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Abstract: CCSDR(3) calculations of vertical excitation energies are reported for a set of 24
molecules and 121 excited valence singlet states from a recently published benchmark of organic
molecules. The same geometries (MP2/6-31G*) and basis set (TZVP) were employed as in
our previous linear response CC2, CCSD, and CC3 calculations. The CCSDR(3) results are
compared against the CCSD and CC3 results. Statistical evaluation of all CCSDR(3) excitation
energies gives mean absolute deviations of 0.09 eV from CC3 and 0.30 eV from CCSD. For
excited states, which are dominated by single excitations, the absolute mean deviation from
CC3 is reduced to 0.02 eV and the maximum deviation is 0.09 eV. CCSDR(3) is thus a very
cost-effective accurate alternative to CC3.

1. Introduction

In two recent studies1,2 we have presented a benchmark set
for the calculation of electronically excited states. This set
comprises unsaturated aliphatic hydrocarbons (including
polyenes and cyclic compounds), aromatic hydrocarbons and
heterocycles, carbonyl compounds, and nucleobases. It
consists of 28 medium size organic molecules with a total
of 223 excited states (152 singlet and 71 triplet states) and
is intended to cover the most important chromophores in
organic photochemistry.

In the first study1 calculations were performed with a series
of linear response coupled cluster methods (CC2, CCSD,
CC3)3-15 and with multistate complete-active-space second-
order perturbation theory (MS-CASPT2).16-18 Based on
these results and other high-level literature data, best
theoretical estimates were chosen for the majority of the
studied vertical excitation energies. The comparison of
coupled cluster and multireference results showed that CC3
and CASPT2 excitation energies are in excellent agreement

for states which are dominated by single excitations and that
CC2 performs on average better than CCSD.

In the second study2 we have investigated the performance
of time-dependent density functional theory (TD-DFT) with
three functionals (BP86, B3LYP, and BHLYP) and DFT-
based multireference configuration interaction (DFT/MRCI)
methods.

Møller-Plesset perturbation theory19-29 and coupled
cluster theory-based3-15,26-30 response theory methods such
as CC313-15 are suitable for states with low double excitation
contributions. However, CC3 formally scales as N7 with the
number of orbitals N, and the high computational cost in
the iterative treatment of the triple excitations in CC3 restricts
its application to small systems and/or small basis sets.
Looking for a computationally cheaper but comparably
accurate approach, Christiansen and co-workers31,32 have
presented the CCSDR(3) method, in which a noniterative
triples correction is added to the linear response CCSD
excitation energy. In this respect, CCSDR(3) is analogous
to the CCSD(T) method33 which is so successful for ground-
state energies. Both methods include fourth-order terms. In
CCSDR(3) the reference singles and doubles amplitudes as
well as the energies of single excitation dominated states
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Table 1. Vertical Singlet Excitation Energies ∆E (eV)

molecule state CCSD (% R1)a ref 1 CCSDR(3) (∆)b this work CC3 (% R1)a ref 1

ethene 11B1u (πfπ*) 8.51 (97.2) 8.36 (-0.01) 8.37 (96.9)
E-butadiene 11Bu (πfπ*) 6.72 (95.5) 6.56 (-0.02) 6.58 (93.7)

21Ag (πfπ*) 7.42 (85.8) 6.95 (0.18) 6.77 (72.8)
all-E-hexatriene 11Bu (πfπ*) 5.72 (95.0) 5.56 (-0.02) 5.58 (92.6)

21Ag (πfπ*) 6.61 (84.7) 6.04 (0.32) 5.72 (65.8)
all-E-octatetraene 21Ag (πfπ*) 5.99 (85.4) 5.40 (0.43) 4.97 (62.9)

11Bu (πfπ*) 5.07 (94.7) 4.93 (-0.01) 4.94 (91.9)
21Bu (πfπ*) 6.89 (81.3) 6.91 (0.30) 6.06 (58.5)
31Ag (πfπ*) 6.98 (92.0) 6.72 (0.23) 6.50 (71.6)
41Ag (πfπ*) 7.05 (89.9) 7.01 (-0.05) 6.81 (92.1)
31Bu (πfπ*) 8.15 (94.6) 7.95 (0.03) 7.91 (91.9)

cyclopropene 11B1 (σfπ*) 6.96 (94.5) 6.89 (-0.01) 6.90 (93.0)
11B2 (πfπ*) 7.24 (96.3) 7.10 (0.00) 7.10 (95.5)

