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ABSTRACT: The CASPT2 method, developed by Roos and coworkers, is reviewed.
The rationale for a method that can deal with arbitrary strongly correlated systems at
affordable computational cost is presented, and the main milestones in the 20-year
history of CASPT2 are listed. The basic features of the method are summarized. The
strengths and weaknesses of CASPT2 are assessed. Its main strength is its ability to deal
with arbitrary electronic states at a reasonable computational cost, and giving exact spin
states. Its main limitation is that, it is not a black box method, and requires considerable
experience to use. Another limitation is that, for accurate results, the active space must
be generally larger than the minimum required to describe only the strong (static)
correlation. Including dynamical correlation at an earlier stage may resolve some of
these issues. VC 2011 Wiley Periodicals, Inc. Int J Quantum Chem 111: 3273–3279, 2011
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1. Introduction

T he most challenging problem in contempo-
rary quantum chemistry is to provide an

accurate and balanced description of systems
with nondynamical (static) electron correlation. In
such systems, electron correlation, which is usu-
ally a relatively small, although not unimportant,
correction to the wavefunction, becomes qualita-
tively important. As a consequence, a single
electron configuration, i.e., a single Slater determi-

nant, is not a proper zeroth-order approximation.
The wavefunction in such cases is a mixture of
configuration state functions (CSFs), each with
appreciable weight. There is no general agreement
on the definition of static versus dynamic electron
correlation, and the transition between the two is
gradual. Most researchers would agree that static
correlation generally involves a limited number of
close-lying orbitals, usually the frontier orbitals
near the Fermi level, with significant fractional
occupation numbers (say, above 0.02 but below
1.98 in the exact wavefunction). These orbitals
tend to be delocalized and often have strong
bonding or antibonding character. They thus have
an important effect on potential energy surfaces.
In contrast, dynamical electron correlation
involves a very large number of configurations,
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each with a small weight. Dynamic correlation is
important for the quantitative determination of
energies but its effect on potential energy surfaces
tends to be modest because of cancellation
between the numerous individual configurations.

Examples of molecules with static correlation
include systems with partially broken bonds, for
instance transition states for bond breaking and/
or bond formation reactions, most transition metal
compounds where various occupation patterns of
the d-orbitals are close in energy, compounds of
the strongly electronegative first-row atoms (F,O,
and to a lesser extent N and C) which have
empty low-lying antibonding orbitals, large conju-
gated systems that approach the metallic state of
vanishing HOMO–LUMO gap, and the majority
of excited states. It is clear from this list that some
of the most interesting chemistry and molecular
spectroscopy—reactions, transition metal com-
pounds, electronically excited states—require a
balanced treatment of both static and dynamical
correlation. There is still no generally accepted
routine method for the accurate treatment of these
systems. Density functional theory (DFT) often
yields quite reasonable results at a modest com-
putational cost. However, it is not a convergent
theory, i.e., its accuracy cannot be improved with-
out limit, and there are electronic states which
cannot be treated directly by DFT, for instance
low-spin open-shell states. Electron correlation
methods based on a single Hartree-Fock reference
determinant are unsatisfactory for systems with
strong static correlation. Perturbation theory, for
instance the simplest configuration-based correla-
tion theory, second-order Møller-Plesset theory
(MP2) [1], is particularly sensitive to near-degen-
eracy of the frontier orbitals which lead to small
denominators and large unphysical correlation
effects. Multireference Configuration Interaction
(MRCI) can account for both dynamic and static
correlation but it is expensive and not size-
consistent. There are approximate size-consistent
generalizations of MRCI but the ultimate solution,
multireference coupled cluster theory, is still
under development. All these methods are very
expensive for larger systems and a larger number
of strongly correlated orbitals. The Complete
Active Space Second Order Perturbation Theory
(CASPT2) method of Roos and coworkers [2, 3]
was an important step toward a cost-effective and
accurate determination of approximate wavefunc-
tions for a wide variety of systems, including
systems that cannot be treated satisfactorily at

simpler levels of theory, such as excited states
with double excitation character. To date, there
are almost 2,000 publications referring to the
CASPT2 method. These encompass a wide variety
of topics: organic radical reactions, actinide chem-
istry, biochemical systems, hypothetical mole-
cules, radical, ions and intermediates, and a large
number of excited state studies, including the
study of conical intersections. CASPT2 has been
implemented both in MOLCAS program system
[4] and in MOLPRO [5].

