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Second-order perturbation theory with a complete active space 
self-consistent field reference function 

Kerstin Andersson, Per-Ake Malmqvist, and Bjc;rn O. Roos 
Department a/Theoretical Chemistry, Chemical Centre, S-221 ()() Lund, Sweden 

(Received 5 August 1991; accepted 30 September 1991) 

The recently implemented second-order perturbation theory based on a complete active space 
self-consistent field reference function has been extended by allowing the Fock-type one­
electron operator, which defines the zeroth-order Hamiltonian to have nonzero elements also 
in nondiagonal matrix blocks. The computer implementation is now less straightforward and 
more computer time will be needed in obtaining the second-order energy. The method is 
illustrated in a series of calculations on N 2 , NO, 02' CH3, CH2 , and F-. 

I. INTRODUCTION 

Since the late introduction of perturbation theory in 
quantum chemical applications by Kelly! in the early 196Os, 
perturbation theory has today gained widespread use 
through program systems such as GAUSSIAN 2 and is prob­
ably the only correlation method used routinely by nonspe­
cialists. This development can be explained by the fact that 
for a long time it was considered a weakness that no upper 
bound to the energy is provided by perturbation methods. 
The collected experience of correlation methods has shown, 
however, that the property of size extensivity, which is easy 
to achieve with perturbation methods is more important 
than the upper bound property.3 

Most applications using perturbation theory have been 
based on nondegenerate many-body perturbation theory 
(MBPT). This is a reasonable method for atomic and molec­
ular systems whose zeroth-order electronic description may 
be represented by a single nondegenerate Slater determinant. 
The restriction excludes atomic and molecular states, in par­
ticular excited ones, which cannot be represented in zeroth 
order as single Slater determinants. Furthermore, if the state 
under consideration is degenerate or near degenerate, which 
is often the case for atomic and molecular valence states, the 
perturbation expansion converges only slowly or not at all 
and low-order approximations become rather unreliable. 
This explains the need for a quasidegenerate perturbation 
theory. An extension of the nondegenerate MBPT to include 
the quasidegenerate valence states in the zeroth-order de­
scription was first made by Bloch and Horowitz.4 Their for­
mulation of the theory was not size extensive but a satisfac­
tory solution to this problem was given by Brandows in 
1967. The theory of quasidegenerate perturbation theory has 
been treated in many articles, but its applications in chemis­
try are developing only slowly because of the difficulty in 
devising a practical implementation of the theory.6 It is 
therefore natural to investigate the possibility of extending 
low-order perturbation schemes to the case of a multiconfi­
gurational zeroth-order wave function. An attempt was 
made some years ago to implement second-order perturba­
tion theory in conjunction with complete active space self­
consistent field (CASSCF) wave functions. 7 At the time, it 
was not possible to include the full interacting space in the 

first-order wave function because of the difficulty in comput­
ing the three- and four-particle density matrices, which oc­
cur for matrix elements involving internal and semiinternal 
excitations. The results obtained in these earlier test applica­
tions were also rather disappointing with only minor or no 
improvement compared to CASSCF results in computed 
properties such as dissociation energies, geometry param­
eters, and spectroscopic constants. Later Wolinski et al. de­
rived a full second- and third-order treatment for open-shell 
SCF and small multiconfigurational SCF (MCSCF) refer­
ence functions and gave some illustrative results for several 
small molecules.8 The results show, however, that the third­
order contribution can be sizable when the reference func­
tion is of the generalized valence bond (GVB) type. Another 
CASSCF second-order perturbation theory has been pre­
sented by McDouall et al. 9 Their method lies between multi­
configurational perturbation theory and the original quasi­
degenerate MBPT formulation of Brandow. 

In 1990, another attempt was made to implement sec­
ond-order perturbation theory with a CASSCF wave func­
tion as the zeroth-order wave function.lO In that work, the 
full interacting space was included in the first-order wave 
function and the zeroth-order Hamiltonian was constructed 
from a Fock-type one-electron operator that reduces to the 
M011er-Plesset Hartree-Fock (HF) operator for a case with 
no active orbitals. In order to make a computer implementa­
tion simple and effective, a diagonal Fock operator was used. 
For many applications, this choice of zeroth-order Hamilto­
nian is good enough, but there are also applications where a 
full one-electron operator is needed in order to obtain a con­
tinuous change of calculated properties with respect to 
changes in some parameters (for instance, geometry, electric 
field strength, etc.). The consequences of using an extended 
one-particle operator-e.g., a somewhat more complicated 
computer implementation, where the first-order equation 
has to be solved iteratively-will be discussed in the present 
work. 

The general approach of the method has been presented 
in detail in Ref. 10 and only a shortened version will be given 
in the next section together with some extensions. Several 
test calculations have been performed and compared with 
either full configuration interactions (FCI) results or mul­
tireference CI (MRCI) results with the same basis sets. 
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II. THEORY 

A. The first-order Interacting space 

In the present study, a muIticonfigurational wave func­
tion 10.) generated from a CASSCF calculation is used as the 
zeroth-order wave function in a perturbation approach to 
the correlation problem. As the theory is formulated, it is 
valid for any reference state constructed as a full CI wave 
function in some orbital subspace. However, the fact that the 
orbitals are optimized makes some simplifications in the 
computational procedure possible. 

