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Abstract
The performance of the second-order methods for excitation energies CC2 and ADC(2) is investigated and com-
pared with the more approximate CIS and CIS(D) methods as well as with the coupled-cluster models CCSD,
CCSDR(3) and CC3. As a by-product of this investigation the first implementation of analytic excited state gra-
dients for ADC(2) and CIS(R,) is reported.

Itis found that for equilibrium structures and vibrational frequencies the second-order models CIS(D), ADC(2)
and CC2 give often results close to those obtained with CCSD. The main advantage of CCSD lies in its robustness
with respect to strong correlation effects. For adiabatic excitation energies CC2 is found to give from all second-
order methods for excitation energies (including CCSD) the smallest mean absolute errors. ADC(2) apd)CIS(D
are found to give almost identical results.

An advantage of ADC(2) compared to CC2 is that the excitation energies are obtained as eigenvalues of a
Hermitian secular matrix, while in coupled-cluster response the excitation energies are obtained as eigenvalues
of a non-Hermitian Jacobi matrix. It is shown that, as a consequence of the lack of Hermitian symmetry, the latter
methods will in general not give a physically correct description of conical intersections between states of the
same symmetry. This problem does not appear in ADC(2).
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1. INTRODUCTION

Since the early days of response thedry4] the description of electronic excitations, in-
cluding ionization and electron attachment, has been a central subject of this branch of
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theoretical chemistry. Its main idea, the direct calculation of molecular propertieg.as,
excitation and ionization energies, transition strengths, frequency-dependent properties,
etc., provides a viable alternative to state specific approaches. For frequency-dependent
properties the response function approaeh,the evaluation of (higher-order) polarization
propagators, is today the most successful and efficient route to calculate such quantities.
For excitation and ionization energies it bypasses through the evaluation of these quanti-
ties as poles of the polarization propagator some subtle balance problems encountered in
state specific approaches. But at least as important for the response function or propaga-
tor approach to molecular properties has been that it offers a route for the description of
electronic excitations with single reference wavefunction models since it does not require
(non-linear) optimizations for excited states. This ansatz is the basis for such successful
and widely applied approaches as time-dependent density functional theory (TDDFT) and
coupled-cluster response theory.

Partially because of the success of the latter two methods and their availability in several
guantum chemistry packages, the interest in earlier anséatze for approximate calculations
of polarization propagators or response functioneas, the polarization propagator ap-
proaches (SOPPK—7], TOPPAJ5], etc.) or the algebraic diagrammatic constructi6h
has in recent years been relatively limited. These approaches aimed at a direct expansion
of the response functions in orders of the electron fluctuation potential without reference
to a specific wavefunction model for the ground state. Giving up the reference to a certain
model for the ground state energy, introduces additional freedom which aéawy<o en-
force some properties of the exact response function, which else are often lost. On the other
hand, if total energies are needed—for example for the determination of equilibrium struc-
tures of excited or ionized states—the reference to a specific model for the ground-state
energy or wavefunction is unavoidable.

Excitation energies may be taken as an example to demonstrate what is meant above:
Given a ground-state model for the energy, a general approach to derive the expressions
for the response functions is through the construction of a time-dependent quasi-energy
Lagrangian. The latter is made up of the expectation value for the effrggnd some
constraintsf;[H] for the (wavefunction) parameteks, both generalized for the time-
dependent case by replacing the time-independent Hamiltonian with the Schrédinger op-
eratorH () — i

_ 9 . 0
LOw, i, 1) = <H(t) — |5> + Xk:)\kfk[ﬂ(t) - ﬁ](x,ﬂ, 1). (1)

The expressions for the response functions are then obtained by taking the derivatives of
L(xx, A, t) with respect to strengths parameters of harmonic time-dependent perturba-
tions with the sum of all frequencies restricted to zg#e9]. The poles of the response
functions occur at the eigenvalues of the stability matrix of the Lagrang&nfor varia-

tional methods (SCF, DFT, MCSCF, @c.) at the eigenvalues of the electronic Hessian

d?(H)
E-wS® =0, Ej= : 2
( wrS)c ij i, d)»j o )
and for non-variational methods, as the coupled-cluster methods are, at the eigenvalues of
the electronic Jacobian

2
A -9 =0, A =< &L ) ) (3)
dr;drj /o
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For response methods derived from an approximation for the ground-state energy or wave-
function, the expressions for the stability matrix, and thus its structure, properties, and
symmetries are determined by the approximations used for the ground-state. In particu-
lar, the stability matrix will in general be non-symmetric for any non-variational method.

A well-known example for this is the non-symmetric coupled-cluster eigenvalue problem
[10,11] The loss of Hermitian symmetry leads to different left and right eigenvectors,
which increases somewhat the computational costs if both vectors are needed, but else
does not give rise to major problems. But a potentially more severe consequence is that
eigenvalues may become complex and then can no longer be used to obtain a qualita-
tively correct and quantitatively accurate description of the corresponding excited states.
In propagator type methods which avoid such a connection to a ground-state model these
problems can be bypassed by imposing Hermitian symmetry of the stability or secular
matrix by construction, as it is doneg., in SOPPA and in the ADC methods.

In the present article some of the above mentioned problems will be studied at the ex-
ample of three iterative second-order methods, namely the approximate coupled-cluster
singles-and-doubles modél2] CC2, the iterative variant of the doubles correction to con-
figuration interaction singlefd 3] CIS(Dy,) and the algebraic diagrammatic construction
through second ordé¢8,14] ADC(2). As shown in the next section these three methods are
closely related to each other and thus are an interesting example to discuss some aspects
of response theory. In Sectidhthe problems that may arise from non-Hermitian secu-
lar matrices will be discussed in connection with conical intersections between two excited
states. The remaining sections will be concerned with the implementation of analytic deriv-
atives for CIS(R,) and ADC(2), which are a prerequisite for an efficient determination of
stationary points on the (excited state) potential energy surfaces, and a comparison of the
performance of the three methods CC2, CIg{Cand ADC(2) for equilibrium structures
and vibrational frequencies.

