods are compared in three aspects: (1) the calculated state energies in

order to determine whether the charge transfer states act as real or virtual

intermediate states, (2) the calculated weights of the different MEBFs in

order to determine if the methods can predict similar character for the elec-

tronic states, and (3) we compare the calculated electronic couplings. The

calculated state energies and the individual contributions for the tetracene

dimer arrangement are shown in Tables 1 and 2, respectively. The energies

in Table 1 were calculated in the gas-phase, whereas the reported experi-

mental values correspond to determinations in solution55,56 for S1 and T1

and in the crystal structure for the CT states57.

3.1.1 Excited state energies
The energies calculated with the NOCI approach are reported in Table 1.

For the sake of computational cost, we have restricted the active space of the

molecular wave functions to four electrons in four orbitals (denoted NOCI:

Fig. 3 Tetracene dimer arrangement; d ¼ centers of masses distance, θ ¼ angle
between the molecular planes.

Table 1 State energies (in eV) of the different electronic states for a pair of tetracene
molecules.
Method Φ1TT ΦS[1] ΦS[2] ΦD+

0D2
0

ΦD2
0 D+

0

NOCI:CASSCF(4,4) 3.96 4.30 4.41 4.71 5.42

NOCI:CASCI26 4.12 4.45 4.49 4.94 5.03

RAS(4,4)-2SF 3.52 4.11 5.00

AIFDEM 3.20(4.39) 3.20(3.78) 3.26(3.86) 3.50(3.42) 3.52(4.13)

Experimental 2.5455 2.6256 2.6256 2.9057 2.9057

For AIFDEM, the unshifted values are reported in parenthesis. The calculatedΦS[2]
state with RAS-2SF is

dominated by the jΦS1S1 i configuration and is not included.
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Table 2 Comparison of the individual weights of MEBFs obtained for a pair of tetracene molecules.
State Φ1TT ΦS[1] ΦS[2]

Configuration NOCI RAS-2SF AIFDEM NOCI RAS-2SF AIFDEM NOCI RAS-2SF AIFDEM

jΦS0S0i 0.000 0.001 0.000 0.001 0.017 0.002 0.000 0.000

jΦS0S1i 0.000 0.001 0.005 0.999 0.642 0.929 0.000 0.009

jΦS1S0i 0.001 0.001 0.027 0.000 0.063 0.016 0.978 0.867

jΦ1TT i 0.999 0.935 0.894 0.000 0.001 0.009 0.020 0.007

jΦD+
0
D�

0
i 0.000 0.008 0.014 0.000 0.023 0.038 0.001 0.112

jΦD�
0
D+

0
i 0.000 0.054 0.060 0.000 0.003 0.006 0.000 0.005

The main contributions are highlighted as bold numbers. The calculated ΦS[2]
state with RAS-2SF is dominated by the jΦS1S1 i configuration and is not included.



CASSCF(4,4)). TheNOCI energies are overestimatedwhen compared to the

experimental values. The energies might be improved by adding the

remaining π- and π*-like orbitals to the active space. RAS-2SF also overes-

timates the energies of the electronic states because of an incomplete account

of dynamic correlation,58 and as in the NOCI approach, the energies are

expected to improve by increasing the active space. The energies calculated

with AIFDEM have been corrected as explained in Section 2; these energy

values are also overestimated. The overestimation of the energies for the three

methods might be due to the fact that the calculations are performed without

the environment effects, neither the solvent nor the surrounding crystal struc-

ture. Despite this overestimation, the results suggest that the CT states are too

high in energy to be accessed but perhaps act as virtual states promoting a

mediated mechanism. The calculated state energies in this work are compared

with previously reported values26 in which a NOCI calculation was per-

formed for a cluster of three tetracene molecules (values denoted as NOCI:

CASCI in Table 1). Unlike here, where we generate proper spin-adapted,

antisymmetrized products of molecular wave functions as the MEBFs, in that

work MEBFs were approximated by CASCI wave functions: the orbital sets

resulting frommolecular CASSCF(4,4) wave functions were projected on the

basis of the trimer, followed by orthogonalization and a CASCI(12,12) calcu-

lation. This procedure results in MEBFs, contaminated with small contribu-

tions of (unwanted) CT states. Differences between the results in state energies

and electronic couplings in this work and Ref. 26 can be attributed to differ-

ences in the geometry of the ensemble (Ref. 26 used a B3LYP/6-21G opti-

mized geometry and here the pair of molecules was taken from

Supplementary Materials in the online version at https://10.1016/bs.aiq.

2019.05.004 of Ref. 36 from a plane-wave DFT optimized structure).

3.1.2 Weights of MEBFs
The weights of the individual contributions of the different MEBFs to

theΦ1TT ,ΦS 1½ � , andΦS 2½ � states are listed in Table 2. The dominant contribu-

tions to the electronic states are highlighted as bold numbers; the Φ1TT state

corresponds mainly to the jΦ1TT i MEBF for the three methodologies. The

AIFDEM predicts a contribution from the jΦD�
0
D+

0
i state that is not observed

in the NOCI approach. In order to shed more light on the origin of

this discrepancy, we have applied the same shift to NOCI. The NOCI results

(Tables S2 and S3) predict also a contribution from jΦD+
0
D�

0
i and jΦD�

0
D+

0
i

after applying the shift. From the shiftings applied to NOCI and AIFDEM,
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we have observed two opposite trends; in the case of NOCI, the CT states

become more important (higher weights) since the CT energies are lowered,

whereas in the case of AIFDEM, the CT weights decrease since the CT states

are shifted to the reference value which is higher (see Tables S2 and S3 for

shifted and unshifted NOCI and AIFDEM individual weights of MEBFs).

For the ΦS 1½ � and ΦS 2½ � states, the main contributions obtained with NOCI

and AIFDEM correspond to the jΦS0S1i and jΦS1S0i MEBFs, respectively.

For theΦS 1½ � state, the configuration jΦS1S1iwas found to have a large weight
in the RAS-2SF calculations, however, this particular configuration is not of

interest for the SF process. The calculated ΦS[2]
state with RAS-2SF is dom-

inated by the jΦS1S1i configuration and it is not included for comparison. In

fact, differences in calculated weights with NOCI and AIFDEM and those

obtained with RAS-2SF are attributed to the fact that additional configura-

tions, such as jΦS1S1i, are considered in RAS-2SF. In sum, the methods show

similar contributions of the different electronic states, despite the differences

in the numerical values.

3.1.3 Electronic couplings
Electronic couplings between ΦS 1½ � and ΦS 2½ � with the Φ1TT states calculated

with the NOCI approach for the tetracene pair are reported in Table 3. In

the primed wave functions, the CT states were allowed to mix with the

wave functions of the singlet excited and 1TT states. The results indicate

that the electronic coupling is enhanced from 2.2 to 37.6 meV when the

CT states are allowed to mix; this enhancement is in line with a previous

NOCI study of a cluster of three tetracene molecules.26 A similar trend is

observed in the electronic couplings that we calculated with AIFDEM;

the values are enhanced when the CT configurations are included in the cal-

culation (see Table S4). The increase in the coupling can be then attributed

to the mixing in of the CT states with both photo excited states and the

multiexcitonic state.

Table 3 Electronic couplings (in meV) between the (diabatic) statesΦS[1]

and ΦS[2] with Φ1TT for the tetracene pair.
States ΦS[1] ΦS[2] Φ0

S[1] Φ0
S[2]

Φ1TT 4.0 2.2 2.2 58.9

Φ0
1TT 7.9 19.6 4.0 37.6

In the primed wave functions the CT states were included in the NOCI calculation.
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3.1.4 Comparison
All three methods show a similar qualitative trend for the tetracene dimer;

they predict that the CT states are too high in energy to be accessed. How-

ever, the discrepancies between numerical values are evident. The three

methods overestimate the state energies when compared with the experi-

mental values. The NOCI and AIFDEM approaches are conceptually sim-

ilar. (Static) electron correlation and (local) orbital relaxation effects can be

included in the NOCI approach but our current implementation in the

GronOR package is able to treat only small clusters of small molecules.

The current AIFDEM implementation is able to handle large clusters and

molecules. Additionally, analytical gradients and nonadiabatic couplings

are available for the AIFDEM method36 but not implemented in GronOR

so far. Electronic couplings can be directly calculated for NOCI and

AIFDEM but for RAS-2SF it is only possible to estimate the coupling based

on jjγjj2 values.

3.2 Identification of a SFmolecule based on excitation energies
In this chapter, a group of SF candidates has been selected (Fig. S2).

(Vertical) excitation energies of the T1, S1, and T2 states calculated with dif-

ferent levels of electronic structure theories are reported in Table S5 together

with Estt, which is defined as Estt ¼ E(S1) � 2E(T1). SF should be, in prin-

ciple, an isoergic process which means that Estt must be ideally close to zero.

Nevertheless, experimental values (Table S5) suggest that the process also

occurs if it is slightly endo or exoergic. Therefore, for potential SF molecules

Estt should lie roughly in the �0.1 to 0.1 eV range. From the results in

Table S5, the isobenzofulvene derivative 2-methylene-2H-indene (named

as M2I for the upcoming discussion) is selected for further evaluation as a

promising SF molecule.

3.3 Comparing NOCI, RAS-2SF, and AIFDEM for
2-methylene-2H-indene

3.3.1 Pairs of molecules
In the optimized crystal structure of M2I, four different pairs of molecules

were identified (Fig. 4A). Two of them show a π-like stacking (slip-stacked)
and have been named I-A and I-C, whereas the other two correspond to

structural arrangements that differ in the angle between the molecular

planes of the molecules, and they are denoted for the upcoming discussion

I-B (θ ¼ 131°) and I-D (θ ¼ 49°) (Fig. 4B and Fig. S3 for further

information).
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3.3.2 Excited state analysis
The first singlet excited and lowest triplet states of M2I correspondmainly to

a single excitation with π! π* character as can be seen from the frontier

orbitals depicted in Fig. S4. The biradicaloid character of M2I has been

reported,59 but a CASSCF(10,10) calculation on the ground state shows

1.83 and 0.20 as the natural orbital occupation numbers for the HOMO

and LUMO, respectively, suggesting a closed shell character for the

molecule.

3.3.3 Excited state energies
The energies of the Φ1TT , ΦS 1½ � , ΦS 2½ � , ΦD+

0
D�

0
, and ΦD�

0
D+

0
states for the four

pairs of molecules are shown in Table 4. The RAS-2SF energies are lower

than those obtained with the NOCI approach and the shifted energies in

AIFDEM. A close look at the hole and particle contributions in the RAS

active space reveals that the HOMO-1 should have been included as an

active orbital; the underestimation of the excitation energies in this case sug-

gests that RAS-2SF is suitable for the description of molecules in which it is

sufficient to consider the frontier orbitals in the active space, e.g., tetracene.

State energies are improved by including the required orbitals in the active

space (see RAS(8,6)-2SF and RAS(8,8)-2SF calculations in Table S6). For

I-B and I-D, theΦS[2]
state is dominated by the jΨS1S1i configuration which

suggests a double excitation character. Therefore, these states were not

included in the comparison. The NOCI energies of theΦS 1½ � andΦS 2½ � states

Fig. 4 (A) Identified pairs of molecules of M2I; from a central molecule (black) the I-A
(red), I-B (pink), I-C (green), and I-D (blue) conformations are depicted. (B) The angle
between the molecular planes in each pair is depicted. Crystal structure optimized at
the PBE/6-31G(d,p) level of theory.
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are close to theΦ1TT energy deviating by only�0.3 meV, showing that the

system almost fulfills the requirement Estt ¼ 0. The NOCI ΦD+
0
D�

0
and

ΦD�
0
D+

0
energies are 2.0 eV or more above the ΦS 1½ � and ΦS 2½ � energies indi-

cating that these states are too high in energy to be accessed but might act as

virtual states mediating the SF process; the same trend holds for RAS-2SF

and AIFDEM CT state energies.

3.3.4 Weights of MEBFs
Table 5 shows a comparison between the weights of the MEBFs to the

Φ1TT , ΦS 1½ � , and ΦS 2½ � states in the pairs of molecules. The dominant contri-

butions, highlighted as bold numbers, show that for the four pairs of mol-

ecules the Φ1TT states have almost pure jΦ1TT i character, whereas ΦS 1½ � and

ΦS 2½ � are described mainly by the singlet excited MEBFs; the weights suggest

that the excitation is localized on one of the two molecules for all the cases.