The configuration space, in which the wave function is 
expanded, can be decomposed in foursubspaces Vo, VK, VSD 
and VTQ ... , where (1) Vo is the one-dimensional space 
spanned by the CAS reference function 10.); (2) VK is the 
space spanned by the orthogonal complement to 10.) in the 
restricted full CI subspace used to generate the CAS wave 
function; (3) VSD is the space spanned by all single and dou­
ble replacement states generated from Vo and not included 
in (I) and (2); and (4) VTQ ... is the space which contains all 
higher-order excitations not included in (I )-( 3). Since the 
functions in the subspaces (2) and (4) do not interact with 
the reference function via the total Hamiltonian, the zeroth­
order Hamiltonian will be formulated in such a way that the 
first-order wave function is in VSD (vide infra). The func­
tions needed in the expansion of the first-order wave func­
tion will then belO 

internal E,}:uv 10.), 

EtiEujlo.), 
A A 

semiinternal EatEu" 10), 
A A A A 

EaiEtu lo.),EtiEau 10.), 
A A 

EtiEajlo.), 
A A 

external EatEbu 10.), 
A A 

EaiEbtlo.), 
A A 

EaiEbjlo.), 

(la) 

(lb) 

(lc) 

(ld) 

(Ie) 

(1f) 

(lg) 

(lh) 

where Epq are the spin-averaged excitation operators and 
(i,j) are inactive, (t,u,v) active, and (a,b) secondary orbital 
indices. The functions in Eqs. (I) are referred to as internal, 
semiinternal, and external when none, one, or two orbitals 
belong to the secondary subspace, respectively. The func­
tions (Ia)-( lh) span different subspaces of VSD and we will 
label them as VA , ... , VH , respectively. The sum of these eight 
subspaces comprises VSD • 

The first-order wave function is now expanded in the 
functions in Eqs. (1) 

M 

1'1'\) = L Gjlj), Ij)EVsD , (2) 
j= \ 

where M>dim VSD is the number of functions in Eqs. (1) 
and {Cj , j = 1, ... ,M} is a solution of the system of linear 
equations 

M A A L C/ilHo - Eo Ij) = - (ilH 10.), i = 1, ... ,M, (3) 
j= \ 

A 

where Eo = (OIHo 10.) is the zeroth-order energy. The ex-
pansion functions I j) in Eq. (2) are not necessarily orthogo­
nal and may also be linearly dependent. 

B. The zeroth-order Hamiltonian 

In defining the zeroth-order Hamiltonian, we want 
three conditions to be fulfilled. The first and most important 
condition is that the perturbation exparision converges rap­
idly. However, this can only be tested by performing actual 
calculations and comparing the results with the correspond­
ing full CI results. Second, the zeroth-order Hamiltonian 
should preferably be equivalent to the M011er-Plesset Ham­
iltonian in the limiting case of a closed-shell reference func­
tion. Third, it should be possible to make an efficient com­
puter implementation of the method. These conditions can 
be fulfilled for a zeroth-order Hamiltonian of the following 
form: 

Ho =PoFPo +PKFPK +PSDFPSD +PTQ ... FPTQ ... , 
(4) 

A A 

where Po = lo.)(Ol is the projector onto VO,,tK is the 
projector onto VK , PSD is t~e projector onto VSD ' PTQ ... is the 
projector ont~ VTQ ... , and F is a one-particle operator. With 
this choice of Ho, we also achieve that only vectors belonging 
to VSD will contribute to the first-order wave function and 
the second-order energy. The re9:aining operator to be de­
fined is the one-particle operator F. The freedom in choosing 
this operator is reduced since we want it to reproduce the 
results from closed-shell M011er-Plesset second-order per­
turbation theory. As was discussed in Ref. 10, the operator 

(5) 
pq 

where J;,q are the spin-averaged expectation values of the 
operators 

A A A 

Fpqu = apu [H,a!u] - a!u [H,aqu ] (6) 

fulfills this requirement. The matrix (fpq) consists of 
three X three blocks corresponding to the three orbital sub­
spaces. We will now make use of the fact that the reference 
function is a CASSCF wave function. In this case, according 
to the generalized Brillouin theorem,fpq is zero when one of 
the indices represents an inac!i..ve orbital and the other a sec­
ondary orbital. The operator F can be simplified by defining 
a new set of orbitals determined by diagonalizing each of the 
three diagonal blocks of the matrix (fpq).11 This orbital 
transformation is possible only for a CASSCF reference 
function, since the CAS CI space is invariant to such a trans­
formation. For a closed-shell reference state, when the num­
ber of active orbitals is zero, these orbitals correspond to the 
canonical Hartree-Fock orbitals. The transformed matrix 

A 

(fpq) is then diagonal and F is identical to the canonical 
Fock operator in Hartree-Fock theory. 

Iff' is the transformed matrix (fpq), the following equa­
tion: 

f;q = DpqEp (7) 

is true if the two indices represent orbitals from the same 
orbital subspace. After the orbital transformation, the oper­
ator F has the form 

A A A 

F=FD +FN' (8) 

where 
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(9) 

and 
A A A. A A. 