2. RELATION BETWEEN CC2 AND THE CIS(D~) AND ADC(2)
MODELS

For the CC2 model, which has been designed such that for single replacement dominated
transitions the excitation energies are correct through second-order in the fluctuation po-
tential, the Jacobian becomes
acce_ (G [(H +[H, T2), f{1IHF) | (¢I[H, 75 1IHF)
GO, TR | (PIF, T IHR)

(4)

where F is the usual Fock operator arfd = exp(—Ty) H exp(Ty), i.e., a Hamiltonian
similarity transformed with the exponential function of the single replacement part of the
cluster operatof” = Ty + T». Here and in the following indices j, k, ...are used for
orbitals which are occupied in the reference determitfidf} and indicesu, b, c, ...are
used for virtual orbitalsz; and r,fld denote, respectively, single and double replacement
operators.

As by-product of its construction as derivative of the residual of ground-state cluster
equations, the CC2 Jacobian contains some contributions which would not be needed
to obtain excitation energies correct through second-order: the terms introduced via the
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similarity transformation with ex@-T71) contribute only in third and higher orders to the
excitation energies of single replacement dominated transitions. The “minimal” Jacobian
which gives excitation energies correct through second order is obtained by replacing in
ACC2 the CC2 ground-state cluster amplitudes by the amplitudes from first-order pertur-
bation theory—which implies that the singles replacement part of the cluster operator
T: vanishes, if the Brillouin condition is fulfilled. The resulting Jacobian is that of the
CIS(Dy) model, an iterative variant of CIS(D) introduced by Head-Gorelad. [15]:

()

ACISOx) _ <<7|[<H+[H, 7D, T IHR) | (SIH, r,f;’]|HF>)

(9T |[H, 71 IHF) | (SIF, g IHR)

Similar as the CIS(D) perturbative second-order correction to CIS excitation energies, also
the CIS(D,) excitation energies cannot directly be derived from the response function
of a known (ground-state) wavefunction model. A characteristic it has in common with
propagator methods. Indeed, the secular matrix for Ci§(Differs only in a small (but
important) detail from a propagator method proposed about two decades ago by Schirmer
[6]: the algebraic diagrammatic construction through second order ADC(2). The secular
matrix used in ADC(2) is just the symmetric or, in the complex case, the Hermitian part of
that for the CIS(R,) model:

1
AADC(2) _ E(ACB(DOO) + (ACISO=) Ty, (6)

Provided that the Hartree—Fock reference determinant fulfills the Brillouin condition
(‘;|H|HF) = 0, i.e, for a closed-shell or an unrestricted open-shell case, the GIp(D
Jacobian can be rewritten as:
. 1 . ‘
s _ ((H1H = Euelp) + I, T2 IHF) | (GIH15) @
(TIHI;) | (1F = Eol )

with Eyg = (HF|H|HF) and Eg = (HF|F|HF). Thus, in these cases the symmetrization
in equation(6) affects only the second-order contribution to the singles-singles hleck,
the terms proportional to the ground-state doumﬁ%. All other contributions are already
Hermitian.

The above relations between CC2, CI&(J) and ADC(2) provide a simple recipe to
implement the latter two methods in an existing CC2 program:

e For CIS(D,) the only modification required is that the converged CC2 ground-state
amplitudes are replaced by those from first-order perturbation theory.

e For ADC(2) in addition the contributions ¢, Tz(l)] to the singles-singles block have
to bg s%/mmetrized. This can be achieved with a few additional operations at costs of
On“N*9).

3. INTERSECTIONSOF EXCITED STATESIN COUPLED-CLUSTER
RESPONSE THEORY

As pointed out in the introduction, the coupled-cluster response or equation-of-motion
methods lead to Jacobi or secular matrices which in general are not symmetric. While this
usually does not cause any problems in single-point calculations for vertical excitation



Structure Optimizations for Excited States with Correlated Second-Order Methods: CC2 and ADC(2) 41

spectra or in the optimization of excited state equilibrium structures, it has serious conse-
guences for the topology of the potential surfaces at intersections between excited states.

If one assumes that the Jacobi matrix has been block diagonalized by applying a (non-
unitary) transformation

A=LAR withLR =1, 8)

such that for a pair of nearly degenerate stateg)(one is left with a % 2-problem which
has been decoupled from all other eigenvalues:

0 0 O
X 0 Al’,' Aij 0
A= 0 Ay Aj; o | ©)
0 O 0
The 2x 2 block for this effective two-state problem can in general be written in the form
iox2_ (E—A S—A
A _<S~|—A E+A>' (10)

which gives the eigenvalue; ; = E 4+ v/ A2 + S2 — A2, For a symmetric matrix,e.,
when A = O for all values of the coordinates, the two states will be degenerate if both
parameterg\ andS become zero. This leads to the well-known refLft 17]that (ignoring
spin-orbit effects) states of the same symmetry may have a seam of intersection with the
dimensionN'" — 2, whereN'" is the number of internal degrees of freedom (nuclear
coordinates). For states of different symmesryanishes for symmetry reasons and the
intersection seam may have the dimensidff — 1.

For a non-symmetric Jacobi matrix, as in general obtained for the iterative coupled-
cluster response or equation-of-motion coupled-cluster methods, a number of different
cases can be distinguished, depending on the magnitude of the antisymmetric contribu-
tion to the couplingA:

1. A2 < A% 4+ §2, which is the situation usually encountered in single-point calculations
for vertical excitation energies and in the optimization of equilibrium structures for
excited states: One obtains two real eigenvalligs = E + v/ AZ + 52 — A2,

2. A2 > A? 4 52 this leads to a conjugated pair of degenerate roots with eigenvalues
E1p=E +ivAZ - A2 _ 52,

3. A2 = A% 4+ 52,_a condition, which for states of the same symmetry in general will
be fulfilled in N'™ — 1 dimensions. In this case one obtains an unphysical apparent
degeneracy. It can be considered as a kind of instability along a path which connects the
two previous cases.

4. Only forA = A = § = 0 a true intersection of the states is found. For states of the
same symmetry this condition will only be fulfilled iN"™ — 3 dimension,.e, in a
manifold which compared to the intersection seam of a symmetric matrix is reduced by
one dimension.

