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Response functions in the CC3 iterative triple excitation model

Ove Christiansen, Henrik Koch,® and Poul Jérgensen
Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark

(Received 9 June 1995; accepted 26 July 1995

The derivation of response functions for coupled cluster models is discussed in a context where
approximations can be introduced in the coupled cluster equations. The linear response function is
derived for the approximate coupled cluster singles, doubles, and triples model CC3. The linear
response functions for the approximate triples models, CCSDT-1a and CCSDT-1b, are obtained as
simplifications to the CC3 linear response function. The consequences of these simplifications are
discussed for the evaluation of molecular properties, in particular, for excitation energies. Excitation
energies obtained from the linear response eigenvalue equation are analyzed in orders of the
fluctuation potential. Double replacement dominated excitations are correct through second order in
all the triples models mentioned, whereas they are only correct to first order in the coupled cluster
singles and doubles modeéCCSD. Single replacement dominated excitation energies are correct
through third order in CC3, while in CCSDT-1a, CCSDT-1b, and CCSD they are only correct
through second order. Calculations of excitation energies are reported for i and GH, to
illustrate the accuracy that can be obtained in the various triples models. Therg@dlts are
compared to full configuration interaction results, thgHgresults are compared with complete
active space second order perturbation the@®SPT2 and experiment, and the,Nesults are
compared to experiment. Double replacement dominated excitations are improved significantly
relative to CCSD in all the triples models mentioned, and is of the same quality in CC3 and
CCSDT-1a. The single replacement dominated excitation are close to full configuration interaction
results for the CC3 model and significantly improved relative to CCSD. The CCSDT-1 results for
the single replacement dominated excitations are not improved compared to CC3B9O50
American Institute of Physics.

I. INTRODUCTION duced in the cluster amplitude equations. Transition mo-
ments and polarizabilities differ in the coupled cluster
Coupled cluster methods have proven to be accurate angsponse and EOM-CC approaches, the most important dif-
economical tools for describing electron correlation. Untilference being that coupled cluster response functions gives
now especially coupled cluster restricted to single andproperties that scale correct with the size of the system con-
double excitationdCCSD and CCSD with a noniterative trary to EOM-CC?®°
correction for triple excitations CC3D) (Ref. 1 has been Electronic excitation energies from an electronic ground
widely used. A variety of molecular properties have beenstate to excited states dominated by single electron replace-
calculated using these and other coupled cluster models. Frenents can be determined accurately in a CCSD approach.
quency independent properties have been obtained as energliis was clearly demonstrated in the first CCSD linear re-
derivatives for both iteratieand noniterative coupled clus- sponse(CCSDLR calculations of excitation energfeand
ter approache$.Frequency dependent response functionshas later been confirmed on numerous occasions. Contrary
have been derived for iterative cluster models like CESD. excitation energies to states dominated by double electron
The CCSIT) model, being a two step approach, does notreplacements are poorly described in CCSD. Recently, Watts
have a well defined frequency dependent response functicsnd Bartlett have significantly improved the accuracy of
with one set of correlated poles consistent with the accuracglouble replacement dominated excitations using approxima-
of the CCSIT) total energy. Coupled cluster linear responsetive coupled cluster singles doubles and tripl€CSDT)
(CCLR) theory has been used to determine frequency depempproache$*? In Ref. 11 the CCSDT reference was opti-
dent polarizabilitied, transition moment&, and excitation  mized without approximations but the CCSDT Jacobian ma-
energies. Equation of motion coupled clustér(EOM-CC)  trix elements beyond CCSD was approximated to include
gives excitation energies that are identical to the those obenly up to two-electron density matrix terms. In Ref. 12
tained from coupled cluster linear response theory for usuaiatts and Bartlett calculated excitation energies in the com-
truncated and nonapproximated coupled cluster modelputational cheaper CCSDT-1a mod@iThe description of
EOM-CC is based on a biorthogonal approach with no interdouble replacement dominated excitations is significantly
action between the reference and the excited states. Thmproved in both models while the description of the single
EOM-CC approach is therefore not well defined for approxi-replacement dominated excitations was not improved in ei-
mate coupled cluster models where approximations are intraher one. We derive in this paper the linear response function
for the CC3 model introduced in Ref. 14, and demonstrate
apresent address: UNI-C, Olof Palmes AS, DK 8200 Aarhus N, Den-  that both single and double electron replacement excitations
mark. are significantly improved compared to CCSD. The approxi-
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mations in the CC3 model relative to CCSDT are solely inpared in Sec. IV for various triples methods. In Sec. V we
the equation for the triples. This equation is approximatedpresent sample calculations of excitation energies fof CH
according to two principles: (i) We restrict the triples equa- N,, and GH, in the CC3 and CCSDT-1 models and in Sec.
tion to the form entering in second order in fluctuation po-VI we give some concluding remarks.

tential; (i) the singles are treated as zeroth order parameters.

The first criteria alone leads to the CCSDT-1b mddélhe

CCSDT-1a is obtained from CCSDT-1b by further neglecting”' THE CC3 MODEL

a term bilinear in single and triple amplitudes in the doubles | Ref. 14 we introduced the CC3 model as an approxi-

equation™> The second criteria is motivated by the fact thatmation to the CCSDT model. The CCSDT state is defined as
singles are important since they provide an approximate de-

scription of orbital relaxation. This is especially important |CCSDT=exp(Ty+ T, +T3)[HF) @
when perturbing the molecular system and when non-HarwhereT,, T,, andT; are the usual cluster operators
tree—Fock orbitals are used.
Features of the CC3 wave function is that the energy is 1=t 7, . )
correct through fourth order in the fluctuation potential and v
includes the fifth-order terms that are also included inThe |apely, refers to an ordering with respect to excitation
CCSOT). The CC3 model scales &', whereN is the |eye|j =123 and numbering within the excitation class.
number of orbitals. This shg)uld be compared with %€  The excitation operator is denoted as andt, the corre-
i::::%l%ﬁzrtﬁuisbﬂ_waer; tchg SISDC:rI:gnggrSg'(l;iSnDéomSu?act:iin ponding amplitude. The cluster amplitudes are determined
effort, and comparable to CC$D). In the CC3 model we y projecting the time-independent Sctiirager equation
iterate all equations and thus need mifeprocesses than in exp(—T,—T,—T3)H|CCSDT)=E|HF) ()]
CCSOT), where only CCSD equations are iterated. In theyntg the space of single, double, and triple excitations from
CC3 model we need not store triples amplitudes as is thehe Hartree—Fock reference,
case in CCSDT. Since CC3 is a one step iterative approach,
it gives one consistent set of poles with an improved accu-  {&il=(HF| TLi , 4
racy relative to C.CSD' . ... _wherei=1,2,3. In order to obtain the CCSDT state we thus
We have carried out an order analysis of the excitation olve the comblete set of equations
energies of approximate coupled cluster models. In CCSI§ P q
excitation energies are correct through second and first order {(ui|exp(—T;—T,—Ta)H exp(T;+T,+T3)|HF)=0
for single and double replacement dominated excitations re- 5

spectively. In CC3 this is improved to third and second ordekyith j=1,2,3. This determines thi€CSDT) state and the

respectively. In the CCSDT-1 models the single replacemeru_;nergy is in turn obtained by projecting E(B) onto the
dominated excitations are correct through second order onlyeference(HF|