F N = I (f;,Eit + f~iEti) + I (f~,Ea, + f~aE,a ). 
U at 

( 10) 

The indices i, t, a, and p run over the inactive, active, second­
ary, and the entire orbital subspace, res~ectiXely. In the 
previous work1o on this m~thod, we put F= FD and then 
formally put the operator F N in the perturbation operator. 
The major reason for this was that this would make a drastic 
decrease in the effort of a computer implementation possi­
ble. The solution ofEqs. (3) could then be achieved easily by 
a small number of diagonalizations. That this is possible is 
due to the fact that the matrix on the right-hand side ofEq. 
(3) has a very simple structure with a diagonal one-particle 
operator. First, 

(ilHo - Eo Jj) = 0, if li)EVx , Ij)EVy , 

X =1= YE{A, ... ,H}, (11) 

second, the matrix representation of Ho in the subspaces 
VA , ... , V H have only nonzero elements in small blocks along 
the diagonal. Since not all the results obtained with this 
method were totally satisfactory, it was suspected that the 
reason could be that only FD was included in F. In cases 
where, for instance, an active orbital has an occupation num­
ber close to two, it can rotate easily with inactive orbitals in 
the presence of a perturbing field, or if the geometry is 
changed. This will lead to a discontinuous ch~nge in the 
zeroth-order Hamiltonian. In the present work, F N has also 
been included and with this one-particle operator the zeroth­
order Hamiltonian behaves continuously to orbital rotations 
among the three orbital subs paces. With this extended one­
particle operator, Eq. (11) will no longer be true and Eq. (3) 
can only be solved by means of an iterative procedure. 

C. The first-order wave function and the second-order 
energy 

For simplifying the notation, we introduce the following 
matrices and vectors with elements: 

(Fx)ij = (iIFxlj), X=D,N, Sij = (ilj), 

(12) 

Vi = (ilH 10), 

where i,j = 1, ... ,M and M is the number of double replace­
ment states in Eq. (1). Equation (3) can now be written as 

(FD + FN - EoS)C = - V. (13) 

Since in most cases M> dim VSD ' the double replacement 
states will be linearly dependent. This linear dependence 
(and near linear dependence) is removed by diagonalizing 
the overlap matrix S and deleting the eigenvectors which 
correspond to zero (or close to zero) eigenvalues. After the 
transformation of the first-order space to an orthonorma­
lized form, Eq. (13) can be written as 

(FD+FN-Eo1)C= -V, (14) 

where F x = O'tF xO', X = D,N, O'C = C, V = o'tv, 
0' = VAs \12, and 

As =vtSV. (15) 

As is a diagonalL X L matrix and V is aM X L matrix, where 
L = dim VSD ' In cases with near-linear dependence 
L < dim VSD ' As was mentioned previously, the simple 
structure of the matrix F D and therefore also of the matrix 
F D makes the diagonalization of F D practicable 

t-AD =W FDW, (16) 

This diagonalization will simplify the procedure of solving 
the system of linear equations (14) somewhat. The final 
form of Eq. (14) now is 

[AD+FN-Eol]C= -V, (17) 

where F N = otF NO, oe = c, V = otv, and 
o = VAs 1I2W. It should be mentioned that the two diagon­
alizations above are nothing else but rotations of double re­
placement states consisting of identical collections of inac· 
tive and/or secondary indices. The large number of elements 
equal to zero in F N will therefore remain zero after the trans­
formation. Finally, once we have obtained the solution e to 
Eq. (17), we can calculate the second-order energy easily 
since 

(18) 

The complicated structure of F N' and consequently of F N, 

makes it difficult to solve Eq. (17). It can be shown that 

(FN)ij=l=O 

for some (li),lj»,(lj),li»E{(VA,VB), 

(VA,VD ),( VB,VE ),( Ve,VD ),( Ve , VF ), 

(19) 

and that (F N ) ij ~ 0 otherwise. However, as experienced in 
several test cases, F N is usually small compared to AD - Eo 1 
and for such cases an iterative procedure to solve Eq. (17) 
will converge rather quickly. 

III. SOME TEST APPLICATIONS 

Two series of test calculations have been carried out in 
order to examine the performance of the present perturba­
tion approach. The purpose of the first series was to compare 
the results with full CI results obtained with the same basis 
set. The existing full CI results, though, correspond to rather 
limited basis sets that are incapable of yielding very accurate 
results for the properties studied. For this reason, a second 
series of calculations, using more extended basis sets, were 
performed. For these calculations, the corresponding 
MRCI + Q results are included for comparison. The results 
from the second-order perturbation calculations will be de­
noted CASPT2D and CASPT2N. CASPT2D corresponds 
to the calculations where a zeroth-order Hamiltonian with a 
diagonal one-particle operator has been used whereas 
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CASPT2N corresponds to a nondiagonal one-particle oper­
ator. The acronym CASPT2 will also be used, meaning ei­
ther of the two perturbation methods. 

A. Spectroscopic constants for the ground states of N2 , 

NO, and O2 

In a first set of calculations, we studied the bond break­
ing process ofN2 , NO, and °2 , which all have electron dense 
multiple bonds. We will report not only the spectroscopic 
parameters (re, ill" De) (Tables I-III), but also the energe­
tics of the bond breaking process (Tables IV-VI). The re­
sults can be compared directly to the full CI results of 
Bauschlicher and LanghoffY A double-zeta polarization 
(DZP) basis was used and only the 2p electrons were corre­
lated. In the CASSCF calculations, the 2p orbitals and elec­
trons were active. The Is and 2s orbitals were optimized in 
the CASSCF calculations, but were uncorrelated in the 
CASPT2 calculations to allow comparison with the full CI 
results. The spectroscopic parameters re and ille were com­
puted using three points with 0.05ao separation fit to a sec­
ond-degree polynomial in 1/ R. 