Methods with a non-symmetric secular matrix will thus in general not be able to describe
conical intersections between states of the same symmetry qualitatively céigeoe 1
shows a typical two-dimensional cut through potential energy surfaces in a plane where
the two states intersect. While a symmetric secular matrix leads to a conical intersection,
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potential for hypothetical
symmetric Jacoby matrix

energy
>

potential obtained from
non-symmetric Jacobian

internal coordinate

Fig. 1. Intersection of two states of the same symmetry as described by a symmetric and a
non-symmetric secular matrix. The potential curves obtained with a symmetric secular ma-
trix are shown as broken lines. The full lines are the potential curves for a non-symmetric

secular matrix in the region where both eigenvalues are real, while for the region where the
eigenvalues are complex only the real part is shown as a dashed and dotted line.

the potential energy curves obtained with a non-symmetric secular matrix pass—as the in-
tersection is approached—through a point with an (apparent) degeneracy of the two states
before a region is entered in which the eigenvalues are complex. This region encloses the
intersection seam obtained with a symmetric matrix. At the points with apparent degenera-
cies the derivatives of the potential energy curves with respect to the coordirsteome
singular.

Figure 2shows a three-dimensional plot of a similar situation, but now the energy axis
has been skipped and instead the points where the two eigenvalues are degenerate are
shown in a space spanned by the tuning coordinates of the conical intersection and one
coordinate along the intersection seam. In this subspace, the points at which the two states
become degenerate with a non-symmetric Jacobi&n= A2 + 52) form a tube or cone
around the intersection seam obtained with a symmetric secular matrix. If the antisym-
metric contribution to the off-diagonal matrix elemeftis a parameter independent of
the symmetric contributiol, a true intersection of the two states is only found in a sub-
space with a dimensionality which—compared to the dimensionality of intersection seam
obtained with a symmetric secular matrix—is reduced by one.

The standard coupled-cluster response and equation-of-motion coupled-cluster methods
(CC2, CCsSD, ...) will thus irgeneral not give a qualitatively correct description of po-
tential energies surfaces (for excited states) at or close to conical intersections. Only if,
e.g., because of symmetry reasons, the antisymmetric and the symmetric contribution to
the coupling matrix element vanish simultaneously a true intersection will be found. To
obtain a qualitatively correct description of intersections between states of the same sym-
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Fig. 2. Intersection of two states shown in a space spanned by the two tuning coordinates
of the conical intersection and one coordinate along the intersection seam. The thick line
is the intersection seam obtained with a symmetric secular matrix. For the non-symmetric
matrix the surface on which the two eigenvalues are degenerate is plotted.

metry requires a symmetric secular matrix. For such problems the algebraic diagrammatic
construction methods could be a useful alternative. But in order to make them applicable
to intersections in molecules with more than a few atoms, efficient techniques for the lo-
calization of stationary points on (excited state) potential energy surfaces are fitgded
Analytic gradients for excitation energies and total energies of excited states are one im-
portant prerequisite for this.

4. IMPLEMENTATION OF ANALYTIC EXCITED STATE GRADIENTS
FOR ADC(2) AND CIS(Doo)

4.1. Therelaxed excited state L agrange function

Since in contrast to the CC2 model, ADC(2) and Clg(Dare not derived from the re-
sponse function of a ground state method, there is no unique definition of total energies.
One could combine the excitation energies provided by these methods with ground state
energies of any suitable method. However, both for consistency to which order in the fluc-
tuation potential correlation effects are accounted for and for computational convenience
second-order Mgller—Plesset perturbation theory appears to be the most natural choice.
With this definition of the total energies, the implementation of analytic gradients for ex-
cited states becomes a relatively simple task. Indeed, all the expressions can be obtained as
simplifications of those for the CC2 modé&i8]. In particular, one can define a variational
Lagrange function for the total energy of an excited syates[18,7,19]
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2
L/ = (HFIH + [H, TIHF) + > " Ef Ay, Ef,
i,j=1mivj

2

+a)f<1— ZZE[;EL) + 1,2 + Y ] Fuo. (11)
i=1 Wi “o

The first term on the right hand side gives the MP2 ground state energy|#hthe

Hartree—Fock reference wave functions dad= }_ _ 1,,7,, the cluster operator for the

first-order doubles. (In the following1 or v will be used to enumerate single replace-

ments andl, or vo for double replacements.)

The second term in equatiqfil) represents the excitation energy and the subsequent
term ensures the (bi-)orthonormality of the eigenvect®fsand E/. To cover both the
ADC(2) and the CIS(R.) model, different left £/) and right £/) eigenvectors are al-
lowed in the above equation. Requiring stationarity of the Lagrangian with respgét to
andE/ leads to the left and right eigenvalue problems for the Jacakjavhich determine
E/, Ef andw/. Since for ADC(2) the Jacobiaf is Hermitian, for this model left and
right eigenvectors will be equivalent.

The last two terms of the Lagrangian in equat{@d) resemble terms in the Lagrange
function for the MP2 ground state energy. The first one determines the Lagrange multipliers
1., for the ground states doubles equations,

21, = (n2lH + [F, T2]IHF) =0 12)

whereF is the Fock operator (for the definition of the projection manifgld| see,eg.,

Ref. [20]), and the other determines the Lagrange multipligss for the Hartree—Fock
equationsj.e., it implements the constraint that the subspageof the Fock matrix ele-
ments is zero. Depending on the choice for the manif@ldne obtains either the Brillouin
condition (F;, = 0) or the canonical condition (diagonal Fock matrix) or an intermediate
semi-canonical condition. The Hartree—Fock state is for the following parameterized as

IHF) = " exp, (Kuo (o — 7,1,)) IHF0) (13)

where |HFp) is either the unperturbed state, or if the orbital basis depends on the
perturbation—as it does in the case of geometric derivatives and also for magnetic fields if
GIAOs are used—a determinant build from the orthonormalized molecular orbital (OMO)
basis for the distorted systej2il].

Similar as MP2 and CC2, also the ADC(2) and Cl§(Dmodels can be implemented
very efficiently using the resolution-of-the-identity (RI) approximation which allows for a
fast AO to MO transformation

BS = Z(Z Caa Y Cpi (a,B|P)) Vio? (14)
P N« B
and a subsequent fast formation of four-index integrals in the MO basis

(ailbj) ~ (ailbj)¥ =Y " BEBS. (15)
0

In the latter equation¥po = (P|Q) and(«p|P) are, respectively, two- and three-index
electron repulsion integrals (ERIs) aftd Q denote orbitals from an auxiliary basis used
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to resolve the identity. Since only3-scaling intermediates are needed on disk, the I/0 re-
quirements are reduced drastically compared to a conventional four-index transformation.
For further details about the RI approximati@y., the choice of auxiliary basis sets and

the accuracies obtained for ground and excited state energies and properties, the reader is
referred to Refg[18,22,23]