cyclopentadiene 11B2 (πfπ*) 5.87 (95.7) 5.72 (-0.01) 5.73 (94.3)
21A1 (πfπ*) 7.05 (89.4) 6.76 (0.14) 6.61 (79.3)
31A1 (πfπ*) 8.95 (95.8) 8.72 (0.02) 8.69 (93.1)

norbornadiene 11A2 (πfπ*) 5.80 (95.3) 5.65 (0.01) 5.64 (93.4)
11B2 (πfπ*) 6.69 (94.5) 6.51 (0.02) 6.49 (91.9)
21B2 (πfπ*) 7.87 (95.5) 7.65 (0.01) 7.64 (93.8)
21A2 (πfπ*) 7.87 (95.0) 7.73 (0.02) 7.71 (93.0)

benzene 11B2u (πfπ*) 5.19 (90.5) 5.12 (0.04) 5.07 (85.8)
11B1u (πfπ*) 6.74 (95.6) 6.70 (0.02) 6.68 (93.6)
11E1u (πfπ*) 7.65 (94.5) 7.45 (0.00) 7.45 (92.2)
21E2g (πfπ*) 9.21 (84.9) 8.71 (0.29) 8.43 (65.6)

naphthalene 11B3u (πfπ*) 4.41 (90.5) 4.34 (0.07) 4.27 (85.2)
11B2u (πfπ*) 5.21 (94.3) 5.08 (0.05) 5.03 (90.6)
21Ag (πfπ*) 6.23 (90.1) 6.09 (0.11) 5.98 (82.2)
11B1g (πfπ*) 6.53 (91.4) 6.26 (0.20) 6.07 (79.6)
21B3u (πfπ*) 6.55 (93.9) 6.35 (0.02) 6.33 (90.7)
21B1g (πfπ*) 6.97 (93.8) 6.81 (0.02) 6.79 (91.3)
21B2u (πfπ*) 6.77 (93.8) 6.60 (0.03) 6.57 (90.5)
31Ag (πfπ*) 7.77 (88.4) 7.29 (0.39) 6.90 (70.0)
31B2u (πfπ*) 8.77 (93.5) 8.53 (0.08) 8.44 (87.9)
31B3u (πfπ*) 9.03 (84.1) 8.50 (0.38) 8.12 (58.7)

furan 11B2 (πfπ*) 6.80 (94.9) 6.64 (0.04) 6.60 (92.9)
21A1 (πfπ*) 6.89 (90.8) 6.71 (0.09) 6.62 (84.9)
31A1 (πfπ*) 8.83 (94.2) 8.57 (0.04) 8.53 (90.7)

pyrrole 21A1 (πfπ*) 6.61 (91.2) 6.47 (0.07) 6.40 (86.0)
11B2 (πfπ*) 6.87 (94.2) 6.74 (0.03) 6.71 (91.6)
31A1 (πfπ*) 8.44 (93.7) 8.20 (0.04) 8.17 (90.2)

imidazole 11A′′ (nfπ*) 7.01 (92.4) 6.87 (0.05) 6.82 (87.6)
21A′ (πfπ*) 6.80 (92.0) 6.64 (0.06) 6.58 (87.2)
31A′ (πfπ*) 7.27 (93.1) 7.15 (0.05) 7.10 (89.8)
21A′′ (nfπ*) 8.15 (93.3) 7.98 (0.05) 7.93 (89.4)
41A′ (πfπ*) 8.70 (92.7) 8.49 (0.04) 8.45 (88.8)

pyridine 11B2 (πfπ*) 5.27 (90.6) 5.20 (0.05) 5.15 (85.9)
11B1 (nfπ*) 5.25 (92.8) 5.12 (0.07) 5.05 (88.1)
11A2 (nfπ*) 5.73 (92.4) 5.55 (0.05) 5.50 (87.7)
21A1 (πfπ*) 6.94 (95.3) 6.88 (0.03) 6.85 (92.8)
31A1 (πfπ*) 7.94 (94.2) 7.72 (0.01) 7.70 (91.5)
21B2 (πfπ*) 7.81 (93.5) 7.61 (0.02) 7.59 (89.7)
41A1 (πfπ*) 9.45 (89.5) 9.00 (0.33) 8.68 (74.1)
31B2 (πfπ*) 9.64 (84.4) 9.09 (0.32) 8.77 (65.2)

