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Second-Order Perturbation Theory with a CASSCF Reference Function
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Second-order perturbation theory based on a CASSCF reference state is derived and implemented. The First-order wave
function includes the full space of interacting states. Expressions for the contributions to the second-order energy are obtained
in terms of up to four-particle density matrices for the CASSCF reference state. The zeroth-order Hamiltonian reduces
to the Moller-Plesset Hamiltonian for a closed-shell reference state. The limit of the implementation is given by the number
of active orbitals, which determines the size of the density matrices. It is presently around 13 orbitals. The method is illustrated
in a series of calculations on H2, H20, CH2, and F", and the results are compared with corresponding full Cl results.

1. Introduction
The simplest way to treat dynamical electron correlation effects

in molecular systems is to use the second-order perturbation ap-
proach. Second and higher order perturbation theory for Har-
tree-Fock reference functions has gained today widespread use

through program systems like gaussian.1 The reliability of this
approach for closed-shell systems is by now well established. In
many cases quite useful results can be obtained already at the
second-order level. However, the perturbation theory in this form
is limited to cases where the Hartree-Fock wave function provides
a valid starting point. Otherwise, the perturbation expansion
converges only slowly or not at all and low-order approximations
become rather unreliable.

Near-degeneracy correlation effects can be today effectively
treated by using the multiconfigurational SCF method.2 Nor-
mally, dynamical correlation is included through subsequent
multireference (MR) Cl calculations. Such an approach, however,
has severe limitations as regards the size of the systems that can
be treated, both with respect to the number of electrons and the
basis set dimension. A general perturbation theory for the
near-degenerate reference state was formulated a long time ago3
but its applications in chemistry are developing only slowly.4 The
major problem is in devising a practical implementation of the
theory. Such an implementation is most probably also going to
suffer from similar bottlenecks with respect to the size of the
system as the MR-CI and MR coupled cluster methods. It is
therefore natural to investigate the possibility of extending low-
order perturbation schemes to the case with a multiconfigurational
reference function. In particular, as shown in the present paper,
the second-order perturbation theory can without too much dif-
ficulty be implemented in an effective way, allowing applications
to all systems that can be treated by the MCSCF method. An
attempt was made some years ago to implement second-order
perturbation theory in conjunction with CASSCF wave functions.5
At the time it was not possible to include the full interacting space
in the first-order wave function, because of the difficulty in
computing the three- and four-particle matrices, which occur for
matrix elements involving internal and semiinternal excitations.
The results obtained in those earlier test applications were also
rather disappointing, with only minor or no improvement in
computed properties like dissociation energies, geometry param-
eters, and spectroscopic constants.

Later, Wolinski et al. derived a full second- and third-order
treatment for open-shell SCF and small MCSCF reference
functions and gave some illustrative results for several small
molecules.6 The results show, however, that their third-order
contribution can be sizable, when the reference function is of the
GVB type. The experience gained in the present second-order
treatment partly supports this conclusion. A CASSCF second-
order perturbation theory, based on the Moller-Plesset type
partition, has also been presented by McDouall et al.7 Their

7 Present address: Department of Chemistry, University of Arkansas,
Fayetteville, AK 72701.

approach is somewhat different, since in contrast to the present
formulation it is based on an effective Hamiltonian formalism.
The results presented by them, for the singlet-triplet splitting in
CH2 and the distance dependence of the correlation energy in H20,
are not very encouraging. Not much improvement is obtained
compared to the CASSCF results, except, of course, for the total
energies.

The present work describes a second-order perturbation ap-
proach to dynamical correlation, with a single reference state given
by a multiconfiguration CASSCF type wave function. Possible
near-degeneracies are thus assumed to have been accounted for
at the level of the CASSCF method. Recent developments in
methods for computing ^-particle density matrices8 have made
it possible to include the full first-order interacting space in such
a treatment. The present approach is similar though not equivalent
to the method suggested in the earlier work.5 Thus, the zeroth-
order Hamiltonian is constructed by using a Fock-type one-electron
operator, which reduces to the Moller-Plesset HF operator for
doubly occupied and unoccupied orbitals.9 The first-order Cl
space is nonorthogonal and only block diagonal with respect to
the zeroth-order Hamiltonian. This, however, does not constitute
any serious problem since the separate blocks can be diagonalized
without difficulty.

The method will be presented in detail in the next section.
Several test calculations have been performed and compared with
full Cl results obtained with the same basis sets.