A similar trend is observedwith theRAS-2SF and AIFDEMmethodologies,

although in RAS-2SF the jCj2 values are lower than those calculated with

Table 4 State energies (in eV) for the different electronic states for the four pairs of
molecules of M2I.
Pair Method Φ1TT ΦS[1] ΦS[2] ΦD+

0D2
0

ΦD2
0 D+

0

I-A NOCI 2.15 2.47 2.49 4.27 4.32

RAS(4,4)-2SF 1.33 1.97 2.08 3.29 3.32

AIFDEM 2.29(3.38) 2.43(3.53) 2.50(4.05) 5.03(2.68) 5.13(2.99)

I-B NOCI 2.12 2.41 2.42 4.69 5.07

RAS(4,4)-2SF 1.28 1.96 4.05

AIFDEM 2.33(2.95) 2.39(3.02) 2.53(3.17) 5.00(2.78) 5.11(3.11)

I-C NOCI 2.12 2.41 2.42 4.69 5.07

RAS(4,4)-2SF 1.27 1.96 1.98 4.11 4.25

AIFDEM 2.34(2.72) 2.41(3.02) 2.47(3.07) 5.00(2.92) 5.12(2.94)

I-D NOCI 2.11 2.39 2.42 4.36 4.92

RAS(4,4)-2SF 1.26 1.97 3.64

AIFDEM 2.33(2.97) 2.43(3.01) 2.46(3.19) 5.00(2.40) 5.12(2.90)

For AIFDEM, the unshifted values are shown in parenthesis. ΦS[2]
states calculated with RAS-2SF are

dominated by the jΦS1S1 i configuration and are not included.
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Table 5 Comparison of the individual weights of MEBFs in the four pair arrangements of M2I.

Configuration

Φ1TT ΦS[1] ΦS[2]

NOCI RAS-2SF AIFDEM NOCI RAS-2SF AIFDEM NOCI RAS-2SF AIFDEM

Pair I-A

jΦS0S0i 0.001 0.001 0.000 0.000 0.066 0.014 0.000 0.000 0.007

jΦS0S1i 0.014 0.013 0.041 0.982 0.665 0.889 0.000 0.000 0.000

jΦS1S0i 0.000 0.013 0.059 0.000 0.000 0.000 0.999 0.828 0.929

jΦ1TT i 0.985 0.885 0.539 0.018 0.060 0.000 0.000 0.000 0.000

jΦD+
0
D�

0
i 0.000 0.037 0.000 0.000 0.019 0.096 0.000 0.008 0.063

jΦD�
0
D+

0
i 0.000 0.037 0.360 0.000 0.019 0.000 0.000 0.008 0.000

Pair I-B

jΦS0S0i 0.000 0.000 0.000 0.000 0.009 0.001 0.000 0.004

jΦS0S1i 0.000 0.000 0.001 1.000 0.675 0.995 0.000 0.003

jΦS1S0i 0.000 0.000 0.000 0.000 0.000 0.003 1.000 0.991

jΦ1TT i 1.000 1.000 0.999 0.000 0.000 0.000 0.000 0.000

jΦD+
0
D�

0
i 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.002

jΦD�
0
D+

0
i 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Continued



Table 5 Comparison of the individual weights of MEBFs in the four pair arrangements of M2I.—cont’d

Configuration

Φ1TT ΦS[1] ΦS[2]

NOCI RAS-2SF AIFDEM NOCI RAS-2SF AIFDEM NOCI RAS-2SF AIFDEM

Pair I-C

jΦS0S0i 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.015 0.001

jΦS0S1i 0.000 0.000 0.000 1.000 0.853 0.996 0.000 0.000 0.003

jΦS1S0i 0.000 0.000 0.000 0.000 0.000 0.003 1.000 0.822 0.996

jΦ1TT i 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

jΦD+
0
D�

0
i 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

jΦD�
0
D+

0
i 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Pair I-D

jΦS0S0i 0.000 0.000 0.000 0.000 0.226 0.001 0.000 0.001

jΦS0S1i 0.000 0.000 0.000 1.000 0.572 0.999 0.000 0.000

jΦS1S0i 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.999

jΦ1TT i 1.000 0.996 0.998 0.000 0.000 0.000 0.000 0.000

jΦD+
0
D�

0
i 0.000 0.003 0.001 0.000 0.004 0.000 0.000 0.000

jΦD�
0
D+

0
i 0.000 0.001 0.001 0.000 0.002 0.000 0.000 0.000

The main contributions are highlighted as bold numbers. Φ[2] states calculated with RAS-2SF are dominated by the jΦS1S1 i configuration and are not included.



NOCI and AIFDEM since additional configurations, such as double exci-

tations (jΦS1S1i), contribute.NOCI shows that the states in I-B, I-C, and I-D

retain mostly a pure character, which is also observed in the individual

contributions calculated with RAS-2SF and AIFDEM. However, the con-

tributions for theΦ1TT state in dimer I-A are different between the methods;

the weights from the NOCI calculation predict that Φ1TT has mainly a

contribution from the jΦ1TT i MEBF with a small contribution from

jΦS0S1i, whereas RAS-2SF and the weights obtained with AIFDEM predict

a contribution from the CT states. After applying the same shift to NOCI,

contributions from the CT states are also observed (see Table S8). When we

shift NOCI and AIFDEM (see Tables S8 and S9), we observed the same

trends in the weights as in tetracene.

3.3.5 Electronic couplings
In Table 6, electronic couplings are reported for the four pairs of molecules

between the ΦS 1½ � and ΦS 2½ � states with the Φ1TT state. The largest coupling

values are observed in I-A, whereas the lower values are obtained for I-B and

I-C. For I-A, the inclusion of the CT states to the ΦS 1½ � state enhances

the electronic coupling from 21.4 to 42.2 meV. The electronic coupling is

also enhanced if the CT states are allowed to interact only with the Φ1TT

state. For the ΦS 2½ � state, no significant enhancement is observed. The most

plausible determination of the electronic coupling in I-A corresponds to that

Table 6 Electronic couplings (in meV) between the (diabatic) statesΦS[1]

and ΦS[2] with Φ1TT for the dimer arrangements of M2I.
Pair States ΦS[1] ΦS[2] Φ0

S[1] Φ0
S[2]

I-A Φ1TT 21.4 0.4 42.2 0.4

I-B 0.2 0.1 0.2 0.2

I-C 0.0 0.3 0.0 0.4

I-D 0.6 0.6 0.4 1.3

I-A Φ0
1TT 38.0 1.1 39.8 0.4

I-B 0.2 0.3 0.2 0.2

I-C 0.0 0.4 0.0 0.4

I-D 0.1 1.2 0.3 1.3

In the primed wave functions the CT states were included in the NOCI calculation.
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in which the CT states are allowed to mix with both the ΦS 1½ � and Φ1TT

states, with a value of 39.8 meV. The magnitude of the electronic coupling

suggests that the formation of the 1TT state could occur efficiently. We per-

formed the same analysis for the four pairs of molecules in which the mol-

ecules were replaced by optimized molecules (Tables S10–S12). Originally,

the pairs of molecules from the periodic DFT optimization were slightly

bent, and after the replacement they became planar. Although the quanti-

tative results changed, the same observations as discussed above (regarding

the excitation energies of the states, the individual contributions of the

MEBFs and the electronic couplings) are observed; the highest electronic

coupling is found for I-A and the lowest for I-B and I-C. It is apparent that

the electronic couplings strongly depend on the orientation of the molecules

in the cluster.

Table 7 shows the configurational analysis of the RAS-2SF wave func-

tions of the pairs of molecules showing their local excited (LE),

multiexcitonic (ME) and CT character, and the jjγjj2 values between the

Φ1TT with ΦS 1½ � and ΦS 2½ � states are also listed. The jjγjj2 values indicate that
the transition is most probable to occur when the molecules are disposed as

in arrangement I-A (0.25 and 0.30), for I-D also a transition is expected to

occur (0.09), whereas for I-B and I-C no transition would be observed. The

jjγjj2 values obtained with the RAS(8,6)-2SF and RAS(8,8)-2SF calcula-

tions (see Tables S13 and S14) show the same trend. The differences in

Table 7 Configuration analysis of the RAS-2SF wave functions for the pair arrangements
of M2I using localized obitals within the DMO-LCFMO framework.
Pair State LE ME CT ||γ||2 Pair State LE ME CT ||γ||2

I-A Φ1TT 0.03 0.89 0.07 I-B Φ1TT 0.00 1.00 0.00

ΦS 1½ � 0.83 0.15 0.02 0.25 ΦS 1½ � 0.67 0.32 0.00 0.01

ΦS 2½ � 0.66 0.23 0.04 0.30 ΦS 2½ �

I-C Φ1TT 0.00 1.00 0.00 I-D Φ1TT 0.00 0.99 0.00

ΦS 1½ � 0.85 0.15 0.00 0.02 ΦS 1½ � 0.57 0.20 0.01 0.09

ΦS 2½ � 0.82 0.16 0.00 0.02 ΦS 2½ �

The values of jjγjj2 between the Φ1TT and each of the local excited states ΦS 1½ � and ΦS 2½ � are shown. ΦS[2]

states calculated with RAS-2SF are dominated by the jΦS1S1 i configuration, and are not included for
comparison.
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the jjγjj2 values can be associated to the degree of contribution of the CT

states to the singlet excited and 1TT states. CT contributions are predicted

for I-A and I-D whereas they are negligible for I-B and I-C. Remarkably,

the electronic couplings calculated with NOCI and AIFDEM (Table S15)

follow the qualitative behavior predicted by theRAS-2SFmethod, in which

the highest values are observed for I-A; this implies that if the molecules are

disposed as in this conformation in the crystal structure, the SF process might

occur efficiently.

4. Conclusions

We report a comparison of the NOCI approach with two theoretical

approaches, RAS-2SF and AIFDEMused for the study of SF, andwe propose

2-methylene-2H-indene as a potential SF molecule. The comparison of the

methods indicate that for tetracene, NOCI, RAS-2SF, and AIFDEM over-

estimate the energies of the states when compared with the experimental

values. Despite this overestimation, our results suggest that the CT states

act as virtual states in the SF process. The three methods agree on the character

of the excited states, however, more configurations were found to be impor-

tant in the RAS-2SF calculations, which were not included in the NOCI and

AIFDEM calculations. The major difference between the NOCI and

AIFDEM approaches, despite being conceptually similar, are that electron

correlation and orbital relaxation effects can be included in the NOCI

approach, but currently only small clusters of small molecules can be treated,

whereas the AIFDEM approach can handle large clusters and molecules. Cal-

culated electronic couplings for four pairs of the 2-methylene-2H-indene

with the NOCI and AIFDEM approaches, and jjγjj2 values calculated with

RAS-2SF show that the formation of the 1TT state could occur efficiently

in the crystal when the molecules are oriented as in conformation I-A. NOCI

and AIFDEM overestimate the state energies, whereas RAS-2SF underesti-

mates them; however, the three methods predict similar character for the

relevant electronic states. The CT state energies are too high to be accessible,

and a mediated mechanism is proposed for the SF process in 2-methylene-

2H-indene. Finally, the methodologies are able to distinguish between con-

figurations with low and high SF probabilities. A further comparison beyond

these two systems has to be done in order to establish and generalize the

predictive power of the methodologies.
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Abstract

In this chapter we discuss the reliability of two computational methods (numerical inte-
gration on Cartesian grids and population analysis) used for evaluating scalar quantities
related to the nature of electronic transitions. These descriptors are integrals of charge
density functions built from the detachment and attachment density matrices projec-
ted onto the Euclidean space using a finite basis of orbitals. While the numerical inte-
gration on Cartesian grids is easily considered to be converged for medium-sized
density grids, the population analysis approximation to the numerical integration values
is diagnosed using 8 tests performed on 59 molecules with a combination of 15 Gauss-
ian basis sets and 6 exchange-correlation functionals.
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1. Introduction

The possibility of analyzing the charge-transfer character of electronic

transitions of complex molecular systems has been of interest for decades,

and still attracts considerable attention in the excited-state electronic struc-

ture community.1–40

In this context, a variety of quantities have been designed in order to

unveil the nature of electronic transitions with scalars that provide—through

a simple number—specific information related to the light-induced elec-

tronic structure reorganization.1, 12,20–23,28–36,39,41–47 An example of infor-

mation that one might wish to seek when considering a molecular system

undergoing a photoinduced intramolecular charge transfer is the locality

of this charge transfer, i.e., the extent to which the electronic cloud has been

perturbed and polarized.20–22,34,46 In addition to such probing of the charge

transfer locality one can evaluate the extent to which the photogenerated

hole and particle contribute to the net charge displacement occurring during

an electronic transition.22,34,46 These two pieces of information are con-

tained in two separate quantities, named ϕS and φ, respectively.
Three different implementations were mentioned for evaluating these

density-based descriptors.22 Two of them were based on the population

analysis48 of the so-called detachment and attachment one-body reduced

density matrices.2 The third one was the direct numerical integration of

the related one-body charge density functions using Cartesian grids. When

first published,22 the population analysis approximations to our density-

based descriptors were compared to the numerical integration method as

a reference solely for organic push-pull molecules using a single level of

theory, for the sake of demonstrating its hypothetical usefulness, given that

its implementation allows an extremely fast evaluation of the ϕS and φ
descriptors.

