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The development of reliable theoretical methods and the provision of efficient computer pro-
grams for the investigation of optical spectra and photochemistry of large molecules in general
is one of the most important tasks of contemporary theoretical chemistry. Here, we present
an overview of the current features of our implementation of the algebraic diagrammatic
construction (ADC) scheme of the polarisation propagator, which is a versatile and robust
approach for the theoretical investigation of excited states and their properties.
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1. Introduction

The theoretical investigation of the photochemistry of medium-sized and large
molecules with more than say 20 atoms of the second row of the periodic table is
one of the most challenging tasks of contemporary quantum chemistry [1–6]. This
reaches from the accurate description of optical spectra, all the way to the identifi-
cation and investigation of photo-initiated processes like for example excited state
proton transfer, photo-induced electron transfer, photo-isomerization, or photo-
dissociation. A detailed understanding of such photoreactions requires knowledge
of the potential energy surfaces of the involved excited states along relevant re-
action coordinates, since shape and the topologies of the PES, most importantly
conical intersections, determine the photochemistry of molecules [7].
At present, linear-response time-dependent density functional theory (TDDFT)
[8–10] is by far the most widely used method for the investigation of excited state
properties and photochemistry of large molecules (see for example [3, 11–13]).
This owes to its low computational demands and its documented accuracy for lo-
cal valence state energetically well below the ionization potential [10, 14]. However,
TDDFT is also known to exhibit drastic failures for charge-transfer excited states
and doubly excited states when standard exchange-correlation (xc) functionals are
employed [15–17]. These failures are recently addressed by including wavefunction-
based components in the xc-functionals via long-range non-local orbital exchange in
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so-called LRS functionals [18–24] or second-order schemes for electron correlations
or doubly excited states in double hybrid functionals [25, 26]. These manipulations
of the xc functional have strong semi-empirical character and take away the original
gist of DFT demanding the xc potential to be a local in space [27]. In addition, when
second-order wavefunction schemes are included in the xc functional, the compu-
tational cost of a TDDFT calculation increases drastically [25, 26]. Owing to the
approximate character of the xc functionals, thorough comparison with experiment
or higher level computations is required as benchmark to ensure correctness of the
TDDFT calculations [2]. These benchmarks can nowadays be provided by pow-
erful wavefunction-based methods like complete active-space self-consistent field
(CASSCF) methods [28, 29], symmetry-adapted cluster configuration interaction
(SAC-CI) [30] and also approximate linear-response coupled-cluster theory of sec-
ond order (RI-CC2) [31, 31–34]. In recent years also polarisation-propagator based
approaches like SOPPA and ADC(2) received increasing attention [17, 35–40].
To get into the position to study photochemistry of large molecules reliably, it is
thus important to increase the range of applicability of wavefunction-based meth-
ods. In this paper, we aim at presenting theoretical and computational aspects of
the algebraic diagrammatic construction (ADC) scheme of the polarisation prop-
agator for the calculation of excited electronic states and their properties. To be
self-contained, the basic principles of its derivation via the intermediate state rep-
resentation will be outlined, and several levels of approximation will be introduced.
The ease of implementing ADC-based methods within our adcman module of Q-
Chem is highlighted. For the first time, a newly developed, very efficient implemen-
tation of core-valence-separated ADC methods is presented and first preliminary
results are shown which demonstrate its accuracy. Another focus is put on the
presentation of how excited state and transition properties are calculated exploit-
ing the one-particle transition density matrix and the one-particle reduced density
matrices of the excited states and of transitions between excited states. These ma-
trices can further be visualized to analyze the electronic structure of the excited
states and the character of electronic transitions.