2. Theory
2.1. The First-Order Interacting Space. In the present study

a multiconfigurational wave function |0), generated from a
CASSCF calculation, is used as the zeroth-order wave function
in a perturbation approach to the correlation problem. As the
theory is formulated, it is valid for any reference state constructed
as a full Cl wave function in some orbital subspace. However,

(1) gaussian 86; Frisch, M. J.; Binkley, J. S.; Schlegel,  . B.; Raghava-
chari, K.; Melius, C. F.; Martin, R. L.; Stewart, J. J. P.; Bobrowicz, F. W.;
Rohlfing, C. M.; Kahn, R. L.; DeFrees, D. J.; Seeger, R.; Whiteside, R. A.;
Fox, D. J.; Fleuder, E. M.; Pople, J. A. Camegie-Mellon Quantum Chemistry
Publishing Unit: Pittsburgh, PA, 1984.

(2) Three recent review articles by B. O. Roos, R. Shepard, and H.-J.
Werner can be found in: Ab Initio Methods in Quantum Chemistry, Part
//; Ado. Chem. Phys., 69; Lawley, K. P., Ed.; Wiley: Chichester, U.K., 1987.

(3) Brandow, B. H. Rev. Mod. Phys. 1967, 39, 771.
(4) See for example: Bartlett, R. J. Annu. Reo. Phys. Chem. 1981,32, 359.

Banerjee, A.; Simons, J. J. Chem. Phys. 1982, 76,4548. Lindgren, I. J. Phys.
B 1974, 7, 2441. Shavitt, I.; Redmon, L. T. J. Chem. Phys. 1980, 73, 5711.
Mukherjee, D. Int. J. Quantum Chem., Quantum Chem. Symp. 1986,20,409.
Shepard, M. G.; Freed, K. F. Int. J. Quantum Chem. Symp. 1981, 15, 21.
Kutzelnigg, W. J. Chem. Phys. 1984, 80, 822.

(5) Roos, B. O.; Linse, P.; Siegbahn, P. E. M.; Blomberg, M. R. A. Chem.
Phys. 1981, 66, 197.

(6) Wolinski, K.; Sellers, H. L.; Pulay, P. Chem. Phys. Lett. 1987,140,
225. Wolinski, K.; Pulay, P. J. Chem. Phys. 1989, 90, 3647.

(7) McDouall, J. J. W.; Peasly, K.; Robb, M. A. Chem. Phys. Lett. 1988,
148, 183.

(8) Malmqvist, P.-A.; Rendell, A.; Roos, B. O. J. Phys. Chem., this issue.
(9) Mailer, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.
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we shall use the fact that the orbitals are optimized to make some

simplifications in the computational procedure.
The configuration space, in which the wave function is ex-

panded, can be divided into four subspaces: V& Kk, Ksd, and KTQ ,

where (1) T0 is the one-dimensional space spanned by the CAS
reference function |0) for the state under consideration; (2) KK
is the space spanned by the orthogonal complement to |0) in the
restricted full Cl subspace used to generate the CAS wave

function; (3) KSD is the space spanned by all single and double
replacement states generated from V0, and (4) KTQ is the space
which contains all higher order excitations not included in 1-3.

It is only the functions in subspace 3 that interact with the
reference function via the total Hamiltonian, and the zeroth-order
Hamiltonian will be formulated in such a way that only KSD
contributes to the expansion of the first order wave function (vide
infra).

__ AJ1 functions in FSD can be generated from the functions,
ÉpqÉJO), where are the normal spin-averaged excitation
operators.5 Not all these functions are needed, however. Functions
of VK are, for example, generated when all four indexes p,q,r,s
refer to active orbitals. The functions needed in the expansion
of the first-order wave function can be divided into eight groups
as follows

internal £,¡£Uv|0) (la)

£tÁj|0) (lb)
semiinternal ^at^uvIO) (1c)

£a¡£tu|0>, ¿AJO) (Id)

£   > (le)
external ^at^bu|0) (if)

£,Á,|0> dg)

£Áj|0> dh)
where (i j) are inactive, (t,u,v) are active, and (a,b) are secondary
orbital indexes. The functions (la—1 h) are referred to as internal,
semiinternal, and external when none, one, or two orbitals belong
to the secondary subspace, respectively. It is easily realized that
the single replacement states are linear combinations of the
functions in (la-lh), since |0) is an eigenfunction of the particle
number operator

 £„ (2)
t

with the eigenvalue equal to the number of active electrons and
the index t runs over the active orbital space. The functions (1)
have the same total spin and spin z component as the reference
wave function and the space symmetry requirement is fulfilled
by including only such excitations for which the product of the
four symmetry labels contains the totally symmetric representation.
We shall label the different subspaces in (1) as KA,.... KH, re-

spectively. The total dimension of this first-order space is dim
Tsd·

In an earlier work5 only the external subspaces VF, VG, and VH
of KSD were used to construct the first-order wave function. This
limitation was introduced for practical reasons, since the necessary
matrix elements can then be expressed in terms of one- and
two-particle density matrices only. It was felt at the time that
the external subspace should be able to recover most of the
correlation energy. However, the results obtained with this lim-
itation clearly showed the importance of internal and semiintemal
excitations.