In this contribution we wish to extend this diagnosis to a much wider test

set made up of various types of molecules and providing a rigorous and

extensive diagnosis of the population analysis as an evaluation tool for our

density-based descriptors. For this sake, we will use and combine in this

chapter multiple diagnosis criteria for choosing the population analysis to

perform. We will also discuss preliminary basis transformations that can

be applied before performing the population analysis. These principles will

be involved in the critical discussion of the reliability of this evaluation path,

whichmight be discarded in certain situations.With this we hope to provide
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the reader and user the possibility to rationalize their choice among the dif-

ferent possible formulations of the descriptors.

This report is organized as follows: we will first recall how one can use

the detachment and attachment one-body densities for computing quanti-

ties describing the electronic structure reorganization of a molecule. The

matrix-algebraic approximation to these quantities will then be given,

before the detailed diagnosis strategy of this chapter is fully described in

a dedicated section. Subsequently, the results of this diagnosis are intro-

duced and discussed, before we conclude with the recommended best prac-

tices the authors suggest for evaluating the descriptors, with regard to the

choice of the relevant evaluation method to use according to the system of

interest. With this in hand, and taking into account certain restrictions

related to the systems themselves one should be able to consider the values

of the descriptors for a self-diagnosis of their own reliability.

2. Theoretical introduction

In this contribution, we will bring a few modifications to the nomen-

clature used until now in Refs. 20–23,34, 46. These amendments are fully

detailed in Appendix with explanations about the reason why they were

used then, and will no longer be employed.

A brief reminder on the one-particle reduced density matrix (1-RDM)

and one-body charge density (1-CD) functions can also be found in

Appendix.

2.1 The target density-based descriptors
The descriptors reported in this publication are directly derived from the

detachment (nd) and attachment (na) 1-CDs, i.e., respectively, the hole

and particle characterizing electronic transition in a one-hole/one-particle

picture of it. Their derivation is briefly recalled in an appendix to be found

via the link to Appendix. We have, for any real x in the [0, 1] interval,

ϑ¼
Z
3

dr ndðrÞ¼ tr SxDS1�x
� �

¼
Z
3

dr naðrÞ¼ tr SxAS1�x
� � (1)

where “A” and “D” denote the attachment and detachment density matri-

ces in the atomic space and should not be confused with electron

291Diagnosis of two evaluation paths



“Acceptor” and “Donor.” The Smatrix contains the spatial overlap integrals

between atomic basis functions.

This ϑ represents the quantity of charge that has been involved in the

electronic transition. It is this integral of the hole (detachment) and particle

(attachment) density that will be used as a normalization factor for the quan-

tities defined below.

We can now write two functions involving the detachment/attachment

densities

nΔðrÞ¼ naðrÞ�ndðrÞ 2  (2)

and

ηðrÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ndðrÞnaðrÞ

p 2 + (3)

where nΔ(r), the difference density, is also equal to the difference between

the electron density of the excited (nn) and ground (n0) states

nΔðrÞ¼ nnðrÞ�n0ðrÞ: (4)

From these two functions one can write the detachment/attachment overlap

integral20

ϕS :¼ ϑ�1

Z
3

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ndðrÞnaðrÞ

p � 2ϑ�1G½η� 2 ½0, 1� (5)

where we define the G rule as

G½f � ¼ 1

2

Z
3

dr f ðrÞj j (6)

The detailed construction and use of G is given in Appendix.

From the difference density, one can derive the unnormalized21 charge-

transfer descriptor

χ :¼G½nΔ� (7)

and its normalization22

ϑ� χ ) 9!φ¼ ϑ�1χ 2 ½0, 1�: (8)

φ measures the fraction of detachment/attachment density contributing to

the net transferred charge. The normalization condition ϑ� χ was obtained
by construction in Ref. 22, where ϕS and φ were combined into the

normalized, general ψ descriptor
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ψ :¼ π=2ð Þ�1
arctan

ϕS

φ

� �
2 ½0, 1� (9)

jointly describing the range of a charge separation and the amount of charge

transferred during an electronic transition.

2.2 Alternative approach: The population analysis
Since it is not possible to solve analytically the ϕS and φ integrals reported

above, only approximate values can be obtained. In this chapter we extend

the matrix-algebraic procedure proposed in Ref. 22, where numerical inte-

grations on Cartesian grids usually used for computing the density-based

descriptors ϕS and φ were approximated by performing a detachment/

attachment population analysis. These two methods were loosely called

direct- and Hilbert-space derivations in Ref. 22, the latter being employed

because one-body orbital wave function integrals were part of the derivation

procedure.

If the atomic functions are centered on atoms, a known procedure is to

approximate the atomic population, i.e., the partial charge that an atom bears

for a given electronic distribution, through a Mulliken population analysis

by multiplying a density matrix with the basis set overlap matrix S and to

consider the kth diagonal entry of this product of matrices as the contribu-

tion of the kth atomic orbital to the electronic population of the system. The

actual approximation then consisted in considering the fact that the basis of

atomic functions was local, with the Gaussian basis functions grossly cover-

ing a given region of space, so that manipulating (in particular, subtracting or

multiplying) the diagonal entries of the matrix product of the atomic-space

detachment and attachment density matrices with S was an approximation

to the manipulation of elementary fractions of a charge density in a given

region of space. Another possible approximation reported in Ref. 22 is

the L€owdin detachment/attachment population analysis, where the density

matrices are contracted to the left and to the right by the square root of S to

orthogonalize the basis set while conserving its local character as much

as possible. In fact, any combination of exponents for the left and right

multiplication can arbitrarily be used, as long as the sum of the exponents

is equal to unity, in order to satisfy Eq. (1). The justification has been dis-

cussed in the reminder on density matrices and charge densities and allowed

us to generalize the population analysis to any x value in Appendix.

Though the choice of the x exponent seems quite arbitrary, it was dem-

onstrated in Appendix that only a L€owdin-like population analysis produces
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atomic populations that do not have a tendency of being negative or greater

than the maximum allowed occupancy, which would be unphysical.

Therefore, though the generalized matrix-algebraic definition of the

approximate density-based descriptors can be given as in Appendix for

any value of x, from now on we will solely use the L€owdin-like scheme

(denoted by the “‘” symbol). The only exception to this is the evaluation

of ϑ: According to Eq. (1), since the integral of the detachment/attachment

1-CD functions is unequivocally equal to the trace of the product of S

with the corresponding density matrix, the ϑ quantity is computed without

approximation as the trace of the detachment/attachment density matrices

multiplied by S, i.e., using x ¼ 0 in Eq. (1) for sparing the effort of

diagonalizing S.

The population analysis approximations to ϕS, χ and φ using L€owdin’s
scheme are given as22

ϕ‘
S ¼ ϑ�1

XK
μ¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S1=2DS1=2
� �

μμ
S1=2AS1=2
� �

μμ

q
:¼F½D,A,S�

(10)

and

φ‘¼ ϑ�1H½S1=2ΔS1=2�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
χ‘

(11)

where the H rule relates any real K � K matrix to a scalar by summing the

absolute value of the diagonal entries of that matrix:

2H½Q� ¼
XK
μ¼1

Qð Þμμ
��� ���: (12)

As for the G rule, the details related to the construction and use of H are

given in Appendix.

The limitations of the approximation made by using symmetrically

orthogonalized49 orbitals populations as if we were mapping these charges

to point charges in space when computing our descriptors are diagnosed

and discussed in this report for the F and H rules only. This is due to the

fact that the population analysis approximation to the ψ descriptor involves

no further approximation than those made using F and H.
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Note finally that in Ref. 23, we have designed quantities relating the

pseudo orbital relaxation performed using a post-linear response treatment

of the difference-density matrix. In Appendix we provide their expression

together with their population analysis formulation, which solely involves

the H rules, allowing us to extend the conclusions of our current diagnosis

to these quantities.

3. Diagnosis strategy

Our diagnosis strategy is summarized in Table 1. All the calculations

reported in this chapter were performed in vacuo, using the Gaussian16

(revision A03) package.50 A set of 59 metal-free molecules of variable size

(from diatomics to complex molecular systems) was used in order to perform

our diagnosis. The Cartesian grids were generated using the Cubegen utility

from Gaussian16, and the analyses (numerical integration (NI) of the

Cartesian grids, and population analyses (PA)) were performed using a

homemade code, to be released soon.

In order to determine to what extent both methods are consistent, differ-

ent variables have been chosen for comparing NI and PA values: the system

size, the charge transfer (CT) nature, the basis set (BS) size and nature, and the

type of exchange-correlation (xc) functional used in time-dependent density

functional theory.

Table 1 Summary of the eight detachment/attachment PA diagnosis strategies.
Diagnosis Molecule System size CT nature BS xc-functional

d1 nIII, nV-X, nVI-c √ √ √ �
d2 nV-X � √ √ �
d3 N2, CO, HCl, H2CO � � � √

d4 Acenes √ � √ √

d5 � � √ �
d6 PP � √ � �
d7 � � √ �
d8 � (√) � √

Molecules for d1 and d2 are taken from Ref. 20; molecules for d3 to d5 are taken from Ref. 41; and PP is
taken from Ref. 23. The sketches of the molecules are reported in Figure S1 of Appendix.
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Through this study, the influence of the Cartesian grid density of points

has been evaluated by comparing medium (6 points/bohr for each direction)

grids to fine (12 points/bohr for each direction) ones.

Our first molecular test-set (S1) is taken directly from Ref. 20 and is con-

stituted by a series of conjugated molecules with nitro (-NO2) acceptor and

dimethylamino (-NMe2) donor terminal groups, separated by a variable num-

ber (ranging fromone to five) of bridge subunits. The level of theory used here

for our computations is exactly the one from the reference cited above.

One of the spacers is an oligo-ethylene for the nIII group of molecules.

The oligo-ethylene might separate two donor groups for what we will call

the nIII-NMe2-NMe2 series here, or two nitro groups (nIII-NO2-NO2), or

one of each (nIII-NMe2-NO2).

If the donor and the acceptor are separated by a variable number of

phenyl moieties, we have the nVI-c series.

Finally, in the nV-X series, the dimethylamino and nitro groups are

connected through an heterocyclic oligomer (with five-member rings con-

taining one oxygen, sulfur, or selenium) or through oligo-pyrroles.

The equilibrium geometries of the molecules belonging to the S1 set of

molecules were obtained using the PBE0/6-311G(d,p) level of theory.

Vibrational frequencies have been calculated to verify that the optimized

geometries are actual minima. The excited-state calculations were done at

the PBE0/6-311++G(2d,p) level of theory.

The specific interest of this set lies in the possibility of investigating elec-

tronic transitions of different natures through a series, with molecules of

different size. Hence the calculations use basis sets of different size, so that

the only stable variable is the xc-functional through the diagnosis. When

switching the heteroatom in the nV-X series from oxygen to sulfur or sele-

nium, one can also see how an increase of the number of electrons and basis

functions for molecules of comparable size influences the precision of the

PA-approximation. This will be our first diagnosis, denoted d1 in the results

section, as well as in Table 1.

In addition to this, excited-state calculations were performed on the

nV-X series using a small (6-31G) and intermediate (6-31+G(d,p)) BS in

order to check the BS convergence for the PA values at a given geometry

for this type of push-pull molecule (d2).

The second test-set (S2) originates from Ref. 41 and will be investigated

using the same level theory as in the original paper, unless otherwise stated.

In particular, we will investigate the diatomic (N2, CO, and HCl) and form-

aldehyde molecules from S2 in order to diagnose the reliability of F and H
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rules for very small molecules (d3). From S2 we will also focus on the acenes.

This is a series of n + 1 fused benzene rings, with n ranging from one to five,

as we know that for such molecules the photogenerated hole and the particle

will exhibit a substantial spatial overlap, no matter the number of subunits.

This diagnosis will allow us to know whether, for such an extreme case of

transition nature, there might be an influence of system size on the accuracy

of the PA-approximation (d4). Note that we also performed excited-state

calculations on the acene series using the B3LYP/6-31G and B3LYP/6-

311++G(2d,p) levels of theory in order to assess the basis set convergence

on the reference and approximated descriptor values (d5).

The last system that was used for this report is the pyridinium phenolate

(PP) that was already investigated in Ref. 23. We used a rigid scan of the

central dihedral angle, scanning the angle from zero to ninety degrees with

a one-degree step, in order to monitor the evolution of the nature of the

donor-acceptor intramolecular charge transfer. Such an approach allowed

us to investigate a system of fixed size, at a given level of theory, with tunable

CT character, for a one-variable diagnosis (d6) on a medium-sized molecular

system. This study was also repeated including a variation of the level of the-

ory by performing this 91-point scan for a combination of 15 split-valence

Pople basis sets51, 52 and 6 xc-functionals (the hybrid B3LYP,53 PBE0,54 and

M06-2X,55 the long-range corrected CAM-B3LYP56 and LC-ωHPBE57

and the range-separated, dispersion-corrected ωB97X-D58) so that we

could select some geometries and evaluate the separate influence of the basis

set size (and nature), as well as the type (hybrid/range-separated hybrid) of

xc-functional (d7 and d8). Configuration Interaction with single excitations

(CIS59) and Time-Dependent Hartree–Fock (TDHF59) calculations were

also performed on PP, combined to the fifteen Pople BSs mentioned above.