4.2. Theeffective orbital-relaxed one- and two-particle density matrices

In the present implementation the Hartree—Fock equations are still solved using conven-
tional four-index integrals. Therefore, one needs to distinguish between contributions to
the Lagrangian which arise from the reference state and the Fock operator and those which
are calculated using the RI approximation. However, this is anyway advantageous since it
leads to simple expressions to account for a frozen core approximation. For this purpose,
the Lagrange function, equatidhl), is rewritten as

L= (HFIHHF) + Y " kuoFuo+ Y _(DEE(E) + DLAE. E))Fy,

1o rq
+a)<1— > ZEMEH>
i=12 n
+ Z (dpgrs” (0) + dpgrt (E. E)) (pqlrs)®, (16)

pqrs

where the superscript is from now on omitted for brevity. Above, the one-particle densi-
ties

DFE@E) =" fuy(u2llE pg. T21HF) (17)
n2
and
DEAE.E)= " Y Euy(uillEpg. 7, IHF) E,,
i=1,2 11v;
+ ) Epp(uallEpg. 1, HF)E,, (18)

H2v2
have been introduced. These densities contain only contributions from the correlation and
excitation treatment. The two contributions to the non-separable two-electron density read:

nseps

dpgrs” () = (HFllepgrs. TollHF) + Y " #, (2l pgrs HF) (19)
n2
and

| _
dpgrs (E.E) =Y Epy (allepgrs: Tyl + [[epgrs: vyl T2][HF) Eyy

Hivi

+ Z E_V;L1<Ml|[epqrm T, ]IHR Ey,

Hnavz

+ Y Epyluallepgrs, Ty lIHF) Eyy. (20)

H2vi
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Explicit expressions for the densities are giveTables 1 and 2or a closed-shell RHF
reference determinant and an excited singlet state. For the modifications needed for excited
triplet states or for an UHF reference determinant see [24s18]. Note that the elements
of D¥ andd"sePare non-zero only if all indices refer to active orbitals,,* andd"seP are
related to the unrelaxed correlation contributions to the MP2 one- and two-electron densi-
ties, which are recovered @,," (fMP1) anddjeer” (iMP1) whereiMPL are the Lagrangian
multipliers from first-order Mgller—Plesset perturbation thedy.4 and4"s®P4 contain
the contributions from the eigenvectors, which do not have counterparts in the expressions
for the MP2 ground state densities.

The equations determining the Lagrangian multipligssfor the ground state doubles
equations are obtained as

qu2</~’L2|[Fv T, ]IHF) = —(HF|[H, 7,,]|HF)
w2

- Z E_u1<ﬂl|[[H, Tyl]» Tvz]|HF)Ey1- (21)
M1y1

They reduce to the calculation of MP1-like doubles amplitudes with modified two-electron
integrals[23,25,26]and can in the canonical orbital basis directly be inverted. Similar the

Table 1. Explicit expressions for the one-particle densiti2§? (7 ) and DF-A(E, E) de-
fined in equation$17) and (18)

DF4(f) DFA(E, E)
—ab.ab - rrab b
D = 2 avk 1K T =20 EqjEai = 2 api ESLEy
Di, 0 b EvjREf) — ENY)
Dab Yoot Yo EaiEpi + Y50 EffEJf

Table 2. Explicit expressions for the non-separable two-particle density maticésr )
anddt4(E, E) defined in equationgl9) and (20)

ds (1) d*(E,E)
dijka 0 -2 Ebj (ZE% - Eiakb) -2 E?Z Epi
dijap 0 —E ;Ep;

- b b zab _
diajp. At =2 + 17 SHP{2Cai Epj — CiEaj — Yy (Le EekEep) {7 — 1))
>k Eck Ep) (25 — 150} + 2Ep;Eyi

diabe 0 Zj E},j (ZE?].C — El.bja) + Z./ E_l{ljbEcj

The intermediate used for the formulation of /-4 (E, E) is defined ag’,; = b E;,j (Zt;’jb - ’,'bja)? for the
definition of the Lagrangian multiplien_g.b and the symmetrization operatSrsee text.
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double replacement parts of the eigenvectoand E are obtained as:

D (w2l F. 1,]HF) = 08,10,) Evy = — > (2|l H. 10, IIHF) E,, (22)
v2 Vi

and
> Eup((n2llF, i IHF) — 08,50,) = — Y g (ual[H, 7,]|HF). (23)
n2 251

The Lagrangian multipliers for the Hartree—Fock equatioase determined as usual from
a set of CPHF or Z-vector equations:

ZEAI(AAIBJ —8apea —815€1) = —nl; (24)

Al
where the indiceg, J and A, B denote, respectively, generak(, active and frozen) oc-
cupied and virtual orbitals ang, are the SCF orbital energies. The CPHF maix,
is defined asA ;s = 4(pqlrs) — (prlgs) — (ps|rq) with conventional four-index ERIs.
The evaluation of the right-hand side vectgrfrom one- and two-electron density inter-
mediates is done in the same way as described for CC2 irf F33f.

The first derivative of the excited state energy with respect to an external perturbation

can now be evaluated from an expression which is analogous to that for R[26(13].

1
( ) ZDeﬁ‘aoh [x] 5 Z doslgjrizgo( ﬁ|)/3)[x] ZFeﬁ aoS[x
afys ap

+ZAaQP(aﬂ|P) W= vro Vi, (25)

afP PO

wherenl*], S, (@ply8)*), (@B P)*) and Vi) are the derivatives of, respectively, the
one-electron Hamiltonian, the overlap and the four-, three- and two-index coulomb inte-
grals in the AO basisDe/';f %%s the relaxed one-particle density in the atomic orbital basis
andd;75° the separable part of the two-electron density which is easily constructed on-
the-fly:

1 1
gy =570 (1= 37 ) (Do G05s™0) DfgEee (26)

Here,Sj‘ff symmetrizes a function according ﬂ?fff;f = f;"f + faf,"‘ and?P,z denotes

a permutation operator which interchanges two indi¢§§:a° is the usual effective Fock
matrix that appears in expressions for gradients of correlated methods and the densities

Agg‘P andyp are defined as:

AR" an,,cﬁq > dpagrs (rsIQ)Vpgs (27)
rsQ
and
yro =Y (@BIR) A Vs, (28)

affR
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For ADC(2) and CIS(I,) the course of a gradient calculation after the solution of the
eigenvalue problem (which for CIS(D) implies the determination of both the right and
the left eigenvectors) can be sketched as follows:

o First the eigenvectors are normalized@as_; , . E,E, =1.

e Then the unrelaxed one-electron densiti?§é and D4 and intermediates for the
two-electron densities are computed.

e The right-hand side* for the CPHF equations and the effective Fock maftBt are
set up and the CPHF equations are solved.

o Finally the contributions to the gradient are evaluated by contracting the derivative inte-
grals with the respective densities.