CASPT2 has been reviewed in several articles
and book chapters. A book chapter by Anderssen
and Roos [6] is the best technical introduction to
the method. A more general review of multiconfi-
guration techniques is provided in Ref. [7]. Appli-
cations of CASPT2 to excited states are reviewed
in Refs. [8–10] and more recently in Ref. [11].
Applications to heavy element [12, 13] and acti-
nide [14] chemistry has been described in detail.
CASPT2 has been compared with other methods,
in particular density functional theory, for redox-
active enzymes [15]. Its applications in photobiol-
ogy are reviewed in Ref. [16].

The first attempt to develop a multireference
analogue of the widely used [17] single-reference
Møller-Plesset second-order perturbation theory
(MP2) [1] was made in 1982 [18]. This formulation
did not include the important semi-internal sub-
stitutions, and the results were not encouraging.
Efficient methods for matrix element evaluation
allowed the inclusion of the full first order inter-
active space in the current versions of CASPT2 [2,
3], in the spirit of the internally contracted multi-
reference CI, introduced by Meyer [19] and imple-
mented by Werner and Reinsch, and Werner and
Knowles (see Ref. [20]).

While CASPT2 is the most widely used method
of its kind, several similar methods have been
proposed. Wolinski et al. has developed a second-
order perturbation theory method, GMP2 [21]
which, according to Ref. [6], is identical to the
second version of CASPT2 [3]. However, it was
implemented only for a two-configuration re-
ference function [22]. This was the first use of a
non-diagonal reference Fock matrix, and it used
internal contraction [19]. The formulations of
Murphy and Messmer [23, 24], the MR-MP method
of Hirao [25, 26] and the method suggested by
Kozlowski and Davidson [27] do not make use of
internal contractions. Of these methods, only the
MR-MP method of Hirao is still in general use; it is
included in the GAMESS program system [28].
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2. The CASPT2 Method

2.1. THE REFERENCE WAVEFUNCTION

The most widely used method of dealing with
strongly correlated systems is to determine first a
multiconfigurational (MC) reference wavefunction
that includes all static correlation effects, and add
dynamical correlation to this in a second step.
The multiconfigurational wavefunction plays the
role of the Hartree-Fock reference function for
systems with only dynamic correlation. In this
method, the total orbital space (in a finite
basis representation) is partitioned in three sets.
Inactive orbitals are doubly occupied in all config-
urations. Active orbitals may have different occu-
pancy in different configurations. Virtual orbitals
are unoccupied in all configurations. In general,
orbital energy increases in the order inactive,
active, virtual. Comments on this generally used
approach will be made at the end of this article.

For both practical and theoretical reasons, it is
best to include in the reference space all possible
(symmetry allowed) configuration functions
(CSFs) from the active (variably occupied) orbital
subspace. The coefficients of the configurations in
the reference wavefunction are determined by the
CI procedure, i.e., by optimizing the energy. This
is the complete active space (CAS) concept [29]. A
CAS wavefunction is invariant against orbital
rotations in the active space, greatly simplifying
the definition of the wavefunction. If the orbitals
are also optimized, the CASSCF wavefunction is
obtained. In a somewhat different context, this
was first introduced as the Full Optimized Reac-
tion Space (FORS) wavefunction [30]. The CAS
concept also improves very much the often diffi-
cult process of converging the CASSCF wavefunc-
tion. The number of configurations in the CAS
wavefunction increases exponentially as the
number of active orbitals and active electrons
increases. This limits the CAS wavefunction to
less than 20 active orbitals in the usual case when
the number of active electrons and orbitals is
about the same. A generalization of the CAS idea
that allows larger active spaces is the Restricted
Active Space (RAS) wavefunction [31]. Here, the
active space is partitioned in three parts, and the
number of holes in the first part and the number
of electrons in the second part is restricted. The
CASPT2 method has been generalized to RAS ref-
erence functions [32].