A further partitioning of VB, KE, VF, VG, and KH is possible.
VB is used here as an example, but the same procedure can be
used for the other four subspaces.5 For each quadruple of indexes
in (lb) two states can be constructed, corresponding to different
spin couplings of the new electron pair in the active space

(£ti£uj ± £tj£ui)|0> (3)

The plus sign leads to a singlet coupling of the inactive orbitals

Andersson et al.

i and j and the minus sign to a triplet coupling. The two sets of
plus and minus combinations of states (lb) are thus functions in
two mutually orthogonal subspaces VB+ and VB- of VB.

The first-order wave function is now expanded into a set of
functions (/) from KSD

|*i) = Íc¡\j) (4)
Jm i

where   > dim KSD and ¡Cj·, j — 1,....., M\ is a solution of the
system of linear equations

ECj(i\H0-E0\j) = -(¡|W]0), i = 1.......M (5)

where E0 = <0|#0|0) is the zeroth-order energy. The expansion
functions [/) in (4) are not necessarily orthogonal and may also
be linearly dependent.

2.2. The Zeroth-Order Hamiltonian. One of the major
problems in formulating a low-order perturbation approach with
a multiconflgurational reference function is the definition of the
zeroth-order Hamiltonian. The most important condition is that
it should lead to a perturbation expansion which converges rapidly.
Of course, this feature can only be tested by performing actual
calculations and comparing the results with corresponding full
Cl energies. The test calculations used in the present work are
all of this kind. Secondly, the zeroth-order Hamiltonian should
preferably be equivalent to the Moller-Plesset Hamiltonian in
the limiting case of a closed shell reference function. One problem
with the first-order equation (5) is the size of the matrix on the
left-hand side of the equation. It is possible, as will be seen below,
to construct the zeroth-order Hamiltonian in such a way that it
leads to a further blocking of this matrix. This is of importance
for the efficiency of the computer implementation of the method.
The conditions given above are fulfilled for a zeroth-order Ham-
iltonian of the following form

H0 = P0FP0 + PKFPK + PSDFPSD + >Tq.Mq.. (6>

where P0 = |0)(0| is the projector onto V0, PK is the projector onto
VK, PSD is the projector onto KSD, PTQ is the projector onto KTq ,

and F is a sum of one-particle operators. With this choice of H0
only vectors belonging to KSD will contribute to the first-order wave
function and the second-order energy. Still the dimension of the
matrix

((i\H0-E0\j)) |/>,l/> E VSD (7)

is prohibitively big even for a small number of orbitals. However,
if we define F to include only the diagonal terms of a one-particle
operator, i.e.

F =    £   (8)
P

where p runs over the entire orbital space, and the off-diagonal
terms are formally included in the perturbation term, we will get
a blocking of the matrix (7) in 8 x 8 blocks where the off-diagonal
blocks are zero, i.e.

- E0[j) = 0
if |0 E Vx, l/> E KY, X * Y G )A,...,H) (9)

If F also included the off-diagonal terms of the one-particle op-
erator then (9) would not hold. Each of these eight diagonal blocks
may now be further blocked by realizing that the matrix elements
in (7) are zero if |() E   +, [/') E Vx-, X E |B,E,F,G,H) and
when the occupation numbers of the inactive and secondary or-
bitals in |0 and \j) are different.

With this choice of F, the matrix 7 has a simple structure. The
only nonzero elements are found in a rather large number of
diagonal blocks whose dimensions are fairly small. The dimension
of the largest block will be the cube of the number of active
orbitals, na. When space symmetry is used, a further blocking
of those smaller blocks is achieved. This is particularly advan-
tageous for larger blocks involving the internal and semiinternal
excitation spaces.
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After the size of the matrices is reduced as far as it is possible
within the present formalism, the remaining problem is then the
construction of the orbital energy operator F. The condition
concerning the choice of this operator is that it should reproduce
the results from the closed-shell second-order perturbation theory
when the number of active orbitals is zero.

Let us introduce the operators

/pq, = ápJ/Mq/l - a¿[ñ,av\ (10)

whose spin-averaged expectation values we denote by

/p, = \  <0|£ ,|0> (11)

The diagonal elements of (11) correspond to energy differences.
If p represents an inactive orbital then fK is the energy difference
between the system, represented by |0>, and its positive ion. On
the other hand, if p represents a secondary orbital then fn is the
energy difference between the negative ion and the neutral system.
For orbitals partly occupied in |0) /_, corresponds to an inter-
polation between the two extremes. The evaluation of (11) yields
the following explicit expression for the matrix elements fn

/pq =
Apq + (pq|rs) - -(pr|qs) (12)

where D is the one-particle density matrix. The matrix 12 consists
of threeXthree blocks corresponding to the three orbital subspaces.
According to the generalized Brillouin theorem /„ is zero for a

converged CASSCF wave function, when one of the indexes
represents an inactive orbital and the other a secondary orbital.
The orbitals are determined by diagonalizing each of the diagonal
blocks, one by one. This way of defining a unique set of orbitals
is possible only for a CASSCF reference function, since the CAS
Cl space is invariant to such a transformation. It corresponds
to using the canonical Hartree-Fock orbitals as the basis in the
usual perturbation expansion for a single determinant closed-shell
reference state. When the number of active orbitals is zero, the
transformed matrix is diagonal and is identical with the canonical
Fock operator in the Hartree-Fock theory.