Note, that in contrast to CC2 for ADC(2) and CIS{pafter the solution of the eigenvalue
problem no other equations witA(N°) scaling costs must be solved iteratively.

5. PERFORMANCE OF CORRELATED SECOND-ORDER METHODS
FOR EXCITED STATE STRUCTURESAND VIBRATIONAL
FREQUENCIES

From the discussion in SectioBsind 3it follows that for well-isolated stategg., far from
same-symmetry intersections, the non-Hermitian contribution to the Jacobian in which
ADC(2) and CIS(D,) differ should have only a small effect on the eigenvalues and vectors.
Test calculations on a few diatomic molecules angOtdnd GH2 show (se@able 3 that

indeed ADC(2) and CIS(R) give not only vertical excitation energies, but also adiabatic
excitation energies, bond lengths and vibrational frequencies, which are almost identical.
The differences are close to or fall even below the convergence threshold used for the calcu-
lations. Since ADC(2) has both conceptual and computational advantages overgIS(D
the latter model will in the following not be considered further.

In the next two subsections the results of two sets of test calculations are presented.
The first test is a comparison of a hierarchy of single-reference methods for excited states
up to approximated coupled-cluster singles, doubles and triples methods in large basis
sets but restricted to diatomic molecules. In the second part only ADC(2) and CC2 are
compared for a set of small and medium sized polyatomic molecules for which excited
state geometries and frequencies are experimentally well-known.

5.1. Benchmark study on the four diatomic moleculesN,, CO, BH, and BF

For the comparison of the second-order methods for excitation energies with highly cor-
related methods which account also for the effects of connected triples, four molecules
N2, CO, BH, and BF have been selected since for these several excited states are experi-
mentally well known and have minima at not too far stretched internuclear distances and
accurate basis sets are available. The test set consists of 11 singlet and 19 triplet states:

Nz: ASE[, B3, B°s,, a5, allly, wiA,, €1,
CO: &%, A1, Bix+, clx+,

BF: &, A1, B1x+, clx+, b33+, 41,

BH: Al Bzt
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Table 3. Comparison of ADC(2) and CIS() for excitation energies and structures of
excited states

Molecule State  Property CIS®) ADC(2) cc2 Exp.
N> wlA,  Tert 10.629eV  10.628eV  10.584 eV
T, 9.36 eV 9.36 eV 9.37 eV 8.94 eV
R, 128.1 pm 128.1 pm 129.3 pm 126.8 pm
We 1449 cnt! 1449 cm!  1360cnmt! 1559 cntl
BF AT Tyen 6.424 eV 6.424 eV
T, 6.36 eV 6.37 eV 6.36 eV 6.34 eV
R, 131.2 pm 131.2 pm 131.4 pm 130.4 pm
We 1214 cm! 1214 cm!  1213cm! 1265 cmtl
CH,O BA” Tyen 3.930 eV 3.930 eV 4.025 eV
To 3.30eV 3.30eV 3.52eV 3.49 eV
d(CO) 138.2 pm 138.2 pm 135.5 pm 132.3 pm
P9 14.6 deg 14.6 deg 25.7 deg 34.0 deg
vo(a') 1344cm! 1344cm?! 1321 cm! 1293 cmt
CH,0 BA” Tyen 3.477 eV 3.476 eV 3.556 eV
To 291eV 291leV 3.05eV 3.12eV
d(CO) 134.5 pm 134.5 pm 133.6 pm 132.3 pm
e 33.4deg 33.5deg 38.1deg 41.1 deg
vo(a') 1323cnm!  1320cm! 1298 cnt! 1283 cml
CoH» 114,  Ter 7.224 eV 7.224 eV 7.199 eV
To 5.38 eV 5.38 eV 5.33 eV 5.23 eV
d(CC) 137.3 pm 137.3 pm 138.1 pm 137.5 pm
va(a,)  1426cml 1426 cmtt 1368 cnmt!  1385cntl

The calculations on pland BF where carried out in the aug-cc-pwCVQZ basis sets and all electrons have been ac-
tive, while for CH,O and GH> the aug-cc-pVQZ basis and a frozen core approximation was used. Experimental
values taken from Ref§27—29]

and the following methods have been included in the comparison:

configuration interaction singles (CIS), which is equivalent to coupled-cluster singles
(CCS)—provided that the Hartree—Fock reference wavefunction fulfills the Brillouin
condition;

CIS(D), a perturbative doubles correction to CIS;

the algebraic diagrammatic construction through second order ADC(2);

the approximate coupled-cluster singles and doubles model CC2;

coupled-cluster singles and doubles (CCSD);

CCSDR(3), a perturbative triples correction to CCSD—since for this method no imple-
mentation for triplet excited states is available, the results for CCSDR(3) include only
the 11 singlet states of the test set;

the approximate coupled-cluster singles, doubles, and triples model CC3.
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For single excitation dominated transitions, as the investigated states are, CIS is cor-
rect through first order in the fluctuation potential, the methods CIS(D), ADC(2), CC2 and
CCSD are correct through second order, and CCSDR@)and CC331,32]are correct
through third order. As in Sectiof the total energies for CIS(D) and ADC(2) were de-
fined as the sum of the excitation energies obtained with these models and the MP2 ground
state energy, the CCSDR(3) excitation energies were combined with the ground state ener-
gies from the CC(3) perturbative triples correct[80] to CCSD. The CCSD, CCSDR(3),
CC(3), and CC3 calculations have been carried out with the Dalton quantum chemistry
packagg33]; for all other calculations a development version of Turbomole was used.