The preference for a CAS type wavefunction
originates from the difficulty of predicting which
configurations will be important in the final wave-
function. In addition, the importance of a given
configuration can vary widely across the potential
surface. Nevertheless, certain well-defined incom-
plete active space multiconfigurational wavefunc-
tions, in particular the Generalized Valence Bond
(GVB) method [33], offer a useful alternative to the
more expensive CAS method. The CAS-PT2 con-
cept is sufficiently general to accommodate incom-
plete active spaces, for instance RAS or GVB [34].
In addition, an analog of the CASPT2 wavefunc-
tion and energy can be defined for a reference
wavefunction, where the orbitals are not fully opti-
mized. Indeed, this is necessary for a state-aver-
aged calculation where the goal is to provide
uniform accuracy to a set of states [35]. Another
potential application is an unrestricted natural or-
bital—complete active space (UNO-CAS) reference
function [36]. UNO-CAS avoids the often problem-
atic and expensive orbital optimization step of
MC-SCF and yields potential surfaces that are gen-
erally close and almost parallel to the correspond-
ing MC-SCF surface.

2.2. THE ZEROTH-ORDER HAMILTONIAN

In the single-configuration case, the almost
universal choice of the zeroth-order Hamiltonian (an
n-electron operator) is the sum of the one-electron
Fock operators, introduced byMøller and Plesset [1]:

H0 ¼ F ¼
X

i
fðiÞ: (1)

It is usually used in a canonical orbital basis
that makes the Fock operators diagonal. However,
this is not strictly necessary, and Møller-Plesset
perturbation theory can be expressed exactly in
noncanonical, for instance localized basis [37].

It is highly desirable to generalize this to the
multiconfigurational case in such a way that in
the limit when the multireference (MR) wavefunc-
tion becomes the Hartree-Fock determinant, the
zeroth-order Hamiltonian goes over smoothly to
the Møller-Plesset operator, Eq. (1). This has
proved to be surprisingly difficult. First, the defi-
nition of the Fock operator is not unique in the
MR case. Most formulations, including CASPT2,
use the Fock operator of the spin-averaged first
order density matrix of the reference wavefunc-
tion as the Fock operator. This is well defined
and has the important advantage that it preserves
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spin symmetry. However, it is somewhat biased
between open-shell and closed-shell orbital occu-
pancies and shows systematic errors for bond for-
mation and excitation energies (both too small)
[38]. A modified Fock operator was proposed [39]
but it is not applicable in all cases. The current
standard technique is to introduce a small level
shift (�0.25 Eh or less) which depends on the
occupation number of the active orbital, and
whether the orbital is excited into or excited from
[40]. A theoretically more satisfactory solution is
to introduce two-electron terms in H0 [41]. For a
while, this was considered too complicated for
practical use but it was applied successfully lately
by Malrieu and coworkers under the acronym
NEVPT2 [42, 43], who also explored the relaxation
of the internal contraction scheme. One potential
problem with the Dyall [41] Hamiltonian is that it
treats orbitals differently, based on their formal
assignment to the inactive or active space, giving
different results for the same reference function
depending on the labeling of the orbitals [44]. Of
course, methods based on an alternative zeroth-
order Hamiltonian, like NEVPT2 [42] cannot be
properly called CASPT2.

In the MR case, the reference wavefunction is
not necessarily an eigenfunction of the n-electron
Fock operator F, and thus the latter is not a
proper zeroth-order Hamiltonian. To restore this
property, H0 is defined using the projection oper-
ator P to the reference function and its orthogonal
complement Q ¼ 1 � P:

H0 ¼ PFPþQFQ (2)

Unlike in the single-reference case, the MR
one-electron Fock operator f may have off-diago-
nal matrix elements that cannot be entirely elimi-
nated by an orbital transformation that leaves the
wavefunction unchanged. Unitary transforma-
tions within the inactive, within the active, and
within the virtual orbital spaces can remove non-
diagonal matrix elements within these subspaces
but not between the subspaces. They were
neglected in the first version of CASPT2 [2], and
this has significant computational advantages.
However, energies may change discontinuously
if an orbital is transferred, e.g., from the inactive
to the active space, even if it is fully occupied in
both cases. Later versions of CASPT2 [3] include
these terms; they are also included in the MOL-
PRO implementation [5], and in the early GMP2
program [22].