pyrazine 11B3u (nfπ*) 4.42 (93.4) 4.31 (0.06) 4.24 (89.9)
11Au (nfπ*) 5.29 (92.7) 5.11 (0.06) 5.05 (88.4)
11B2u (πfπ*) 5.14 (90.8) 5.07 (0.05) 5.02 (86.2)
11B2g (nfπ*) 6.02 (92.1) 5.86 (0.12) 5.74 (85.0)
11B1g (nfπ*) 7.13 (90.8) 6.86 (0.11) 6.75 (83.8)
11B1u (πfπ*) 7.18 (95.6) 7.10 (0.03) 7.07 (93.3)
21B1u (πfπ*) 8.34 (93.9) 8.09 (0.03) 8.06 (90.9)
21B2u (πfπ*) 8.29 (93.2) 8.08 (0.03) 8.05 (89.7)
11B3g (πfπ*) 9.75 (83.5) 9.16 (0.39) 8.77 (61.1)
21Ag (πfπ*) 9.55 (89.1) 9.04 (0.35) 8.69 (74.2)

pyrimidine 11B1 (nfπ*) 4.70 (92.7) 4.56 (0.06) 4.50 (88.4)
11A2 (nfπ*) 5.12 (92.6) 4.97 (0.05) 4.93 (88.2)
11B2 (πfπ*) 5.49 (90.5) 5.42 (0.05) 5.36 (85.7)
21A1 (πfπ*) 7.17 (94.8) 7.10 (0.04) 7.06 (92.2)
21B2 (πfπ*) 8.24 (93.8) 8.02 (0.02) 8.01 (90.7)
31A1 (πfπ*) 7.97 (93.5) 7.77 (0.03) 7.74 (89.7)

pyridazine 11B1 (nfπ*) 4.11 (93.1) 3.99 (0.07) 3.92 (89.0)
11A2 (nfπ*) 4.76 (92.0) 4.57 (0.08) 4.49 (86.6)
21A1 (πfπ*) 5.35 (90.2) 5.28 (0.06) 5.22 (85.2)
21A2 (nfπ*) 6.00 (92.1) 5.84 (0.10) 5.74 (86.6)
21B1 (nfπ*) 6.70 (92.0) 6.49 (0.08) 6.41 (86.6)
11B2 (πfπ*) 7.09 (94.7) 6.99 (0.07) 6.93 (90.7)
21B2 (πfπ*) 7.79 (93.8) 7.58 (0.04) 7.55 (90.2)
31A1 (πfπ*) 8.11 (93.8) 7.86 (0.04) 7.82 (90.5)
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are correct to third order whereas the reference triples
amplitudes and the energies of double excitation dominated
states are correct to second order exactly as in CC3.31,32

While the computational scaling of CCSDR(3) is of the same
order as in CC3, the N7 step is noniterative in CCSDR(3),

which implies a much smaller prefactor and therefore
significant computational savings. Formally CCSDR(3) is
based on a pseudoperturbation theory expansion of the CC3
eigenvalue problem and therefore bears some similarity to
the CIS(D)34 and RPA(D)21,23 methods, which are based on

Table 1. Continued

molecule state CCSD (% R1)a ref 1 CCSDR(3) (∆)b this work CC3 (% R1)a ref 1

s-triazine 11A1
′′ (nfπ*) 4.96 (92.3) 4.81 (0.04) 4.78 (88.0)

11A2
′′ (nfπ*) 4.98 (92.5) 4.83 (0.07) 4.76 (88.0)

11E′′ (nfπ*) 5.01 (92.5) 4.87 (0.05) 4.81 (88.1)
11A2

′ (πfπ*) 5.84 (90.2) 5.76 (0.06) 5.71 (85.1)
21A1

′ (πfπ*) 7.51 (93.7) 7.44 (0.03) 7.41 (90.8)
21E′’ (nfπ*) 8.19 (90.9) 7.95 (0.15) 7.80 (88.1)
11E′ (πfπ*) 8.28 (93.7) 8.07 (0.02) 8.04 (88.8)
21E′ (πfπ*) 10.24 (91.2) 9.89 (0.46) 9.44 (74.3)

