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We extend our recently developed heat-bath configuration interaction (HCI) algorithm, and our
semistochastic algorithm for performing multireference perturbation theory, to calculate excited-
state wavefunctions and energies. We employ time-reversal symmetry, which reduces the memory
requirements by more than a factor of two. An extrapolation technique is introduced to reliably extrap-
olate HCI energies to the full CI limit. The resulting algorithm is used to compute fourteen low-lying
potential energy surfaces of the carbon dimer using the cc-pV5Z basis set, with an estimated error in
energy of 30-50 µHa compared to full CI. The excitation energies obtained using our algorithm have
a mean absolute deviation of 0.02 eV compared to experimental values. Published by AIP Publishing.
https://doi.org/10.1063/1.4998614

I. INTRODUCTION

The accurate ab initio calculation of low-energy excited
states is of great importance in many fields, including spec-
troscopy and solar energy. Unfortunately, excited-state cal-
culations are complicated by the fact that they often exhibit
strong multireference character, and a simple and accurate
variational ansatz does not exist for them. As a result, the
commonly used quantum chemical techniques such as den-
sity functional theory1–3 and coupled cluster theory4–7 become
unreliable. Even when the excited states are qualitatively well
described by a single determinant, single reference method,
such equation of motion coupled cluster singles and dou-
bles8–10 (EOM-CCSD) are unable to describe states that have
double-excitation character.

Complete active space self-consistent field11–14

(CASSCF) and its extensions, including multireference con-
figuration interaction15,16 (MRCI), complete active space per-
turbation theory17,18 (CASPT2), n-electron valence perturba-
tion theory19–21 (NEVPT2), and variants of multi-reference
coupled cluster22–24 (MRCC), are presently the most reliable
methods for dealing with such problems. The shortcoming
of these methods lies in their inability to treat problems
that require more than 18 electrons and 18 orbitals in their
active space because of the need for performing exact diag-
onalization, though recently it has become possible to treat
systems with 20 electrons in 20 orbitals on massively par-
allel machines.25 To overcome this limitation, other meth-
ods such as restricted26,27 and generalized28 active space
(RASSCF/GASSCF) methods further subdivide the active
space orbitals and put restrictions on their occupation pat-
tern. However, these methods quickly become unaffordable
as one relaxes these restrictions to calculate exact active-space
energies. Methods such as the density matrix renormalization
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group29–33 (DMRG) algorithm, Full Configuration Interaction
Quantum Monte Carlo34,35 (FCIQMC), and its semistochastic
improvement,36 when used as active-space solvers, are able
to go well beyond the restriction imposed by CASSCF and
represent a significant advance. They are nevertheless expo-
nentially scaling, with the exception of DMRG for systems
with a linear topology. Although other approaches such as vari-
ational Monte Carlo,37–39 various flavors of projector Monte
Carlo,40–43 and reduced density matrix based methods44–46

have shown promise, they have not yet become widely used in
quantum chemistry.

In this paper, we present a new, efficient excited-state
algorithm using our recently developed Heat-bath Config-
uration Interaction47 (HCI) algorithm, in conjunction with
semistochastic perturbation theory.48 The HCI method is in
the category of Selected Configuration Interaction followed by
Perturbation Theory (SCI+PT) algorithms. The first SCI+PT
algorithm, called Configuration Interaction by Perturbatively
Selecting Iteratively (CIPSI), was developed over four decades
ago by Malrieu and co-workers49,50 and extended earlier
selected CI algorithms that did not use perturbation the-
ory.51,52 Many variations of CIPSI have been developed over
the years.53–77 These methods perform a pruned breadth-first
search to explore Slater determinant space aiming to iden-
tify those determinants that have the largest overlap with the
targeted ground and excited states. This step is followed by
Epstein-Nesbet perturbation theory78,79 to include the energy
contributions from the first-order interacting space.

HCI distinguishes itself from other SCI+PT methods in
two respects. First, it changes the selection criterion, thereby
allowing it to explore only the most important determinants
without ever having to consider unimportant determinants (see
Sec. II). Second, it performs the perturbation theory using a
semistochastic algorithm that eliminates the severe memory
bottleneck of having to store the large number of determinants
in the first-order interacting space (although memory-efficient
deterministic variants are also possible, we have so far found
them to be computationally much more expensive than the
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semistochastic algorithm). These two ingredients make it more
efficient than other SCI+PT approaches. It is worth mentioning
that, similar to FCIQMC and DMRG, the cost of the method
scales exponentially with the number of electrons. However,
in our experience, HCI is much faster than FCIQMC and is
also faster than DMRG, at least for molecules that do not have
a large number of spin-orbitals with occupancies far from 0
and 1.

Here we show that HCI can be made more efficient by
utilizing time-reversal symmetry and angular momentum sym-
metry, which is the largest Abelian subgroup of the full D∞h

point group. We also present a new method for extrapolation of
HCI energies to the full configuration interaction (FCI) limit.
In contrast to the first two publications47,48 describing HCI,
in which we either extrapolated with respect to the variational
parameter ε1 or assumed that our calculations were converged,
here we extrapolate the energies with respect to the perturba-
tion energy ∆E2. We find that the extrapolation with respect to
∆E2 is often nearly linear and more reliable than the previous
extrapolation procedure.

The outline of the paper is as follows. In Secs. II and
III, we set the stage by describing the salient features of the
HCI algorithm and semistochastic perturbation theory. Next,
in Sec. IV, we show how the HCI algorithm can be extended
to calculate excited states. In Sec. V, we present an improved
method for extrapolating unconverged HCI energies to the FCI
energies. In Sec. VI, we describe further improvements to the
algorithm, including the incorporation of angular momentum
symmetries and time-reversal symmetry. We finish the paper
with some concluding remarks in Sec. VIII.