The CC3 linear response function is fully correct through

third order, and only a single term is missing in fourth order. E=(HF[H exp(T+T5)[HF). 6)

The CCSDT-1a and CCSD-1b linear response functions arg/e now introduce a partitioning of the Hamilton operaitbr

not correct through third order. into a Fock operatoF and a fluctuation operatd#, describ-
From an iterative eigenvalue equation one may definéng the difference between the Fock potentidl and the

noniterative approximate corrections to lower order modelswo-electron repulsion,

as demonstrated by Head-Gordenal® A noniterative ex- H—F+U 7

citation energy model was introduced in Ref. 12 based on the B ' @)

CCSDT-1a excitation energies; it was denoted as EOMwhere

CCsSOT). It is not based on a strict derivation of a CCSIp

response function or EOM-CCSD) approach, but by defin- F=2 (hpgt Vigasag= > €pdy ap, 8

ing a noniterative triples excitation energy from a CCSDT-1a pa P

excitation energy expression. There is thus no strict relation- 1

ship between the CCSMD) total energy and the EOM- U=3 > (pqlrs)a;arasaq—E Viq@nag- (9)

CCSIOT) excitation energies. It is clear that noniterative cor- pars

rections can only be introduced from corresponding iterative  In Ref. 14 we presented an alternative derivation of

models. In this paper we restrict ourself to investigate iteramany body perturbation theory using a coupled cluster pa-

tive models. The introduction and testing of noniterativerametrization of the exact wave function. Based on this and

models is postponed to later investigations. the subsequent analysis we introduced the CC3 model from
In Sec. Il we give a short summary of the most importantthe requirements that it should provide an energy correct to

equations for the CC3 model. In Sec. Ill we discuss timefourth order inU, and retain the approximate description of

independent perturbation theory for the CC3 model. In Secorbital relaxation given by th&, operators. This leads us to

IV we derive the CC3 frequency dependent linear responsapproximate the CCSDT amplitude equations such that the

response function. The linear response function and equaingles and doubles equations of CCSDT are retained with-

tions for determining the excitation energies is also com-out approximation, and the triples equations are approxi-
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mated to have the form entering in second order in the fluctuation potentiall and the external perturbatio. Instead
tuation potential, but with the singles treated as zeroth ordeof treatingF + B8V as the zeroth-order problem as in the or-
or having no order. Determining the triple excitations correctbital relaxed case we lét be the zeroth-order problem per-
through second order ensures the total energy is correttirbed by the two independent perturbatidthsand V. This
through fourth order for a set of Hartree—Fock orbitals. Forgives a viable alternative to explicit orbital relaxation due to
the unperturbed system the singles enter in second order the special treatment of the singles in the reference state
the fluctuation potential, but this is solely a consequence o€alculation. The crucial importance of the singles for calcu-
using optimized Hartree—Fock orbitals for the reference. Ustating accurate properties is clearly exposed in the double
ing nonoptimized orbitals this is not the case. The singleperturbation analysis since the singles are zeroth order, in
respond to external perturbations to zeroth ordetJinin  and first order in the one-electron perturbatidn No ap-
molecular property calculations the singles thus provide approximations in the singles can thus be justified if one con-
proximate orbital relaxation in two senses: relaxation to thesiders the perturbed system and do not explicitly allow the
correlation and relaxation to the external perturbation. Theorbitals to relax. Approximating to second order lihand
fact that singles respond to external perturbations to zerotheeping all terms i/, the equations determining the triples
order inU, makes the treatment of singles as zeroth ordem the presence of external perturbations can be written as
parameters necessary for obtaining a balanced description of ~ ~

molecular properties. The singles and doubles equation c?f'“?"[':JF'BV’-I_3]“-”:>+<'“3|[U'T2]|HF>

both CC3 and CCSDT can be written as + %{M3|[[BV,T2],T2]|HF>=0. (14)

(pa|H+[H, T]HF) +(u4|[H, T5][HF) =0, (100 Equation(14) corresponds to the orbital relaxed form, where

A A - ~ orbital relaxation is not introduced explicit. For one-electron
(palH+[H,To]+ 2[H, o], Tol[HF) + (ol [H, T3] HF) perturbations the singles are the only parameters responding
=0, (1) in zeroth order inJ. For two-electron perturbations the situ-
ation is more complicated and the analysis above is not fully
adequate. Equatiofi4) is specialized to one-electron pertur-

O=exp(—T;)0 exp(Ty). (12)  bations. This is not a severe limitation since most frequency

dependent properties and transition moments refer to one-

See Ref. 17 for features of, transformed operators and gjecron operators. The perturbed form of the singles and
their use in integral direct coupled cluster techniques. Withy, ples equations in the CC3 model are obtained from Egs.
out external perturbations the equations determining th?lO) and (11) whereH is substituted withH,+ 8V. Equa-
triples are tions (10), (11) and(14) defines the CC3 model in the pres-

(pal[F T3] [HF) +(u5|[U, ]| HF) =0. (13  ence of an external perturbation and these are used in the

following sections to derive the CC3 linear response func-

Equations(10), (11), and(13) define the CC3 energy in the jon.
absence of external perturbations. The practical conse- The cCSDT-1a and CCSDT-1b models are obtained
quences of the approximations is that ffoperation count making further approximations in the CCSDT equations,
of the CCSDT triples equation in E¢P) is reduced to aN’  \yhere the criteria thaT, should be treated as zeroth order
operation count of the CC3 triples equation Ef3). The  parameters is not imposed. THg transformed operator in
triple terms of the single double equations are Equation Eq.(13) is thus not considered in CCSDT-1a and CCSDT-1b,
(13) can be solved for an analytical form of the triples am-p, ¢ s replaced with the usual Born—Oppenheimer Hamil-
plitudes in terms of single and double amplitudes and tWoygpian. The only difference between CCSDT-la and
electron integrals. This expression can be inserted into thecspT-1b is that theT, transformed operator in the last
triples terms of Eqs(10) and(11). The CC3 amplitude equa- term of the doubles equatidiq. (11)] is also replaced by
tions may thus be solved in a computational efficient wayhe yntransformed operator in CCSDT-1a. Based on a pertur-
involving N” processes only and without explicit storage of pation theory analysis these approximations are reasonable
triple amplitudeq(see Ref. 14 for details for calculation of the total energy, but as described earlier,

In this paper we consider the case where the systere singles are of crucial importance for calculations of mo-
described byHo=F+U is perturbed by a time-independent |gcyjar properties.