The transformed matrix, f, has the following property

/'pq =
«pq«P (13)

where the two indexes represent orbitals from the same orbital
subspace. As was previously mentioned, we only include the
diagonal terms (13) in the operator F. Wolinski et al.6 have argued
that the full V matrix should be used, since it leads to an orbital
invariant formulation of the zeroth-order Hamiltonian. This would
not seem to be necessary with the present procedure, which defines
a unique set of orbitals. Notice also that the inactive secondary
subblock of f is zero for an orbital optimized CASSCF reference
function, since these elements correspond exactly to the energy
derivatives with respect to such orbital rotations.

2.3. The First-Order Wave Function and the Second-Order
Energy. For simplifying the notation we introduce the following
matrices and vectors with elements

(H0),j = (i\H0y)

So = m
C¡, the expansion coefficients for the first-order wave

function; i,j = 1, ..., M (14)

V, = <-W>)
where M is the number of double replacement states (1). In
determining the first-order wave function we have to solve the
system of linear equations (5). Since in most cases   > dim KSD
the double replacement states will be linearly dependent. This
linear dependence (and near linear dependence) is removed by
diagonalizing the overlap matrix S and deleting the eigenvectors
which correspond to zero (or close to zero) eigenvalues. Equation
5 can now be written as

[(UA,-,/2)tH0(UA,->/2) - £0l]A,V2UtC = -Af^lTY (15)

where

A, = UfSU (16)

A, is a diagonal NX N matrix and U is a MX N matrix where
N = dim KSD. In cases with near-linear dependence N < dim KSD.
The eq 15 corresponds to a transformation of the Cl space to a
orthonormalized form. The second-order energy is given as

E2 =

-(As-|/2UtV)t[(UAs-1/2)tH0(UA,-|/2) - £0l]->(A,-'/2utV)
(17)

Because of the choice of H0, the contributions from each of the
eight subspaces Vx of KSD can be treated separately. As an
illustrating example we choose the contribution from Vc.

   =

-^((UcA^^tyj.) Vl +

(UcAac-1/2)tBc(UcASc-V2)]-i(UcASc-1/2)tvi: (18)

where

As,
= IVScUc (19)

(Sc)tuv.xyz
= (0|ZvuZ«Zyz|0) (20)

(ficWyz = -<,<0|£vu/txZyz|0> +
^iw<0|£vu£'tx£'ww£yZ|0)

(21)

«* = «»-    ™ (22)

(Fc)tuv =  [2 vu,w + 5„tAw][/,w -   (ay|yw)] +

E<0|£vu£twlly|0)(aw|xy) (23)

Aw = Aaw +  [2^^) - (ak|kw)] (24)
k

and D and P are the one- and two-particle density matrices and
k in (24) runs over the inactive and frozen orbital subspaces.

Since the summation in (18) is over the entire secondary orbital
subspace it seems that a large number of matrix inversions would
have to be performed. This can, however be avoided by a second
unitary transformation W of the Cl coefficients, which diago-
nalizes the transformed B matrix. Note that this transformation
is also independent of the index a, and therefore has to be per-
formed only once. Then, eq 18 simplifies to

   = ~  |(Pc)pl7(<*a + (ASc)p) (25)
a,P

where

A6c = WC%WC, fic = (UcASc-'/2)tBc(UcASc-'/2) (26)

and

ñ = WiA^-'/iUctya (27)

The same procedure can be used for all contributions. In the
subspace spanned by vectors lh the above transformation is given
by a unit matrix, since the matrix representation of H0 - E0 in
VH is automatically diagonal. The above procedure leads to a
major reduction of the computational work needed to solve the
first-order equations. A large number of matrix inversions is
replaced by a small number of diagonalizations (two for each of
the Cl subspaces), with a simultaneous removal of all linear
dependencies from the Cl space. The expression 25 gives an
illustrative formulation of the second-order energy. The denom-
inator can be written as <a