II. HEAT-BATH CONFIGURATION INTERACTION (HCI)
A. Overview

HCI is an efficient SCI+PT algorithm, which can be
broken down into the following steps:

1. Variational stage
(a) Identify the most important Slater determinants.
(b) Find a variational wavefunction and energy by com-

puting the ground state within the space spanned by
determinants found in step 1a.

2. Perturbative stage
(a) Identify the most important perturbative correc-

tions to the variational energy.
(b) Sum the contributions found in step 2a.

Step 1 is performed as an iterative process, which alter-
nates between adding new determinants to the selected space
and finding the lowest-energy wavefunction within the current
selected space. HCI improves over other SCI+PT algorithms
by using a very fast algorithm for selecting the important
determinants in steps 1a and 2a and also by using a semis-
tochastic algorithm for performing the summation in step 2b,
which eliminates the need for storing all the determinants that
contribute to the perturbative correction.

B. Variational stage

In HCI, the variational wavefunction at any iteration is
given by |ψ〉 =

∑V
i ci |Di〉, and the new determinants |Da〉 that

are added to the variational space are those for which

max
i∈V
|Haici | > ε1. (1)

Here Hai are matrix elements connecting states ��Di
〉

within the
current variational space V to states ��Da

〉
outside V, and ε1 is a

user-defined parameter that controls the size of the final
variational space.80

This criterion is used because it can be implemented effi-
ciently without checking the vast majority of the determinants
that do not meet the criterion (see Sec. II D). The determinants
chosen using this scheme are approximately those chosen by
the CIPSI algorithm, which chooses determinants ��Da

〉
for

which
���c

(1)
a

��� =
�����

∑
i Haici

E0 − Ea

�����
(2)

is sufficiently large.
The determinants chosen by the two criteria are nearly the

same because the terms in the numerator of Eq. (2) span many
orders of magnitude, so the sum is highly correlated with the
largest-magnitude term in the sum [Eq. (1)]. The denomina-
tors of Eq. (2) also vary with Da, but to a much lesser extent,
since the determinant energies, Ea, are much larger than the
current variational energy, E0, for sufficiently large variational
expansions.

C. Perturbative stage

In SCI+PT algorithms, the perturbative correction ∆E2 is
typically computed using Epstein-Nesbet perturbation theory,

∆E2 =
∑

a

(
∑

i Haici)2

E0 − Ea
. (3)

In the original CIPSI algorithm, this expression is computed
by evaluating and summing all of the terms in the double sum.
However, the vast majority of the terms in the sum are negligi-
ble, so this approach is not very efficient. Various schemes for
improving the efficiency have been implemented, including
only exciting from a rediagonalized list of the largest-weight
determinants50 and its efficient approximation using diagram-
matic perturbation theory.57 However, this is both more com-
plicated than necessary (requiring a double extrapolation with
respect to the two variational spaces to reach the full CI limit)
and is more computationally expensive than necessary since
even the largest weight determinants have many connections
that make small contributions to the energy.

Instead, HCI uses a “screened sum,”

∆E2 ≈
∑

a

(∑(ε2)
i Haici

)2

E0 − Ea
, (4)

where
∑(ε2)

i Haici includes only terms for which |Haici | > ε2.
Note that the vast number of terms that do not meet this crite-
rion are never evaluated. Even with this screening, the number
of connected determinants can be sufficiently large to exceed
computer memory. This is addressed in Sec. III.

D. Heat-bath algorithm for acceleration of both stages

The key to the efficiency of the heat-bath scheme is as
follows. The vast majority of the Hamiltonian matrix ele-
ments correspond to double excitations, and their values do not
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depend on the determinants themselves but only on the four
orbitals whose occupancies change during the double excita-
tion. Therefore, before performing an HCI run, for each pair
of orbitals, the set of all double-excitation matrix elements
obtained by exciting from that pair of orbitals is computed and
stored in decreasing order by magnitude, along with the corre-
sponding pairs of orbitals the electrons would excite to. Once
this is done, at any point in the HCI algorithm, from a given
reference determinant, all double excitations whose Hamilto-
nian matrix elements exceed a cutoff (either ε1/|ci | or ε2/ |ci |

for the variational and perturbative stages, respectively) can
be generated efficiently, without having to loop over all dou-
ble excitations. This is achieved by looping over all pairs of
occupied orbitals in the reference determinant and traversing
the list of sorted double-excitation matrix elements for each
pair until the cutoff is reached.

This screening algorithm is utilized in both steps 1a and
2a of the algorithm and is a significant reason why the HCI
algorithm is faster than other selected CI algorithms that do
not truncate the search for double excitations or skip over the
large number of determinants making negligible contributions
to the energy.

III. SEMISTOCHASTIC PERTURBATION THEORY

The evaluation of Eq. (4) with a low computational
cost requires the simultaneous storage of all included terms,
indexed by a, and can easily exceed memory limitations for
challenging problems.

To overcome this memory bottleneck, we introduced a
semistochastic evaluation of the PT sum, in which the most
important contributions (found in the same way as in the orig-
inal HCI algorithm) are evaluated deterministically and the
rest are sampled stochastically.48 Here, an initial deterministic
perturbative correction ∆ED

2 [εd
2] is calculated using a rela-

tively loose threshold εd
2. Then, the stochastic calculation is

used to evaluate the bias in the deterministic calculation (due
to using an insufficiently small εd

2) by calculating the two
stochastic energies ∆E2[ε2] and ∆E2[εd

2] (the second-order
perturbative energy calculated with ε2 and εd

2, respectively)
with ε2 < ε

d
2 . The total second-order energy is given by the

expression

∆E2 = (∆E2[ε2] − ∆E2[εd
2]) + ∆ED

2 [εd
2]. (5)

Both ∆E2[ε2] and ∆E2[εd
2] are calculated using the same set of

samples, and thus there is significant cancellation of stochas-
tic error. Furthermore, because these two energies are calcu-
lated simultaneously, the incremental cost of performing this
calculation, compared with a fully stochastic summation, is
very small. Clearly, in the limit in which εd

2 = ε2, the entire
perturbative calculation becomes deterministic.