one-electron perturbatiopV. Here we derive general fre-

quency dependent response functions, and we therefore dié TIME-INDEPENDENT PERTURBATION THEORY

not allow the orbitals to relax explicitly. This would lead to The CC response theory developed in Ref. 6 is based on
Hartree—Fock poles in the response function in addition tahe introduction of a dual type vect¢A| to the |CC) refer-

the correlated poles, as well as product poles will appear. Thence function. In this section we investigate the conse-
presence of noncorrelated poles in a correlated responspiences of making approximations in the cluster equations.
function is clearly an undesired feature. This additional set oConsider a nonapproximated CC theory, that is a theory
poles as well as their second order nature is inconsistent wittvhere no approximations are made in the equations obtained
the pole structure of the exact response function. Since we doy projection of the coupled cluster Schinger equation in

not treat orbital response explicitly, we use a generalizedq. (3). In the time-independent case we have a well de-
version of Eq.(13) where we generalize the perturbational fined energy and we may combine E¢S). and (6) to write
analysis in Ref. 14 to double perturbation theory in the fluc-the total energy as

whereT, transformed operators are defined through

J. Chem. Phys., Vol. 103, Nc. 17, 1 November 1295
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E=(A[H|CC), (15) _
o E=(AsplHo+BVICC+ X t,, | (usl[F+ BV, Ts]
where the dual type vector is defined as “3
_ - B
(A|=(HF |+ 2 t, (uilexp(—T). (16) +[U,Tz]+§[[V,Tz],Tz]IHF>), (22)
Mi
where

The t parameters are so far arbitrary but may be fixed by
requiring the(A| state to be a left solution of the Schiinger —
equation (Aspl=(HF|+ % tu(pilexp( =T = Ty). (23
i=1,2
(A[H=E(A]. (17) . . . y .
The CC3 energy in Eq22) is not a simple transition matrix
The dual type vectofA| satisfy the normalization element between a CC3 state and a dual vector. Generally the
_ dual state concept can only be used when the energy and all
(A|CC)=1 (18 : . o
constraints are obtained by projection onto the same equa-

and from the above we may derive a generalized Hellmanntion. In approximate coupled cluster models we introduce

Feynman theorem approximations in the cluster equations and the dual state
q approach can not be used in general. However, the energy in
_ Eqg. (22) may be viewed as an energy Lagrangian where the
— (A Hy+ BV|C =(A|V|CC). 19 =
ds (A(B)IHo+ BVICAE)) =(AVICO) (19 t andt parameters are determined from the variational prin-

The energy in Eq(15 may alternatively be viewed as an ciple. The first derivative of the CC3 energy becomes

energy Lagrangiéfﬁ with t parameters as Lagrangian param- dE — N

eters. Botht andt parameters are then determined using the @:<ASD|V|CC3>+% tu3(<"’“3|[v’T3]|HF>
variational principle. Variation with respect to the Lagrang- R

ian parameters gives E(p) and variation with respect to the + 3 sl [[V, o], TL][HF)). (24

cluster parameters give the equation determiningttipe- We thus do not have a generalized Hellmann—Feynmann ex-

rameters. ThiS.quatiOI’l is itjentical to .the'one obtained ,fronbressed in terms of an average value between two states as in
Eq. (17) by projection. If orbital relaxation is treated explic- Eq. (19). This again is a consequence of the fact that the

itly the Lagrangian needs to be modified to allow for this andtriples equation in the CC3 model is not determined directly

becomes from the Schrdinger equation by projection. In CC3 the
_ singles and doubles equations are identical to the ones ob-
L= (HFlexp( — k)H exp(x)exp(T)|[HF) + X t,, (il tained from projection, but the equations determining the
K triples are approximated as described in Sec. Il. It is clear
X exp(—T)exp(— xk)H exp(«)exp T)|HF) that the aforementioned discussion applies to other approxi-

mative coupled cluster models, e.g., the CCSDT-1a and
+ 3 Kne(HFleXp = 1) [Epn, Hlexp()[HF).  (20) ~ CCSDT-Lb models. . .
m>n The dual state approach is based on a generalized
Hellmann—Feynman theorem, and the fact that the time de-
pendence of the parameters can be determined directly from
the time-dependent Schiimger equation for the two states
K:% KmnEmn, (21 |cC) and(A|. It is clear that these assumptions are not ful-
filled for approximate coupled cluster models. However, mo-
contain nonredundant orbital parameters ands the La- lecular properties can be defined from the CC3 energy in Eq.
grangian parameters corresponding to the nonredundant df22) using the variational Lagrangian approach, since this
bital rotations. In our derivation of time-dependent respons@pproach is applicable for both approximaféd. (22)] and
functions, orbital relaxation is not treated explicitly as dis-nonapproximated coupled cluster mod¢Egs. (15 and
cussed previously. In some cases for example when descrik20)]. In Sec. VI we use the Lagrangian concept to derive the
ing geometrical derivatives one may wish to use the orbitafrequency dependent response functions for coupled cluster
relaxed energy function and the Lagrangian in &) then  models.
must be used.
The expectation value of E¢19) combined with equa- |v. TIME-DEPENDENT PERTURBATION THEORY
tions for the time dependence of thendt parameters ob-
tained by requiring thdCC) and (A| states to satisfy the
time-dependent Schdinger equation, can be used to derive The expectation value derivation of response functions is
frequency dependent response functions for nonapproxiot possible for approximated coupled cluster models, while
mated CC methods. In this paper we consider the CC3 modein energy-based approach could straightforwardly be applied
where approximations are introduced in the triples equationasing the Lagrangian technique. In the time-dependent case
and the triples equations are therefore not obtained by praan energy as such is not well defined. Sasagane, Aiga, and
jection. The CC3 total energy may be expressed as Itoh!® have circumvented this problem by expressing the re-

The orbital rotation generator,

A. General theory of response functions

J. Chem. Phys., Vol. 103, Nec. 17, 1 November 1295
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sponse functions as derivatives of a so-called quasienergiion value. The coupled cluster dual state approach is based

This approach is applicable to both variational and nonvariaen this strategy, where the expectation value is replaced by

tional wave functions, and in the time-independent limit fi- the generalized Hellmann—Feynman theorem in 8d),

nite field results are obtained for molecular properties. and the time dependence of the coupled cluster and the dual
We now outline the essential ideas in order to establiststate is determined from the time-dependent Sdihiger

the connection between exact and approximate theory. Wequation. Equationi30) applies equally well to both varia-

may write the exact wave function as tional and nonvariational wave functions and gives in the
- _if 25 time-independent limit the energy differentiated results.
[ =e""14), (29 Sasaganeet all® have shown how response functions for

where the phasE is a function of time. Projecting the time- nonvariational wave functions may be obtained based on Eq.
dependent Schdinger for |) against(y|, we obtain an (30)

equation for this phase factor An essential idea in the work of Sasaganel!®is that
P the contributions from the second term on the right hand side
- (7 —i 21 of Eq. (28) can be eliminated choosing a particular value for
F <wI(H |1, 5 ©