To avoid any bias of the results due to core correlation effects all electrons have been cor-
related and the aug-cc-pwCVQZ bak2g—37]has been used. This basis set should even
for the triples methods CCSDR(3) and CC3 give results close to the basis set limit. Detailed
results for the bond lengths, the harmonic vibrational frequencies and the adiabatic excita-
tion energies are given iippendix A a summary of the results is shownFigs. 3-5

For none of the three investigated quantities (bond lengths, vibrational frequencies and
adiabatic excitation energies) the convergence within the coupled-cluster hierarchy is as
smooth as it is usually found for vertical excitation energies. In particular for the bond
lengths and the vibrational frequencies the results indicate some oscillations within the
CC model hierarchy, similar to that found for ground state bond length and vibrational
frequencieqg20]: CIS gives, similar as SCF for the ground state, much too short bond
lengths—for the 19 states included in this testRgts on the average underestimated by
about 3 pm. CC2 overestimates the correlation contribution and thus the bond lengths and
their change upon excitation, while CCSD gives again too short bond lengths, even though
CCsSD is much more robust with respect to strong correlation effects, as encountered in
N2 and CO if the bond is stretched upon excitation from a bounding into an anti-bonding
orbital. After inclusion of the effects of connected triples at the CCSDR(3) and the CC3
level the results are very accurate.
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Fig. 3. Errors in calculated bond lengths for 19 excited states. Experimental data from
Ref.[28]; for technical details of the calculations see text.
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Fig. 4. Errors in calculated harmonic frequencies for 19 excited states,i€@, BH, and
BF. Experimental reference data taken from R28]; for technical details of the calcula-
tions see text.

1.25+— = —
max. abs. error
1= W mean error B
L mean abs. error .
N 075 standard deviation |
V 7
SO0 1
~
~ 0.5+ |
S | / 7 |
S a
025 ? -
' N o e
0 = 2 § s E 4 N ﬂ
CIS CIS(D) ADC(2 cC2 CCSD CCSDR(3) CcC3

Fig. 5. Errors in adiabatic excitation energies for 19 excited statesjiC®, BH, and BF.
Experimental reference data taken from H28]; for technical details of the calculations
see text.

Compared to CC2 the ADC(2) model profits from the somewhat better stability of the
underlying MP2 for the ground state, while the results for the perturbative doubles cor-
rection CIS(D) are intermediate between the results for CIS and ADC(2). However, two
of the example molecules,JNand CO, are difficult cases for single-reference methods
and in particular for CC2. Taking this into account, one can, based on the above trends,
expect that for single replacement dominated excited states CC2 and CC3 for larger mole-
cules with polyatomic chromophores give equilibrium geometries of similar accuracy as
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obtained with these methods for the ground stiage close to the accuracy obtained with,
respectively MP2 and CCSD(T). Similar, CCSD cannot be expected to give for excited
states geometries which are more accurate than those for ground states. Its main advantage
lies in its robustness.

The results for harmonic frequencies corroborate the above observations. For almost
all excited states it is found that the vibrational frequencies are overestimated (underesti-
mated) the more the bond lengths are underestimated (overestimated). Thus, CIS and, to
a lesser extend, CCSD give too high vibrational frequencies, while CC2 usually yields to
low vibrational frequencies. Again, after inclusion of approximate triples in the methods
CCSDR(3) and CC3 the results are close to the experimental values.

In contrast to the smooth convergence of vertical excitation energies in the hierarchy
CCS-CC2-CCSD-CCa3, the adiabatic excitation energies change more irregular: no im-
provement is obtained when going from CC2 to CCSD. The CCSD results have about the
same accuracy as those obtained with ADC(2). The errors obtained with the perturbative
doubles correction CIS(D) are slightly larger. First after the inclusion of connected triples
at the CCSDR(3) and CC3 level a systematic and significant improvement upon CC2 is
obtained.

5.2. Comparison of ADC(2) and CC2 for polyatomic molecules

The benchmark results from the previous subsection include only states in four diatomic
molecules. It will of cause require further studies, in particular for polyatomic molecules to
see how general these findings are. But, for polyatomic molecules excitations are usually
delocalized over chromophores which comprise several atoms and, as a consequence, the
changes in the bond lengths upon excitation will be more moderate than they are in small
molecules.

This means that the results will be much more dominated by the performance of the
underlying ground state method. Though, one would expect for polyatomic molecules—
in particular if the differences between the bond lengths in the ground and the excited
states are not large—that the approximate doubles methods ADC(2) and CC2 give results
of almost the same accuracy as obtained for ground state geometries with MP2 and CC2.
However, for small molecules like GiD, C,Ho, where the excitation process is essentially
localized at one bond, similar difficulties as found above for the diatomic molecules have
to be expected.

In Tables 4—-6some results are listed for 0-0 transition energies, equilibrium bond
lengths and angles and vibrational frequencies for 13 excited states of small polyatomic
molecules, where accurate experimental results are available. The CC2 results, which have
been taken from Ref18], and the ADC(2) results, which are from the present work, have
been obtained in the aug-cc-pVQZ basis sets (aug-c@p¥(d)Z for the atoms Si—Cl)
[34-36,39] The frozen core approximations has been used throughout, with the 1s orbitals
frozen for the atoms B—F and 1s2s2p frozen for Si—Cl.

In contrast to the diatomic molecules investigated in Sedidnwhere from the exper-
imental data values fof,, R, andw, could be extracted, for the excited states in these
molecules experimental data is only available fgr Rg and fundamental frequencies.

This limits somewhat the comparability with the calculated values, which have been ob-
tained within the harmonic approximation. This impairs in particular the results for C—H
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Table 4. 0-0 transition energies (in eV) in the harmonic approximation

Molecule State CccC2 ADC(2) Exp.
SO 13, 2.92 294 319
Sik 118, 5.49 544 534°
CCl, 11, 2.11 200 214°
CS 134, 3.29 318 325
HCN 1147 6.72 6.82 648
HCP 1A 4.48 451 4312
CoH» 114, 5.33 538 523
CH,O 114”7 3.52 330 349
134" 3.05 291 312°
CH,S 14, 2.15 203 203
134" 1.79 169 180°
CHOCHO 14, 2.70 263 272
HC,CHO 147 3.17 290 3242

a From Ref.[28]. ? From Ref[38]. ¢ From Ref[29].

bond lengths and the corresponding stretchings modes, for which anharmonic effects are
sizable.

The results listed irmmables 4—6indicate that the above anticipated trends are indeed
found for polyatomic molecules. In the 0-0 transition energies f.ex. the mean absolute
error (MAE) is for CC2 0.1 eV, only for S@and HCN the errors are larger than 0.2 eV.
Also for ADC(2) the MAE of 0.17 eV for these polyatomic molecules is considerable
smaller than for the diatomic molecules studied in Sechidninterestingly, the difference
in mean absolute errors for CC2 and ADC(2) is almost the same for the excited states in the
polyatomic molecules listed ifable 4and for the excited states in the diatomic molecules
(Table A.3 studied in the previous subsection.