The stochastic piece of the semistochastic summation
algorithm is evaluated by sampling only Nd variational deter-
minants at a time. Each variational determinant Di is sampled,
with replacement, with probability

pi =
|ci |∑
j

���cj
���
, (6)

using the Alias method,81,82 which has previously been used
by us to efficiently sample double excitations in determinant-
space quantum Monte Carlo algorithms.83 An unbiased esti-
mate of the second-order perturbative correction to the
energy48 is given by the expression

∆E2 =
1

Nd(Nd − 1)

∑
a

1
E0 − Ea



*..
,

Nuniq
d∑
i

wiciHai

pi

+//
-

2

+

Nuniq
d∑
i

*
,

wi(Nd − 1)
pi

−
w2

i

p2
i

+
-

c2
i H2

ai


, (7)

where 4i denotes the number of times determinant Di is
sampled, and the summation is only over the Nuniq

d unique
determinants in the sampled Nd determinants. A minimum of
just two determinants is sufficient to perform this calculation,
thus completely eliminating the memory bottleneck; however,
the statistical noise is greatly diminished if larger samples are
chosen.

For large systems, the stochastic part of the algorithm is
essential, but for small systems, it is possible to get within
1 mHa of the FCI energy using just the deterministic part of
the algorithm. This is demonstrated for the C2 dimer in the cc-
pV5Z basis set in Table I. The variational plus the deterministic

TABLE I. The three contributions to the HCI energy, for the ground and first excited 1Σ+
g states of the carbon

dimer at r = 1.242 53 Å in the cc-pV5Z basis set. In these calculations, ε1 = 1× 10−4 Ha, ε2 = 1× 10−8 Ha, and the
automatically chosen εd

2 values were found to be 2.9×10−6 Ha and 3.3×10−6 Ha for the ground and excited states,

respectively. Natural orbitals from a separate state-averaged variational HCI calculation (also with ε1 = 1 × 10−4

Ha) were used. The FCI energy was found by extrapolation of several HCI runs, as described in Sec. V. The last
column reports the CPU time on a single node (consisting of two 14-core 2.4 GHz Intel “Broadwell” processors)
once the natural orbitals are obtained. Note that the stochastic component of the PT correction can occasionally
be positive, as in this example, even though the total PT correction must be negative.

Component E0 (Ha) E1 (Ha) Time (min)

Variational energy −75.805 98 −75.715 73 9
Deterministic component of PT correction −0.002 20 −0.002 32 11
Stochastic component of PT correction 0.000 03(1) 0.000 03(1) 18

Total HCI energy −75.808 15(1) −75.718 02(1) 38

Extrapolated total HCI energy −75.807 90(3) −75.717 73(3)
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parts of the algorithm yield energies for the 1Σ+
g ground and

excited states accurate to 0.3 mHa in just 20 min on a single
computer node.

We note that very recently a different semistochastic per-
turbation theory has been proposed75 wherein the statistical
error decreases much faster than the inverse square root of the
number of Monte Carlo samples.

IV. EXCITED STATES IN HCI

When computing ground and excited states, all states are
expanded in the same set of variational determinants,

|ψs〉 =
∑
i∈V

c(s)
i |Di〉 , (8)

where s denotes the state. This is akin to performing state-
average variational calculations, rather than state-specific ones
where each state would have its own set of determinants. In
the excited-state algorithm, at each iteration of the variational
stage, we add to the variational space V the union of the new
determinants that are important for each of the states. Thus, at
each iteration, new determinants Dj are added to V if

|Hji |

(
max

s∈states

���c
(s)
i

���
)
> ε1 (9)

for at least one Di ∈ V. Eq. (9) ensures that when several states
are targeted, the variational space will include more deter-
minants than when only the ground state is targeted since
there will be determinants relevant to all targeted states. Note
that this formula is different from the one used in state-
average CASSCF theory where the density matrix is averaged,
which is closer in spirit to taking the square root of the sum
of the squares of the coefficients. This distinction becomes
important in the event of degeneracies among the targeted
variational states. In such a situation, rotations within the
degenerate subspaces are arbitrary, and the value of the max-
imum magnitude of the coefficients is not invariant to such
rotations, but the square root of the sum of the squares of

coefficients is invariant. For such a situation, we recommend
using the invariant criterion, for example, if the ground state
is nondegenerate but the first two excited states are degen-

erate, one should use max

(
���c

(0)
i

��� ,
√

���c
(1)
i

���
2

+ ���c
(2)
i

���
2
)

in place

of max
(���c

(0)
i

��� , ���c
(1)
i

��� , ���c
(2)
i

���
)
. In the applications considered in

this paper, there are no exact degeneracies among the targeted
states, so we use the simple formula in Eq. (9).

V. EXTRAPOLATION OF HCI ENERGIES

Apart from the generalization to excited states, the most
important modification to HCI in this paper is a new pro-
cedure for extrapolation of the HCI total energy to the FCI
limit. The HCI energy is a function of two parameters: ε1,
which controls the variational stage, and ε2, which accelerates
the perturbative energy calculation by screening out the many
tiny contributions. In the limit in which ε1 goes to zero, the
HCI energy equals the FCI energy, and in the limit in which
ε2 goes to zero, the perturbative correction is exactly equal
to the Epstein-Nesbet perturbation correction. In the calcu-
lations in this paper, we use a fixed ε2 = 10�8 Ha, which is
sufficiently small to give near exact PT energies, and perform
runs at several different values of ε1.