Equation(26) gives a recipy for determining the phase-factor n
when we have determingd). It is therefore advantageous to w=—w,=— > i (30)
separate the phasefactor from the equations determiiging 7 i=1

Various principles can be used to determine the time depen- ) ) )
dence 0f|l~//> see, for example, Olsen andrgense®® for a for the nth order response functions with associated frequen-

review. The time derivative of the phase as it occurs in EqSI€S @i - Then frequenciesw; are arbitrary(see Ref. 19 for

(26) is referred to as a quasienergy and appears in the tim&letails. Expressions for response properties in terms of the

dependent Hellmann—Feynman theorem quasienergy become
dyilH-i@olg) [l aH |-\ [-| oy IF (1)
=\ oY) T = - A)=—7, 32
ax Do [T w\Y o) @0 (A= 5ea) (32
The time-dependent Hellmann—Feynman theorem is valid PE(1)
for all variational wave functions. We consider an external (AB) W, = , (33
perturbation written as dea(— w)deg(wy)|,

n and so on. The phase factor approach does not require ex-
Vt:__z > He(w)exp —iwit), (28)  plicit states and expectation values to be given in order to
o derive response functions. Only the quasienergy need to be
and we occasionally use the short hand notatiém=A. Dif-  defined to derive the response functions. The quasienergy
ferent approaches can be taken to determine response furgan be formulated in terms of constraints and the Lagrangian
tions for the operators in Eq28). The response functions technique can therefore be generalized to time-dependent
may be defined in terms of an expansion of the timeswave functions as well. Using this techniqgue M@ef. 21
dependent expectation value and Brueckner Coupled ClustéRef. 22 frequency depen-

MA(t):<<Z|A|%Z>:<;0|A|:ﬂ>- 29 dent properties have been derived.

Introducing the time-dependent Hellmann—Feynman theo-

rem it is seen that response functions may alternatively b%_ Coupled cluster quasienergy approach

determined from an expansion of the derivative of the

quasienergy with respect to an arbitrary Fourier component ~ We first outline the theory for usual non-approximated
coupled cluster theory, since the principles are the same as

(t)= ( d(y|[H—i(alat)][4) for approximate coupled cluster models like the CC3 model.
Ko dep(w) The response functions we obtain for nonapproximated
coupled cluster models are identical to the ones previously
+i 9 <f/, >)exp(iwt). (30)  derived in the literature. The time dependence for such a

gt dea(w) coupled cluster state can be parametrized as

The ua(t) then contain a term involving the quasienergy and - LiEm= _i
a tern/: involving time differentiation of the wave function. Ca)=eT[CC)=e""" exd T(1)][HF). (34)

The time-dependent Hellmann—Feynman theorem iggjecting the time-dependent Sctinger equation,
valid for all variational wave functions and the above ap-
proaches are therefore equivalent for variational wave func- 0\ —
tions. When Eq(29) is used the phase is removed from the (H - ﬁ) CC(t))zO, (35
calculation?® For nonvariational wave functions E@9) can
only straightforwardly be used if a generalized Hellmann—onto the Hartree—Fock reference determines the quasienergy
Feynman theorem can be expressed in terms of an expectas

J. Chem. Phys., Vol. 103, Nc. 17, 1 November 1295
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L~ (HRHIES0)+ 3 t}i<t><m exq—m)](H

F=<HF‘( —|—)CC(t)> (HF|H|CC(t)).  (36)
—i i)‘cqt)> (37)

Monkhorst and Dalgaard and Monkhorsised this to derive  The use of Lagrangians allows th@21 and zh+2 rules®
coupled cluster linear response functiofM/ithout using a to be used. We may at this point also introduce relaxed or-
quasienergy Lagrangian approgchhe time-dependent am- bitals in the description similar to what is done in the time-
plitudes are obtained by projection on¢p;lexp(—T). We  independent cagsee Eq(20)]. The corresponding Lagrang-
may express this in term of a quasienergy Lagrangian ian becomes

ot

Lec=(HF|exd — (t)]( —i i)exr[x H)]exd T(H)]HF) + X, t_ui(t)<:“i exr[—T(t)]exr[—K(t)](H—i i)
Mi

xexyl k(1) ]ex T(1)][HF)+ >, Emn(t)<HF|[Emn’ EXFI—K(Y)]< i i) exl x(t)]|[HF). (38

Time-dependent Hartree—Fock equations must then bwith a combination of frequencies for the perturbations ful-
solved. However, as mentioned earlier, the orbital relaxatioffilling

introduces features not consistent with true response func-

tions, and we therefore do not use explicitly relaxed orbitals. n

As described in Sec. Il, th&, operator in coupled cluster > w=0 (45)
theory gives an approximate description of the orbital relax- =1

ation.

Introducing the time-averaged Lagrangian and Eq.(40) is used to determin€”t®), i=1n. The same
to+T equations are obtained as in the dual state approach. The
{L(D)}+= T f L(t)dt, (39 Lagrangian{L (t)}+ is fully variational, and thus satisfies the
2n+1 and h+2 rules. Furthermore, the time-differentiation
where the period is the shortest common multiple period of t€rm in Eq.(44) does not contribute to the properties. This
the periodic perturbations in Eq28), we require the La- Can be seen as a consequence of the 2 and 2h+1 rules,
grangian to be optimal with respect to variationst@indt ~ Writing it as

parameters
_ Cdt" ()
S{L(t)}7=0. (40) > - (46)
k=0,
Based on th&" in Eq. (28) we can make an expansion of the "o T
amplitudes
I ) Only t'® with n=k+2 contributes according to then2-2
t=tO+tDt)+t@(t)+--- , (41)

rules. This means tha<(n/2)—1 and, thuspn—k=(n/2)
where the responses are expressed as, for example, + 1, and according to ther2+1 rule for thet parameters, the
t(""% can be eliminated. We can thus write

tO(t) =2 exp—iwit)Y elw)t™(wy). (42)

1
— L(t)}r= All|H-i =]||CC
Expanding the time-development of tt{¢) parameters simi- de(w) (L0} de(w) [< ‘( ) > T
lar tot in Egs. (41 and (42), we can collect terms in the - _
Lagrangian in orders in the perturbation =[(A|A[COexp(—iwt)]r. (47)
Lt)y=LO+LD ) +LP(t)+--- , (43

From Eq.(47) response functions are obtained as derivatives
whereL© is the unperturbed energy of the CC model. Toaccording to the scheme proposed by Sasagaeé,'® and

ordern in the external perturbatiod' we have indicated in Eqs(32) and (33). The response functions are
- ~ AR () equivalent to the ones obtained in Ref. 6.
{LYO}r={(AIH+V{COM}; The essential results from the derivation of the linear