2. Theory

The ADC scheme for the calculation of excited electronic states has been origi-
nally derived in the context of diagrammatic many-body propagator theory [38].
In this context electronic excitations of a system are described by the polarisation
propagator whose spectral representation is given by

Πpq,rs(ω) =
∑

n 6=0

[
〈Ψ0|ĉ

†
pĉq|Ψn〉〈Ψn|ĉ

†
r ĉs|Ψ0〉

ω − (En − E0) + ıη
−
〈Ψ0|ĉ

†
r ĉs|Ψn〉〈Ψn|ĉ

†
pĉq|Ψ0〉

ω + (En − E0)− ıη

]

(1)

Here |Ψ0〉, |Ψn〉 are the ground and excited states of the N-electron system with
energies E0 and En, respectively. The operators ĉ

†
p and ĉq are the usual creation and

annihilation operators of single-particle wavefunctions ϕp, often chosen to be the
Hartree-Fock orbitals. The complex term ıη in the denominators originates from a
Fourier transform necessary to arrive at the spectral representation. By taking the
limit η → 0 this term vanishes and will subsequently be omitted.
Examining the structure of the polarisation propagator it becomes apparent that
it possesses poles at the positive and negative vertical excitation energies, while
the respective residues provide a measure for the probability of the transition from
the ground to the excited state.
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The ADC scheme reformulates the spectral representation of the polarisation
propagator by recognising eq. (1) as the ”diagonal” representation

Πpq,rs(ω) = x
†
pq (ω1−Ω)

−1 xrs − x
†
rs (ω1+Ω)

−1 xpq (2)

of a more general bilinear form. Here, Ω refers to the diagonal matrix of excitation
energies with matrix elements Ωn,m = (En − E0) δnm, while xpq is the vector of
”spectroscopic” amplitudes with elements xpq,n = 〈Ψn|ĉ

†
pĉq|Ψ0〉. Thus, instead of

using the ”basis” of exact N-electron excited states the polarisation propagator can
also be expressed in terms of a different orthogonal basis of intermediate state (IS)
|ψ̃I〉 spanning the same space of N-electron functions. As result, the intermediate
state representation (ISR) of the polarisation propagator is obtained as

Πpq,rs(ω) = f
†
pq (ω1−M)

−1 frs − f
†
rs (ω1+M)

−1 fpq (3)

whereMIJ = 〈ψ̃I |Ĥ−E0|ψ̃J〉 and fpq,I = 〈ψ̃I |ĉ
†
pĉq|Ψ0〉 are the shifted Hamiltonian

matrix and the ”spectroscopic” amplitudes in the IS basis, respectively. In the
preceding equations the polarisation propagator has been expressed as a sum of
two terms each of which contain the same physical information. Thus, the second
term can in principle be omitted.
To explicitly construct the IS basis the ADC scheme starts from the Møller-
Plesset perturbation expansion of the ground state and applies excitation oper-
ators to it, before orthogonalizing the resulting set of states [41, 42]. Thereby, a
perturbation expansion of the IS basis is obtained from which perturbation series
of the Hamiltonian matrix

M =M(0) +M(1) +M(2) + ... (4)

and the spectral amplitudes

fpq = f
(0)
pq + f

(1)
pq + f

(2)
pq + ... (5)

can be derived so that the polarisation propagator is expressed consistently to
a certain order. The emerging structure of M and fpq is displayed in Figure 1.
Explicit equations for M up to third order in perturbation theory can be found
elsewhere [43]. From them the excited states are obtained by diagonalization of the
hermitian matrix M

MY = YΩ Y†Y = 1 (6)

yielding the excitation energies Ωn = En−E0 as eigenvalues. The eigenvectors Yn
provide access to the excited state wave functions via the relation

|ψn〉 =
∑

J

|ψ̃J〉 Yn,J (7)

and to the one-particle reduced transition density matrices by combining the ISR
of the spectroscopic amplitude vectors fpq and the eigenvectors Y