In the original HCI paper,47 we extrapolated to the FCI
limit by extrapolating the HCI energy with respect to ε1. How-
ever, this is often nonlinear with a curvature that increases as
ε1 = 0 is approached. Consequently, it is difficult to choose
a function that provides a good fit to the computed energies.
Instead, in this paper, we extrapolate with respect to the per-
turbative correction to the energy. In the limit in which this
perturbative correction is zero, both the variational and the
total HCI energies equal the FCI energy. If the fitting func-
tion contains a linear term, the variational and the total HCI
energies extrapolate to precisely the same value. For many
systems, this extrapolation is empirically found to be close to
linear, as shown in Fig. 1, but more generally the points lie

FIG. 1. Extrapolation of the HCI total energy to the FCI
limit for the lowest singlet state of tetracene in a DZ basis
with an (18e, 36o) active space, using natural orbitals.
Previously, we obtained the FCI limit by extrapolating to
ε1 = 0, using a rational polynomial function of ε1, which
requires several calculated values. A linear or quadratic
fit can yield an extrapolated value that is substantially in
error, as shown in the figure on the right. In the present
paper, we instead extrapolate to ∆E2 = 0, as shown on the
left. Not only is ∆E2 a more meaningful quantity than ε1
but also it enables a nearly linear extrapolation of the total
energy. The DMRG energy, used for comparison, is the
variational energy with bond dimension 1500 obtained
by Hachmann et al.84
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on a sufficiently smooth curve for which a reliable low-order
polynomial extrapolation is possible.

VI. FURTHER IMPROVEMENTS TO HCI

Since our most recent HCI paper,48 in which we intro-
duced the semistochastic algorithm for evaluating the HCI
perturbative correction to the energy, we have improved the
algorithm in several ways. First, we have introduced the abil-
ity to employ angular momentum symmetry, which is the
largest Abelian subgroup of the D∞h point group (for all
but the smallest basis sets, it has orbitals, as well as many-
body states, of a larger number of irreducible representa-
tions than does the D2h point group that is commonly used
for linear molecules). Second, we have implemented time-
reversal symmetry, which can be used to perform separate
calculations of the singlet and triplet states, thereby reduc-
ing the Hilbert space of the problem by nearly a factor of
two and reducing the memory requirement of the Hamilto-
nian in the variational space by a factor of between two and
four.

A. Angular momentum symmetry

For real orbitals, the 2-electron integrals have 8-fold per-
mutational symmetry. Hence only slightly more than an eighth
of the integrals need to be stored. For linear molecules, the
orbitals can be chosen to be eigenstates of the z-component of
angular momentum, L̂z, and the orbitals are complex. In that
case, there is only 4-fold permutational symmetry. However,
with the usual choice of phase, the integrals are real, and four
of the eight are zero since they violate Lz conservation. Hence
it is still possible to store only an eighth of the integrals, pro-
vided a check is performed to ensure Lz conservation. This
enables us to use Lz symmetry to reduce the storage required
for the Hamiltonian without increasing the storage required
for the integrals.

B. Time-reversal symmetry

The time-reversal operator exchanges the spin labels of
the electrons. States with Sz = 0 are symmetric/antisymmetric
under time reversal if S is even/odd. Consequently, the
basis states can be chosen to be symmetric or antisym-
metric linear combinations of time-reversed pairs of Slater
determinants.

Consider two spatial orbital configurations, I and J. If a
determinant is formed by assigning the α electrons to I and the
β electrons to J, i.e., ��IαJβ

〉
, then its time-reversed partner is

(−1)nα (nβ+1)��JαIβ
〉
, where nα and nβ are the number of alpha

and beta electrons. Note (−1)nα (nβ+1) is always equal to 1 for a
system containing an equal number of alpha and beta electrons,
so we will ignore this phase from now on. We choose to work
in the basis of states {|SIJ〉}, where

|SIJ〉 =



��IαJβ
〉
, if I = J ,

1√
2

(��IαJβ
〉

+ z��JαIβ
〉)

, if I , J ,
(10)

where z is the eigenvalue of the time-reversal operator, which
is either 1 for even S states or �1 for odd S states. Note that
basis states for which I = J can occur only when z = 1.

The matrix elements between pairs of these time-reversal
symmetrized states are straightforwardly evaluated. For
example, if I = J and K , L,

〈
SIJ

���Ĥ
��� SKL

〉
=

1
√

2

〈
IαJβ

���Ĥ
��� KαLβ

〉
+

z
√

2

〈
IαJβ

���Ĥ
��� LαKβ

〉
,

(11)
whereas if I , J and K , L,

〈
SIJ

���Ĥ
��� SKL

〉
=

1
2

〈
IαJβ

���Ĥ
��� KαLβ

〉
+

z
2

〈
JαIβ

���Ĥ
��� KαLβ

〉
+

z
2

〈
IαJβ

���Ĥ
��� LαKβ

〉
+

1
2

〈
JαIβ

���Ĥ
��� LαKβ

〉
=

〈
IαJβ

���Ĥ
��� KαLβ

〉
+ z

〈
JαIβ

���Ĥ
��� KαLβ

〉
. (12)

We use time-reversal symmetry only for the variational
stage. Upon completion of the variational stage, we convert
back to the determinant basis and perform Epstein-Nesbet
perturbation theory in this basis.

Using time-reversal symmetrized states has two benefits.
First, it shrinks the size of the Hilbert space, so that a larger
variational manifold can be treated with a given memory size.
Second, it allows one to target different irreducible representa-
tions separately. For example, if the ground state is a singlet and
the first excited state is a triplet, then one can target the lowest
triplet state as a ground state and avoid using the excited-state
algorithm.

VII. RESULTS

We consider the excited states of the strongly correlated
carbon dimer. Despite its small size, the carbon dimer has
strong multireference character even in its ground state and
has been the focus of many experimental and theoretical stud-
ies.41,85–107 Here we perform excited-state calculations in Dun-
ning’s cc-pVQZ basis108 to compare to calculations from other
methods in the literature. Then, we compute fourteen low-
lying potential energy surfaces in the larger cc-pV5Z basis,
extrapolating to the full CI limit.