+ (44)  variational requirements we obtain the equation for the clus-

P (n) response function are summarized as follows. From the
—i = ‘CC> ]
T ter amplitudes

(A
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(wl —A) A= — &7, (48 of the response function occur at the poles of the amplitude
responses. From E@47) it is seen that the excitation ener-
{A=—n, (49) gies become the eigenvalues of the nonsymmetric CC Jaco-
where the CC Jacobiah is defined as bian.
A, =(uilexp(—T)[Hq,7,. ]expT)|HF 50
sy = bl €Xp(=T)[Ho, 7, Jexp(T) [ HF) (50 o o 54
and the vectorg and » are given as
fﬁI:<MI|qu_T)A eXF(T)|HF>, (51) If T:T1+T2, Eqs(47)—(54) g|Ve the CCSD result. ngher-
order response functions are easily obtained as well. The
7,.=(HF|[Hq, 7, Jexp(T)|HF). (52) advantage of the quasienergy approach is that it may be ap-
] ]

plied to approximate CC models as well. In the next section
From Eg.(44) we may then determine the linear responsewe consider application to the CC3 model.
function as

(ABY) o T
S ﬁeA(—w)ﬁeB(w)|0 C. The CC3 linear res i
. ponse function
=(A|[A, TB(w)]|CC) Response functions for approximate coupled cluster
models can be derived from a quasienergy Lagrangian,
+(A|[B, TA(-w)]|CO) where the approximations are introduced into the time-

dependent equations. The quasienergy Lagrangian for the
Al _ B

+(AI[[Ho (= )], TH(w)]|CC). (53 cC3 model is obtained from the CCSDT Lagrandisee Eq.
Excitation energies and transition moments can be obtaine9)], where approximations are introduced in accordance
from poles and residues of the response functions. The polegith the perturbed CC3 equations, EG4),

i o0+ Tolt)+ To(]|HE)

Lecs=(HFH exgd Ty(t) + To()][HR) + X t_#i(t)<Mi|exF[—T1(t)—Tz(t)](H
M

i=1,2

_ . 9 . .
+ L, (D(pal| F V=i E'T3(t) +[U, T 1+ A VL T(t) 1, To() 1| HF). (55
u3

Equations equivalent to Eq617)—(54) are obtained where the Jacobian now is the CC3 Jacobian,

</~L1|[ﬁ0+[ﬁ01T2]1TV1]|HF> <,(Ll|[|q0,TV2]|HF> <,(L1|[H0,TV3]|HF>
<M2|[|:|o+[|:|01T2+T3],TV1]|HF> <M2|[|:|o+[|:|o:T2],TV2]|HF> <M2|[|:|017V3]|HF> , (56)
(mall[Ho.T>],7, JIHF) (ual[Ho,7,,]/HF) Bur® g

and the¢ vector becomes

<M1|A+ [A,T2]|HF>
A= (w2l [A,To+ T3] |HF) . (57)
(pallA,Tsl+ H[A, T, TL] HF)

The # vector is unchanged since the triple contributions vanish. The CC3 response function can be expressed as one term
having the same structure as the CCSD linear response function and additional contributions from triples that we give as
explicit:

CC$<<A;B>>w=CCSD<<A;B>>w+{1+P[A(—w>,B<w>]}(E U pal[A TS (@) ]+ [[Ho, TH(— )], TS(@) ]HR) + 2 1Y)
X(pal[ATH(@) 1+ [[ATH@) LT T+[0, T8~ )], T3(@) 1+ [[[U, TR~ )], TH (@)1, T5]
+[[A,T§<w>],T;°>]IHF>>- (58)
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Equation(58) is the CC3 linear response function for one- In CC3 the triples response is correct through second order,
electron frequency dependent perturbations. Excitation eneand the form of all singles, doubles, and triples third-and
gies are obtained as eigenvalues of the CC3 Jacobian in Efpurth-order terms in the response function are retained. The
(56) and transition moments are obtained as residues of ECC3 linear response function is thus fully correct to third
(58). order. The third-order term in the doubles space with triples
Simplifications in the aforementioned derivation lead toresponsegdfirst term in the parenthesis in E@58)) will,
CCSDT-1a and CCSD-1b linear response functions. As dehowever, also include a fourth-order term through the triples
scribed in Sec. Il these approximations are somewhat unbatesponses in third order in the fluctuation potential. Since the
anced as they do not include the singles in the triples equdriple responses are only correct to second order, the CC3
tions. In addition CCSDT-1a lacks the singles—tripleslacks this fourth-order term in the singles doubles and triples
contributions in the doubles equation. Both CCSDT-1a andpace. Quadruples enter the response function in fourth or-
CCSDT-1b have a zero triples—singles block in the Jacobiader. Thus CCSDT based models can not provide frequency
in contrast to the CC3 model. As we discuss later, this tripleslependent response functions correct through fourth order.
singles block is important in order to describe single replace- ) o )
ment dominated excitation correct through third order. TheP- Order analysis of excitation energies
triples—doubles block does not havé atransformed Hamil- In this section we carry out an order analysis of the
tonian in both CCSDT-1a and CCSDT-1b. For CCSDT-1aexcitation energies in various coupled cluster models. The
the doubles—triples block does not haveT atransformed exact excitation energies are obtained if no truncations is
Hamiltonian, and there is no triples contributions in theintroduced in the excitation manifold and all equations are
doubles—singles block. Similar approximations occur inghe solved non-approximated. Excitation energies in coupled
vector. The changes in the Jacobian and ¢heector in  cluster theory are obtained from the eigenvalues of the CC
CCSDT-1a and CCSDT-1b compared to CC3 has as a corlacobian
sequence that the triple responses are not correct to second
order. The third-order term missing in the CCSD response AS=wS. (59
function[the first term in the parenthesis in E§8)] are thus Recognizing thaT, enter in first order and’; andT; in
only partially included, and CCSDT-1a and CCSDT-1b linearsecond order, etc., we may expand the matrix elements of the
response functions are not fully correct through third orderJacobian as

A,uivj:<lu‘i|[|:17-vj]|HF>+</*Li|[UVTVJ-]|HF>+<lu‘i|[[UiTVj]1T2]|HF>

+</u‘i|%[[[UITVJ-LTZLTZ]+[[U17-111-]1T1+T3]|HF>+O(4)1 (60)

where the zeroth-, first-, second-, and third-order matrix elements are given explicit. The structure of the Jacobian containing
singles §), doubles D), triples (T), quadruples @), and quintuples®) become

S D T Q P
S d0)+01)  O(1) o(1) 0 0
D 01  d0)+0o1) O o) 0
T 0Q o1)  d0)+01)  O1) o1 [ (61)
Q 0o(3) 0(2) O(1) d(0)+0O(1) O(1)
P 04 003 02 o1)  d(0)+0(1)

whered(0) denote the zeroth-order diagonal elements conwhereASP refer to the singles and doubles block of the Jaco-

sisting of Hartree—Fock orbital differences andnP@enote  bian. The definition oB, C andD is clear from the context.