For bond lengths and angles and for vibrational frequencies the performance of the two
methods is—at least for the present test set—on the average very similar. ADC(2) improves
upon CC2 in several cases where multiple bonds are weakened upon excéagtidior
HCN, HCP, GH2, or the difficult case of S& On the other hand, ADC(2) performs inferior
for n — #* transitions as in ChD, CH;S and HGCHO, where it gives by far too long
C-0 distances and too low frequencies for the modes involving these bonds. However, one
has to keep in mind that the calculated CC2 and ADC(2) results are not strictly comparable
to the experimental reference data, since in the calculations anharmonic effects have been
neglected. Even though this is not expected, it cannot, without further investigations, be
excluded that corrections from the anharmonicities will change the conclusions about the
performance of CC2 and ADC(2) for excited state equilibrium structures.

6. SUMMARY AND CONCLUSIONS

The coupled-cluster methods CCS (CIS), CIS(D), CC2, CCSD, CCSDR(3), and CC3 form
today a relatively well-established hierarchy of black-box methods for excited states. The
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Table 5. Excited state structure parameters (bond lengths in pm and angles in degrees)
calculated with CC2 and ADC(2)

Molecule State Parameter Ccc2 ADC(2) Exp.
SO 1B, d(SO) 1554 1518 1494
/(0SSO 1288 1265 1261
SiR? 11B, d(SiP 1628 1623 1601
L(FSiP 1159 1160 1159
CCh? 11B, d(CCl) 1648 1647 1652
/(CICCl) 1320 1316 1314
CS 134, d(CS 1649 1637 1640
/(SCS 1357 1367 1358
HCN 114”7 d(CH) 1115 1113 1140
d(CN) 1321 1293 1297
/(HCN) 1223 1276 1250
HCP 1A d(CP) 1716 1682 1690
L(HCP) 1284 1371 1280
CoHoP 114, d(CC) 1381 1373 1375
d(CH) 1092 1091 1105
/(HCC) 1220 1222 1214
CH,0¢ 114" d(CH) 1087 1084 1098
d(CO) 1355 1382 1323
/(HCH) 1216 1241 1184
¢ 25.7 146 340
CH,o0° 134" d(CH) 1092 1089 1084
d(CO) 1336 1345 1307
/(HCH) 1180 1198 1179
¢4 381 335 411
CH,S° 114, d(CH) 1083 1083 1077
d(CS 1706 1719 1682
/(HCH) 1212 1212 12Q7
CH,S° 134" d(CH) 1082 1082 1082
d(CS 1689 1693 1683
/(HCH) 1205 1213 1193
¢4 15.0 43 119
trans-(CHO),® 114, d(CC) 1479 1477 1460
d(CH) 1095 1094 1120
d(CO) 1254 1250 1250
/(HCC) 1145 1149 1140
/(OCO) 1239 1236 1240
(Continued)

performance of these methods for vertical excitation energies has been investigated in sev-
eral benchmark studig44] and are well understood. With the implementation of analytic
gradients[18,45,46]it is for some of these methods now possible to obtain equilibrium
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Table5. (Continued)

Molecule State Parameter Cc2 ADC(2) Exp.

HC,CHO A7 d(C1Cp) 1238 1229 1238
d(C1H) 1063 1063 1075
d(C2C3) 1360 1358 1364
d(CzH) 1085 1083 1091
d(C30) 1406 1449 1325

Unless otherwise stated the experimental data was taken from[R&f&7]

& Experimental values frorf88]. b Experimental values froff#0]. © Experimental values fror29]. d out-of-
plane angle of the oxygen or sulfur atom, respectiv€lgxperimental values from Re#1].

Table 6. Harmonic vibrational frequencies (crh) calculated with CC2 and ADC(2)

Molecule State Parameter CcC2 ADC(2) Exp.
SO, 13B; v1(a1) 673 852 906
v2(ay) 285 337 360
Sik 118, v1(a1) 705 714 598
va(a1) 235 236 342
CCl2 118, v1(a1) 641 643 634
va(az) 308 310 303
CS 134, v1(a1) 682 727 692
va(ay) 243 311 311
HCN 1147 va(a') 1345 1661 1496
v3(a’) 963 973 941
HCP A" va(a') 888 1061 951
v3(a’) 636 647 567
CoH» 1A, va(ag) 1368 1426 1385
v3(ag) 1086 1088 1048
CH,0P 114" vi(a’) 3064 3107 2846
va(a') 1321 1344 1293
v3(a’) 1015 859 1183
vs(a”) 3202 3255 2968
ve(a’) 873 867 904
134" va(a') 1298 1320 1283
CHoSP 114, v1(a1) 3127 3124 3034
v2(a1) 1343 1346 1320
v3(ai) 799 751 859
va(b1) 3253 3254 3081
v5(b1) 769 772 799
va(a') 1337 1342 1320
v3(a’) 846 826 859

(Continued)
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Table 6. (Continued)

Molecule State Parameter CccC2 ADC(2) Exp.

trans-(CHO),® 114, v1(ay) 3052 3070 2809
va(ag) 1369 1410 1391
v3(ay) 1233 1252 1195
va(ag) 995 1019 952
vs(dg) 494 504 509
ve(ay) 754 760 720
v7(ay) 219 221 233
vg(by) 763 782 735
v10(by) 1248 1219 1281
v11(by) 1176 1096 1172
v12(by) 372 372 379

HC,CHO" 1tA” va(a’) 3170 3200 2953
v3(a’) 1898 1970 1946
va(a’) 1218 1205 1304
vs(a') 1074 1090 1120
ve(a’) 780 695 952
v7(a’) 642 655 650
vg(a') 471 477 507
vo(a’) 171 172 189
vio(a”) 550 593 507
v11(a”) 416 449 390
via(a”) 324 340 346

Unless stated otherwise, the experimental values are taken from[B&&7]
& Experimental values from Ref38]. b Experimental values from Ref29]. © Experimental values from
Ref.[42]. d Experimental values from Re#3].

structures for electronically excited states of small and medium sized molecules in an al-
most routine manner.