ρn←0pq = 〈Ψn|c
†
pcq|Ψ0〉 =

∑

I

Y
†
n,I 〈ψ̃I |c

†
pcq|Ψ0〉 = Y

†
nfpq (8)
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Furthermore, the eigenvectors can be used to compute the one-particle reduced
density matrices of the excited states and the one-particle reduced transition den-
sity matrices for transitions between excited stated via

ρm←npq = 〈ψm|c
†
pcq|ψn〉 =

∑

I,J

Y †m,I 〈ψ̃I |c
†
pcq|ψ̃J〉 Yn,J = Y

†
mBpqYn (9)

where Bpq is the matrix of IS transition densities. The excited state density matrix
results from the above equation by setting n = m, i.e. ρnpq = ρ

n←n
pq .

With the density and transition density matrices at hand any excited state prop-
erty Tn or transition property Tn←0 or Tn←m which can be expressed in terms of

a one-particle operator Ô =
∑
pq Opq ĉ

†
pĉq is now accessible as

Tn =〈Ψn|Ô|Ψn〉 =
∑

pq

Opq ρ
n
pq (10)

Tn←0 =〈Ψn|Ô|Ψ0〉 =
∑

pq

Opq ρ
n←0
pq (11)

Tn←m =〈Ψn|Ô|Ψm〉 =
∑

pq

Opq ρ
n←m
pq (12)

In particular, dipole transition moments and oscillator strengths can be computed
using the above relations.
A more complex property which can be calculated using the ADC/ISR formalism
is the two-photon transition strength δmTP for a transition from the ground state to
an excited state m. In case of resonant absorption of two linearly polarised photons
with the same energy, δmTP is given by [44]

δmTP =
1

15

∑

μ,ν=x,y,z

(
SmμμS

m?
νν + S

m
μνS

m?
μν + S

m
μνS

m?
νμ

)
(13)

where Smμν refers to the respective two-photon transition moment which can be
expressed as a sum-over-states [45]

Smμν =
∑

n 6=0

〈Ψ0|D̂′μ|Ψn〉〈Ψn|D̂
′
ν |Ψm〉+ 〈Ψ0|D̂

′
ν |Ψn〉〈Ψn|D̂

′
μ|Ψm〉

Ωn − 12Ωm
(14)

Here, D̂′μ denotes the cartesian components μ = x, y, z of the shifted dipole operator

D̂′μ = D̂μ − 〈Ψ0|D̂μ|Ψ0〉.
By truncating the sum over n 6= 0 this expression can be directly evaluated using
previously calculated excitation energies and transition dipole moments. However,
to obtain a reasonably good approximation of Smμν a large number of excited states
has to be included which is not always feasible. Instead the ISR formalism can be
used to transform eq. (14) into

Smμν = F
†(D̂′μ)

[

M−
Ωm
2
1

]−1
B(D̂′ν)Ym + F

†(D̂′ν)

[

M−
Ωm
2
1

]−1
B(D̂′μ)Ym (15)

with the newly introduced quantities F(D̂′μ) and B(D̂
′
μ) being related to the IS
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transition densities via

F(D̂′μ) =
∑

pq

Dμpqfpq and B(D̂′μ) =
∑

pq

DμpqBpq − 〈Ψ0|D̂μ|Ψ0〉1

and Dμpq denoting the matrix elements of the dipole operator D̂μ in terms of the
one-particle basis functions.
Equation (15) does no longer involve a sum over the excited states, but can
be evaluated by operations on matrix quantities, in particular by using numerical
matrix inversion techniques.

3. Overview of Implementation and Features

The suite of ADC methods for electronically excited states (adcman) is available
as part of the quantum chemistry package Q-Chem [46, 47]. It features various
methods for the calculation of excited states up to third order in perturbation
theory, as well as the ability to compute excited state properties and transition
properties like two-photon absorption cross sections. Below an overview of the
implementation and the capabilities is given including examples of applications.