The CASPT2 results for the equilibrium bond distance 
r. and the harmonic vibrational frequency ille are all in 
agreement with the full CI results. This is not surprising 
since the results also at the CASSCF level of approximation 
are good. The CASSCF wave function therefore proves a 
good starting point for a perturbation calculation for all 
three molecules. This can be seen especially for the N 2 mole­
cule, where the error in re is reduced from 0.0035 to 0.0004 
a.u. The deviation in total energy from the FCI value around 
equilibrium is almost the same for all three molecules. This is 
most striking for the more accurate perturbation method 
(CASPT2N), where the error is 0.0049, 0.0052, and 0.0048 
a.u. for N2 , NO, and °2 , respectively-CASSCF plus 
CASPT2 is able to recover about 97% of the correlation 
energy at equilibrium. At infinite separation, however, there 
is no such agreement. The total energy for the nitrogen atom 
is almost identical to the FCI result, while the total energy 
for the oxygen atom differs more from the FCI result. The 
deviations are 0.0001 and 0.0028 a.u., respectively, for 
CASPT2N. This leads to a small overestimation of the disso­
ciation energy De for O2 and an underestimation of De for 
N2 • Tables IV and V show that somewhere halfway up the 
potential curve, the molecules are changing character, i.e., 
the bonds are breaking. For N2 , this critical point occurs for 
an internuclear distance between 3 and 4 a.u. The energy 

TABLE I. Spectroscopic constants for N2 • A comparison between 
CASPT2 and full CI. 

Method r, (a.u.) OJ, (em") D, (eV) 

FCI" 2.1227 2342 8.748 
CASSCF-FCl - 0.0035 0 - 0.415 
CASPT2D-FCI -0.0004 -1 -0.113 
CASPT2N-FCI - 0.0004 -1 - 0.126 

• The FCI results have been obtained using the FCI energies given in Ref. 
12. 

TABLE II. Spectroscopic constants for NO. A comparison between 
CASPT2 and full CI. 

Method r, (a.u.) OJ, (em") D, (eV) 

FCI" 2.2196 1922 5.753 
CASSCF-FCl 0.0036 -24 - 0.853 
CASPT2D-FCI 0.0021 -6 -0.021 
CASPT2N-FCI 0.0017 -5 - 0.061 

"The FCI results have been obtained using the FCl energies given in Ref. 
12. 

differences from the full CI value are very different to the 
left- and the right-hand sides of this point for all three meth­
ods, indicating that the present perturbation approach is 
sensitive to changes in the spin coupling of the electrons. 
Nevertheless, CASPT2 reduces the error in De considerably. 
With CASPT2N, it is reduced from 0.42 to 0.13 eV for N2 , 

from 0.85 toO.06eV for NO, and from 0.96 toO.02eV for O2 • 

From Tables IV-VI, one might get the impression that 
CASPT2D is a better method than CASPT2N since, for 
most cases in this set of calculations, it gives better total 
energies than CASPT2N, but we get more insight into the 
accuracy of the two methods by studying the parameters re 
and ille in Tables I-III. CASPT2N yields better results than 
CASPT2D for these parameters and from this point of view, 
we conclude that CASPT2N is somewhat more accurate 
than CASPT2D. 

B. The CH3 radical 

In a second set oftest calculations, we have studied the 
process of simultaneously stretching three single bonds. The 
results, presented in Table VII, can be compared to the full 
CI calculations of Bauschlicher and Taylor. 13 The basis set 
used in the calculations was segmented contracted and had 
the size (C/4s,2p,ld IH/2s,lp). CH3 was taken as planar 
and symmetric and calculations were performed at re , 

1.5*re , and 2.0*re, where re is the equilibrium bond distance 
(for details, see Ref. 13). Only the seven valence electrons 
were correlated and two different active spaces were used. In 
the first set of calculations, the valence orbitals of carbon and 
hydrogen formed the active space [( 4120), where the four 
numbers represent the number of active orbitals in the four 
different symmetries aI' b l , b2 , and a2 ]. The error in total 
energy is reduced significantly for all three bond distances 

TABLE III. Spectroscopic constants for O2 , A comparison between 
CASPT2 and full CI. 

Method r, (a.u.) OJ,(cm") De (eV) 

FCI" 2.3182 1608 4.637 
CASSCF-FCI 0.0041 -42 - 0.959 
CASPT2D-FCI 0.0023 -1 +0.061 
CASPT2N-FCI 0.0014 -1 + 0.021 

"The FCI results have been obtained using the FCI energies given in Ref. 
12. 

J. Chern. Phys., Vol. 96, No.2, 15 January 1992 

Downloaded 06 Nov 2012 to 132.236.27.111. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



1222 Andersson, Malmqvist, and Roos: Perturbation with a complete reference function 

TABLE IV. Total energies for N2 in a DZP basis (in a.u.). A comparison between CASPT2 and full CI. 