All integrals used in these calculations were obtained
using the PySCF quantum chemistry package.109

A. Carbon dimer in cc-pVQZ basis

In order to compare to DMRG and FCIQMC energies
in the literature, we first computed the potential energy sur-
faces of the three lowest 1Σ+

g and two lowest 5Σg states
in the cc-pVQZ basis with a frozen core. These states
were targeted by imposing Lz = 0 (Σ states) and using a
basis of linear combinations of Slater determinants, which
is symmetric under time-reversal symmetry (singlets and
quintets).

The HCI variational and total energies are shown in
Table II. Note that even in a relatively large cc-pVQZ basis,
the variational energies are within 0.5 mHa of the converged
total energies for both ground and excited states. The HCI total
energies are lower than the (bond dimension 4000) DMRG and
FCIQMC energies by 40-260 µHa and 120-710 µHa, respec-
tively. For the ground state, DMRG energies that are in better
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TABLE II. Comparison of energies (E + 75 in Ha) for the three lowest 1Σ+
g states of the frozen-core carbon dimer in the cc-pVQZ basis set for three different methods. The DMRG variational energies106 used a bond

dimension of M = 4000 and were obtained by simultaneously targeting the three lowest states of 1Σ+
g symmetry. The converged values for the DMRG variational energies of the ground state curve (obtained by instead

targeting only that single state) are slightly lower than those given here; for example, the equilibrium energy is �75.802 69(1) Ha, consistent with the extrapolated HCI total energy. The HCI variational energies were obtained
with ε1 = 20 µHa and targeted the lowest five states of either 1Σ+

g or 5Σg symmetry. They used state-averaged natural orbitals, which were obtained from ε1 = 50 µHa variational calculation of the lowest five states in that
symmetry sector. Each HCI extrapolation was done using a linear extrapolation with respect to ∆E2 using two runs with ε1 = 50 and 20 µHa. The uncertainties in the HCI total energies are 10-20 µHa and reflect both the
stochastic uncertainty in the individual points and the error in extrapolation to the FCI limit, taken to be 20% of the difference in energy between the most accurate (smallest ε1) calculation and the extrapolated value. The
uncertainties in the FCIQMC total energies in Ref. 103 range from 1 µHa to 13 µHa and reflect only the stochastic noise; no attempt was made to extrapolate away the initiator bias.

DMRG variational energy FCIQMC energy HCI variational energy HCI total energy
R/Å (Ref. 106) (Ref. 103) (this work) (this work)

1.0 – – – −0.655 70 −0.486 65 −0.376 54 −0.655 98 −0.486 88 −0.376 92 −0.656 20 −0.487 16 −0.377 25
1.1 −0.761 24 −0.621 83 −0.502 28 −0.761 14 −0.621 70 −0.502 12 −0.761 03 −0.621 57 −0.501 96 −0.761 28 −0.621 86 −0.502 33
1.2 −0.799 20 −0.694 59 −0.544 90 −0.799 13 −0.694 50 −0.544 79 −0.799 01 −0.694 35 −0.544 61 −0.799 27 −0.694 65 −0.544 98
1.242 53 −0.802 64 −0.712 08 −0.549 53 −0.802 58 −0.712 00 −0.549 42 −0.802 44 −0.711 82 −0.549 24 −0.802 71 −0.712 13 −0.549 61
1.3 −0.799 33 −0.726 33 −0.548 71 −0.799 27 −0.726 26 −0.548 61 −0.799 13 −0.726 07 −0.548 42 −0.799 39 −0.726 39 −0.548 81
1.4 −0.779 65 −0.732 67 −0.537 76 −0.779 61 −0.732 61 −0.537 66 −0.779 45 −0.732 40 −0.537 46 −0.779 73 −0.732 74 −0.537 89
1.6 −0.724 01 −0.704 87 −0.510 54 −0.723 95 −0.704 80 −0.510 47 −0.723 74 −0.704 57 −0.510 24 −0.724 10 −0.704 95 −0.510 72
1.8 – – – −0.680 56 −0.654 07 −0.496 39 −0.680 29 −0.653 89 −0.496 12 −0.680 71 −0.654 24 −0.496 61
2.0 −0.645 52 −0.614 69 −0.492 90 −0.645 48 −0.614 70 −0.492 97 −0.645 22 −0.614 53 −0.492 69 −0.645 65 −0.614 86 −0.493 16
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FIG. 2. Low-lying potential energy surfaces of the carbon dimer in the cc-
pV5Z basis, computed using HCI. Symbol shapes denote spin states, with cir-
cles, triangles, and stars denoting singlets, triplets, and quintets, respectively,
and colors denote spatial symmetry, with red, green, blue, purple, orange, and
brown denoting Σg, Σu, Πu, Πg, ∆g, and ∆u, respectively. The dotted lines
correspond to the states that were computed using the excited-state algorithm,
while the solid lines were computed using the ground-state algorithm. The
curve 1Σ

+/−
u is the 11Σ+

u curve from R = 1.0 to 1.5 Å, and the 1Σ−u curve from
R = 1.6 to 2.4 Å. Time-reversal and Lz symmetries were used, and 1s cores
were frozen. At each geometry, ten HCI runs were performed, targeting either
the one or two lowest states in each of the ten symmetry sectors.

problem. We computed the total spin of each variational wave-
function (with ε1 = 5 × 10−5 Ha) at several points along the
curves and found the maximum deviations from the correct
total spin to be

〈
S2〉 . 5 × 10−4 for the singlets, ��

〈
S2〉 − 2��

. 1 × 10−4 for the triplets, and ��
〈
S2〉 − 6�� . 2 × 10−4 for the

quintet.
The energies of these fourteen states are shown in

Table III and Fig. 2. In addition, we have calculated the exci-
tation energies of the eight lowest-lying excited states, as
shown in Table IV. These excitation energies have a mean
absolute deviation of 0.02 eV relative to the experimental
values.