the lowest nonvanishing order of the Jacobian matrix eleAll zero and first order contributions to the single and double

ments. For example tH®T block enter in first order since the replacement dominated excitations are containe®il The

second term in Eq(60) contribute, whereas th&S block  effect of triples and higher excitation manifolds on the single

enter in second order since the first and second term in E@nd double replacement dominated excitations can be ana-

(60) is zero and the third term contribute. lyzed using partitioning techniques giving an effective eigen-
We now consider excitations that are dominated byvalue equation in the singles and doubles spassuming

single and double replacements relative to the reference cotthat (D—w1) ™t exisf],

figuration in more detail, and accordingly write E§9) as

[ASP—B(D—wl) C]S=wS. (63)

ASD B S S X
C D/\S - STA ©2) The accuracy of the single and double replacement domi-
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nated excitations is obtained examining the orders of thend order, and single replacement excitation energies correct
matricesASP, B, C, andD. We write the lowest order d8,  through third order. This property is unique to CC3 com-

C andD matrices needed in the subsequent analysis pared to the other triples corrected excitation energy models
published so far and a consequence of treating the singles as

0) _cO _
BMiVj_Cﬂi”j_O' (64) zeroth order parameters . This treatment of singles en-
DO — w0, 6,5, 65) sures that the coupling between the single spectrum and
HiVj i MY !

higher excitations manifolds is described correct through
lowest order, which is important in a balanced description of
response properties as well as the total energy.
M _y . - We mention that the CCSDT-3 and CCSDT-4 models of
Coav, <’U“'|[U’TV1]|HF> diadj2, 67 Urbanet al® include this coupling. The CCSDT-4 model is
8 .
c@ — U, T1IHP. 68 aN moo_lel and cqmparable to the_ full CCSDT mod_el in
#3¥1 (palll TVl] 2l|HF) €8) computational requirement. Calculations of total energies in-
We note that th@ D (Bf)y ) andDT (Cﬁ)u ) blocks of the dicate that the CCSDT-3 model is not better than CCSDT-1a
2 3 82 and CCSDT-1532* The CCSDT-3 model is somewhat un-
balanced since third-order terms from the doubles are in-
ﬁluded in the cluster equations but the triples third-order term
excluded. These models have only been used for total ener-
gies and no excitation energies have been published using
these models. The linear response function for CCSDT-3 is
gorrect through third order.

Bl = (uillVU,7, IHP)[8,15j3+ 8283+ 514)],  (66)

Jacobian enter in first order. Sin€e contains zeroth-order
contributions, the effective eigenvalue equation, Ep),
shows that these matrices gives a second-order contributio
This contribution is the only second-order contributions from
higher excitation manifolds and gives only direct contribu-
tions to the doubles spectrum.

In CCSD the singles and doubles amplitudes are corre
to second order, and the ful\SP is, therefore, correct
through second order. The single replacement dominated ex-
citations are therefore correct through second order, whereds Partitioning of CC3 equations
the double replacement dominated excitations are correct

. o ) One of the major problems in triple excitation models is
through first order only missing the second order triples con- : : : ;
I : . the storing of triples amplitudes. In actual CC3 calculations
tribution described earlier.

In CC3 the singles and doubles amplitudes are CorreChe triples amplitudes are therefore eliminated. In Ref. 14 we

X . ; emonstrated how this could be done in the optimization of
through third order and the triples amplitudes through Sec'Ehe reference CC3 state. In this section we discuss a similar
ond. ASP is therefore correct through third order. The :

second-order triples contribution lacking in CCSD is in- approach for evaluation of the linear response function.

cluded in CC3, and the double replacement dominated excSlnce the CC3 Jacobian in B@6) has a simple diagonalT

tations are therefore correct through second order. The sarrk)eleCk equat|ons(48) and (49) may be solved explicitly for
o ? . triples parameters in terms of singles and doubles parameters
second-order contribution is also included in the CCSDT-1, . : : )
L .and matrix elements. We obtain for the triples amplitude re-
models and similar accuracy may therefore be expected in

CC3 and CCSDT-1 for the double replacement dominatedP°"°®®
excitations, the differences being higher order terms. Note

that the contribution irBY from the quadruples vanishes in (0=, )th (0)=&,.+ 2 A, th(w), (69)
second order because the corresponding ter@ is of sec- : i=Vli ) Y
ond order. To obtain higher than second-order accuracy in ’
the doubles spectrum, the quadruple manifold needs to bgnd for the triples parameters,
taken into account.
We now investigate the single replacement dominated
excitations. Recall thaASP is correct through third order in “’%f(v?: - %‘4 Flg)AMiVS. (70)
CC3. From the structure of the Jacobian in E&{) it is seen i-1,2

that for the single replacement dominated excitations the ) o ) .

only additional third-order contributions arise from the cou-InSerting this into the singles and doubles equations we ob-
pling between the second-ord&s block in c® [Eq. (69)] tain equations for the singles and doubles parameters ex-
and the first-ordeB T block [Eq. (66)]. The inclusion of the pressed solely in the singles and doubles space. The_ triples
TShblock of the Jacobian is thus necessary in order to obtaiR@rameters can always be obtained from £68). and(70) if
single replacement excitations correct through third orderthey are needed explicit. The partitioned form of the CC3
This contribution is retained in CC3 due to the special treatfréquency dependent Jacobian in the singles and doubles
ment of the singles amplitudes. In CCSDT-la andSPaceIs

CCSDT-1b the coupling between the triples and singles

manifold is neglected. In fact, it is also neglected in the ap B ~ ~ AmVsAV3Vj
proximate EOM-CCSDT study of Watts and Bartlétthis Aﬂi”j(‘”)_<'U“‘|[H°+[HO’-I-Z]'T”i]“_”:)JrVZ3 w—w,,

being the reason why their single replacement excitation en- 371)
ergies are of second order quality only. CC3 thus gives

double replacement excitation energies correct through setntroducing the effective triple excitation operatnfrj(w) as
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3 (ugl[0,7,,]|HF) “Cp(@) .=,
bl (@)=8p2 —— = T, )
" g +{u2|[[Ho,C1],B3(0,t5”,0)]|HF)
bo,S <M3|[[U,TVJ.],T2]|HF> 72 +(ol[Fo,B3(Cy,Cor ) ]|HF), (81)
” - .
s ©TOn " where we have introduced the effective triples operator

we can write this as

~ B3(C1,Cp,0)=2, C, b (w)
PRy (@)= CSPA, + (il [Ho. b3, () 1|HF) wo

+ 820 palllFo. Tal 7 JIHF). (79 _y {allU.CallHR)
“ 0~ 3
The first term has the same structure as the CCSD Jacobian, : . g
the second term arises from the partitioning and the third > (u3l[[U,C1], TS 1HF)
from the approximate triples operator. The second term gives + e 0—w, Tug:

the lowest order triples contributions as described in the pre-
vious section. Using this Jacobian the partioned equations for (82
the CC3 singles and doubles response parameters becomerhe triples contribution to the equations for optimization of

th f b itt
[wjl_ PA(wJ)]tx(wj)Z PgX(w]_), (74) ere er(ince can be written as
W))PA(O):_W(O)_ (75) </‘Li|[HO-BS(O-T210)]|HF>1 i=l,2. (83)