Method 2.0Sb 2.10 2.1S 

FCI" - 109.14691 -109.1S064 - 109. ISO 49 
CASSCF-FCI 0.05561 0.05590 0.OS614 
CASPT2D-FCI 0.00493 0.00496 0.00499 
CASPT2N-FCI 0.004 88 0.00491 0.00494 

"The FCI results from Ref. 12. 
b Internuclear distances in atomic units. 

compared to CASSCF. Using CASPT2N, the error at re is 
reduced from 0.0964 to 0.0125 a.u. and this method is there­
fore able to yield 92% of the correlation energy at the equi­
librium bond distance. The difference between the two per­
turbation approaches is only minor for this active space, but 
CASPT2N gives more uniform results for the three bond 
distances. 

Correlation of the electron in the carbon 1T orbital at the 
CASSCF level can be improved by adding one more 1T orbi­
tal in the active space giving, in total, the active space 
( 4220). The uniformity of the total energies for the three 
bond distances now becomes slightly better at the CASPT2 
level. 

In Ref. to, the CASPT2D results for stretching the two 
OH bonds in H20 were reported-the CASPT2N results 
are similar to these and will therefore not be published. The 
results for CH3 are in agreement with the results for H20, 
even though we are not able to reach neither the same accu­
racy nor the same uniformity for CH3 • A reason for the 
former could be that three bonds are stretched in CH3 while 
only two are stretched in H2 O. A reason for the latter could 
be that the oxygen atom can be described equally well in a 
bonding situation as a separate atom with a rather small 
active space (see also Table VI). 

C. The singlet-triplet splitting in CH2 

In a third set of test calculations, we have studied the 
singlet-triplet splitting in the methylene radical. Again the 
results can be compared to the full CI results ofBauschlicher 
and Taylor. 14 The basis set used is the same as the one used 
in the CH3 calculations. All six valence electrons were corre­
lated and three different active spaces were used. In the first 
set of calculations, only the valence orbitals of carbon and 
hydrogen formed the active space (3120). The results, 

2.S0 3.00 4.00 SO.O 

- 109.08732 - 108.95753 - 108.84221 - 108.82952 
0.05708 0.05712 0.04810 0.040 74 
0.00491 0.00368 - 0.000 52 0.000 80 
0.004 87 0.00365 - 0.000 83 0.000 26 

which are presented in Table VIII, are rather disappointing. 
One would hope that the excitation energy, which at the 
CASSCF level of approximation already is in very good 
agreement with the full CI result, would change only slightly 
when the perturbation correction is added. This is not the 
case. The two states IA I and 3 Blare treated in an unbalanced 
way at the correlated level, which increases the excitation 
energy. Calculations with a second active space ( 4220) were 
therefore performed in order to see whether this active space 
could give a more balanced treatment of the dynamical cor­
relation effect for the two states. The excitation energy com­
puted with the CASSCF wave functions with this active 
space is no longer in good agreement with the full CI result, 
indicating that the CASSCF result obtained with the smaller 
active space (3120) was fortuitously good. At the CASPT2 
level of approximation, the excitation energy is also changed 
dramatically, but for the better. Compared to the smaller 
active space, the excitation energy is lowered by 2 kcallmol. 
Calculations with a third active space (6240) were also per­
formed. For this active space, the CASPT2 results for the 
excitation energy are in good agreement with the full CI 
result and also with the third-order result obtained by Mur­
phy et al.20 The conclusion is that in order to get a balanced 
treatment of the two states IA I and 3 B I' we have to have a 
rather large active space. And again we notice that the differ­
ence between the two perturbation approaches is minor, 
especially with the largest active space. 

D. The polarlzability of F-

As a final test in the first series of calculations, we have 
studied the second-order perturbation correction to an elec­
tric property-the polarizability ofF - . The correlation con­
tribution to this property is substantial and therefore it is 
interesting to see how much a second-order perturbation ap­
proach is able to recover. Bauschlicher and Taylor have 

TABLE V. Total energies for NO in a DZP basis (in a. u.). A comparison between CASPT2 and full CI. 

Method 2.15b 2.20 2.25 3.30 4.40 50.0 

FCI" - 129.47683 - 129.47932 - 129.47906 - 129.32124 - 129.272 73 - 129.268 10 
CASSCF-FCI 0.10589 0.10575 0.10556 0.09438 0.077 94 0.07431 
CASPT2D-
FCI 0.00425 0.00415 0.00404 0.00169 0.00250 0.00333 
CASPT2N-
FCI 0.00527 0.00519 0.00510 0.00245 0.00211 0.00292 

"The FCI results from Ref. 12. 
b Internuclear distances in atomic units. 
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TABLE VI. Total energies for O2 in a DZP basis (in a. u). A comparison between CASPT2 and full CI. 