TABLE IV. Excitation energies of various states of the carbon dimer, calcu-
lated with the cc-pV5Z basis set with a frozen core. The bond lengths were
chosen to be the experimental values.87 Errors in the calculated excitation
energies (relative to full CI) are smaller than 1 meV. The difference between
the calculated and experimental excitation energies could be due to basis set
incompleteness, core correlation, relativistic effects, or the interpretation of
the experimental data.

Excitation energy (eV)

State Req (Å) Calculated Experimental

X1Σ+
g 1.242 53 0 0

a3Πu 1.312 0.07 0.09
b3Σ−g 1.369 0.78 0.80
A1Πu 1.318 1.03 1.04
c3Σ+

u 1.208 1.16 1.13
B1∆g 1.385 1.49 1.50
B′1Σ+

g 1.377 1.90 1.91
d3Πg 1.266 2.50 2.48
C1Πg 1.255 4.29 4.25
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VIII. CONCLUSIONS AND OUTLOOK

We have presented an efficient excited-state method using
Heat-bath Configuration Interaction and a method for extrapo-
lating the resulting energies to the FCI limit. We incorporated
symmetries including time-reversal symmetry and angular
momentum conservation, enabling us to target excited states
in different symmetry sectors. We then used the method to
calculate fourteen low-lying potential energy surfaces of the
carbon dimer in the large cc-pV5Z basis.

We are exploring including one more symmetry: the ana-
log of time-reversal symmetry for orbital angular momentum
(to separately target Σ+ and Σ� states). For challenging prob-
lems, for which extrapolation to the full CI limit is not possible,
we are also extending our extrapolation procedure to the case
where the variational and perturbative steps have different
active space sizes, resulting in an extrapolation to the limit
of an uncontracted multireference perturbation theory with a
complete active space (CAS) reference, rather than to the full
CI limit.
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5J. Čı́žek, J. Chem. Phys. 45, 4256 (1966).
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32U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
33G. K.-L. Chan and S. Sharma, Annu. Rev. Phys. Chem. 62, 465 (2011).
34G. H. Booth, A. J. W. Thom, and A. Alavi, J. Chem. Phys. 131, 054106

(2009).
35D. Cleland, G. H. Booth, and A. Alavi, J. Chem. Phys. 132, 041103 (2010).
36F. R. Petruzielo, A. A. Holmes, H. J. Changlani, M. P. Nightingale, and

C. J. Umrigar, Phys. Rev. Lett. 109, 230201 (2012).
37L. Zhao and E. Neuscamman, J. Chem. Theory Comput. 12, 3436 (2016).
38B. Mussard, E. Coccia, R. Assaraf, M. Otten, C. J. Umrigar, and J. Toulouse,

preprint arXiv:1705.09813 (2017).
39P. J. Robinson and E. Neuscamman, preprint arXiv:1705.04856 (2017).
40F. Schautz and C. Filippi, J. Chem. Phys. 120, 10931 (2004).
41W. Purwanto, S. Zhang, and H. Krakauer, J. Chem. Phys. 130, 094107

(2009).
42R. Guareschi and C. Filippi, J. Chem. Theory Comput. 9, 5513 (2013).
43N. Blunt, G. H. Booth, and A. Alavi, preprint arXiv:1704.00864 (2017).
44M. Nakata, M. Ehara, and H. Nakatsuji, J. Chem. Phys. 116, 5432 (2002).
45D. A. Mazziotti, Acc. Chem. Res. 39, 207 (2006).
46D. A. Mazziotti, “Variational two-electron reduced-density-matrix theory,”

in Advances in Chemical Physics (John Wiley & Sons, 2007), Vol. 134,
p. 21.

47A. A. Holmes, N. M. Tubman, and C. J. Umrigar, J. Chem. Theory Comput.
12, 3674 (2016).

48S. Sharma, A. A. Holmes, G. Jeanmairet, A. Alavi, and C. J. Umrigar, J.
Chem. Theory Comput. 13, 1595 (2017).

49B. Huron, J. Malrieu, and P. Rancurel, J. Chem. Phys. 58, 5745 (1973).
50S. Evangelisti, J.-P. Daudey, and J.-P. Malrieu, Chem. Phys. 75, 91 (1983).
51C. F. Bender and E. R. Davidson, Phys. Rev. 183, 23 (1969).
52J. Whitten and M. Hackmeyer, J. Chem. Phys. 51, 5584 (1969).
53R. J. Buenker and S. D. Peyerimhoff, Theor. Chim. Acta 35, 33 (1974).
54J. Langlet and P. Gacoin, Theor. Chim. Acta 42, 293 (1976).
55E. Oliveros, M. Riviere, C. Teichteil, and J.-P. Malrieu, Chem. Phys. Lett.

57, 220 (1978).
56R. Cimiraglia, J. Chem. Phys. 83, 1746 (1985).
57R. Cimiraglia and M. Persico, J. Comput. Chem. 8, 39 (1987).
58P. J. Knowles, Chem. Phys. Lett. 155, 513 (1989).
59R. J. Harrison, J. Chem. Phys. 94, 5021 (1991).
60A. Povill, J. Rubio, and F. Illas, Theor. Chim. Acta 82, 229 (1992).
61M. M. Steiner, W. Wenzel, K. G. Wilson, and J. W. Wilkins, Chem. Phys.