The sketch of the molecules investigated in this report is given in

Figure S1 of Supplementary Information.

4. Results

Due to our practical use of the descriptors, we report hereafter their

values to two decimal places and, when comparing two evaluation paths, we

will consider consistency between the two methods achieved when the

results are consistent within two decimal places. Moreover, as in Ref. 22

we will consider a tolerance for the absolute deviation of �0.05 arbitrary

units for the descriptors as the maximum allowed deviation between two

methods.
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4.1 Influence of the NI grid density of points
When studying the whole set of molecular systems for this report, we

quasi-systematically used both density of points grid-definitions (6 and

12 points/bohr in each direction) for the sake of comparison. According

to our convergence/consistency criterion defined above, we noticed that

the results on the descriptors are strictly converged for medium-density

grids (6 points/bohr in each direction) and can be considered exact for

the level of theory used. This means that the users who wish to compute

our descriptors can reliably spare themselves the cost of producing fine

grids eight times denser than the medium-density one.

We attract the attention of the reader to the fact that when the numerical

integration is performed, one has always to carefully check whether the inte-

gral of the detachment and attachment densities are strictly equal. We report

in SI (see Tables S29–S34) our data for the nIII group of molecules and show

that for the nIII-NMe2-NMe2 series and one excited state of the nIII-

NMe2-NO2 series the standard grid sizes lead to a significant fraction of

charge lost in the attachment. The integrals obtained with finer grids are also

provided in order to prove that the fraction of charge lost comes from the

grid size instead of the grid density of points. In order to overcome such an

issue the user should increase the grid size with the same density of points to

get the right detachment/attachment integral. In this regard one can use the

exact value of the trace ofDS and AS to diagnose the size and quality of the

integration grid, as was done in Tables S29, S31, and S33.

4.2 The F and H rules
Again, when considering the total set of data that we report in Appendix for

the 59 molecules we observed that according to our accuracy/consistency

criterion, when the PA-derived ϕS values were found to be reliable, so were

the φ values. This was true though they were not obtained from the exact

same rule. Therefore, from now on in this section we solely will discuss the

ϕS and ϕ
‘
S values for the sake of brevity, though the data in the tables and in

the Appendix will also contain the φ and ψ diagnosis.

4.3 The oligo-acenes series
As expected, when studying the oligo-acenes series with our density-based

descriptors, we noticed that for the three xc-functionals used, i.e., PBE,

B3LYP, and CAM-B3LYP, in the d4 diagnosis (see Table 1), the electronic

cloud remains almost unperturbed by the electronic transitions, leading to
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ϕS values systematically greater than 0.9, which is quite an extreme case of

hole/particle overlap. This statement holds irrespective of the size of the

molecule and of the BS (diagnosis d5), or of the xc-functional used. Results

in Table 2 and in Tables S1–S5 show that in such an extreme case the

reliability of the PA to approximate the value of ϕS cannot be firmly

established. Indeed, we saw among the results both exact NI/PA matching

and deviations beyond our tolerance criterion, which means that for such

extreme situations the use of the PA-approximation ϕ‘
S is strongly discour-

aged. These conclusions also hold for the poly-acetylene series from the

same S2 set of molecules (see Tables S38–S40).

4.4 Influence of the size of the system
When the nV-X and nVI-c sets of molecular systems are concerned, we

globally observe that the molecular composition influences the nature of

Table 2 Descriptors values and their PA-approximated deviations, Δ(q)¼ q(NI)� q(PA),
obtained for the three first excited states of the oligo-acenes series with the B3LYP/cc-
pVTZ level of theory (part of d4).
n E-S ϕS Δ(ϕS) φ Δ(φ) ψ Δ(ψ)

1 1 0.92 �0.06 0.26 0.13 0.82 �0.09

2 0.98 0.00 0.15 0.00 0.90 0.00

3 0.88 �0.07 0.32 0.11 0.78 �0.08

2 1 0.90 0.08 0.29 0.17 0.80 �0.12

2 0.98 �0.01 0.15 0.02 0.90 �0.01

3 0.91 �0.06 0.27 0.09 0.81 �0.07

3 1 0.90 �0.09 0.27 0.10 0.81 �0.12

2 0.97 �0.01 0.15 0.03 0.90 �0.02

3 0.90 �0.06 0.30 0.07 0.79 �0.05

4 1 0.90 0.10 0.27 0.18 0.81 �0.13

2 0.89 �0.05 0.30 0.05 0.79 �0.04

3 0.97 �0.01 0.15 0.03 0.90 �0.02

5 1 0.90 �0.09 0.26 0.17 0.82 �0.12

2 0.90 �0.06 0.33 0.06 0.78 �0.05

3 0.89 �0.05 0.35 0.09 0.76 �0.07
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the CT. We have also noticed when performing diagnosis d1 that the ϕ‘
S

approximation can become problematic both for small systems and for

electronic transitions characterized by a small ϕ‘
S. However, this difficulty

is neither inevitable nor commonplace.

For the nV-X (see Table 3 and Tables S27, S36, S44, and S46) and nVI-c

(see Table S27 and S28, S35–S37, and S44–S47) series we observe that

for medium- to large-sized systems (n> 3) theϕ‘
S descriptor reproduces very

accurately the ϕS value. Conversely, for small systems (n ¼ 1, 2) the

PA-approximation is no longer reliable for ϕS values less than or equal to

0.52. This was also observed for the oligo-peptides of the S2 set of molecules

(see Tables S6–S8, S12–S14, and S48–S50). Note that in the S2 set of mol-

ecules the geometrical origin of the NI-PA deviation also applies for higher

ϕS values, for example when the CO, N2, HCl, and H2CO molecules

Table 3 Hole/particle overlap integral values and their PA-approximated deviations,
Δ(X)¼ ϕS(X)�ϕ‘

S(X), calculated for the different molecules from the nV-X molecular
test-set (part of d1).
n E-S ϕS(NH) Δ(NH) ϕS(O) Δ(O) ϕS(S) Δ(S) ϕS(Se) Δ(Se)

1 1 0.69 0.02 0.68 0.03 0.70 0.03 0.72 0.04

2 0.48 0.36 0.48 0.36 0.48 0.39 0.48 0.38

3 0.34 0.14 0.52 0.40 0.51 0.41 0.54 0.03

2 1 0.57 0.01 0.60 0.03 0.58 0.02 0.68 0.02

2 0.49 0.42 0.48 0.35 0.76 0.25 0.52 0.25

3 0.40 0.03 0.71 0.04 0.72 0.00 0.60 0.12

3 1 0.48 0.01 0.53 0.02 0.51 0.02 0.62 0.02

2 0.73 �0.01 0.78 �0.02 0.75 �0.01 0.79 �0.01

3 0.63 0.01 0.69 0.00 0.70 �0.01 0.74 �0.01

4 1 0.39 0.00 0.47 0.02 0.52 0.01 0.57 0.01

2 0.60 0.00 0.77 �0.02 0.75 �0.02 0.78 �0.01

3 0.71 �0.03 0.66 0.00 0.70 �0.01 0.74 �0.01

5 1 0.34 0.01 0.42 0.01 0.47 0.00 0.53 0.00

2 0.52 0.00 0.75 �0.02 0.73 �0.02 0.76 �0.02

3 0.71 �0.04 0.65 �0.01 0.68 �0.02 0.72 �0.02

Those values were obtained using PBE0/6-311++G(2d,p) excited-state calculations, based on PBE0/6-
311G(d,p) geometries.
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(see Tables S9–S11 and S18–S26), which are too small for considering theϕ‘
S

approximation as reliable, are concerned (diagnosis d3).

Diagnosis d2 (see Tables S27 and S28, S36 and S37, and S44–S47)
allowed us to conclude that the BS convergence was rapidly achieved for

the ϕS value with medium-sized BS. When comparing the converged ϕS

values to their PA-approximated values, we have noticed that the accuracy

of the PA-approximation was independent from the BS size. In other words,

if the level of theory contains a BS of intermediate or large size, increasing

the size of the BS did not improve the accuracy of the PA, as was already

observed in diagnosis d5. Following the same idea, we notice in Table 3 that

replacing oxygen by sulfur or selenium might alter the ϕS value but not the

accuracy of its PA-approximation, although in such substitutions we consid-

erably modify the number of basis functions centered on the heteroatom

positions before the symmetric orthogonalization.

4.5 Study of medium-sized molecules

The accurate ϕ‘
S results for the S2-belonging dimethylaminobenzonitrile

(DMABN) and N-phenylpyrrole molecules (see Tables S15–S17 and

S41–S43) should be consideredwith care. Indeed, we have seen when inves-
tigating the PP molecule that tuning the CT character of electronic transi-

tions for a given molecule has an impact on the reliability of the

PA-approximation (diagnosis d6).

The PPmolecule excited states, when computed at the B3LYP/6-311++

G(2d,p) level of theory, show an avoided crossing between the first and

second singlet excited states and a conical intersection between the second

and third excited states. This behavior is very well reproduced by both the

ϕS and ϕ‘
S computation (see the left part of Fig. 1), which leads us to state

that one should not systematically discard ϕ‘
S results for the only reason that

it may be characterized by a sizeable gradient. However, one sees in Fig. 1

that when the ϕ‘
S value drops below 0.4 the values might or might not

be reliable. For instance the first electronic transition at this level of theory

is quite well described by ϕ‘
S when tuning down the twist angle from 90 to

ca. 55 degrees while the trends completely differ afterwards, i.e., when ϕ‘
S

is dropping below 0.4. Significant divergences also occur for the second

and third excited state as long as ϕ‘
S is maintained below 0.4, while non-

negligible but tolerable deviations are observed when ϕ‘
S is lying between

0.4 and 0.5 for the second excited state.
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While there is neither avoided crossings nor conical intersections in

the PP excited-state energy landscape for the first three excited states when

computed at the CAM-B3LYP/6-311++G(2d,p) level of theory, the

observations reported for the B3LYP xc-functional strictly apply to

the CAM-B3LYP computations (see the right part of Fig. 1). Finally,

the results in Table 4 show that at given geometries, since the

xc-functional influences the CT character, it indirectly influences the
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Fig. 1 (Top) Energy landscapes for the PPmolecule along the scan of its central dihedral
(twist) angle. The black line is the ground-state energy, the purple one is the first singlet
excited-state energy, the green one is the second singlet excited-state energy, and the
blue one is the third singlet excited-state energy. The left part is obtained using the
B3LYP/6-311++G(2d,p) level of theory, and the right part is obtained using the CAM-
B3LYP level of theory. (Bottom) Comparison of the ϕS and ϕ‘

S values, with the same color
code and levels of theory as the top part of the figure.Deep blue and green colors are for
the NI values of the second and third excited states, the dashed line represents the NI
values for the first singlet excited state, and the dotted line represents the PA values for
the first singlet excited state.
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Table 4 Descriptors values for the first excited state of PP obtained with B3LYP and CAM-B3LYP xc-functionals and 6 BSs out of the
15 investigated in this contribution. Two dihedral angles have been chosen (0 and 80 degrees).