2.3. THE CASPT2 WAVEFUNCTION

The CASPT2 configuration space is generated
by applying single and double substitution opera-
tors (also called, pedagogically incorrectly, excita-
tion operators) on the reference wavefunction W0.
As pointed out in Ref. [6], single substitutions do
not have to be explicitly considered, they can be
included with the much more numerous doubles.
The first-order wavefunction,

W1 ¼
X

pqrs
Tqs
prEpqErsW

0; (3)

is formally the same as in the single-reference
case, and the number of amplitudes is also the
same. An E operator, say Epq, removes an electron
from orbital q and places it in orbital p. Obvi-
ously, q must be an occupied (inactive or active)
orbital, and p must be an active or virtual orbital.
The configuration functions generated from W0

span exactly the first-order interacting subspace,
i.e., the set of CSFs that have a non-zero Hamilto-
nian matrix element with W0. This is the internally
contracted form of the configuration expansion
[19, 20]. Its advantage is that the number of
amplitudes T is dramatically less than in a general
expansion, where the substitution operators act
on each component of W0, the number of which
may be very large. Thus for larger active spaces,
some sort of contraction of the wavefunction is in-
dispensable. The disadvantage of internal contrac-
tion is twofold. First, the formulas for the matrix
elements become involved, and require higher
order density matrices in the active space (up to
third order for CASSCF, up to fourth order in the
general case). Second, the CSFs do not form an
orthogonal set, and are often linearly dependent.
Orthogonalization and removal of redundant
functions requires significant computational over-
head, particularly if it is done by diagonalizing
large overlap matrices. Internal contraction also
restricts the flexibility of the wavefunction and
thus raises the energy. No tests for larger cases
have been carried out but for smaller systems this
error is small [6].

The first order wavefunction is determined by
solving the equation below for W1 in CSF basis:

ðH0 � E0ÞW1 ¼ ðH0 �HÞW0: (4)

This is a large linear system of equations,
and in general has to be solved iteratively, unless
the zeroth-order Hamiltonian H0 is truncated to
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diagonal form. The energy is obtained using
the standard perturbation theory second order
energy formula.

2.4. EXTENSIONS OF THE CASPT2 METHOD

The CASPT2 method has been extended in sev-
eral ways from the original form, both by Roos and
coworkers and others. The zeroth-order Hamilto-
nian has been modified to remove most of the sys-
tematic errors in electron pair forming and break-
ing reactions [40]. It has been generalized to state-
averaged calculations [35]. Level shifts have been
introduced, both real [45] and imaginary [46].
These eliminate the troublesome singularities in
the calculated energies which are caused by in-
truder states (see below). The limitations in the size
of the active space can be alleviated by using a Re-
stricted Active Space [31] reference in a CASPT2-
like approach [32]. The formulation of Celani and
Werner [32] also removes some of the complica-
tions caused by the internal contraction formalism,
by treating some subspaces uncontracted, while
the largest subspaces retain the internally con-
tracted form. This, of course, gives a slightly differ-
ent wavefunction than the original CASPT2.

Other extensions include calculation of the
third-order energy [47], analytical gradients [48],
a combination of MRCI and CASPT2 [49], and the
use of explicit R12-dependent correlation functions
for dynamical correlation [50].

3. Assessment and Perspectives

The CASPT2 method, if applied carefully,
affords an accurate treatment of strongly corre-
lated systems: bond breaking and forming reac-
tions, transition metals, and in particular excited
states with less computational effort than multire-
ference CI and coupled cluster theory. Its impact
was the largest for excited states. Unlike its com-
putationally less expensive and more routine
competitors, in particular time-dependent density
functional theory, CASPT2 can treat in principle
any system, including excited states with doubly
excited character. Density functional theory is
often surprisingly accurate for the ground or low-
lying states of transition metal compounds but it
is limited by its single-reference nature. Low-spin
open-shell systems, which are inherently multi-
configurational, are difficult or impossible to han-

dle directly by DFT. Unlike most DFT methods,
CASPT2 generates pure spin states.