Lett. 231, 263 (1994).
62V. Garcı́a, O. Castell, R. Caballol, and J. Malrieu, Chem. Phys. Lett. 238,

222 (1995).
63W. Wenzel, M. Steiner, and K. G. Wilson, Int. J. Quantum Chem. 60, 1325

(1996).
64F. Neese, J. Chem. Phys. 119, 9428 (2003).
65H. Nakatsuji and M. Ehara, J. Chem. Phys. 122, 194108 (2005).
66M. L. Abrams and C. D. Sherrill, Chem. Phys. Lett. 412, 121 (2005).
67L. Bytautas and K. Ruedenberg, Chem. Phys. 356, 64 (2009).
68R. Roth, Phys. Rev. C 79, 064324 (2009).
69F. A. Evangelista, J. Chem. Phys. 141, 054109 (2014).
70P. J. Knowles, Mol. Phys. 113, 1655 (2015).
71J. B. Schriber and F. A. Evangelista, J. Chem. Phys. 144, 161106 (2016).
72W. Liu and M. R. Hoffmann, J. Chem. Theory Comput. 12, 1169 (2016).
73T. Zhang and F. A. Evangelista, J. Chem. Theory Comput. 12, 4326 (2016).
74A. Scemama, T. Applencourt, E. Giner, and M. Caffarel, J. Comput. Chem.

37, 1866 (2016).
75Y. Garniron, A. Scemama, P.-F. Loos, and M. Caffarel, J. Chem. Phys. 147,

034101 (2017).
76E. Giner, C. Angeli, Y. Garniron, A. Scemama, and J.-P. Malrieu, J. Chem.

Phys. 146, 224108 (2017).
77J. B. Schriber and F. A. Evangelista, “Adaptive configuration interaction

for computing challenging electronic excited states with tunable accuracy,”
J. Chem. Theory Comput. (published online).

78P. S. Epstein, Phys. Rev. 28, 695 (1926).
79R. K. Nesbet, Proc. R. Soc. A 230, 312 (1955).
80In practice, the selection of determinants is improved by using a larger ε1

during the early HCI iterations.
81A. J. Walker, ACM Trans. Math. Software 3, 253 (1977).
82R. A. Kronmal and A. V. Peterson, Jr., Am. Stat. 33, 214 (1979).

https://doi.org/10.1103/physrev.136.b864
https://doi.org/10.1103/physrev.140.a1133
https://doi.org/10.1016/0029-5582(58)90280-3
https://doi.org/10.1063/1.1727484
https://doi.org/10.1088/0031-8949/21/3-4/006
https://doi.org/10.1063/1.443164
https://doi.org/10.1016/0009-2614(89)85202-9
https://doi.org/10.1063/1.464746
https://doi.org/10.1063/1.474000
https://doi.org/10.1016/0301-0104(80)80045-0
https://doi.org/10.1002/qua.560180822
https://doi.org/10.1063/1.441359
https://doi.org/10.1063/1.443357
https://doi.org/10.1002/qua.560230602
https://doi.org/10.1021/j100377a012
https://doi.org/10.1016/s0009-2614(98)00252-8
https://doi.org/10.1016/s0009-2614(98)00252-8
https://doi.org/10.1063/1.1361246
https://doi.org/10.1063/1.1361246
https://doi.org/10.1016/s0009-2614(01)01303-3
https://doi.org/10.1063/1.1515317
https://doi.org/10.1103/physreva.24.1668
https://doi.org/10.1016/0009-2614(84)85617-1
https://doi.org/10.1088/0031-8949/32/4/009
http://arxiv.org/abs/1707.04346
https://doi.org/10.1021/j100377a011
https://doi.org/10.1063/1.481132
https://doi.org/10.1063/1.3611401
https://doi.org/10.1103/physrevlett.69.2863
https://doi.org/10.1103/physrevb.48.10345
https://doi.org/10.1063/1.478295
https://doi.org/10.1103/revmodphys.77.259
https://doi.org/10.1146/annurev-physchem-032210-103338
https://doi.org/10.1063/1.3193710
https://doi.org/10.1063/1.3302277
https://doi.org/10.1103/physrevlett.109.230201
https://doi.org/10.1021/acs.jctc.6b00508
http://arxiv.org/abs/1705.09813
http://arxiv.org/abs/1705.04856
https://doi.org/10.1063/1.1752881
https://doi.org/10.1063/1.3077920
https://doi.org/10.1021/ct400876y
http://arxiv.org/abs/1704.00864
https://doi.org/10.1063/1.1453961
https://doi.org/10.1021/ar050029d
https://doi.org/10.1021/acs.jctc.6b00407
https://doi.org/10.1021/acs.jctc.6b01028
https://doi.org/10.1021/acs.jctc.6b01028
https://doi.org/10.1063/1.1679199
https://doi.org/10.1016/0301-0104(83)85011-3
https://doi.org/10.1103/physrev.183.23
https://doi.org/10.1063/1.1671985
https://doi.org/10.1007/bf02394557
https://doi.org/10.1007/bf00548471
https://doi.org/10.1016/0009-2614(78)80438-2
https://doi.org/10.1063/1.449362
https://doi.org/10.1002/jcc.540080105
https://doi.org/10.1016/0009-2614(89)87464-0
https://doi.org/10.1063/1.460537
https://doi.org/10.1007/bf01113255
https://doi.org/10.1016/0009-2614(94)01257-1
https://doi.org/10.1016/0009-2614(94)01257-1
https://doi.org/10.1016/0009-2614(95)00438-a
https://doi.org/10.1002/(sici)1097-461x(1996)60:7<1325::aid-qua14>3.0.co;2-3
https://doi.org/10.1063/1.1615956
https://doi.org/10.1063/1.1898207
https://doi.org/10.1016/j.cplett.2005.06.107
https://doi.org/10.1016/j.chemphys.2008.11.021
https://doi.org/10.1103/physrevc.79.064324
https://doi.org/10.1063/1.4890660
https://doi.org/10.1080/00268976.2014.1003621
https://doi.org/10.1063/1.4948308
https://doi.org/10.1021/acs.jctc.5b01099
https://doi.org/10.1021/acs.jctc.6b00639
https://doi.org/10.1002/jcc.24382
https://doi.org/10.1063/1.4992127
https://doi.org/10.1063/1.4984616
https://doi.org/10.1063/1.4984616
https://doi.org/10.1021/acs.jctc.7b00725
https://doi.org/10.1103/physrev.28.695
https://doi.org/10.1098/rspa.1955.0134
https://doi.org/10.1145/355744.355749
https://doi.org/10.2307/2683739


164111-9 Holmes, Umrigar, and Sharma J. Chem. Phys. 147, 164111 (2017)

83A. A. Holmes, H. J. Changlani, and C. J. Umrigar, J. Chem. Theory Comput.
12, 1561 (2016).