3.1. Implementation using the Tensor Library

The adcman suite has been implemented as an independent module in Q-Chem
with a minimal interface to the rest of the quantum chemical package. This mod-
ular design allows for the possibility to combine it with other quantum chemistry
packages in future by replacing the interface.
To perform the tensor operations which are required by most wavefunction-based
electronic structure methods adcman uses the newly developed general-purpose
tensor library libtensor [48] in Q-Chem. The tensor library is a C++ template
library which is also available as open source. It provides the infrastructure for
adcman to create tensors of arbitrary rank and size and perform linear algebra
operations on them. The data model which libtensor employs divides every tensor
into smaller blocks of the same rank by splitting every dimension into several parts.
This allows for immediate parallelisation of tensor operations in a shared memory
environment, since operations on individual blocks can be performed independently.
Furthermore, blocks can be moved separately in and out of memory by the virtual
memory management module operating in the background of libtensor, if the
available memory is not sufficient to accommodate all tensor data.
The library also fully supports symmetry, in particular spin and point group
symmetry. Thereby, no special symmetry-adapted versions of the ADC equations
are required to perform symmetry-aware calculations. Only the initial tensors at
the beginning of an ADC calculation have to be set up appropriately to enable the
symmetry adaptation.
For the implementation of the ADC equations an easy-to-use interface is provided
by libtensor which allows for the direct translation of equations into code, in a
similar fashion as they would be written in LATEX. To illustrate this, a part of the
equations required for the ADC(2) method is compared to the respective code in
Figure 2.
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3.2. Calculation of Valence Excited States

For the calculation of energetically low-lying excited states the ADC methods
ADC(1), ADC(2), ADC(2)-x and ADC(3) [38, 43] are currently available within
adcman. Thereby, excited states can be obtained at different levels of accuracy and
at quite different computational costs. The lowest level provided is ADC(1) which
is exactly identical to the well-known CIS method [49]. Next in the hierarchy are
ADC(2) and ADC(2)-x where the former yields excitations energies comparable
in quality to the excited state methods CC2 [33, 50] and CIS(D) [51, 52], while
the excitation energies generated by the latter come closer to EOM-CCSD [53–
55]. Finally, the ADC(3) method provides results with almost the same accuracy
as CC3 [31], but at costs which are an order of magnitude smaller. As example,
the excitation energies and oscillator strengths of the two lowest excited states
of formaldehyde are shown in Table 1 obtained with different ADC methods and
various basis sets.
To compute the excited states adcman usually employs the Davidson algo-
rithm [56] to find the N smallest eigenvalues of the respective ADC matrix. In
case of ADC(2) an alternative method is available [33] which combines Davidson
and DIIS algorithm resulting in reduced computationally costs. However, this al-
gorithm might not always converge or it might not converge to the intended states,
i.e. missing some energetically lower states. Any ADC calculation can exploit the
resolution-of-the-identity (RI) approximation to speed-up the transformation of
the two-electron integrals from atomic orbitals to molecular orbitals [33]. The full
implementation of the ADC equations in terms of the RI integrals is currently work
in progress.
To demonstrate the performance of the ADC implementation Figure 3 shows
how the calculation speed increases when run on multiple CPU cores for a number
of systems with varying sizes. It can clearly be seen from the figure that for small
systems, the parallelisation does not improve calculation times. Only when the
calculations become more demanding, they start to benefit from the available cores
resulting in an almost optimal speed-up in the case of the ADC(3) calculation of
benzene with aug-cc-pVDZ basis set.
On the other hand, when the calculation size increases, also the amount of mem-
ory required is raised. Thus, as soon as the available memory is exhausted, the
additional data has to be written to disk which can increase the time of the cal-
culations significantly. This can be observed in Figure 4 which shows the increase
in run time for an ADC(2) calculation of benzene with aug-cc-pVDZ basis set us-
ing 8 cores, if the available memory has been limited artificially. In this case, the
speed-up due to the 8 cores is almost countermanded when the required memory
is four times larger than the available memory.