Method 2.25b 2.30 2.35 100.0 

FCI" - 149.875 15 - 149.87695 -149.87669 - 149.70668 
CASSCF-FCI 0.14325 0.14317 0.14300 0.10788 
CASPT2D-FCI 0.00374 0.00364 0.00355 0.00585 
CASPT2N-FCI 0.004 88 0.004 82 

"The FCI results from Ref. 12. 
b Internuclear distances in atomic units. 

made two sets of full CI calculations of the polarizability of 
F - .15 In the first, only the 2p electrons were correlated and 
in the second, the correlation treatment was extended to also 
include the 2s electrons. The basis set used by them was seg­
mented contracted with the size (5s,3p,2d). The polarizabil­
ity was obtained as the second derivative of the energy with 
respect to the electric field strength. In the finite difference 
estimation of the second derivative of the energy, a small 
electric field of strength 0.005 a.u. was used. Our calcula­
tions were done under the same conditions and the results 
are presented in Table IX. For each of the two problems of 
correlating either the 2p electrons or the 2s and 2p electrons, 
two different active spaces were used. In the case of correlat­
ing the 2p electrons, the polarizability increases from 13.663 
to 15.269 a.u. for CASPT2N when increasing the active 
space. The difference from the full CI value is therefore only 
0.094 a.u. with the larger active space. The same improve­
ment is not obtained when increasing the active space and 
correlating both the 2s and the 2p electrons. The polarizabili­
ty calculated with the two active spaces gives almost the 
same results 15.190 and 15.258 a.u., respectively, for 
CASPT2N. As a curious fact, these results can actually be 
improved by making the 2s orbital inactive instead of active. 
We then get the results 16.412 and 15.912 a.u. with the 
smaller and the larger active spaces, respectively, for 
CASPT2N-for CASPT2D, the corresponding results are 
13.823 and 15.706 a.u., respectively. 

TABLE VII. Comparison of total energies from CASPT2 and full CI for 
CH l in a DZP basis (in a.u). 

Method" r. 1.5*r. 2.0*r. 

FCIb - 39.7212 - 39.4829 - 39.3031 
SCP-FCI 0.1547 0.1989 0.2901 
(4120) 
CASSCF-FCI 0.0964 0.0737 0.0651 
CASPT2D-FCI 0.0142 0.0079 0.0054 
CASPT2N-FCI 0.0125 0.0079 0.0058 
(4220) 
CASSCF-FCI 0.0847 0.0633 0.0597 
CASPT2D-FCI 0.0126 0.0076 0.0061 
CASPT2N-FCI 0.0113 0.0071 0.0062 

° The numbers within parentheses are the number of active orbitals used in 
the CASSCF and CASPT2 calculations given in symmetry order aJ , bJ , 

b2 • and a2 • 

bFCI and SCF results from Ref. 13. 

0.004 76 0.00560 

E. The nitrogen molecule 

A number of calculations have been carried out for var­
ious states ofN2 using different basis sets. The purpose of the 
calculations was to illustrate the performance of the second­
order perturbation approach for different basis sets. In doing 
that, we have calculated the spectroscopic constants (re' OJe, 

D ) where r and OJ were obtained by a fit to a second­
d;g;ee polyn~mial in

e 

l/R using three points with 0.05ao 
separation. Since the basis sets used were all of moderate size 
and since the method in obtaining OJ. is quite inaccurate, 
comparison with experimental data is inappropriate. There­
fore, corresponding calculations using the MRCI method 
have been carried out, for comparison. In all calculations, 
the ten valence electrons were correlated. In the CAS calcu­
lations, the 2s and the 2p orbitals formed the active space, 
while in the MRCI calculations, the 2s orbitals were inactive 
and the 2p orbitals active. The MRCI expansion consisted of 
all single and double excitations out of all configurations 
obtained by distributing the remaining six electrons in the 2p 
orbitals. With the 2s electrons inactive in the reference con­
figurations, only double excitations from this orbital space 
are included, which leads to an imbalance in the treatment of 
the dissociation. As suggested by Alml6f et ai., 16 this is com­
pensated by the inclusion of the multireference Davidson 
correction. The results for the ground state are presented in 
Table X. For this state, three different basis sets were used'. 
The first thing to notice is that the CASSCF method gets 
saturated more quickly with the size of the basis set than the 
more accurate methods. It is then not surprising that the 
CASSCF results are closer to experimental data than the 
results from the other methods for smaller basis sets and 
that, as a matter of fact, we get a deterioration of the 
CASSCF results when we add the perturbation correction. If 
we compare the CASPT2 results with the MRCI + Q results 
for r and OJ we see that this should also be the case. Actual­
ly, the CASPT2 results for these parameters agree well with 
the corresponding MRCI + Q results. A second thing to no­
tice is that we cannot achieve the same accuracy in the disso­
ciation energy with CASPT2. The difference between the 
MRCI + Q and the CASPT2N results are for the three basis 
sets 0.243,0.257, and 0.280 eV. For this property, CASPT2 
will be saturated for a smaller basis set than MRCI + Q. We 
also realize that even with a large basis set, we will never with 
the present active space reach the neighborhood of the experi­
mental value for De with CASPT2. The reason for this is that 
CASPT2 seems to recover a larger fraction of the correlation 
energy for the nitrogen atom than for the nitrogen molecule. 
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TABLE VIII. The singlet-triplet separation in CH2. A comparison between CASPT2 and full CI. 

Energy (a.u.) 