s-tetrazine 11B3u (nfπ*) 2.71 (93.2) 2.61 (0.08) 2.53 (89.6)
11Au (πfπ*) 4.07 (92.2) 3.88 (0.08) 3.79 (87.5)
11B1g (nfπ*) 5.32 (91.7) 5.15 (0.18) 4.97 (82.5)
11B2u (πfπ*) 5.27 (90.0) 5.20 (0.08) 5.12 (84.6)
11B2g (nfπ*) 5.70 (90.7) 5.51 (0.17) 5.34 (80.7)
21Au (nfπ*) 5.70 (92.5) 5.56 (0.10) 5.46 (87.4)
21B2g (nfπ*) 6.76 (90.1) 6.43 (0.20) 6.23 (79.2)
21B1g (nfπ*) 7.25 (91.1) 6.98 (0.11) 6.87 (84.7)
31B1g (nfπ*) 8.36 (86.9) 7.60 (0.52) 7.08 (63.2)
21B3u (nfπ*) 6.99 (93.2) 6.77 (0.10) 6.67 (86.7)
11B1u (πfπ*) 7.66 (94.9) 7.54 (0.09) 7.45 (91.0)
21B1u (πfπ*) 8.06 (93.4) 7.83 (0.04) 7.79 (90.2)
21B2u (πfπ*) 8.88 (93.2) 8.58 (0.07) 8.51 (87.7)
21B3g (πfπ*) 9.44 (84.3) 8.86 (0.39) 8.47 (63.6)

formaldehyde 11A2 (nfπ*) 3.97 (93.4) 3.94 (0.00) 3.95 (91.2)
11B1 (σfπ*) 9.26 (93.4) 9.19 (0.00) 9.18 (90.9)
21A1 (πfπ*) 10.54 (94.4) 10.43 (-0.02) 10.45 (91.3)

acetone 11A2 (nfπ*) 4.43 (93.4) 4.39 (0.00) 4.40 (90.8)
11B1 (σfπ*) 9.26 (93.8) 9.17 (0.01) 9.17 (91.5)
21A1 (πfπ*) 9.87 (93.5) 9.66 (0.01) 9.65 (90.1)

p-benzoquinone 11Au (nfπ*) 3.19 (91.7) 3.01 (0.16) 2.85 (83.0)
11B1g (nfπ*) 3.07 (92.0) 2.90 (0.15) 2.75 (84.1)
11B3g (πfπ*) 4.93 (92.7) 4.69 (0.11) 4.59 (87.9)
11B1u (πfπ*) 5.89 (92.5) 5.65 (0.03) 5.62 (88.4)
11B3u (nfπ*) 6.55 (91.0) 6.09 (0.27) 5.82 (75.2)
21B3g (πfπ*) 7.62 (91.0) 7.36 (0.08) 7.27 (83.8)
21B1u (πfπ*) 8.47 (91.7) 8.10 (0.28) 7.82 (68.6)

formamide 11A′′ (nfπ*) 5.66 (93.6) 5.65 (-0.01) 5.65 (90.7)
21A′ (πfπ*) 8.52 (92.9) 8.30 (0.03) 8.27 (87.9)
31A′ (πfπ*) 11.34 (92.7) 11.06 (0.13) 10.93 (86.6)

acetamide 11A′′ (nfπ*) 5.71 (93.5) 5.69 (-0.01) 5.69 (90.6)
21A′ (πfπ*) 7.85 (92.8) 7.69 (0.02) 7.67 (89.1)
31A′ (πfπ*) 10.77 (93.0) 10.56 (0.06) 10.50 (88.7)

propanamide 11 A′′ (nfπ*) 5.74 (93.6) 5.71 (-0.01) 5.72 (90.6)
21A′ (πfπ*) 7.80 (93.0) 7.64 (0.02) 7.62 (89.2)
31A′ (πfπ*) 10.34 (93.3) 10.13 (0.06) 10.06 (89.0)

a Weight of the single excitations in the coupled cluster calculations. b Difference between CCSDR(3) and CC3 results (in parenthesis).

Figure 1. Correlation plots for all calculated singlet excited states: Coupled cluster vertical excitation energies.