CASPT2 has, however, its own problems. To a
certain extent, these are also shared by higher
level internally contracted methods, like MRCI
and MRCC (Multireference Coupled Cluster) the-
ories. Computational expense is one of these
problems but perhaps not the worst. In the opin-
ion of this writer, the most important problem is
the strong effect the selection of the active space
has on the results. Because of this, CASPT2 is
very far from a black-box method, and requires
much experience and a deep understanding of
electronic structure to obtain reliable results.
Ideally, one would like to include in the active
space only the orbitals that exhibit genuine,
strong nondynamical correlation, for instance two
p-type orbitals (a2 and b1) in the ground state of
ozone, or the four p-type frontier orbitals in the
ground state of porphine [51]. A minimum active
space is not very difficult to identify, see, e.g.,
[52]. Using the smallest necessary active space
improves the convergence of the CASSCF proce-
dure; convergence is understandably poor and
multiple minima occur if the active space contains
orbitals with very low (�0) or very high (�2)
occupation numbers which properly belong to the
virtual or inactive subspaces. Unfortunately, a
CASPT2 wavefunction based on a minimum CAS
reference is often quite poor. Most likely, the root
of the problem is that that the starting minimal
CAS wavefunction gives an unbalanced descrip-
tion of the molecular electronic structure, for two
reasons. First, static correlation is exaggerated in
a minimum CAS because only the valence-like
active orbitals are available for correlation.
Second, occupation numbers of the active orbitals
are distorted because of differential dynamical
correlation effects [11]. For instance, dynamical
correlation energy is very different for configura-
tions with covalent and an ionic, a paired electron
and a diradical, or a valence and a Rydberg char-
acter. Omitting dynamical correlation increases
the zeroth-order energy of configurations with
large dynamical correlation energy relative to the
other configurations, and incorrectly reduces their
participation in the zeroth-order wavefunction.
This error cannot be removed by the CASPT2 pro-
cedure because the orthogonal complement of W0

in the active space is not part of the first-order
interacting space. In multireference CI, it is possi-
ble to include the fully internal substitutions itera-
tively, improving the reference state.
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The solution generally employed to alleviate
this problem is to enlarge the active space beyond
the minimum required for strong correlation. The
extra orbitals add some (essentially dynamic) cor-
relation, and improve the zeroth-order wavefunc-
tion. Unfortunately, they also increase the compu-
tational effort greatly, and make the active space
selection less straightforward and therefore the
wavefunction less well defined. For instance, in
calculations on transition metals, it is important to
include a second set of d orbitals in the active
space [53] to describe the radial correlation of the
d electrons. Rules have been formulated for select-
ing the appropriate active space in difficult cases
[8], but CASPT2 is still far from a black box
method.

Besides the general problem of treating
strongly correlated systems, most multireference
perturbation theories suffer from the ‘‘intruder
state problem,’’ particularly when applied to
excited states (methods based on the Dyall Hamil-
tonian [41] like NEVPT2 [42] are claimed to be
immune to this problem). Intruder states are con-
figurations that are weakly coupled to the state of
interest, often states with Rydberg-type diffuse
orbitals, and have energies which make (H0 � E0)
in Eq. (4) singular. For a diagonal zeroth-order
Hamiltonian, this means that an energy denomi-
nator vanishes, causing the perturbation theory to
blow up. Including the offending orbitals in the
active space removes the problem but increases
the computational cost, and may generate other
intruder states. It is generally undesirable to
include orbitals in the active space that do
not contribute to static correlation. Small level
shifts [45, 46] are often effective in removing sin-
gularities caused by intruder states, or shifting
them to areas of the potential surface which are
not important. However, level shifts can in some
cases reverse the energy ordering of close-lying
states [54].

How can a CASPT2 type procedure limited to
the minimum active space improved? In my
opinion, one should start the opposite way:
instead of using ‘‘naked’’ configurations and
including dynamical correlation later, we should
include dynamical correlation from the outset,
similar in spirit to the externally contracted CI
[55]. However, formulating a multiconfiguration
method using ‘‘dressed’’ (dynamically correlated)
configurations is not simple, except for the sim-
plest approximation, adding level shifts (corre-
sponding to the dynamical correlation energy of

the configuration) to the diagonal elements of
the Hamiltonian [56–58]. A viable method
beyond this approximation has yet to be pro-
posed. Perhaps an new look at quasi-degenerate
perturbation theory (QDPT) [59–66] is warranted.
For all the theoretical effort expended, QDPT
had virtually no relevant chemical applications.
However, computing is now fundamentally dif-
ferent from the 60s and 70s when most of QDPT
theory was developed. Computer price/perform-
ance ratios improved eight or nine orders of
magnitudes, and memory capacities improved
close to a millionfold since 1970. This means that
techniques that were deemed not practical in the
past may be feasible now.

4. Conclusions

The CASPT2 method, created in the research
group of B. O. Roos, is a valuable and widely
used technique to study strongly correlated sys-
tem, and in particular excited states that cannot
be described by routine techniques. It has
contributed greatly to our understanding of mo-
lecular electronic spectra and other properties. It
would be desirable to make it more black box
like, and to limit the active space to orbitals
that strongly participate in nondynamical
correlation.
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