Method' IAI 

FCIb - 39.027 182 
(3120) 
CASSCF - 38.945 529 
CASPT2Dc - 39.011 773 
CASPTIN - 39.013 078 
CASPT2D-FCI 0.015409 
CASPT2N-FCI 0.014104 
(4220) 
CASSCF - 38.968 726 
CASPT2D - 39.016704 
CASPT2N - 39.017092 
CASPT2D-FCI 0.010478 
CASPTIN-FCI 0.010090 
(6240) 
CASSCF - 38.999 566 
CASPT2D - 39.022 300 
CASPT2N - 39.022170 
CASPT2D-FCI 0.004882 
CASPT2N-FCI 0.005012 

3BI 

- 39.046 259 

- 38.965 954 
- 39.036 804 
- 39.037 664 

0.009455 
0.008595 

- 38.982 741 
- 39.038 658 
- 39.038 660 

0.007601 
0.007599 

- 39.012 166 
- 39.042413 
- 39.042165 

0.003846 
0.004094 

Exc. energy 
(kcal/mol) 

11.97 

12.82 
15.71 
15.43 

8.79 
13.78 
13.53 

7.91 
12.62 
12.55 

'The numbers within parentheses are the number of active orbitals used in the CASSCF and CASPT2 calcula­
tions given in symmetry order aI' b l , b2 , and a 2 • 

bFCI results from Ref. 14. 
C The results published in Ref. 10 differ from these since erroneously all electrons were correlated. 

The results for the first and second excited states ofN2 
are presented in Tables XI and XII, respectively. As is indi­
cated in these tables, the second-order perturbation theory 
breaks down for the largest basis set. This can be explained 
by the fact that with the given zeroth-order Hamiltonian, 
each of the two states are accidentally near degenerate, and 
for excited states, this is indeed often the case. For the 
smaller basis sets, the two excited states are probably not 
well separated from other states either and an indication of 
this is given by comparing Tables XI and XII with Table X. 
The agreement with MRCI + Q for the bond length is much 
better for the ground state than for the excited states. The 
problem of near degeneracy can to some extent be avoided by 

TABLE IX. The polarizability ofF - . A comparison between CASPT2 and 
full CI. 

Polarizability' (a.u.) 

Method Correlating 2p Correlating 2s2p 

SCP 9.894 9.894 
FCIb 15.363 16.295 

(2220) (4220) 
CASSCF 16.903 13.905 
CASPT2D 13.543 14.788 
CASPT2N 13.663 15.190 

(3330) (6330) 
CASSCF 14.878 13.974 
CASPT2D 14.899 14.932 
CASPT2N 15.269 15.258 

'The numbers within parentheses are the number of active orbitals used in 
the CASSCF and CASPT2 calculations given in symmetry order aI' b l , 

b2 , and a2 • 

bSCF and FCI results from Ref. 15. 

choosing another active space. In this set of calculations, it 
was easily identified that single excitations from the active 
space to the 211'g orbitals-including an orbital rotation in 
the active space-was the cause of the problems. These exci­
tations gave rise to positive contributions to the second-or­
der energy. Furthermore, since we are not able to calculate 
the occupation numbers-by diagonalizing the one-particle 
density matrix using the sum of the zeroth-order wave func­
tion and the first-order wave function-because of the need 
of the four-particle density matrix, we simply diagonalized 

TABLE X. Spectroscopic constants' for N2 (X II.: ) with various meth­
ods and basis sets. b 

Method re (A) CtJe (em-I) De (eV) 

ANO [4s,2p, 1d] basis 
MRCI+Q 1.1242 2318 8.661 
CASSCF 1.1160 2363 8.989 
CASPTID 1.1245 2312 8.375 
CASPT2N 1.1238 2316 8.418 

ANO [4s,3p,2d, If] basis 
MRCI+Q 1.1095 2315 9.295 
CASSCF 1.1069 2333 9.126 
CASPT2D 1.1094 2310 9.003 
CASPTIN 1.1086 2314 9.038 

ANO [5s,4p,3d,2f] basis 
MRCI+Q 1.1036 2308 9.504 
CASSCF 1.1048 2320 9.192 
CASPT2D 1.1039 2302 9.185 
CASPT2N 1.1031 2306 9.224 
Expt.c 1.0977 2359 9.905 

'Calculated spectroscopic constants from a fit to a second-degree poly no­
mialin l/R. 

b ANO type basis sets with a (14s,9p,4d,3j) primitive set. 
cFromRef.17. 
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TABLE XI. Spectroscopic constants· for N2 (A '~u+ ) with various meth-
ods and basis sets. b 

Method r. (A) w. (cm -I) De (eV) 

ANO [4s,2p, Id] basis 
MRCI+Q 1.3169 1422 2.967 
CASSCF 1.3078 1451 2.678 
CASPT2D 1.3163 1422 2.920 
CASPT2N 1.3163 1423 2.895 

ANO [4s,3p,2d, If] basis 
MRCI+Q 1.3005 1424 3.342 
CASSCF 1.3032 1425 2.709 
CASPT2D 1.2975 1423 3.303 
CASPT2N 1.2978 1423 3.275 

ANO [5s,4p,3d,V] basis 
CASSCF 1.3022 1426 2.761 
CASPT2D 
CASPT2N 1.2813 3867 3.331 
CASSCP 1.2999 1423 2.610 
CASPT2Dd 1.2960 1410 3.241 
CASPT2Nd 1.2953 1409 3.298 
Expt! 1.2866 1461 3.680 