3.3. Core Excitations using Core-Valence Separated ADC

The calculation of core-excited electronic states is generally tedious, since most
implementations of excited-state methods are designed to compute the energet-
ically lowest energy eigenvalues of the excitation spectrum via an iterative di-
agonalization scheme of the corresponding Hamiltonian matrix, and core-excited
states are located at the high-energy edge of the spectrum. An elegant route to
core-excited states is provided by the so-called core-valence separation (CVS) ap-
proximation [57]. The idea is very simple and relies on the fact that core orbitals
are strongly localized in space and energetically well separated from the valence
orbitals. As a consequence the interaction between core-excited states and valence-
excited states is negligible and the Hamiltonian separates practically naturally into
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the spaces of singly core-excited states and valence excited states [57]. Hence, the
ADC matrix needs to be built only in the space of singly core-excited states and
diagonalized leading to significant computational savings compared to the conven-
tional ADC approach for valence-excited states. The implementation is straight-
forward as one only needs to restrict the index of the occupied orbital in the ph
configurations to correspond to a core orbital and in the 2p2h configurations one
of the occupied indices to represent a core orbital. Owing to its hermiticity, ADC
methods are particularly well-suited for the use of the CVS approximation, and it
has been demonstrated previously that CVS-ADC(2)-x yields excellent results for
core-excited states [58–60].
For testing purposes, we have re-computed the core-excited states of thymine
using CVS-ADC(2)-x and the standard 6-311++G** basis set containing two sets
of diffuse and polarization functions (Table 2), since previously published CVS-
ADC(2)-x and near-edge x-ray absorption fine structure (NEXAFS) data are avail-
able for direct comparison [58]. As can be seen in Table 2, the agreement between
the calculated CVS-ADC(2)-x results and the experimental values is remarkable,
in particular when the larger 6-311++G** basis set is employed. It is important
to note that no shifting of the computed excitation energies is necessary to achieve
this agreement as is typically needed to correct for the inherent errors in the meth-
ods, when more approximate methods and smaller basis sets are employed [61].
Summarizing, the available efficient implementation of CVS-ADC(2)-s and CVS-
ADC(2)-x in Q-Chem allows for the computation of core-excited states and os-
cillator strengths and makes direct comparison with xray absorption (XAS) and
NEXAFS spectra possible.

3.4. Spin-opposite-scaled ADC variants

A straightforward way to simplify the ADC equations is to neglect the same-spin
contributions in the ADC matrix and to scale the opposite-spin contribution with
appropriate semi-empirical parameters. This idea stems from the underlying MP2
method, which was recognized to underestimate those contributions to the corre-
lation energy arising from electrons with opposite spin while those from electrons
with same spin are overestimated [62]. Introduction of two scaling parameters for
these two contributions gave rise to SCS-MP2 providing an improved description
of the correlation energy [63, 64]. It was further shown that it is even possible to
neglect the same-spin contribution completely and to scale the opposite spin com-
ponent accordingly [65]. These basic ideas have been adopted also to many excited
state methods: CIS(D)[66, 67] as well as to two variants of CIS with quasidegener-
ate second-order perturbation corrections (CIS(D0) and CIS(D1))[68–70], and also
to the ri-CC2 method [71, 72] and strict ri-ADC(2) [72].
Recently, we have shown that the ISR formalism as outlined above can be em-
ployed to derive a ”rigorous” ISR-SOS-ADC(2) method starting from the SOS-MP2
ground state [73]. This, however, does not result in any computational savings
or substantial improvement, since only the t2-amplitudes contained in the ph/ph
block and inherited from the underlying MP2 method are replaced by the ones
from SOS-MP2. Instead, following the previous implementation of SOS-ADC(2)-s
in TURBOMOLE [71, 72, 74], an SOS-ADC(2)-s scheme has been implemented which
requires scaling of the t2-amplitudes of the ph/ph block as well as of the matrix
elements of the ph/2p2h and 2p2h/ph coupling blocks (Figure 5) with the coeffi-
cients cos and cc, respectively. While cos=1.3 in inherited from SOS-MP2 and is left
unchanged, cc has been fitted against the Thiel benchmark set [75], which yielded
an optimal value of 1.17 for singlet excited states with predominant single excita-
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tion character [73]. Following this procedure a mean absolute error of only 0.14 eV
is achieved for all states of the Thiel benchmark set with a standard deviation of
0.11 eV and a maximum absolute error of 0.52 eV.
Application of the SOS approximation also to ADC(2)-x requires the introduc-
tion of yet another scaling factor cx for the off-diagonal elements in the 2p2h/2p2h
block (Figure 5). Fitting this set of parameters against the Thiel benchmark set
and DFT/MRCI data revealed that optimal results are obtained for both singly
and doubly excited states, when cos=1.3, cc=1.0 and cx=0.9 [73]. Using these pa-
rameters, a mean absolute error of only 0.17 eV is achieved for singlet states with
predominantly single excitation character, and 0.21 eV for states with large double
excitation character. Hence, within the SOS-ADC(2)-x scheme it is only necessary
to scale down the coupling elements within the 2p2h/2p2h block slightly to result
in a balanced description of singly and doubly excited states in excellent agreement
with the benchmark set [75].