Angle 0 degree

BS K

B3LYP CAM-B3LYP B3LYP CAM-B3LYP B3LYP CAM-B3LYP

ϕS ϕ‘
S ϕS ϕ‘

S φ φl φ φl ψ ψ l ψ ψl

3-21G 135 0.33 0.43 0.74 0.71 0.86 0.82 0.60 0.63 0.23 0.31 0.57 0.54

6-31G 135 0.32 0.42 0.73 0.69 0.86 0.83 0.62 0.65 0.23 0.30 0.55 0.52

6-31+G 187 0.31 0.41 0.70 0.66 0.87 0.83 0.63 0.66 0.22 0.30 0.53 0.50

6-31G(d) 213 0.31 0.42 0.73 0.69 0.86 0.83 0.61 0.65 0.22 0.30 0.56 0.52

6-311+G(d) 313 0.31 0.40 0.71 0.66 0.87 0.84 0.63 0.66 0.22 0.29 0.54 0.50

6-311++G(2d,p) 414 0.31 0.41 0.70 0.66 0.87 0.83 0.63 0.66 0.22 0.29 0.53 0.50

Angle 80 degrees

BS K

B3LYP CAM-B3LYP B3LYP CAM-B3LYP B3LYP CAM-B3LYP

ϕS ϕ‘
S ϕS ϕ‘

S φ φl φ φl ψ ψ l ψ ψl

3-21G 135 0.53 0.54 0.37 0.34 0.81 0.82 0.90 0.93 0.37 0.37 0.25 0.22

6-31G 135 0.55 0.55 0.33 0.30 0.81 0.82 0.92 0.94 0.38 0.38 0.22 0.20

6-31+G 187 0.50 0.51 0.30 0.26 0.84 0.85 0.93 0.95 0.35 0.34 0.20 0.17

6-31G(d) 213 0.54 0.54 0.33 0.30 0.81 0.83 0.92 0.94 0.37 0.37 0.22 0.20

6-311+G(d) 313 0.49 0.50 0.30 0.26 0.84 0.86 0.93 0.95 0.34 0.33 0.20 0.17

6-311++G(2d,p) 414 0.49 0.50 0.30 0.27 0.84 0.85 0.93 0.94 0.34 0.33 0.20 0.18



accuracy of the PA-approximation. Indeed, while the xc-functional does

not explicitly play any role in the definition of the F rule, since we

established that the ϕ‘
S approximation reliability was CT nature-

dependent, overtuning the hole/particle overlap down by changing the

xc-functional at certain geometries might result in ϕS values that cannot

be approximated by L€owdin’s symmetrically orthogonalized orbitals pop-

ulation analysis. Note however that when turning to diagnosis d8 the con-

clusions related to the CAM-B3LYP computation of PP excited states are

transferrable to the other two range-separated xc-functionals, LC-ωHPBE

and ωB97X-D (as well as the CIS and TDHF results). On the other hand

the B3LYP results also hold for the other hybrid xc-functional PBE0 while

M06-2X reproduces the analysis of range-separated hybrid xc-functionals,

which is a feature already reported in Ref. 60. All the data for the six

xc-functionals and the data related to the CIS and TDHF excited-state

computations can be found in Tables S50–S170 and Figures S3–S378.
B3LYP and CAM-B3LYP data are also reported in Table 4 where two

PP twist angles, 80 and 0 degrees, have been selected, as they allow us

to highlight the particular behavior of B3LYP for this molecule with a

low dihedral angle.

Finally, as reported in Table 4 for six basis sets and in SI for the nine

others that were used in this investigation (d7), again, once the convergence

on the basis set is achieved for the ϕS value, the accuracy of the ϕ
‘
S approx-

imation is stable. This allows us to conclude that if the BS used is reliable for

the excited-state computation, its size will not influence the accuracy of the

ϕ‘
S approximation.

5. Discussion

Our approximation here is to consider the L€owdin symmetrically

orthogonalized orbitals as being centered in one point and multiplying or

subtracting diagonal entries of S1/2DS1/2 and S1/2AS1/2 as if we were

manipulating point charges with precise locations (centered on the atomic

positions), so that L€owdin’s symmetric orthogonalization tails are ignored in

such a model. However, as we saw, there are few cases in which our approx-

imation is limited.

In a diatomicmolecule for example: if the atomic orbitals are indeed cen-

tered on atomic positions, the orthogonalization tail for the transformation

of the orbital centered on the first atom, will be centered on the position of
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the second one (see figure in chapter 3 of Ref. 61). More generally,

L€owdin’s symmetrically orthogonalized orbitals have orthogonalization tails

centered on the position of other atoms and can no longer be considered as

strictly centered on one position, unlike the original atomic orbitals.

Therefore, for small molecular systems, the presence of these orthogo-

nalization tails introduces a bias into the picture of the electronic distribu-

tion given by the population analysis we wish to use. Since the number of

atoms is reduced, among the atomic orbitals there is a high percentage of

them that is likely to possess a significant overlap. In such a case, the orthog-

onalization tails are distributed over a few atoms in a close region of space,

so the deviation from our “local population” model (i.e., ignoring the

orthogonalization tails), introduces a bias of significant relative importance

in the population analysis.

The bias can also be significant for very high values of ϕ‘
S (greater than

0.90), since in that case there are numerous contributions from many pairs

of atomic orbitals that are to be considered. In such a case, the number and

importance of the orthogonalization tails that are ignored in the model

increases. More generally there is a collective effect observed from the

sum of the individual small contributions to the deviation from the exact

integral value.

For low values of ϕ‘
S (less than 0.5) the problem is quite different: Such

low values for the hole/particle L€owdin population overlap means that only

a few diagonal product amplitudes are nonnegligible. Since these contribu-

tions are summed, introducing a bias on the value of a few number of entries

of small amplitude can introduce a strong deviation on the total outcome of

the evaluation of F. This bias is assumed to be particularly substantial for

molecular Rydberg states, since in principle those should lead to extremely

low values of ϕS.

6. Conclusion

We reported the study of two computational methods for evaluating

two types of integral related to the nature of molecular electronic transitions.

The first type of integral is the spatial overlap between two density functions,

while the second type separately sums the positive and negative entries of a

difference-density function. The first integral evaluation method tested is

the projection of the one-body reduced density matrices corresponding

to the density functions onto the Euclidean space using Cartesian grids
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and discrete summations. The second evaluation path is the population

analysis of the related density matrices in the basis of symmetrically orthog-

onalized orbitals. The diagnosis is related to two rules (F andH) mapping the

orbital space to a scalar quantity.

Our first conclusion concerns the first integral evaluation method: we

observed that the precision of the results of our numerical integrations on

Cartesian grids is converged for medium-density grids with six points per

bohr for the three directions of space. We also reported that the degree

to which a trace of some relevant matrices can be evaluated exactly and

allows the quality of the grid to be diagnosed.

Regarding the diagnosis of the population analysis, we first noticed that

the behavior of the F and H rules was very similar and decided to focus the

analysis on the F rule leading to the PA-approximation (ϕ‘
S) to the hole/

particle spatial overlap integral ϕS.

We then deduced from an extensive diagnosis of the F rule that its accu-

racy depends on the size of the target molecular systems, and on the nature of

the electronic transitions considered. Basically, the PA-approximation to ϕS

is limited to medium- and large-sized molecular systems. In addition to that,

ϕ‘
S values below 0.5 (for small and medium-sized molecules) and above 0.9

for any type of molecule should not be trusted, so that numerical integrations

should be performed in such occurrences.

We also noticed that large ϕ‘
S gradients are not necessarily corresponding

to large errors in the population analysis, and that globally the accuracy of the

PA-approximation is independent from the size of the basis set used, apart

for very small basis sets that in any case would not be used for the accurate

computation of excited-state properties in general.

Appendix

A comment on the nomenclature used in the literature and here, a

brief reminder on density matrices and density functions and the derivation

of the detachment/attachment density matrices, are given in the arXiv

repository 1902.05840, and is available using the “pdf” link in the Down-

load section. In the same text, one can find a comment related to the

construction of the G and H rules, and the generalization of the orbitals

population analysis, as well as the demonstration leading to the conclusion

that only a L€owdin-like scheme ensures physical orbital populations.

Finally, the relaxed picture of a transition, and the related descriptors, are
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discussed there, before concluding with some comments on the use of the

G and H rules in the context of previous papers, and in the present one.

Tables S1–S170, and Figures S1–S378, are also available at the same address

(arxiv.org/abs/1902.05840) in the Supplementary_Information.pdf file

downloadable in the ‘Ancillary files’ section.
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Function Analysis for Excited States of Transition Metal Complexes. Coord. Chem. Rev.
2018, 361, 74–97.

36. Mewes, S. A.; Plasser, F.; Krylov, A.; Dreuw, A. Benchmarking Excited-State
Calculations Using Exciton Properties. J. Chem. Theory Comput 2018, 14, 710–725.

37. Skomorowski, W.; Krylov, A. I. Real and Imaginary Excitons: Making Sense of Res-
onance Wave Functions by Using Reduced State and Transition Density Matrices.
J. Phys. Chem. Lett. 2018, 9, 4101–4108.

308 Gabriel Breuil et al.

http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0100
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0100
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0100
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0100
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0105
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0105
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0110
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0110
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0110
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0115
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0115
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0120
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0120
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0120
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0125
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0125
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0130
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0130
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0130
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0135
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0135
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0140
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0140
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0145
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0145
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0145
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0145
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0145
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0150
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0150
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0150
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0155
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0155
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0155
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0160
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0160
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0165
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0165
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0165
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0165
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0170
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0170
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0170
https://doi.org/10.5772/intechopen.70688
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0180
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0180
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0180
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0185
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0185
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0190
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0190
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0190


38. Park, Y. C.; Perera, A.; Bartlett, R. J. Low Scaling EOM-CCSD and EOM-MBPT(2)
Method With Natural Transition Orbitals. J. Chem. Phys. 2018, 149, 184103.

39. Barca, G. M. J.; Gilbert, A. T. B.; Gill, P. M. W. Excitation Number: Characterizing
Multiply Excited States. J. Chem. Theory Comput. 2018, 14, 9–13.

40. Etienne, T. A Comprehensive, Self-Contained Derivation of the One-Body
Density Matrices From Single-Reference Excited States Calculation Methods Using
the Equation-of-Motion formalism. arXiv:1811.08849 [physics] 2018, ArXiv:
1811.08849.

41. Peach, M. J. G.; Benfield, P.; Helgaker, T.; Tozer, D. J. Excitation Energies in Density
Functional Theory: An Evaluation and a Diagnostic Test. J. Chem. Phys. 2008, 128.
044118-044118-8.

42. Le Bahers, T.; Adamo, C.; Ciofini, I. A Qualitative Index of Spatial Extent in Charge-
Transfer Excitations. J. Chem. Theory Comput. 2011, 7, 2498–2506.

43. Garcı́a, G.; Adamo, C.; Ciofini, I. Evaluating Push-Pull Dye Efficiency
Using TD-DFT and Charge Transfer Indices. Phys. Chem. Chem. Phys. 2013, 15,
20210–20219.

44. Guido, C. A.; Cortona, P.; Mennucci, B.; Adamo, C. On the Metric of Charge Transfer
Molecular Excitations: A Simple Chemical Descriptor. J. Chem. Theory Comput. 2013, 9,
3118–3126.

45. Guido, C.; Cortona, P.; Adamo, C. Effective electron displacements: A tool for time-
dependent density functional theory computational spectroscopy. J. Chem. Phys. 2014,
140, 104101.

46. Etienne, T.; Pastore, M. Charge Separation: From the Topology of Molecular Elec-
tronic Transitions to the Dye/Semiconductor Interfacial Energetics and Kinetics.
arXiv:1811.10526 [physics] 2018, ArXiv: 1811.10526.

47. Campetella, M.; Perfetto, A.; Ciofini, I. Quantifying Partial Hole-Particle Distance at
the Excited State: A Revised Version of the DCT Index. Chem. Phys. Lett. 2019,
714, 81–86.

48. Bachrach, S. M. Reviews in Computational Chemistry. John Wiley & Sons, Ltd, 2007;
pp 171–228.

49. L€owdin, P. On the Non-Orthogonality Problem Connected With the Use of Atomic
Wave Functions in the Theory of Molecules and Crystals. J. Chem. Phys. 1950, 18,
365–375.

50. Frisch, M. J. Gaussian16 Revision A.03. Gaussian Inc: Wallingford CT, 2016.
51. Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self-Consistent Molecular-Orbital Methods.

IX. An Extended Gaussian Type Basis for Molecular Orbital Studies of Organic
Molecules. J. Chem. Phys. 1971, 54, 724–728.

52. Frisch, M. J.; Pople, J. A.; Binkley, J. S. Self-consistent Molecular-Orbital Methods
25. Supplementary Functions for Gaussian Basis Sets. J. Chem. Phys. 1984, 80,
3265–3269.

53. Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange.
J. Chem. Phys. 1993, 98, 5648–5652.

54. Adamo, C.; Barone, V. Toward Reliable Density Functional Methods Without
Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110, 6158–6170.

55. Zhao, Y.; Truhlar, D. The M06 Suite of Density Functionals for Main Group
Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited
States, and Transition Elements: Two New Functionals and Systematic Testing of
Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Account 2008,
120, 215–241.

56. Yanai, T.; Tew, D. P.; Handy, N. C. A New Hybrid Exchange–correlation Functional
Using the Coulomb-AttenuatingMethod (CAM-B3LYP).Chem. Phys. Lett. 2004, 393,
51–57.

309Diagnosis of two evaluation paths

http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0195
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0195
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0200
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0200
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0205
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0205
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0205
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0205
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0210
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0210
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0210
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0215
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0215
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0220
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0220
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0220
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0225
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0225
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0225
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0230
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0230
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0230
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0235
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0235
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0235
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0240
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0240
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0240
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0245
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0245
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0250
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0250
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0250
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0250
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0255
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0260
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0260
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0260
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0265
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0265
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0265
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0270
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0270
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0275
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0275
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0280
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0280
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0280
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0280
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0280
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0285
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0285
http://refhub.elsevier.com/S0065-3276(19)30020-6/rf0285


57. Vydrov, O. A.; Heyd, J.; Krukau, A. V.; Scuseria, G. E. Importance of Short-Range
Versus Long-Range Hartree-Fock Exchange for the Performance of Hybrid Density
Functionals. J. Chem. Phys. 2006, 125. 074106-074106-9.

58. Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals
With Damped Atom-atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008,
10, 6615–6620.

59. Hirata, S.; Head-Gordon, M.; Bartlett, R. J. Configuration Interaction Singles, Time-
Dependent Hartree–Fock, and Time-Dependent Density Functional Theory for the
Electronic Excited States of Extended Systems. J. Chem. Phys. 1999, 111, 10774–10786.

60. Etienne, T.; Gattuso, H.;Michaux, C.;Monari, A.; Assfeld, X.; Perpète, E. A. Fluorene-
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Abstract

First-principles approaches to key points on reaction paths at metal surfaces are now
required to deliver chemical accuracy compared to reliable experiment. By this we
mean that such calculated values as the activation barrier should be available to within
1 kcal/mol of empirical values. Such accuracy excludes ab initio DFT.

Quantum Monte Carlo (QMC) is a promising (albeit lengthy) first-principles method
to achieve this goal and we are now beyond the dawn of QMC benchmarks for metal
catalyst systems, since hydrogen dissociation on the copper Cu(111) face was studied
with quite adequate accuracy in two improving QMC studies and compared to molec-
ular beam measurements (Doblhoff-Dier et al., 20174; Hoggan, 20153).

The present work determines physisorption energies for hydrogen (the atoms and
molecules) on platinum, i.e., Pt(111). Such systems are used as asymptotes to determine
reaction barriers. The reference is a clean Pt(111) surface and isolated hydrogen atom or
molecule.

Pt and Cu require the use of pseudo-potentials in these large calculations and we
show that those of Pt are less problematic than the Cu case, notably for QMC work.

Previous work gave the activation barrier to hydrogen dissociation on Pt(111) using
the bridging geometry. The method used is state-of-the-art (ab initio) QMC. It gives the
barrier to better than chemical accuracy. Specific reaction parameter (SRP-DFT)
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calculations agree. They are fitted to measurement (accurate molecular beam results)
(Nour Ghassemi et al., 2017). SRP-DFT can thus be considered empirical.

The QMC approach evaluates the hydrogen dissociation barrier on Pt(111) as
5.4 kcal/mol with standard error below 1 kcal/mol (The SRP-DFT barrier is 6.2 kcal/mol).

This is encouraging for establishing less well-known benchmark values of industrial
reaction barriers on Pt(111).

1. Introduction

Stochastic approaches to the time-dependent Schr€odinger equation
are currently attracting significant rapidly growing interest. Such an approach

is the QuantumMonte Carlo (QMC) method, which is applied here. Errors

can be made small, given time. The procedure scales well on highly parallel

computers.

QMC has become quite well-established for application to molecules.

One example is the Scemama et al. all-electron (434 electron) QMC energy

difference calculation between the β-strand and α-helix conformations of

amyloid peptide A β related to Alzheimer’s disease.1

Solids and heterogeneous systems are less studied by QMC, because of

error linked to finite-size and fixed-nodes (phase). However, in recent years

major methodological progress has been made and periodic systems (or het-

erogeneous systems that can bemade periodic) are well-provided for by soft-

ware, such as the CASINO code that we have developed after the principal

authors provided a tested starting point. Applications to, e.g., metal surfaces

and, a fortiori their catalytic properties, are still a work-in-progress. Our mul-

ticonfigurational molecular “active-site” approach embedded in a periodic

solid surface is described in the Ref. 2. It uses orbitals for the molecule, the

whole system is expanded in plane-waves for QMC input.

Certain metal surfaces catalyze hydrogen dissociation. In our previous

work, transition-state (TS) geometry was compared to that of the reacting

molecules at a distance of over 6 Å from the surface. This was done firstly to

avoid breaking the surface 2D symmetry by comparing the adsorbed TS to

separate molecules and clean surface, secondly because it models catalytic

reactions more closely and, last but not least, because comparing the same

molecules in these two distinct geometries reduces fixed-node error

(see below). However, it is convenient to refer to clean surface energy. Also,

even at long range, there is some physical interaction betweenmolecules and

the surface. The work described here aims to study physisorption of very

312 Rajesh O. Sharma and Philip E. Hoggan



simple systems and compare the errors committed by using long-range

molecule-surface asymptotes as compared to the clean surface reference.

Our recent benchmark studies for hydrogen dissociation at a Cu(111)

surface, compare specific reaction parameter (SRP) density functional the-

ory (DFT) and state-of-the art Quantum Monte Carlo. Reliable molecular

beam reaction barrier measurements are used.3,4

The QMC benchmark assumes a planar Cu(111) surface, which is an

approximation.5

The SRP-DFT fixes a parameter experimentally, to combine two Per-

dew group functionals (PBE and PW91), in so doing their defects for barrier

heights are much-reduced.

To limit the QMC fixed-node error (see below), the same atoms were

compared in two geometries. The higher-energy “transition-state” structure,

determined by QMC geometry optimization as a maximum along the reac-

tion path is compared to an “asymptotic geometry.” In the latter, atoms, or

more generally molecules in their equilibrium geometry, i.e., experimental

H2, from Hertzberg, are placed 6.5 Å from the solid surface, an estimated

long-range limit of weak interactions. We used this as asymptotic geometry

for Cu(111) and Pt(111) surfaces.

In the present work, this asymptotic geometry is compared for the

hydrogen molecule and also the atom to the separate clean surface and mol-

ecule or atom. Analytical isolated H atom energy has well-known values and

the hydrogenmolecule energy can also be determined to arbitrary numerical

accuracy.

This study therefore shows how referring to the clean surface influences

the errors due to differences in the trial wave-function, in particular its nodal

changes between the clean surface and the physisorped asymptotewith, e.g., a

physisorped hydrogen molecule. Quantitative evaluation of interactions

between physically adsorbed species and Pt(111) is given here. This interac-

tion is generally so small as to fall within standard error of the clean Pt(111)

slab calculation in QMC. Nevertheless, it is useful to compare the clean

surface and isolated reactant reference to that with all atoms involved in a

reaction, initially physisorped beyond the range for binding strongly to Pt.

Here, clean Pt(111) and isolated H2 are tested for reliability as a reference

for hydrogen dissociation on platinum. As stated above, the equilibrium

molecule at asymptotic geometry was used in previous work on H2 disso-

ciation at Pt(111). The system tested is Pt(111), for bridging hydrogen dis-

sociation with a low activation barrier. It is given by QMC to within

chemical accuracy of experiment.6
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In QMC calculations, the Pt(111) case is more favorable than copper,

since the metal can be described by trial wave-functions with variance an

order of magnitude less than in the copper case, which is adversely affected

by the presence of a full 3d shell. The Pt pseudo-potentials used in this study

are stringently analyzed and used to determine atomic spectra.

This study aims to explain industrial catalyst mechanism. Catalysts often

use Pt(111) for selective reactions triggered by bond-breaking. This surface

also catalyzes bond dissociation in hydrogen. Unfortunately, Pt(111) does

not yet benefit from accurate molecular beam results for the reaction.

A recent DFT study7 shows that there are several coordinations of the hydro-

gen molecule, leading to two main categories of transition-state; “on-top”

and “bridging” geometries: they are mono and bidentate, respectively, for

Pt atoms. The “on-top” molecule is perpendicular to the surface plane.

The reaction then appears to be almost barrier free. The “bridging” geom-

etry spans a surface Pt–Pt pair, parallel to the surface.

The Quantum Monte Carlo approach used here is ab initio (unlike the

SRP-DFT method) but subject to the fixed-node approximation and

time-consuming. It could be used for fitting a DFT functional. Rapid

DFT calculations would then allow potential energy surfaces to be explored,

fixed at a few points calculated by the present QMC approach.

The methods used in this work were developed in Refs. 3, 4, 8, 8a, and 9

that describe them fully.

QMC benchmarks the accurately measured and significantly higher bar-

rier for hydrogen dissociation onCu(111) to within some 1.5 kcal/mol.4 The

barrier onCu(111) has been given by accuratemolecular beam experiments at

0.63 eV or 14.5 kcal/mol. TheH2molecule dissociation on Pt(111) has a low

experimental barrier which depends strongly on the molecular orientation

and active site and ranges from some 0.06 to 0.420 eV. The higher barriers

are for trigonal sites on the surface with minimal rearrangements and no

defects.7

For a H2 molecule parallel to the surface, the lowest experimental barrier

is 0.27 eV.

Evaluating the bridging hydrogen dissociation barrier on Pt(111) is

therefore likely to pose a stiff challenge to QMC. Our previous work

shows hydrogen dissociation QMC barriers are reliable on Pt(111) for

“bridge” orientations (standard error under 0.043 eV or 0.99 kcal/mol

of chemical accuracy, i.e., within 1 kcal/mol). The DMC bridge activation

barrier height is obtained as 0.23 eV. Experiment gives 0.27 c.f. 0.23 �
0.043 eV.6
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This work investigates any differences found regarding the reference to a

clean surface and isolated molecule, as opposed to the physisorped molecule

asymptote (equilibrium geometry at long range from the surface). Best prac-

tices are thus suggested to calculate these heterogeneous systems in QMC.

Wave-function nodes are modified between the (2D) clean surface and

asymptotes.

This is manifest in the desorption of open-shell radicals (like theH-atom).

The closed-shell H2 breaks translational symmetry. This 2 by 2 k-point

grid trial wave-function doubles x and y of the real-space cell. This unfolded

cell then contains 64 Pt atoms and 4 H2 molecules (i.e., having a coverage-

layer symmetry artefact). These extra wave-function nodes affect the fixed-

node approximation result in QMC, to give small energy differences for

physisorption.

2. Methods, best practices: QMC for solid surfaces

Our Slater determinant is built of ground-state Kohn–Sham orbitals

obtained using the Perdew, Burke, Ernzerhof (PBE) functional (and

ABINIT code) for periodic slabs with a suitable pseudo-potential for all

atoms in a plane-wave basis.

The Pt slab surface is (111) with 2 atoms along [110� and 2 along [011�
(see Fig. 1) in equilateral triangles. The 4 layers of this cell are stacked ABAB,

B-atoms under centers of A triangles. The bulk lattice-parameter is a ¼
3.912 Å. The top 3 layers are relaxed to reproduce experimentally observed

spacing. Layers 3 and 4 are exactly a bulk affiffi
3

p apart.

Either a single H-atom (therefore one unpaired spin H.) is positioned

vertically 6.5 Å above (one of the four) surface Pt atoms, or a H2 molecule

A B(111)

n6

n5 n4

n3

n2n1

[111]Lattice constanta*: [110]

[112]

[101]

[110]

[011]

Fig. 1 Pt slab: 2 � 2 atoms in a (111) surface, 4 ABAB layers cut from the FCC lattice.10

(A) Face centered cubic structure with (111) face exposed. (B) Packing in (111) face.
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symmetrically bridging two adjacent Pt atoms along, e.g., [110� (H2 parallel

to the surface and 6.5 Å above it).

Pt with a Troullier–Martins (TM)-PP leaves 10 valence electrons per

atom (160 per cell) plus 1 or 2, for the H-atom or molecule, respectively.

For the Z ¼ 60 Pt pseudo-potential, with 18 valence electrons per Pt,

there are 288 electrons per super-cell. Since the plane-waves are generated

on a 2 2 1 k-point grid, the total numbers of electrons input to QMC corre-

spond to four real-space cells, giving (for physisorped atomicH) 4 * 161¼ 644

(for the TM-PP) and thus 4 * 289 ¼ 1156 (for the Z ¼ 60 PP).

The plane-waves basis is expanded in B-splines to ensure favorable scal-

ing with system size (computer time, t proportional to n3 for n-electrons).10a

A generic Jastrow factor (gJastrow) is premultiplied into the Slater-

determinants (from Kohn–Sham spin-orbitals in the present work). This

must account for all possible interactions of electrons with different spin.

The product is the Slater–Jastrow wave-function. It is used to evaluate

the local energy:

Elocal ¼Hψ

ψ

A Monte Carlo algorithm solves the requisite integrals stochastically, to

give the local energy for a distribution of particle positions (configurations).

From these, we obtain an expectation value (average) subject to the variation

principle.

The set of configurations or “walkers” represents particle density in real

space. The number of configurations used here was 4 per core, i.e., 16384

for a 4096 core calculation. These were checked for bias (they could be visu-

alized as a “normal” distribution). Low variance is a criterion of reliability of

the configuration distribution. By extension, a low-variance wave-function

is often sought by optimization. Finer (gJastrow) optimization is preferably

carried out (for minimal variance) with respect to ground-state energy esti-

mated as this local energy.

The best (i.e., minimum) result is obtained by the step termed Vari-

ational Monte Carlo (VMC). After a fairly brief equilibration, VMC

is used to optimize the unknown parameters in the Jastrow factor, to

reduce wave-function variance and, above all, VMC is used for energy

minimization.