84J. Hachmann, W. Cardoen, and G. K. L. Chan, J. Chem. Phys. 125, 144101
(2006).

85W. Hyde Wollaston, Philos. Trans. R. Soc. London 92, 365 (1802).
86C. J. Wu and E. A. Carter, J. Phys. Chem. 95, 8352 (1991).
87M. Martin, J. Photochem. Photobiol., A 66, 263 (1992).
88M. Boggio-Pasqua, A. I. Voronin, P. Halvick, and J. C. Rayez, J. Mol.

Struct.: THEOCHEM 531, 159 (2000).
89D. Danovich, F. Ogliaro, M. Karni, Y. Apeloig, D. L. Cooper, and S. Shaik,

Angew. Chem. 116, 143 (2004).
90C. J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, and R. G. Hennig, Phys.

Rev. Lett. 98, 110201 (2007).
91D. L. Kokkin, G. B. Bacskay, and T. W. Schmidt, J. Chem. Phys. 126,

084302 (2007).
92U. S. Mahapatra, S. Chattopadhyay, and R. K. Chaudhuri, J. Chem. Phys.

129, 024108 (2008).
93A. J. C. Varandas, J. Chem. Phys. 129, 234103 (2008).
94J. Toulouse and C. J. Umrigar, J. Chem. Phys. 128, 174101 (2008).
95G. H. Booth, D. Cleland, A. J. W. Thom, and A. Alavi, J. Chem. Phys. 135,

084104 (2011).
96D. Shi, X. Zhang, J. Sun, and Z. Zhu, Mol. Phys. 109, 1453 (2011).
97P. Su, J. Wu, J. Gu, W. Wu, S. Shaik, and P. C. Hiberty, J. Chem. Theory

Comput. 7, 121 (2011).

98R. N. Wang, X. H. Zheng, Z. X. Dai, H. Hao, L. L. Song, and Z. Zeng,
Phys. Lett. A 375, 657 (2011).

99C. Angeli, R. Cimiraglia, and M. Pastore, Mol. Phys. 110, 2963
(2012).

100J. S. A. Brooke, P. F. Bernath, T. W. Schmidt, and G. B. Bacskay, J. Quant.
Spectrosc. Radiat. Transfer 124, 11 (2013).

101J. S. Boschen, D. Theis, K. Ruedenberg, and T. L. Windus, Theor. Chem.
Acc. 133, 1425 (2014).

102S. Wouters, T. Bogaerts, P. Van Der Voort, V. Van Speybroeck, and D. Van
Neck, J. Chem. Phys. 140, 241103 (2014).

103N. S. Blunt, S. D. Smart, G. H. Booth, and A. Alavi, J. Chem. Phys. 143,
134117 (2015).

104O. Krechkivska, G. B. Bacskay, T. P. Troy, K. Nauta, T. D. Kreuscher,
S. H. Kable, and T. W. Schmidt, J. Phys. Chem. A 119, 12102
(2015).

105N. J. Mayhall and M. Head-Gordon, J. Phys. Chem. Lett. 6, 1982–1988
(2015).

106S. Sharma, J. Chem. Phys. 142, 024107 (2015).
107O. Krechkivska, G. B. Bacskay, B. A. Welsh, K. Nauta, S. H. Kable,

J. F. Stanton, and T. W. Schmidt, J. Chem. Phys. 144, 144305 (2016).
108T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
109Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z. Li, J. Liu,

J. McClain, S. Sharma, S. Wouters et al., preprint arXiv:1701.08223
(2017).

https://doi.org/10.1021/acs.jctc.5b01170
https://doi.org/10.1063/1.2345196
https://doi.org/10.1098/rstl.1802.0014
https://doi.org/10.1021/j100174a058
https://doi.org/10.1016/0304-3835(92)90258-w
https://doi.org/10.1016/s0166-1280(00)00442-5
https://doi.org/10.1016/s0166-1280(00)00442-5
https://doi.org/10.1002/ange.200390672
https://doi.org/10.1103/physrevlett.98.110201
https://doi.org/10.1103/physrevlett.98.110201
https://doi.org/10.1063/1.2436879
https://doi.org/10.1063/1.2952666
https://doi.org/10.1063/1.3036115
https://doi.org/10.1063/1.2908237
https://doi.org/10.1063/1.3624383
https://doi.org/10.1080/00268976.2011.564593
https://doi.org/10.1021/ct100577v
https://doi.org/10.1021/ct100577v
https://doi.org/10.1016/j.physleta.2010.11.031
https://doi.org/10.1080/00268976.2012.689872
https://doi.org/10.1016/j.jqsrt.2013.02.025
https://doi.org/10.1016/j.jqsrt.2013.02.025
https://doi.org/10.1007/s00214-013-1425-x
https://doi.org/10.1007/s00214-013-1425-x
https://doi.org/10.1063/1.4885815
https://doi.org/10.1063/1.4932595
https://doi.org/10.1021/acs.jpca.5b05685
https://doi.org/10.1021/acs.jpclett.5b00733
https://doi.org/10.1063/1.4905237
https://doi.org/10.1063/1.4944932
https://doi.org/10.1063/1.456153
https://arxiv.org/abs/1701.08223