The f d defitvector | It is thus seen that relative to CCSD, essentially the same
e frequency dependegitvector is kinds of terms are involved for the wave function optimiza-
tion and in the transformations that are necessary for solving

P§ﬁi(wj) = §ﬁi + ; A#iy3§ﬁ3 eigenvalue equations. For the terms involvibgonly a gen-
3 A eralized triples diagonal needs to be taken into account. The
=COSE + (wil[A, T3] |HF) rest involveC, and originate from the singles iH. These

terms can be calculated using the same strategy as before but

R g with a one index transformed Hamiltonian
(il Ho, 2 ——— 7, |IHP).  (76) .
uz WjT @y, H=[H,C,]. (84)

Similarly, we may partition the eigenvalue equation in Eq. Building on the capability of doing CC3 wave function
(60). The triplesC vector can be written as optimization and CCSD excitation energies, the amount of

extra programming is fairly small. The CCSDT-1a and
(w— wys)cyaz z Ayau.cﬂ. (77 CCSDT-1b models are easily obtained by neglecting some of
P b the terms as described in Sec. IV C. The CCSDT-1b are ob-

tained by neglectingl; and C,; contributions inB; and
and the eigenvalue equation can be written as an equation @CSDT-1a is obtained by further neglectifigandC; in the
 in the single and double space; second and third term in E@81).

PA()C=wC. (79) The_construction of the right hand §ides and thg fipal

contraction for calculating other properties than excitation

We may use this equation to determine the singles aneénergies is more involved. We postpone further discussion of
doubles spectrum of the full CC3 eigenvalue equation. Adthese matters to later work. We have demonstrated here that
ditional zeroth-order triples poles exist in E§8) but these we may solve CC3 linear equations and eigenvalue equations
zeroth order poles will for most purposes not introduce anyn the single and double space without storing triples trial
problem in determining the single and double excitationand transformed vectors with an’ operation count similar
spectrum. In practical applications we thus solve an “eigento what is required to optimize the reference wave functfon.
value” equation in the single and double space self consistent
in .
_ In solving the eigenvalue gquation or sets of Iinegr equay, ~AlCULATIONS
tions we need to carry out linear transformation with the

Jacobian on trial vectors Calculations are presented for excitation energies of
CH", N,, and GH,. For CH" we compare CC3 results to

P#-:E A,.,C,. (79 FCl, CCSD, CCSDT-1a, CCSDT-1b, approximative EOM-

oy T CCSDT results from Ref. 11, and noniterative CCSDT-1a

We can write the linear transformations in the CC3 model agéSults reported in Ref. 12. For,Naind GH, we compare
CC3 excitation energies with CCSDT-1a and experiment as

“Sp(@),,, =, +(p1l[Ho,B3(C1,C,, ) ]|HF), well as CCS, CC2, CCSD results obtained in the hierarchy of
(800  coupled cluster models described in Ref. 25. FgH we
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TABLE I. CH™" excitation energies in eV and ground state energies in a.u.

Approx. EOM
Excitation CIS} CCSC*  Noniter CCSDT-132 CCSDT-14 CCSDT-1b  CCSDT cc3 Fcf % t, in CCSD
X I3F it 9.917 9.109 8.783 8.781 8.779 8.624 8.779 8.549 1
14.941 13.581 13.559 13.583 13.584 13.576 13.541 13.525 93
18.651 17.316 17.269 17.285 17.285 17.265 17.243 17.217 84
Gl 4.457 3.261 3.246 3.271 3.274 3.279 3.242 3.230 97
15.572 14.454 14.395 14.339 14.401 14.266 14.346 14.127 72
A 8.438 7.888 7.299 7.287 7.284 7.029 7.282 6.964 0
18.488 17.689 17.177 17.097 17.095 16.798 17.094 16.833 24
Ground state
energy(*>*) —38.014 201 —38.017 670 —38.019 131 —38.019 131 —38.019516 —38.019 131 —38.109 638

&CISD and CCSD result from Ref. 9.

bCCSDT-1a and noniterative CCSDT-lr@sults from Ref. 12
“Approximate EOM-CCSDT result from Ref. 11.

9FCI numbers from Ref. 27.

further compare with CASPTERef. 26 (second order per- CCSD is of order 0.5-1.0 eV. In the triples models this is
turbation theory building on a complete active space referimproved to be less than 0.3 eV relative to FCI, whereas the
ence results. differences between CC3 and CCSDT-1 is less that 0.05 eV.
A CH* For the double replacement excitations the differences be-
tween the CC3 and CCSDT-1a approaches are thus minor.

The CH' calculations were carried out at the internu- The approximative EOM-CCSDT includes some triples—
clear distance 2.13713 a.u., using ther#14 basis of Ref. 45 hjes and triples—triples interaction and transitions with

222 OEH(; h‘f"i al ground state 'elel,'ctronllc .conflgur§t|0n|arge double excitation contributions are closer to FCI in this
10"20"30” with a large nondynamical correlation contribu- model than for the other triples models. The errors in this

. -+ 1 .
tion from 15°20°17". CH" has a'll valence state dominated i oive EOM-CCSDT model is 0.1 eV, The descrip-
by 16?26?3017, that is single replacement dominated rela-,. . ) AN

tion of single replacement dominated excitations is improved

tive to the ground state. Furthermore, CHas one valence . . : :
excited sta?e ofS* symmetry and one & symmetry that significantly in CC3 compared to CCSD while CCSDT-1
does not improve the CCSD energies for single replacement

originate from the #?2¢6°17 electronic configuration and . - >
are predominantly double replacements relative to théjommated excitations. The approximative EOM-CCSDT

ground state. In Table I, we report ground state energies arfijodel does not either improve the single replacement domi-
excitation energies from th¥ 13+ ground state to the va- nated excitations significantly. The CCSDT-1 models and the

lence excited states and to some higher states for the vario@@Proximative EOM-CCSDT model exclude the third order
approaches. triples corrections to the single excitation energies, and
The CC3 ground state energy in Table | is within 0.5therefore give no improvement relative to CCSD. For double

milliHartree of the CCSDT energy and the FCI energy. Theteplacement  dominated excitations the noniterative
CCSDT-1a and CCSDT-1b energies are almost identical t&CSDT-1a model, denoted EOM-CCED in Ref. 12, is
the CC3 energy. The reference is thus described at similafery close to CCSDT-1a. For single replacement dominated
accuracy in CC3 and the CCSDT-1 models. excitations closer agreement with FCI is obtained than in
The CCSDT-1a and CCSDT-1b excitation energies ar&€CSDT-1a. The authors of Ref. 12 noted that this may be
almost identical for all excitations. The excitation energies ofaccidental.
double excitation character is significantly improved relative ~ For the single replacement dominated excitations the
to CCSD for all approximative triples method. The error in CCSDT-1a corrections to CCSD does not include the third-