- <„ where <t represents an effective
active orbital energy. The expression for the second-order energy
with a multiconfigurational reference function thus has the same
form as the usual Moller-Plesset expression in the closed-shell
case, the difference being that the active orbital energies are

replaced by a more complex expression involving a weighted sum
over all active orbitals, where the weights are given by linear
combinations of various (one through four particle) density matrix
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TABLE I: Comparison of CASPT2 Results with Full Cl (FCI) and
Other MP2 Results for the H2 Molecule

SCF CAS CASPT2 FCI MP26 MP3* exp“

Re, A 0.735 0.755 0.746 0.743 0.742 0.739 0.741
De, eV 3.63 4.14 4.57 4.67 4.56 4.62 4.75
we, cm'1 4616 4255 4407 4443 4401
«e*,, cm"1 114.0 129.3 130.5 129.8 121.3

B„ cm"1 63.1 59.4 61.1 61.6 60.8
tsE,d au 0.0382 0.0196 0.0037 0.0030 0.0007

“Basis set: ANO (4s3p2d); active orbitals 1 ,,1 ·„. 66-31G** basis,
GVB reference function; from ref 6. “Experimental results from ref
11. d Difference in total energy to FCI at r(HH) = 1.4 au.

elements. Note that such a formulation is possible for all types
of excitations.

3. Some Test Applications
The test applications presented below have been performed with

the purpose of comparing the present perturbation approach with
full Cl results obtained with the same basis set. The reference
full Cl results correspond to rather limited basis sets, which are

incapable of yielding very accurate results for the properties
studied. For this reason the performance of the CASSCF per-
turbation approach is studied merely from a formal point of view
and the absolute accuracy of the present data is of lesser sig-
nificance. The results obtained give strong evidence that the
method used should be improved, before more extensive appli-
cations are made.

3.1. The Hydrogen Molecule. Calculations of the potential
curve for H2 have been performed using an ANO type basis set
of the size 4s3p2d contracted from 8s4p3d.10 The CASSCF
calculations were made with the 1 , and lcr„ orbitals active. They
are virtually equivalent to the second-order calculations of Wolinski
et al.6 The results are presented in Table I, where a comparison
is made with full Cl (FCI) calculations with the same basis set,
and also with the results of Wolinski et al.6 The spectroscopic
properties computed with second-order perturbation theory
(CASPT2) show in general an improved agreement with the FCI
results, as compared to the CASSCF data. The error in the bond
distance is reduced from 0.012 to 0.003 Á, and the error in Dt
from 0.53 to 0.10 eV. The present second-order results are also
close to the MP2 results from ref 6. The deviation in total energy
from FCI, at the HH distance 1.4 au, is only 0.0037 au, and
corresponds to about 10% of the total correlation energy. Thus
CASSCF plus CASPT2 is in this case capable of recovering 90%
of the correlation energy. Clearly, the CASPT2 results must in
this case lead to an increased value for the binding energy, since
the CASPT2 energy at large distances is equal to the CASSCF
energy. It is, however, not possible to conclude from these results
that improved potential curves will always be obtained with this
method. Actually, preliminary results for the dissociation of the
nitrogen molecule indicate that in some cases the extra correlation
energy obtained by CASPT2 is larger at large internuclear dis-
tances than it is arond equilibrium. In such cases the CASPT2
potential curve represents a deterioration with respect to the
CASSCF results. The reason for this unbalance in the second-
order energy at short and long internuclear separations is presently
under investigation.

3.2. The Water Molecule in a DZ Basis. The second set of
test calculations were performed for the water molecule in a DZ
basis set. Here direct comparison can be made with the FCI
results of Handy et al.12 and also with the second-order results
of McDouall et al.7 (Table II). Three different active spaces were
used in the CASSCF calculations, the first two being identical

(10) Widmark, P.-O.; Malmqvist, P.-Á.; Roos, B. O. To be published.
(11) Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules·, van

Nostrand Reinhold: New York, 1979.
(12) Handy, N. C. Chem. Phys. Lett. 1980, 74, 280. Harrison, R. J.;

Handy, N. C. Chem. Phys. Lett. 1983, 79, 202.
(13) Bauschlicher, C. W., Jr.; Taylor, P. R. Theor. Chim. Acta 1987, 71,

273,

TABLE II: Comparison of CASPT2 Results with Full Cl (FCI) and
Other MP2 Results for H2O in a DZ Basis (in au)

method" rc 1.5re 2.0rc 100 A
SCF -76.0098 -75.8035 -75.5952
MP2 -76.1493 -75.9946 -75.8525
FCI6 -76.1579 -76.0145 -75.9052 -75.8648
MP2-FCI 0.0086 0.0199 0.0527
(2100/2020)
CASSCF -76.0629 -75.9243 -75.8272 -75.7958
CASPT2 -76.1490 -76.0095 -75.9011 -75.8590
CASPT2-FCI 0.0089 0.0050 0.0041 0.0058
CASPT2-FCI (ref 7) 0.0320 0.0302 0.0148 0.0113-
(2000/2220)
CASSCF -76.0971 -75.9526 -75.8440 -75.8056
CASPT2 -76.1488 -76.0075 -75.9006 -75.8600
CASPT2-FCI 0.0091 0.0070 0.0046 0.0048
CASPT2-FCI (ref 7) 0.0137 0.0117 0.0110 0.0075“
(1000/4220)
CASSCF -76.1320 -75.9816 -75.8657 -75.8236
CASPT2 -76.1548 -76.0105 -75.9025 -75.8620
CASPT2-FCI 0.0031 0.0040 0.0027 0.0028