The Jastrow factor spin-dependence for electron pairs (α(i)β(j) 6¼
α(i)α(j), or ¼ α(i)α(j)) is chosen from the physics of combining atoms to

form polyatomic systems. In this case, radical H atoms are physisorped,
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remaining open shell whereas the molecule is closed shell, whether iso-

lated or physisorped. The metal slab may have a complete set of spin

interactions.

The Jastrow optimization must be done carefully in all cases. The most

flexible parameter-set structure in CASINO uses the Common Algebraic

Specification Language (CASL).

It is generally best practice to variationally optimize first with respect to

mean absolute deviation from median energy (madmin). Then, more fine

tuning can be applied with energy minimization using VMC to optimize

free parameters in the Jastrow factors expressed as polynomials in the instan-

taneous inter-particle separations (with range fixed by madmin).

Once this gJastrow is optimal the VMC step is run once more, to gen-

erate the requisite configurations per core to initialize the Diffusion Monte

Carlo (DMC) step, then the major time-consuming phase of QMC begins.

DMC samples the exact wave-function as follows:

(i) The time-dependent Schr€odinger equation is transformed into a

diffusion equation by replacing the time-variable “t” by (pure-

imaginary) “it.”

(ii) This imaginary time is treated as “time” (often labeled τ) and increased
in small steps. Equilibration may be quite long so a fairly large incre-

ment of 0.01 au was used for this phase.

The set of configurations are subject to diffusion and drift and represent the

asymmetric density formed by the trial and updated wave-function product

(ΨT * Ψ0).

Since an arbitrary wave-function of the system can be expanded in

eigenfunctions of its Hamiltonian and we seek that with lowest energy

(eigenvalue of the exact ground-state Ψ0), the others present in the approx-

imate trial wave-function ΨT, fade out exponentially with the advance in

time-variable τ by small steps.

In the data collection phase, τ should thus be vanishingly small. Often, in

practice, it is sufficient to chose 0.005 au, as was done in this work. Time-

step bias is controlled by halving it, rerunning and, if necessary showing the

extrapolation to zero changes no observable value of interest. See Ref. 11

and references therein.

2.1 Soft pseudo-potentials and correlation for Pt atoms
The atomic cores are represented by pseudo-potentials. They correspond

to atomic orbitals that are radially node-less up to a given radius.
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This approximation is required for the calculations to take accessible computer

time. These pseudo-potentials are relativistically correct, which is a definite

prerequisite. The Pt atom here has a relativistic Z ¼ 60 core defined by

pseudo-potentials designedby theStuttgart group;Ref. 8 and references therein.

The atomic spectra are accurately reproduced by spin-polarized guiding

wave-functions in the DMC tests carried out as a prelude to this work.

Each of the platinum group metals (Ni, Pd, and Pt) has a different atomic

electronic ground-state configuration. The vast majority of correlation

energy is accounted for by the region immediately surrounding atoms, even

when few electrons are treated explicitly, i.e., for large core pseudo-

potentials. This suggests the relevance of both spin-orbit coupling and the

nonlinear core correction (NLCC)12 in pseudo-potentials as well as a con-

figuration interaction (CI) of 3 states. Troullier–Martins PP for Pt leaves

10-valence electrons. Their electronic configurations for these three states

are: [5d9 6s1] (ground state), [5d8 6s2], and [5d10].

This CI is based on the ground-state electronic configurations of Ni, Pd,

Pt. TheNi ground state is 3d8 4s2 (compared to copper Cu 3d10 4s1), Pd 4d10,

and Pt 5d9 6s1.

The pseudo-potential is expanded in spherical harmonics, with one

l-value as local channel. These values are usually l ¼ 0, 1, 2, 3. The local

l selected corresponds to vacant valence states. The default is the maximum,

l ¼ 3. However, in this work, l ¼ 1 reduces nonlocal effects.

Previous studies have shown that the nonlocality approximation is

poorly satisfied for Cu (especially with the l ¼ 0 local channel but also with

other choices).9 Tests have shown that this is a minor problem for Pt, par-

ticularly with the l¼ 1 local-channel choice. The other channels up to l¼ 3

require high-order nonlocal integration.

Resolution of the electronic spectrum for the Pt atom shows accurate

excitation energies for spin-polarized cases, in particular for the transition

between the ground-state Pt 5d9 6s1 (3D3) and Pt 4d10 (1S0).

All results are in atomic units/primitive cell [Hartree (Ha)/cell] unless

otherwise stated.

The ABINIT pseudo-potential is the Fritz-Haber Institute (FHI)

Troullier–Martins PP.

This PP leaves 10 valence electrons and gives:

Ground state at �26.0113195 Ha

Excited state at �25.9833442 Ha (large-CI value �25.9851687 Ha,

from Ref. 13; a 6% gap error).
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Transition: 0.762 eV (error 0.0496 eV)

Using the Stuttgart PP (60 electron core vide infra) gives 0.76 eV (exact

to 0.25 %).

The other excited states are resolved quite adequately.

Fixed-node error arises because this QMC implementation uses a product of

input wave-function and its update to represent “density” and even the

accurate diffusion step (DMC) where configurations are updated to repre-

sent this density will have the same nodes. A significant portion of the fixed-

node error is due to atomic cores. It is minimized by subtracting energies

corresponding to structures with the same number of metal atoms.13a This

feature is also observed when comparing clean metal surfaces and gaseous

reactant with an atom or gas molecule physisorped at the metal surface, as

a precursor for the reacting system. This fine energy resolution has been

tested successfully in the cases of hydrogen radicals as well as the H2molecule

physisorped on Pt(111).

Note that nonlocality in the pseudo-potential requires a specific algo-

rithm to cater for the requisite integral and render DMC variational. It is

referred to as the Casula T-move scheme.14 Tests below show that use of

this algorithm stabilizes the results and renders them more accurate even

for the relatively well-behaved pseudo-potentials with Z ¼ 60, for Pt.

3. Results for hydrogen atoms and molecules on Pt(111)

Test of H-atom adsorptionwithout recourse to Casula T-moves, gives

(in Ha/primitive cell):

(with l ¼ 1 as pseudo-potential local channel)

Clean Pt(111) surface: � 409.1354 � 0.002

Surface with a H atom: � 409.6360 � 0.003

Difference: � 0.5006 � 0.0036. The exact isolated ground-state energy of

H is �0.5 by definition. A very modest stabilization estimated at 0.0004 Ha

may be deducted (from our estimate) giving �0.5002.

Solid Pt model slabs expose the compact (111) face. They are detailed in

Ref. 6. Fig. 1 shows this model. Slabs are 4 layers thick and most studies use a

2 by 2 mesh.

The l ¼ 0 local channel is the worst-case scenario. The work continued

with l ¼ 1 as local channel and Casula T-moves, which also gives the accu-

rate atomic spectra for Pt.
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The clean surface averages �408.428 Ha and that with physisorped H2

�409.687 Ha.

Resolution of the H2 energy thus requires twist-averaging and a phy-

sisorption term, as the free molecule can be obtained with exact total energy

at �1.1758 Ha.

Note that the optimized VMC values, using energy minimization, give

brute differences close to the exact value: clean Pt(111) at �407.56 and

�408.73 Ha with physisorped H2. The difference is 1.17 Ha. It is essentially

exact (see Table 1). The standard error for this test is close to 0.01 Ha.

This suggests a defect in the pseudo-potential that becomes apparent when

the more accurate DMC method is applied. DMC implementations con-

verge quadratically and may be subvariational beforehand.

Subvariational DMC values are amplified by nonlocal pseudo-potentials

and we use the variational Casula T-move schemewhen this is seen. This has

been well-documented for copper in our previous work.9 It causes difficul-

ties for physisorption of hydrogen. By using T-moves and varying the local

channel of the pseudo-potential more stable statistics ensued. One of the

harmonics of order l is chosen to be local, generally the highest present, i.e.,

l ¼ 3, however, l ¼ 1 reduces nonlocality error here. This accounts for part

of the defect in resolving the H2 physisorption. The remainder cancels by

comparing the same molecules, with bond-length near the equilibrium

value (for isolated hydrogen molecules or even the physisorped system).

T-moves bring the estimate of hydrogen molecule total energy from a

twist-averaged (over 20 offset grids) is improved, value of �1.1510 to

�1.1721 Ha (0.0037 Ha lower). This difference is the contribution to sys-

tematic error of nonlocality in the pseudo-potential.

This PP leads to a 2.5 % error in the total energy of H2, which is not as

drastic as some 3d dimer binding energy errors.9 Subtracting the same

atoms gives the binding energy that corresponds to �1.1760 Ha (standard

error is: 0.0002). This low error in the subtraction is indicative of the nodes

being systematically in error in the trial wave-function of each system.13a

Subtraction improves the fixed-node error by about 95% in this case

(see Table 2).

Table 1 Total energy without T-moves in atomic units.
Structure VMC Etot DMC l 5 1 DMC l 5 2 DMC l 5 0

Clean Pt(111) 2 � 2 mesh �407.56 �408.536 �408.475 �408.602

Hydrogen molecule (phys.) �408.73 �409.687 �409.664 �409.706

Hydrogen molecule E (tot) �1.17 �1.15 �1.189 �1.104
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4. Perspectives and conclusions

The present study shows that calculations involving the clean Pt(111)

surface are consistent with those using asymptotic physisorped geometries.

The “same atom” systems are, nevertheless, more accurate. This phenom-

enon is ascribed to a cancelation of the majority of fixed-node error, when

the nodes should be comparable.

This is not the case when a clean surface is involved, because of intrin-

sically 2-D surface states, having specific nodal structure.

Surface 2D symmetry is broken once an atom is adsorbed. The compar-

ison of systems with the same atoms further renders the nodes comparable,

although not identical because of the consequences of geometry changes.

The formation and dissociation of bonds are certain to influence nodal

structure. These processes are strongly multireference (MR) in nature, so

the trial wave-function needs to reflect this. Setting up local active sites

with molecular MRCI wave-functions is now possible. Their use and

the effect on fixed-node error will be the subject of future work.

Some authors have already shown the advantages of a valence bond CI

with breathing orbitals for C–H bond dissociation in acetylene using

QMC.15 We will investigate related strategies.

This work completes preparation for elementary reaction step studies in

contact with Pt(111) and, subsequently, the rate-limiting step of catalytic

processes can be identified.
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Table 2 Total energy (H2 as difference of Pt(111) with and without it) uses T-moves in
atomic units.

Structure VMC Etot c DMC l 5 3 c
DMC atom
cons. DMC gas

Hydrogen molecule E (tot) �1.17 �1.1721 �1.1760 �1.1758485

Standard error 0.0005 0.00003 0.00002 0

Columns denoted c are the clean Pt(111) compared with the separate hydrogen molecule. Total molec-
ular energy is obtained by subtracting the clean Pt(111) energy from the physisorped system. The column
labeled DMC atom cons. is obtained by subtracting the asymptotic H-atoms on Pt(111) from the phy-
sisorped case. All are corrected for physisorption energy determined by QMC. The DMC gas column is
the isolated hydrogen molecule DMC.
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Abstract

The stability of a spherically confined atomic system when confinement is removed
is studied.We consider s, p, d, and f states of the Hydrogen atom confined by a finite barrier.
The stability is characterized in terms of the ionization probability of the atom when con-
finement is removed. The ionization probability presents different sharply peaked, non-
symmetric maxima as a function of the confinement radius that can be explained in
terms of tunneling and retunneling of the confined bound states. The spatial structure
of the confined bound state plays a key role in the stability of the atom. Different measures
arising from information theory, such as information entropy, disequilibrium indices, and
complexity measures, have been calculated to characterize quantitatively the structure of
the confined state. A direct relationship between the complexity of a confined state and its
stability when it is released from confinement has been found.

1. Introduction

The experimental achievement of inserting atoms and molecules in

molecular nanocontainers1–3 has increased the interest in these complexes.

Different applications of these structures have been proposed for energy

transport and storage4 or in medicine.5,6 Spatial confinement leads to a mod-

ification of the properties of enclosed species as, for example, the energy
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levels. Absorption and emission properties can be modified by the confine-

ment, see e.g.,7 so encapsulated atoms present interesting applications

because they open the possibility of designing materials with selected optical

properties.8

The bound state properties of encapsulated atoms and molecules have

been widely studied in the literature, see e.g., the reviews.9–12 However,

the knowledge of stability after confinement is much more scarce.13,14 This

aspect is important because many of the above mentioned applications are

based, first, on inserting the atom or molecule of interest into a molecular

cavity, and second, on extracting it for its future use. This requires that

the atom remains stable when confinement is removed, which is not

necessarily the case because spatial confinement changes the energy of the

encapsulated atom with respect to its value when no confinement is present.

This leads to a probability of ionization or dissociation of the atom or

molecule when it is extracted from the cage.