• Calculated spectroscopic constants from a fit to a second-degree polyno­
mial in l/R. 

b ANO type basis sets with a (14s,9p,4d,3j) primitive set. 
cThese numbers could not be obtained because of a deterioration of the 

potential curve due to near degeneration. 
dThe 21T, orbitals are included in the active space. 
<From Ref. 17. 

the one-particle density matrix in the secondary orbital sub­
space in order to get an idea of how large the occupation 
numbers for the secondary orbitals might be. This approxi­
mation shows that the occupation numbers for the 21Tg orbi­
tals are substantial. An obvious modification of the active 
space is therefore to include the 21Tg orbitals in it. Calcula­
tions with this new active space were only performed with 
the largest basis set, since the necessity of another zeroth­
order Hamiltonian was most apparent here. The results have 
been included in Tables XI and XII. The corresponding 
MRCI calculations were not performed-because they 
would be too lengthy-but comparing the results with the 
results obtained with the smaller basis sets show that they 
are quite satisfactory. 

IV. DISCUSSION 

In the present study, we have tried to illustrate with a 
few examples the capabilities of a second-order perturbation 
method based on a CASSCF reference function. With these 
examples, we have also tried to show how the results from 
the two perturbation methods with a diagonal and a full one­
electron operator, respectively, might differ. No matter 
which of the two one-electron operators we use, the second­
order perturbation method gives satisfactory results for 
most of the test calculations. However, in order to get accu­
rate results for energy differences between electronic states 
that are either distinct, as in the singlet-triplet separation of 
CH2 , or very different because of a large change in some 
parameter, as for the ground state ofN2 at equilibrium and 
at infinite separation, it is important that the two states are 
equally well described at the zeroth-order level. By extend-

TABLE XII. Spectroscopic constants' for N2 (B 'II.) with various meth-
ods and basis sets. b 

Method r, (A) We (cm- ' ) De (eV) 

ANO [4s,2p,ld] basis 
MRCI+Q 1.2406 1727 4.413 
CASSCF 1.2351 1740 3.865 
CASPT2D 1.2380 1728 4.210 
CASPT2N 1.2382 1727 4.170 

ANO [4s,3p,2d, If] basis 
MRCI+Q 1.2257 1722 4.801 
CASSCF 1.2303 1710 3.949 
CASPT2D 1.2194 1723 4.658 
CASPT2N 1.2200 1722 4.612 

ANO [5s,4p,3d,2f] basis 
CASSCF 1.2296 1703 3.974 
CASPT2D 1.2020 3996 4.623 
CASPT2N 1.2063 2294 4.601 
CASSCF 1.2226 1709 3.820 
CASPT2Dc 1.2179 1713 4.560 
CASPT2Nc 1.2184 1704 4.594 
Expt.d 1.2126 1733 4.896 

'Calculated spectroscopic constants from a fit to a second-degree polyno-
mialin l/R. 

b ANO type basis sets with a (14s,9p,4d,3j) primitive set. 
eThe 21T. orbitals are included in the active space. 
dFrom Ref. 17. 

ing the active space, this is possible to achieve, as was illus­
trated in the calculations of the singlet-triplet separation of 
CH2 • In the case ofN 2' a larger active space would probably 
give a better value of the dissociation energy. This recipe is, 
of course, not a panacea since the increase of the active space 
might not always be practical. 

In the applications presented in this article, the method 
with a full one-particle operator gives in most cases the bet­
ter results, although the difference in the results for the two 
perturbation methods is only minor. However, preliminary 
results for ozone show that the difference in the results for 
the two methods can be significant. 18 With a [4s,3p,2d, 1/] 
atomic natural orbital (ANO) basis set, the following re­
sults for the equilibrium geometry and the harmonic fre­
quencies of ozone were obtained: (1.288 A, 115.9°, 1082, 
693, and 1068 cm - 1) with CASPT2D and ( 1.280 A, 116.5", 
1106, 706, and 1109 cm - 1) with CASPT2N. For all these 
properties, the CASPT2N values are in better agreement 
with the experimental data (1.272 A, 116.8°, 1135,716, and 
1089 cm - 1) 19 than the corresponding CASPT2D values. 

To give an idea of the efficiency of the method, we will 
give the total CPU time on an IBM 3090-17S computer for 
the calculation of one point on the potential curve for the 
ground state of N2 • With 92 functions in the basis set, the 
total CPU time with the MRCI method was 3397 s. The 
corresponding number with the CASPT2N method was 635 
s, which is less than 20% of the CPU time consumed in the 
MRCI calculation. The ratio between the input/output 
0/0) times is, however, not so favorable, since rather long 
CI vectors have to be written and read also in the CASPT2N 
calculations. CASPT2D is computationally more efficient 
than CASPT2N and especially the I/O handling will be 
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more limited for CASPT2D. For many of the calculated 
properties, we have obtained fairly accurate results if we 
compare them to the results given by either the full CI or the 
MRCI methods. Thus, we conclude that CASPT2 is capable 
of giving accurate results for many molecular properties 
with a considerably reduced computational effort. The 
CASPT2 method becomes an especially interesting alterna­
tive in cases so large that reliable MRCI calculations no 
longer can be performed. In forthcoming publications, we 
intend to give illustrations of the performance of the method 
in such cases, both for ground and excited states properties. 
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