The benchmark study in Secti@nl, which compares the performance these methods,
indicates, in agreement with previous results in the litergBe49] that the accuracies
obtained for equilibrium structures and harmonic frequencies of single excitation domi-
nated excited states are almost comparable to those obtained for the ground state. It is
found that CCSD, even though much more robust with respect to strong correlation effects
than the approximate singles-and-doubles methods CIS(D), ADC(2), and CC2, is in gen-
eral for equilibrium structures not systematically more accurate than these methods. As a
consequence CCSD is also not able to improve for adiabatic excitation energies upon the
results obtained at the CC2 level.

A drawback of the standard CC response or equation-of-motion CC methods is the
lack of Hermitian symmetry of the Jacobi or secular matrix. While this will usually
not affect their performance for equilibrium structures, it leads to qualitative wrong
results for the potential energy surfaces of excited states in the vicinity of intersec-
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tions between states of the same symmetry: instead of a conical intersection seam
these methods will give a region with a conjugated pair of complex eigenvalues.
Propagator type methods, as the algebraic diagrammatic construction (ADC) models,
which have a Hermitian secular matrix could for such situations be a valuable alterna-
tive.

In Section4 the equations for orbital-relaxed one- and two-particle densities and ana-
lytic gradients of excited states have been derived for the ADC(2) and the &)S(Ddel.
These have been implemented in thiec2 module[50] of the Turbomole packag®1l]
and were used to investigate the performance of ADC(2) for excited state potential energy
surfaces. The results presented in Secti®isand 5.2how, that ADC(2) gives equilib-
rium structures and harmonic frequencies with an accuracy comparable to that of CC2. In
some cases, as for example &hd CO, ADC(2) is due to the underlying MP2 ground state
more robust than CC2. Only for excitation energies ADC(2) gives somewhat larger errors
than CC2.
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APPENDIX A

In Tables A.1-A.3he data underlyingigs. 3—5is collected.

Table A.1. Bond lengthskR, (pm) of diatomic molecules

Molecule State CIS CIS(D) ADC(2) CC2 CCSD CCSDR(3) CC3 Exp.

N, ASDF 1228 1290 1294 1315 1268 - 1293 1287
B7, 1176 1222 1231 1249 1195 -— 1214 1213
B x, 1233 1286 1292 1307 1252 - 1283 1278
alss 1233 1285 1290 1304 1248 1269 1280 1275
alfT, 1190 1230 1245 1265 1201 1215 1222 1220
wla, 1228 1276 1281 1293 1242 1263 1274 1268
C¥7, 1101 1143 1154 1163 1131 - 1146 1149

(Continued)
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Table A.1. (Continued)

C. Hattig

Molecule State CIS CIS(D) ADC(2) CC2 CCSD CCSDR(3) CC3 Exp.
Cco &1 1175 1210 1214 1227 1194 - 1211 1206
AlT 1210 1260 1278 1286 1222 1233 1245 1235
Blx+ 1085 1123 1126 1138 1109 1121 1125 1120
clx+ 1082 1117 1120 1135 1108 1120 1124 1122
BF &1 1298 1315 1316 1319 1306 - 1311 1308
Al 1284 1311 1312 1314 1301 1305 1307 1304
b3x+ 1200 1213 1214 1219 1211 - 1219 1215
Blx+ 1193 1204 1205 1210 1202 1209 1210 12Q7
Cly+ 1208 1221 1222 1227 1218 1224 1225 1220
d3rr 1199 1210 1210 1215 1207 - 1215 1210
BH AlT 1203 1206 1205 1206 1219 1221 1222 1219
Blx+ 1199 1202 1204 1205 1214 1215 1215 1216

For the technical details see Sectld; experimental values from Rg28].

Table A.2. Harmonic vibrational frequencies, (cm~1) of diatomic molecules

Molecule State CIS CIS(D) ADC(2) CC2 CCSD CCSDR(3) CC3 Exp.
N> A3z+ 1873 1407 1379 1223 1582 - 1420 1461
B1, 2008 1653 1576 1432 1884 - 1728 1733
B3r- 1841 1440 1402 1290 1701 - 1480 1517
aly- 1841 1447 1412 1303 1732 1582 1491 1530
alfl, 1904 1616 1505 1353 1858 1753 1685 1694
wla, 1859 1483 1449 1360 1752 1604 1509 1559
C%1, 2533 2133 1994 1885 2265 — 2113 2047
CcO a1 1965 1686 1645 1542 1830 - 1688 1743
Al 1646 1326 1214 1170 1594 1536 1426 1518
Blx+ 2480 1982 1830 1815 2233 2120 2064 2113
Cly+ 2488 2154 2111 1945 2287 2174 2124 2176
BF &1 1379 1298 1291 1277 1334 9999 1314 1324
Al 1365 1238 1214 1213 1279 1259 1251 1265
b3+ 1744 1638 1631 1592 1652 9999 1599 1629
Blx+ 1784 1711 1699 1666 1724 1689 1670 1694
clyx+ 1703 1612 1607 1577 1631 1601 1587 1613
a1 1774 1704 1697 1663 1725 9999 1679 1697
BH Al 2550 2480 2480 2473 2335 2309 2305 2251
Bly+ 2528 2498 2484 2476 2398 2390 2389 2400

For the technical details see Sectld; experimental values from Rg28].
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Table A.3. Adiabatic excitation energie®. (eV) of diatomic molecules

Molecule State CIS CIS(D) ADC(2) CC2 CCSD CCSDR(3) CC3 Exp.

N> A3yt 530 670 662 654 633 - 613 622
B%1, 771 764 744 731 759 - 738 7.39
B3c- 752 879 870 867 862 - 819 822
d'x; 752 882 873 872 882 854 843 845
alfl, 960 886 856 839 885 867 861 859
wla, 813 946 936 937 934 904 890 894
c31, 1182 1151 1129 1124 1123 - 1111 1105
CcoO arl 578 626 618 608 617 - 602 604
Alr 882 824 807 797 826 811 804 807
Bly+ 1202 1149 1135 1111 1121 1Q96 1094 1078
Cly+ 1257 1179 1188 1164 1175 1151 1150 1140
BF ar 273 344 342 343 359 - 360 361
Alrr 6.56 639 637 636 640 634 634 634
b3x+ 724 773 767 757 769 - 757 757
Blxt+ 833 835 833 822 829 816 815 810
Clx+ 851 874 872 864 871 862 863 856
a1 858 887 885 877 887 - 876 877
BH Alrr 285 279 280 280 290 286 288 287
Blxt 641 654 648 648 657 652 654 649

For the technical details see Sectlmd; experimental values from Rg28].
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