3.5. Transition Properties and Excited State Properties

As described in section 2 transition properties from the ground state to the excited
states can be obtained from the excited state eigenvectors Yn and the IS spectro-
scopic amplitudes fpq (eq. (8) and (11)). Thus, subsequent to every determination
of excitation energies and excited state eigenvalues in adcman the transition dipole
moment and the related oscillator strength for every ground-to-excited state tran-
sition are calculated in adcman by default. In addition, properties of the excited
states, like dipole moment or quadrupole moment, can be requested. They are com-
puted using the IS transition densities Bpq via the relations (9) and (10). Similarly,
dipole transition moments and transition probabilities for transitions between the
excited states can be obtained upon request. As example, Table 3 shows a collec-
tion of excited state properties for the four energetically lowest excited states of
pyridine.
The excited state data also allows for the determination of two-photon transition
strengths using the sum-over-states expression (14). Alternatively, the two-photon
transition strength is also available via equation (15). A comparison of the results
for the two-photon transition strength using the two methods can be found in
Table 4.

3.6. Visualisation of Densities

The calculation of the ADC excited state properties and transition properties re-
quires the prior determination of density matrices and transition density matrices
of the excited states. Since these matrices are available anyways, they can be em-
ployed for the visualisation by means of transition densities, difference densities or
attachment and detachment densities at no significant extra costs.
If requested, the transition densities

Γ(r) =
∑

pq

φ?p(r)φq(r)ρ
m←n
qp ,

difference densities

Δρ(r) =
∑

pq

φ?p(r)φq(r)
(
ρnqp − ρ

0
qp

)
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or attachment and detachment densities which derive from the difference densi-
ties [76] are evaluated on a user specified grid using the respective density matrices
and exported as cube files. The latter can then be visualised using one of the stan-
dard visualisation tools as shown in Figure 6 for the two energetically lowest states
of pyridine.