“Values within parentheses give the number of inactive and active
orbitals used in the CASSCF and CASPT2 calculations, with inactive
orbitals given first in symmetry order: ab bh b2, and a2.

6 Full Cl
results from ref 12. “This calculation was done at r(OH) = 10 Á, but
the difference should be small.

TABLE III: Comparison of CASSCF, CASPT2, and FCI Binding
Energies (£(/ ) - £(100)) for H20 in a DZ Basis (kcal/mol)“

method" re 1.5re 2.0rc
FCI 183.9 93.9 25.4
(2100/2020)
CASSCF 167.6 80.6 19.7
CASPT2 181.9 94.4 26.4
CASSCF-FCI -16.3 -13.3 -5.7
CASPT2-FCI -2.0 0.5 1.0

(2000/2220)
CASSCF 182.9 92.2 24.1
CASPT2 181.2 92.6 25.5
CASSCF-FCI -1.0 -1.7 -1.3
CASPT2-FCI -2.7 -1.3 0.1

(1000/4220)
CASSCF 193.5 99.1 26,4
CASPT2 183.7 93.2 25.4
CASSCF-FCI 9.6 5.2 1.0
CASPT2-FCI -0.2 -0.7 0.0

“Active spaces as in Table II.

with those used in ref 7. The first calculation has four electrons
in four active orbitals (2020, where the four numbers represent
the number of active orbitals in the four different symmetries ah
b¡, b2, and a2) and correlates only the electron pairs in the OH
bonds. It is the smallest active space, which leads to correct atomic
dissociation. The difference between the CASPT2 and FCI en-

ergies is with the present perturbation approach much smaller
than with the effective Hamiltonian method used by McDouall
et al.7 The bond energy differences (£(100) - E(r)) are presented
in Table III. The difference between the CASPT2 results and
FCI ranges between -2.0 and +1.0 kcal/mol. The improvement
compared to the CASSCF results is impressive.

The next larger active space, (2220), includes in addition two
orbitals to describe the correlation of the oxygen   lone pair.
However, this increase in the accuracy of the CASSCF wave
function does not lead to a decrease in the difference between the
CASPT2 and FCI energies and probably indicates that most of
the error is located to the OH bonding region. The CASSCF
potential curve obtained with this active space is fortuitously in
very good agreement with the FCI results, and no further im-
provement is obtained at the CASPT2 level. The deviations,
though somewhat smaller, are now closer to those obtained in ref
7.

The largest active space, (4220), has eight electrons in eight
orbitals and adds to the preceding space two orbitals to correlate
the oxygen   lone pair. This CASSCF wave function is known
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TABLE IV: The Polarizability of F".
CASPT2 and Full Cl

A Comparison between

method polarizability, au

SCF" 9.89
CASSCF4 13.92
CASPT2 14.88
FCI" 16.30

"SCF and FCI results from ref 13. 4 Is inactive; 2s,2p,3s,3p active.

from earlier work to give a very balanced description of the
electronic structure of the water molecule.14 The CASPT2
energies are now also much closer to the FCI values, the largest
difference being 0.0040 au. The difference in binding energy is
for all distances smaller than 1 kcal/mol (cf. Table III).

This set of calculations shows that in this particular case the
CASPT2 energy behaves uniformly with respect to an increase
of the active space. The difference in binding energy between
CASSCF and FCI at rt varies between -16.3 kcal/mol for the
small active space and +9.6 kcal/mol for the largest space. The
corresponding variation for CASPT2 is much smaller: from -2.7
kcal/mol (for the medium size active space) to -0.2 kcal/mol.

3.3. The Polarizability of F~. In the third test calculation an

attempt is made to study the second-order perturbation correction
to an electric property: the polarizability of P. The correlation
contribution to this property is substantial and it is interesting
to see how much of this effect can be recovered in a second-order
approach. Again we have the possibility to compare the CASPT2
data with full Cl results,13 obtained under the same conditions,
that is, using the same basis set and the same electric field strength
(0.005 au) in the finite field determination of the polarizability.
The basis set employed by Bauschlicher and Taylor has segmented
contraction and contains diffuse s, p, and d functions. The size
is 5s3p2d and the details can be found in Table 1 of ref 13.