Benchmarks for Electronically Excited States J. Chem. Theory Comput., Vol. 5, No. 3, 2009 557



the corresponding expansion of the CC23,4 or second-order
polarization propagator approximation (SOPPA)19,20,22,24,25

eigenvalue problem.
CCSDR(3) calculations have previously been carried out

for a number of small31,32,35-37 and medium size36,38-45

molecules; however, a systematic comparison with CC3 and
CCSD has not yet been published. In this article we present
such a study for singlet excitation energies using our recently
published benchmark set.1 We have calculated CCSDR(3)
excitation energies for 121 excited valence singlet states in
24 molecules, i.e. all the singlet states from the benchmark
set for which CC3 results are available.1 The new CCSDR(3)
results are compared with the previously published CCSD
and CC3 data. On the basis of a statistical evaluation of our
results, we derive rules of thumb for the accuracy of the
noniterative triples correction of CCSDR(3) relative to the
iterative correction in CC3.

Although this study is only concerned with the question
of how well CCSDR(3) with its noniterative triples correction
is able to reproduce the results of CC3 calculations, we
emphasize that CCSDR(3) is by no means the only method
which includes noniterative triples corrections in the calcula-
tion of excitation energies. Several methods, EOM-CCSD(T),
EOM-CCSD(T′), and EOM-CCSD(Tj), have been pro-
posed46-49 that are based on the equation-of-motion coupled
cluster approach (EOM-CC) developed by Bartlett and
others.50-63 Piecuch and co-workers have extended the
completely renormalized coupled-cluster theory64-66 to the
calculation of excitation energies, by adding noniterative
triples corrections to the EOM-CCSD energies in their CR-
EOMCCSD(T), CR-EOMCCSD(T)L, and r-CR-EOMCCS-
D(T) treatments65,67-71 which are based on the methods of
moments of coupled cluster equations.67,68,72-75 Finally one

should also note in this context a recent approach76 based
on the EOM-CC(m)PT(n) methods,77,78 the similarity trans-
formed EOM-CC method (STEOM)79-82 that implicitly
includes triples excitations, the Fock space coupled cluster
theory,83 the SAC-CI approach of Nakatsuji,84,85 and the
spin-flip equation-of-motion coupled cluster method by
Krylov and co-workers.86-90

The remaining parts of the paper are structured as follows.
In Section 2 the details of the calculations are specified. In
Section 3 the CCSDR(3) results are discussed in comparison
with the previously published CCSD and CC3 results.
Conclusions are drawn in section 4.

2. Computational Details

All calculations were carried out with the Dalton 2.0 program
package.91 The same MP2/6-31G* optimized geometries92-95

and TZVP basis set96 as in our previous studies were
employed.1,2

As discussed before,1,2 the TZVP basis set does not contain
diffuse functions and might not be able to give a balanced
description of excited states that are spatially extended and
have (partial) Rydberg character. For the present study this
is less important, since we are interested in a direct
comparison of correlated ab initio methods in the calculation
of valence excited states, which should be much less sensitive
to the basis set than the absolute excitation energies. For
example, the differences between the linear response CC3
and CCSD results deviate by only a few hundredths of 1 eV
from the corresponding literature values11,13,36,38-42,44,82,97-100

obtained with mostly larger basis sets. Our absolute CC3
excitation energies, on the other hand, tend to be slightly
too large, normally by 0.02-0.15 eV and sometimes by up
to 0.3 eV.

3. Results and Discussion

The CCSDR(3)/TZVP results for the 121 singlet valence
states are given in Table 1 together with the previously
published1 CCSD and CC3 results. 83 of these states are of
πfπ* type, 35 are of nfπ* type and three are of σfπ*
type. Figure 1 shows correlation plots between the CC2,
CCSD, and CCSDR(3) results on one side and the CC3
results on the other side for all calculated states. Figure 2

Figure 2. Histogram of the frequency of deviation (from CC3/TZVP in %) of all calculated CCSD/TZVP (left) and CCSDR(3)/
TZVP (right) singlet excited states.

Table 2. Deviations in Excitation Energies of 121 Singlet
Excited States with Respect to CC3/TZVP

method

CC2a CCSDa CCSDR(3)

mean 0.13 0.30 0.09
abs mean 0.17 0.30 0.09
std dev 0.26 0.38 0.14
maximum 0.95 1.28 0.52

a CC2/TZVP and CCSD/TZVP results from ref 1.