In this work we address the problem of the stability of an atom when it

is released from confinement. The ionization probability is calculated for dif-

ferent initial states and confining sizes. We consider a penetrable repulsive

spherically symmetric model for confinement which contains relevant phys-

ical features of spatial confinement.15,16 We study the excited states of the

Hydrogen atom, for which a very accurate analysis can be carried out and

it provides the basis for the understanding of this process for more complex

systems. The sudden approximation is employed for calculating the time

evolution of the atomic state when it is released from confinement. The

results have been analyzed in terms of energy and confined orbitals shell

structure that plays a key role in the stability of the atom when it is released

from confinement. The structure of the charge distribution is characterized

in terms of quantitative measures of the complexity of the electronic

density. The complexity is related to the information content, uncertainty

or delocalization of the electronic charge distribution. In Quantum Chem-

istry, several definitions of complexity have been applied to analyze different

properties and processes related to structure studies and reactivity.17 Atomic

units are used throughout this work.

2. Methodology

We start from a confined atom in a stationary state, Ψnlm
c ,

Hc Ψc
nlmðr!Þ¼Ec

nl Ψ
c
nlmðr!Þ (1)
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where Hc is the Hamiltonian of the confined Hydrogen atom

Hc ¼�1

2
r2�1

r
+ vcðrÞ, (2)

and vc(r) is the confining potential

vcðrÞ¼ v0 if r0� r � r0 +Δ
0 otherwise;

�
(3)

with r0 the inner radius, v0, the height, andΔ, the width of the barrier. Here,

we use v0¼ 2.5 andΔ¼ 5, as in Ref. 16. The wave function of the confined

state can be written as

Ψc
nlmðr!Þ¼

ucnlðrÞ
r

YlmðΩÞ: (4)

When the atom is extracted from the confining cavity, the Hamiltonian

reduces to that of the free Hydrogen atom. The wave function of the atom

when it is released from confinement can be expanded in terms of the

stationary states of the free Hydrogen atom

Ψf
lm r

!
, t

� �¼X∞
n0¼0

Cnl
n0 e

�iEn0 t Ψn0lm r
!� �

+

Z ∞

0

dE Cnl Eð Þe�iE t ΨElm r
!� �
: (5)

Note that, due to the spherical symmetry of the confining potential, l and m

do not change when confinement is removed.

If we assume that one can neglect the time to extract the atom from the

confining cavity, then

Cnl
n0 ¼

Z ∞

0

dr un0l rð Þ ucnl rð Þ, Cnl Eð Þ¼
Z ∞

0

dr uEl rð Þ ucnl rð Þ, (6)

where un0lðrÞ and uElðrÞ are the reduced radial functions of the bound and

ionized hydrogen states, respectively. The bound states are normalized to

one and the states of the continuum spectrum are normalized in the energy

scale. When confinement is removed, jCnl
n0 j2 gives the probability that the

electron lies in the {n0lm} bound state of the free atom, and jCnl(E)j2dE
is the probability that the electron is ejected with energy between E and

E + dE. The total ionization probability is calculated as

PI¼
Z ∞

0

dE jCnlðEÞj2, (7)
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and the probability that the atom is not ionized as

PB ¼
X∞
n0¼0

jCnl
n0 j2¼ 1�PI: (8)

The reduced radial functions are computed here by using the analytic

continuation method.18–20 This technique is based on a polynomial expan-

sion of the solution around each one of the tabular points. The interaction

potential is also expanded in a power series around these points. The linear

coefficients of the solution at each point are obtained through a three term

recursion relation. By using step sizes of 10�3 and polynomials of range 20,

very accurate solutions of the radial Schr€odinger equation are obtained. The
calculation of the integrals giving the C coefficients, Eq. (6), can be done

analytically by using the piecewise polynomial representation of the reduced

radial function.

Quantitative analysis of complexity is based on measure indices which

provide different information about the confined system. These indices

can be written as the product of two terms, one related to the disequilibrium

from the most probable state and the other to the information content of the

system. In particular, we consider complexity measures proposed by López-

Ruiz et al.21 (LMC) in its shape complexity form,22 and the Fisher-Shannon

complexity23 (FS). Information, delocalization, and complexity indices have

been employed to quantitatively study the importance of the shape and

structure of the electronic charge distribution of different properties17 and

effects as for example relativistic24 and confinement effects.25,26

The shape form of the LMC index in position space is defined as

Cs
r ¼DrHr , (9)

whereDr is the disequilibrium function given by the density expectation value

Dr ¼
Z

dr
! ρ2ðrÞ, (10)

with ρ(r) the spherically averaged electron density distribution normalized to

unity. Dr is related to the distance from the most probable state, the equi-

librium, which within this framework is the uniform density.

Hr is a measure of the information of the state and it is defined as

Hr ¼ eSr (11)

where Sr is the Shannon information entropy
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Sr ¼�
Z

dr
! ρðrÞlnρðrÞ: (12)

On the other hand, the FS index is, in position space,

Pr ¼ Ir
1

2πe
Hr

2
3, (13)

with the Fisher information measure, Ir, as

Ir ¼
Z

dr
! jr! ρðrÞj2

ρðrÞ : (14)

This is another measure for the distance from the most probable state.

3. Results and discussion

In Fig. 1, we plot the energy of the confined 2p to 5p states as a func-

tion of r0. It is negative and presents a sawtooth structure. Each np orbital

energy has n � 1 local maxima whose positions coincide with the positions

of the local minima of the (n + 1)p orbital energy.

The physical origin of these kinks lies in the behavior of the orbitals

around some critical values of the confinement radius r0. This is studied
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E
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E2p
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Fig. 1 Energy of the confined 2p to 5p states as a function of the confinement size, r0.
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in Fig. 2,wherewe plot in the upper panel, the 4porbital obtained for r0¼ 25.15

and r0 ¼ 25.20. The unconfined orbital, i.e., without the penetrable barrier,

is also plotted for the sake of comparison.

For r0 ¼ 25.20 the 4p state is within the confinement region. A small

decrease of the confinement size, r0 ¼ 25.15, leads to an abrupt change in

–0.2
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 0
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)

r
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Fig. 2 Upper panel: Reduced radial functions, u(r), of the confined 4p state for confine-
ment sizes of r0¼ 25.15 and r0¼ 25.2. The unconfined radial orbital is also shown. Lower
panel: The same for the 5p state.
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the structure of the orbital, which becomes negligible inside the cavity. The

nodes of the 4p orbital for r0 ¼ 25.15 are not visible within the scale of the

figure. The orbital has tunneled out when the confinement radius has been

reduced. Although the charge distribution is very different in both situa-

tions, the energy of the 4p orbital is very similar. In fact, the orbital energy

is continuous as a function of the cavity size, as it can be seen in Fig. 1. The

behavior of the 5p orbital, see the lower panel of Fig. 2, is the opposite to that

of the 4p orbital. For r0 ¼ 25.20 it lies outside the confinement region while

for r0 ¼ 25.15 it is within the confinement region. The 4p orbital leaves the

cavity when the 5p orbital tunnels in. The energy of both orbitals for that

particular r0 value is very similar and corresponds to a local maximum and

a local minimum of the 4p and 5p orbital energies respectively. The behavior

of the orbital energy as a function of r0 is related to the phenomena of the

avoided crossing: neighboring levels with the same symmetry repel each

other when they become close and do not cross. This behavior has been also

obtained for d, f, … confined orbitals here studied and it was previously

found for the s orbitals14 and for S states of the confined He atom in a

spherical potential well.27

The energy of the nl orbital as a function of r0 presents a sawtooth struc-

ture with n� l local maxima, as shown in Fig. 3 for the orbitals of theN shell

of the Hydrogen atom. If one starts the analysis from the unconfined situ-

ation, r0!∞, when smaller r0 values are considered, the states that tunnel out

–0.032
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–0.026
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–0.02
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Fig. 3 Energy of the confined 4s to 4f orbitals as a function of r0.
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first are those whose orbital quantum number is smaller. The local maxima

of the 4s orbital appear for lager r0, followed by the local maxima of the 4p,

4d, and 4f states. The reason is that their spatial extension is larger and they

are affected by confinement at bigger values of r0.

The behavior of the confined orbitals with the cavity size has an effect on

the ionization probability when the atom is released from confinement. In

previous studies,13 we have obtained that the ionization probability does not

depend directly on the energy of the confined state as one could think

beforehand. The spatial structure of the radial function of the confined

orbital, and in particular the location and extension of the electronic shells,

governs the ionization probability.

In Fig. 4 we plot the ionization probabilities for the 2p to 5p states as a

function of r0. An oscillatory behavior with several sharply peaked, non-

symmetric maxima are found for those r0 values where the states tunnel.

When the state is within the confinement region, the ionization probability

increases as r0 decreases, while an oscillatory behavior is observed when the

state is outside the confinement region. The ionization probability presents a

counterintuitive behavior when the state tunnels. A steep rise in the ioniza-

tion probability is observed when the orbital enters into the confinement

region. The quantitative value energy of the orbital is practically unchanged

when the orbital tunnels in, and it is a local maximum of the energy as a

function of r0. The ionization probability is governed by the structure of

the charge distribution.

 0
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Fig. 4 Ionization probability of the 2p to 5p orbitals as a function of r0.
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Information theoretical tools are employed to study quantitatively the

structure of the confined orbitals. The complexity indices here employed,

Eqs. (9) and (13), include both the delocalization and the information con-

tent of the charge density. For the sake of space we only report here results

for the N shell, which are representative for the rest of cases.

In Fig. 5, we plot the disequilibrium function,Dr, Eq. (10), and the Fisher

information measure, Ir, Eq. (14), for the 4s to 4f orbitals as a function of r0.
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Fig. 5 Upper panel: Disequilibrium, Dr, in log scale for the 4s to 4f states as a function of
r0. Lower panel: The same for the Fisher information index, Ir.

331Stability after confinement of the H atom



Both indices present a similar pattern characterized by maxima in the regions

where states are confined inside the barrier. This is due to the compression

of the electronic charge toward the nucleus which leads to both, a more

compact density and a larger curvature of the radial functions. On the other

hand, these indices practically vanish when the states tunnel out because

their spatial extension is larger, the curvature decreases and the density is

more uniform inducing a minimum disequilibrium.

In Fig. 6, we plot the exponential Shannon entropy, Hr, Eq. (11), as a

function of the confinement size. This index provides a measure of the infor-

mation of the state. Unlike disequilibrium indices, if states are confined

between the origin and the wall, their uncertainty in position drops and

small Hr is obtained. The opposite holds when orbitals lie mostly outside

the barrier, the uncertainty in the position is higher and the value of the

information index is larger.

Complexity indices contain both, disequilibrium, and information mea-

sures simultaneously. Both indices present opposite behaviors when the

charge is localized inside or outside the confinement region. The complexity

indices here studied are governed by the disequilibrium as shown in Fig. 7,

where we plot the LMC shape complexity measure, Cs
r , Eq. (9), and the FS

index, Pr, Eq. (13), as a function of r0.When the states are inside the cage, the

larger value of disequilibrium index compensates for the lower information
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Fig. 6 Exponential Shannon information entropy, Hr, for the 4s to 4f states as a
function of r0.
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content. Outside the confinement region, although the information index is

large, the low values of the disequilibrium lead to a smaller complexity of the

state. As a result the complexity indices are sensitive to the structure of

the orbitals and present the same structure as the ionization probability.

The states are more complex when they are localized inside the confinement

region and the complexity grows as the confinement volume is reduced.
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Fig. 7 Upper panel: Shape LMC complexity index, Cs
r , for the 4s to 4f states as a function

of r0. Lower panel: FS complexity index, Pr, for the same orbitals as a function of r0.
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When the state jumps out of the confinement region a sharp drop in the

complexity is observed. In the light of these results, complexity indices

and other information theory measures characterize avoided level crossing,

tunneling of confined states, and the stability of the atom when confinement

is removed.

4. Conclusions

The stability of a Hydrogen atom when confinement is removed is

studied in terms of the ionization probability of the confined states.

A penetrable spherical barrier is used as a model for confinement. The con-

fined atom is initially in a stationary state and the time needed to extract the

atom is assumed to be small. The ionization probability of each nl state as a

function of the confinement size presents an oscillatory behavior with n � l

sharply peaked, nonsymmetric maxima. This behavior has been explained in

terms of successive tunneling and retunneling processes through the barrier

at different inner radii. This is also reflected in the energy and its sawtooth

structure, where the maxima are located at the same radii as those of the ion-

ization probability.

The shape LMC and the FS complexity measures have also been calcu-

lated. Confinement effects on these indices have been studied. The value of

the disequilibrium governs the behavior of the complexity of the confined

state. The larger value of the disequilibrium indices of the states when the

charge is localized within the confinement barrier overcomes the lower

information content of the state. Our calculations show that complexity

is a measure of the stability of the confined atom when it is released from

confinement: the larger the complexity the smaller its stability. The com-

plexity, as well as the ionization probability, is greatly reduced when the

electronic charge distribution of the confined state lies mostly outside

the confinement region. This particular charge distribution appears when

the confined bound state has tunneled out the penetrable confining barrier.
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