The CASSCF reference function has all eight valence electrons
active and the active space consists of eight orbitals: 2s, 2s', 2p,
and 2p' (4220 in symmetry). The polarizability was obtained
as the second derivative of the energy with respect to the electric
field strength.

The results of the calculation are presented in Table IV. The
CASSCF polarizability already yields a substantial improvement
compared to the SCF value. The error, as compared to the full
Cl result, has decreased from 6.41 au (SCF) to 2.38 au. The
CASPT2 result adds only a modest improvement to this result
by diminishing the difference to 1.42 au. Actually this seems to
be a fortuitously good result. Preliminary results for the polar-
izability of other atoms and small molecules have shown that the
CASPT2 perturbation correction is unstable. This is especially
true in cases where an active orbital has an occupation number
close to 2 and therefore easily rotates with inactive orbitals in the
presence of the perturbing field. Such results strongly indicate
that the reason for the instability is the neglect of the off-diagonal
elements in the Fock type operator used to construct the zer-
oth-order Hamiltonian.

3.4. The Singlet-Triplet Splitting in CH2. As a final test of
the method we have studied the singlet-triplet splitting in the
methylene radical. Again the results can be compared to the full
Cl calculations of Bauschlicher and Taylor.13,15 The basis set
used by them, and also here, has segmented contraction and the
size (C/4s2pld/H/2slp). The active orbital space is constructed
from the valence orbitals of carbon and hydrogen (6 electrons in
6 orbitals) and all valence electrons are correlated. The results,
which are presented in Table V, are rather disappointing. The
excitation energy computed with the CASSCF wave functions
is already in very good agreement with the full Cl results, and
one would therefore hope that the perturbation correction should
be small. This is not the case, however. The CASPT2 energy
for the singlet state is above the FCI energy, but the situation is
reversed for the triplet state. This unbalanced treatment of the

(14) Roos, B. bit. J. Quantum Chem. Symp. 1980, 14, 175.
(15) Bauschlicher, C. W., Jr.; Taylor, P. R. J. Chem. Phys. 1986,85,6510.
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TABLE V: The Singlet-Triplet Separation in CHZ. A Comparison
between CASPT2 and Full Cl

energy,, au exc energy,
kcal/mol , 3B,

CASSCF -38.945 529 -38.965954 12.82
PT2 -0.079923 -0.085 211
CASPT2 -39.025452 -39.051 165 16.13
FCI" -39.027 182 -39.046 259 11.97
FCI-CASPT2 -0.001730 0.004906
OVB MP24 -39.0154 -39.0366 13.42

"From ref 13. 4Second-order result from ref 7.

dynamical correlation effect increases the excitation energy and
destroys the good agreement with FCI obtained at the CASSCF
level. Similar results have also been obtained by McDouall et
al. in their second-order treatment,7 which is based on an effective
Hamiltonian formalism. The second-order correction to the ex-
citation energy is in their treatment also positive instead of being
negative (see the entry OVB MP2 in Table 5 of ref 7). The two
formalisms are rather different and the similarity in the result
may indicate that it is difficult in any second-order scheme to
obtain a balance between corrections computed for states of
different spin multiplicity.

4. Discussion

In this article we have presented a simple second-order per-
turbation method based on a CASSCF reference function (or more

generally on a full Cl function in a limited orbital subspace).
Computationally the method is very efficient. The total time
needed for a full calculation of the second-order energy is very
small. The largest test we have performed to date was on the
phenol molecule using a basis set consisting of 138 functions and
coorelating all the 36 valence electrons. The CASSCF reference
function was built by distributing eight   electrons in seven active
orbitals. The total CASPT2 calculation, including the integral
transformation, took 28 s of CPU time on an IBM 3090-17S
computer. It is clear that a second-order calculation of the present
type will add very little to the total time used in the preceding
CASSCF calculation.

The results obtained in the test calculations presented above
are, however, not entirely satisfactory. In all cases a substantial
improvement in total energies has been obtained, with differences
from the FCI results of the order of a few millihartrees. But even
if this error is small on the absolute energy scale it is still large
compared to the energy differences, which are of interest in most
applications. Therefore in order to obtain an improvement in
computed relative energies, the error in the second-order energy
must behave in a balanced way. This has not always been the
case for the selected examples.