558 J. Chem. Theory Comput., Vol. 5, No. 3, 2009 Sauer et al.



presents histograms with the frequency of deviation from
CC3 for the CCSD and CCSDR(3) results. It is obvious that
compared with CCSD and CC2 the noniterative triples
correction in CCSDR(3) leads to a much better agreement
with the CC3 results over the whole range of energies. The
mean deviation from CC3 (Table 2) drops from 0.30 eV in

CCSD to 0.09 eV in CCSDR(3). The largest deviations from
CC3 are found for the 31B1g state of s-tetrazine (0.52 eV),
the 21E′ state of s-triazine (0.46 eV), and the 21Ag state of
all-E-octatetraene (0.43 eV), which is in each case about half

Figure 3. Histogram of the frequency of deviation (CCSDR(3)/TZVP vs CC3/TZVP, in %) of all calculated singlet πfπ* (left)
and nfπ* (right) excited states.

Table 3. Deviations in Excitation Energies of 35 Singlet
Excited nfπ* States with Respect to CC3/TZVP

method

CC2a CCSDa CCSDR(3)

mean 0.04 0.28 0.10
abs mean 0.10 0.28 0.10
std dev 0.13 0.36 0.14
maximum 0.56 1.28 0.52

a CC2/TZVP and CCSD/TZVP results from ref 1.

Table 4. Deviations in Excitation Energies of 45 Singlet
Excited States of the Benchmark Set with Respect to
CC3/TZVP, for States Where the R1 (CC3) Percentage
Exceeds 90%

method

CC2a CCSDa CCSDR(3)

mean 0.04 0.16 0.02
abs mean 0.09 0.16 0.02
std dev 0.11 0.18 0.03
maximum 0.27 0.30 0.09

a CC2/TZVP and CCSD/TZVP results from ref 1.

Table 5. Comparison of Relative CPU Times between
CCSD, CCSDR(3), and CC3 Calculations

molecule

benzene naphthalene

basis functions 150 238
states 6a 3
S+D amplitudes ≈ 515 000a 3 353 467
relative CPU time

CCSD 1 6
CCSDR(3) 22 132
CC3 1012 2706

a Six states in four different irreducible representations were
calculated in the same run: one 1Ag state with 517029 S+D
amplitudes, two 1B3u states with 514210 S+D amplitudes, two1B2u

states with 515667 S+D amplitudes and one 1B1g state with
514202 S+D amplitudes.

Figure 4. Correlation plot for all calculated singlet excited
states: energy difference between CCSDR(3) and CC3 versus
energy difference between CCSDR(3) and CCSD.

Figure 5. Correlation plot for all calculated singlet excited
states: percentage of the triples correction obtained in the
CCSDR(3) calculations versus the total CC3 triples correction.

Benchmarks for Electronically Excited States J. Chem. Theory Comput., Vol. 5, No. 3, 2009 559



the deviation found for CCSD. Correspondingly the standard
deviation is also much smaller for CCSDR(3) than for CCSD
as can be seen from Figure 2 and Table 2.

The significantly improved performance of CCSDR(3) is
not restricted to a particular range of excited-state energies
but holds for the whole benchmark set as illustrated in the
correlation plots in Figure 1. For less than 10% of the states,
CCSDR(3) predicts slightly smaller excitation energies than
CC3, whereas the CCSD excitation energies in our bench-
mark set are always larger than the CC3 energies. We had
previously found that CC2 gives excitation energies both
larger and smaller than CC3 and consequently performs on
average better than CCSD for our benchmark set.1 However,
compared with CCSDR(3), the spread of results is signifi-
cantly larger in CC2 than in CCSDR(3). This can be seen in
the correlation plots (Figure 1) and is also indicated by the
standard deviations and maximum deviations in Table 2
which are about twice as large for CC2 than for CCSDR(3).

It is obvious from the histograms in Figure 3 and from
the comparison of the statistical data for the nfπ* transitions
alone (Table 3) against the data for all excited states (Table
2) that there is not much difference between the πfπ* and
nfπ* transitions. The largest outlier with respect to CC3,
i.e., the 31B1g state of s-tetrazine, is a nfπ* transition,
whereas the two next largest outliers, the 21E′ state of
s-triazine and the 21Ag state of all-E-octatetraene, are πfπ*
transitions.

When restricting the statistics to states with a CC3 single
excitation weight larger than 90% (called % R1 in Table 1),
the agreement between CCSDR(3) and CC3 becomes almost
perfect. The mean deviation is reduced to 0.02 eV, and the
maximum deviation is also less than 0.1 eV (see Table 4).