TABLE Il. N, excitation energies in eV and ground state energies in a.u. Basis set from Ref. 29. Basis seT2fll6s5p2d]. Ryy=2.067 a.u.

ccs cc? ccsh cc3 CCSDT-1a Expt. %T,
1, 15.63 14.11 13.74 13.48 13.73 13.4 86
IS+ 16.67 14.39 14.63 14.39 14.76 14.4 95
A, 9.14 11.08 10.68 10.53 10.92 10.3 97
D 8.58 10.54 10.27 10.16 10.61 9.9 98
1
11, 10.10 9.65 9.62 9.55 9.89 94
IS 15.31 15.65 15.70 15.14 15.88 96
Gs. E. —108.985 177 —109.402 101 —109.394 480 —109.413 431 —109.413 364

3CCS, CC2, and CCSD results from Ref. 25.
PExperimental results from Ref. 30.
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TABLE lll. C,H, singlet excitation energies in eV. Ground state energies in a.u. Basis set and geometry as in Ref. 31. Basis set is an atomic natural orbital
type (ANO) where (149p4d/8s4p) is contracted to [43p2d/3s2p] and where a set of diffuse 62p1d) is added on carbon. The geometry jg=1.339
A, rcy=1.086 A, and<HCH=117.6.

RPA® ccs ccz ccso ccs CCSDT-1a CASPF2  Expt®

1B, 7.07 7.09 7.14 7.29 7.23 7.45 7.7 7.11
By, 7.66 7.67 7.78 7.95 7.90 8.12 7.85 7.80
Byy 7.82 7.83 7.82 7.99 7.94 8.16 7.95 7.90
B, 7.33 7.67 7.86 7.98 7.87 8.19 8.40 8.01
1A 8.14 8.16 8.23 8.46 8.42 8.64 8.40 8.29
B, 8.54 8.55 8.58 8.79 8.75 8.97 8.66 8.62
A, 8.74 8.74 8.77 9.02 8.99 9.21 8.94

1B, 8.79 8.79 8.84 9.08 9.04 9.26 9.03 8.90
1B,, 8.96 8.97 9.07 9.27 9.22 9.44 9.18 9.05
B,, 8.94 8.97 9.03 9.31 9.27 9.50 9.31 9.33
Eror ~78.064796  —78.064796  —78.388064  —78.411268  —78.425041  —78.424 996

8RPA, CCS, CC2, and CCSD results from Ref. 25.
PCASPT2 results from Ref. 31.
‘Experimental data from the compilation in Ref. 31.

order contributions from th& S ST blocks. These third or- difference between CCSD and CC3 as a conservative esti-
der contributions are in the opposite direction of the othemate of the error bound. The CCSDT-1 model give changes
corrections. The CC3 model includes all contributions and iof about 0.2 eV relative to CCSD, and in the opposite direc-

therefore significantly closer to FCI than any of the othertion of the changes in CC3. Thus CCSDT-1a seems to give
triples models. The superior performance of CC3 have beean unbalanced treatment of single replacement excitations

observed in benchmark calculations on other systéms. energies which may leads to significant errors, and in fact
spoils the accuracy obtained at the CCSD level.
B. N, CASPT2 results are also given in Table Ill. The ap-

In Ref. 25 we performed CCS, CC2, and CCSD Calcu_proaches for obtaining excitation energies in the CASPT2

. . . and in coupled cluster linear response are completely differ-
lations on N with the geometry and basis set of Ref. 29, see nt. In CASPT2 the total energies of the individual states are

Table 1l. We performed CC3 and CCSDT-1a calculations oft : . . . .
o o ; . ound in a complete active space multiconfigurational self-
the same excitation energies; the results are given in Table Il ~ : )
) . . . Consistent field([CAS MCSCH calculation followed by a
Further basis set studies are needed to estimate the basis se . .
error but it appears that the current basis set is sufficientl yocond-order perturbation energy correction. In the coupled
PP . Yluster linear response approach the ground state function is
large to describe the major features of the spectrum. All ex-

citations are single replacement dominated as indicated bcalculated explicitly and the excitation spectrum is found

Lo . lving the linear r n igenval ion. Recen
the percent, contributions. Significant differences are ob- o g the linear response eigenvalue equatio ecent

served between the results of the various coupled clustebrem:hm"’1rk calculations indicate that the energy in CASPT2

models. The CCSDT-1a and CC3 differ by up to 0.6 eV, Withlssta?if Cacpoprrrzﬁ?;t]e(layﬁé\/lcg g;ralrﬁénbu; rg?eurig t?:v,\al\aslrg'srzlal’rlgir
CCSDT-1a generally going in the opposite direction of CC3 i y Sy

relative to CCSD. This indicates that large third-order Con_provided excitation energies within 0.3 eV of the experimen-

tributions exist in N. Like in CH', the third-order contribu- tal results. This accuracy is thus obtained dug to cancellation

. . : .~ . of errors between the ground state and excited state energy

tions that couple to the triples space are in opposite direction . s

L and is thus sensitive to a balanced treatment of the ground

of the other contributions. As a consequence of the more .
balanced treatment, the CC3 results are closer to the expeﬁl—n d excited state. o

The CASPT2 results are within 0.1 eV of the CC3 re-

mental results than are the CCSDT-1a results. sults for all excitations except th8,, state, and also within

C. C.H 0.2 eV from experiment. For most of the CASPT2 results the
T2 calculations thus seem to be balanced and give a remarkable

In Ref. 31 CASPT2 calculations on ethylene are re-accuracy. However the accuracy of the mixed valence-

ported. We have carried out CCSDT-1a and CC3 calculationRydberg state is not consistent with the accuracy of the other

using the same basis set and geometry, see Table Ill. Thexcited states. In the coupled cluster linear response calcula-

results are given in Table Ill together with CCS, CC2, andtion no special problems are encountered treating mixed va-

CCSD results from Ref. 25. All excitations are single re-lence Rydberg states. In order to provide a final comparison

placement dominated with a single replacement contributiomvith experiment, basis set and geometry effects needs to be

between 94-97%,. The difference between CCSD and considered in more detail.

CC3 is of order 0.04 eV. From the convergence in the hier-

archy of CCS, CC2, CCSD, CC3 excitation energies ang/!- CONCLUDING REMARKS

from the experience of other benchmark calculations, the We have outlined a general approach for deriving re-

CC3 excitation energies are expected to be accurate with theponse functions for approximated coupled cluster models.
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