One reason for the unbalance could be the neglect of off-di-
agonal contributions to the Fock operator (8) used to build the
zeroth-order Hamiltonian. The number of off-diagonal elements
has been reduced as much as possible by choosing the orbitals such
that the diagonal blocks of f (inactive-inactive, active-active, and
secondary-secondary) are diagonal. This is possible, since the
CASSCF density matrices are invariant to the corresponding
transformations. The inactive-secondary block of the f matrix
is also automatically zero for an optimized CASSCF wave

function, since it is identical with the energy derivatives with
respect to the pertinent orbital rotations. However, the inac-
tive-active and active-secondary blocks of the Fock matrix are
not zero. Large rotations between orbitals in these subspaces may
sometimes occur, due to some perturbation of the system (for
example, an applied electric field, or a change in a bond distance).
In those situations, contributions which are originally in the di-
agonal block of F may move to the nondiagonal blocks. The
necessity to include the full F matrix in the zeroth-order Ham-
iltonian has been pointed out in the work of Wolinski et al.6 with
the argument that the theory is then invariant with respect to
orbital rotations. Formally, this is not a problem by itself, since
the orbitals are uniquely determined by the requirement that the



5488 J. Phys. Chem. 1990, 94, 5488-5493

diagonal subblocks of the f matrix are diagonal. However, it may
be that this method does not represent a balanced choice of the
orbitals.

The obvious remedy to the problem discussed above would be
to include the off-diagonal blocks in the zeroth-order Hamiltonian.
This can, and will, be done in the next version of the method, but
it is not a trivial extension of the method, since the nice blocking
of the zeroth-order matrix is then destroyed. The off-diagonal

elements will introduce couplings between the different types of
excitations as given by (1). The possibility of treating this coupling
in a computationally efficient way is presently being investigated.
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The geometries of the metallacyclopropenes c-[MX2C2H2] (M = C, Si, Ge, Sn; X = H, F) are predicted by using the 3-21G(d)
basis set and SCF wave functions. The nature of the ring bonding is investigated via analysis of the total electron density
and is found to have little or no  -complex character. As a further probe of the electronic structure, bent bond lengths and
intrinsic vibrational frequencies are computed. The classical barrier heights and the thermodynamics of the reaction MX2
+ HCssCH -* c-[MX2C2H2] are predicted by using MP2/3-21G(d) energies.

I. introduction
The nature of the bonding in small, highly strained ring com-

pounds has been the topic of several recent theoretical1'5 and
experimental64 papers. These studies have focused on establishing
the degree of  -complex versus “classical”  -bonding character
in saturated carbon-based heterocycles1·5 and their silicon ana-

logues.3'5 In particular, the degree of  -complex character as a
function of heteroatom X in the cyclopropanes c-[XH„C2H4] and
the silicon analogues c-[XH„Si2H4] has been investigated.
Consistent with the Dewar10 and Chatt-Duncanson11 models of
metal-olefin bonding described within the framework of accep-
tor/donor interactions, these works have predicted increasing
 -complex character in these rings as the electronegativity of X
increases, especially for the silicon-based rings. However, a recent
paper from this laboratory5 suggests that the apparent  -complex
character is actually due to the presence of highly bent bonds.

Very recently, the first stannacyclopropene derivative,  1,7-
2,2,6,6-tetramethyl-4-thia-8,8-bis(bis(trimethylsilyl)methyl)-8-
stannabicyclo[5.1 .Ojoctene,9 was synthesized. This derivative is
observed to be in thermal equilibrium in solution with its parent
stannylene and acetylene fragments, with the latter being favored
at temperatures above -16 °C.9 This observation has been ex-

plained by proposing that the bonding in the three-membered ring
portion of the stannacyclopropene molecule is largely  -complex
in nature. According to this picture, the facile dissociation of the
ring is a result of the relatively weak  -complex binding (compared
to the more usual  -ring bonding, see structures 1 and 2. Fur-

HC=CH

x2
M

/ \
HC=CH

it-complex
1

 -ring
2

thermore, replacement of the bis(trimethylsilyl) groups at the tin

f Present address: Department of Chemistry, University of Utah, Salt Lake
City, UT 84112.

center with chlorines prohibits formation of a stannacyclopropene
product. The rationale for this observation is that chlorine sub-
stitution reduces the stability of an already marginally stable
 -complex by decreasing the electron-donating capability of the
stannylene fragment. The present work examines the bonding
in the metallacyclopropenes c-[MX2C2H2] (M = C, Si, Ge, Sn;
X = H, F). In particular, bent bond lengths (obtained from total
electron densities12), intrinsic frequencies13 (obtained from com-

puted Hessian matrices), and the energetics of the reactions MX2
+ HC=CH -*· c-[MX2C2H2] are calculated.

Of the ring compounds considered in this work, cyclopropene
is the most studied, both experimentally and theoretically. The
geometry of cyclopropene has been determined from its microwave
spectrum.14 The harmonic frequencies, normal modes of vibration,

(1) Cremer, D.; Kraka, E. J. Am. Chem. Soc, 1985, 107, 3800.
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(11) Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939.
(12) See, for example; (a) Bader, R. F. W.; Slee, T. S.; Cremer, D.; Kraka,
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