Relative CPU times for two representative calculations of
excited states in benzene and naphthalene are collected in
Table 5. It is gratifying to see that the necessary CPU time
is dramatically reduced in CCSDR(3) compared to CC3.
Nevertheless, due to the formal N7 scaling of CCSDR(3)

these calculations are still considerably more expensive than
the simpler CCSD calculations.

It would clearly be desirable to be able to estimate the
remaining error of CCSDR(3) relative to CC3 based on the
results of the CCSD and CCSDR(3) calculations alone. A
correlation plot for the relevant energy differences (Figure
4) shows that the remaining errors in the CCSDR(3) results
compared to CC3 are almost always smaller than the changes
on going from CCSD to CCSDR(3) (prominent exception:
the 21E′ state of s-triazine).

Analyzing the performance of CCSDR(3) as a function
of the single excitation weight in the CCSD calculations,
one finds that for all states in our benchmark set with a CCSD
single excitation weight smaller than 90% the difference
between the CCSDR(3) and CC3 results is larger than 0.1
eV. This implies that the data from CCSD calculations allow
us to pinpoint states, for which one very likely will encounter
larger differences between CCSDR(3) and CC3. However,
the opposite is not always true. There is one state in our
benchmark set (21E′ in s-triazine), where the difference is
0.46 eV despite a single excitation weight of 91.2%, while
there are two states in p-benzoquinone (11B3u and 21B1u) with
a single excitation weight of 91-92% which differ by ≈0.27
eV and in total 15 states with single excitation weights of
91-93% and differences between CCSDR(3) and CC3 in
the range between 0.1 and 0.2 eV.

Finally, it is important to know which fraction of the CC3
triples correction can be recovered in an CCSDR(3) calcula-
tion. This percentage is shown as a function of the size of
the total CC3 triples correction in Figure 5 and as function
of the remaining deviation from the CC3 results in Figure
6. It is obvious that with three exceptions (most prominent
again the 21E′ state of s-triazine) the CCSDR(3) triples
correction gives at least 50% of the iterative CC3 triples
correction, and on average it amounts to 78%. Even for the
cases with large CC3 triple corrections (0.4 eV or more),
CCSDR(3) yields about 60%. On the other hand, there are
also some systems where CCSDR(3) overestimates the CC3
triples correction. However, with the exception of the 41Ag

state of all-E-octatetraene, this happens only for states where
the remaining difference between CCSDR(3) and CC3 is less
than 0.02 eV and the total triples correction is less than 0.16
eV.

4. Conclusions

We have carried out CCSDR(3)/TZVP calculations of
vertical excitation energies for 24 molecules and a total of
121 valence excited singlet states from a recently published
benchmark set of organic molecules.1 Statistical comparison
of these data with the previously published linear response
CC2, CCSD, and CC3 results shows that adding the
noniterative triples corrections to the CCSD results leads to
a substantial improvement over CC2 and CCSD for all states
in this benchmark set.

Inclusion of the noniterative triples correction in
CCSDR(3) often reproduces the iterative CC3 triples cor-
rection almost quantitatively, at dramatically reduced CPU
times. For all states, which are dominated by single excita-
tions (CC3 single excitation weight larger than 90%), the

Figure 6. Correlation plot for all calculated singlet excited
states: percentage of the triples correction obtained in the
CCSDR(3) calculations versus the difference between
CCSDR(3) and CC3.
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CCSDR(3) results differ by at most 0.1 eV from the CC3
results. More important is that one can obtain a reasonable
estimate of the accuracy of the CCSDR(3) results from the
size of the triples correction in CCSDR(3) and the single
excitation weight in the CCSD calculations. The remaining
difference between CCSDR(3) and CC3 is in almost all cases
smaller than the noniterative triples correction from CCS-
DR(3). CCSDR(3) normally gives at least 60% of the CC3
triples correction even if the latter is large (>0.4 eV).
Furthermore one can easily identify states for which differ-
ences of more than 0.1 eV between CCSDR(3) and CC3
should be expected: for all states in our benchmark with a
CCSD single excitation weight smaller than 90%, the
CCSDR(3) results deviate from the CC3 results by 0.1 eV
or more.

We conclude that CCSDR(3) may play a similar role for
excited states as CCSD(T) does for ground states, and that
an appropriate sequence of linear response-coupled cluster
methods for the calculation of vertical excitation energies is
CC2, CCSDR(3), CC3. However, since transition moments
are not defined in CCSDR(3), the corresponding sequence
for the calculation of oscillator strengths remains CC2,
CCSD, CC3.
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