4. Outlook

We present the implementation of a suite of ADC methods for the reliable calcula-
tion of excited states and their properties as well as transition properties. The suite
is build on top of a general purpose tensor library which facilitates shared-memory
parallelisation and management of large amounts of data. It is interfaced to and
distributed as part of the quantum chemistry package Q-Chem.
The adcman suite currently features ADC methods for the calculation of excita-
tion energies up to third order in perturbation theory. This includes special variants
like the SOS approximation for valence excited states and the CVS approximation
to compute core excitations. The calculation of excited state properties and tran-
sition properties is also available at the level of second order perturbation theory.
Oscillator strengths for transitions from the ground state and between excited
states can be obtained, as well as the dipole moments of the excited states. Fur-
thermore, two-photon absorption probabilities are available for the excited states
without the necessity to evaluate the usual sum-over-states expression.
More features are constantly being added to the adcman suite. Among these on-
going developments are the full support of the RI approximation and the Choleski
decomposition for the calculation of excitation energies [77]. Also excited state gra-
dients for subsequent geometry optimisation on the excited state hypersurfaces are
currently being implemented for all available ADC-variants and will soon be avail-
able. In addition, further properties and transition properties of the excited states
are made available, like hyper-polarisabilities or spin-orbit couplings. Ultimately,
we aim at a suite of excited state methods with the help of which it shall even be
possible to perform ab initio molecular excited-state dynamics simulations.
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ph 2p2h

ph

2p2h

0, 1, 2, 3 –, –, 1, 2

–, –, 1, 2 –, –, 0, 1

MM

0, 1, 2, 3

–, –, 1, 2

fpq

Figure 1. Structure of the ADC matrix M and spectroscopic amplitudes fpq for up to third order in
perturbation theory. In every block the order of the terms contributing to this block at a given overall
order in perturbation theory is given. For example, in the ph/2p2h block of the ADC matrix there are
no zeroth and first order terms contributing to this block. The earliest terms contributing to this block
are first order terms which contribute at second order. At third order, additional second order terms are
added.
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wijab =
∑

c

(vijacfbc − facvijbc)

−
∑

k

(fikvkjab − fjkvkiab)

−
1

2

∑

k

(〈ij||ka〉vkb − 〈ij||kb〉vka)

+
1

2

∑

c

(vic〈jc||ab〉 − vjc〈ic||ab〉)

w(i|j|a|b) = asymm(a, b, 
! contract(c, v_oovv(i|j|a|c), f_vv(b|c)))

  - asymm(i, j,
! contract(k, f_oo(i|k), v_oovv(k|j|a|b)))

  - 0.5 * asymm(a, b, 
! contract(k, i_ooov(i|j|k|a), v_ov(k|b)))

  + 0.5 * asymm(i, j, 
! contract(c, v_ov(i|c), i_ovvv(j|c|a|b)));

Figure 2. Comparison of an ADC equation to its actual implementation using libtensor.
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Formaldehyde, ADC(2), DZ
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Formaldehyde, ADC(2)-x, TZ

Formaldehyde, ADC(3), TZ

Pyridine, ADC(2)-x, DZ

Benzene, ADC(3), DZ

Figure 3. Scaling behaviour of the ADC implementation for up to 8 cores on Intel Xeon CPUs with up
to 1 TB of memory. The calculations were performed keeping all data in memory. The abbreviations DZ
and TZ refer to the aug-cc-pVDZ and aug-cc-pVTZ basis sets employed in the calculations.
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Figure 4. Increase in wall time due to limited memory for the ADC(2) calculation of benzene with aug-
cc-pVDZ basis using the Davidson method. The required memory of the calculation is approx. 20 GB. The

increase in wall time is given by actual wall time
minimum wall time

as function of required memory
available memory

.

cos cc 

cx 

SOS 

Figure 5. Schematic representation of the effect of the SOS approximation on the dimensionality of the
ADC(2) matrix.
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(a)

(b)

Figure 6. Transition densities (left) and attachment (middle) and detachment (right) densities of the
two energetically lowest singlet excited states of pyridine calculated with ADC(3) and aug-cc-pVDZ basis
set: (a) 1 1B2 and (b) 1 1B1. The plots were obtained using the VMD program [78]. Positive parts of the
transition densities and the attachment densities are displayed in red, while the negative parts of the
transition densities and the detachment densities are displayed in blue.
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Table 1. Excitation energies (in eV) of the two energetically lowest singlet excited states of formaldehyde com-

puted using ADC(2), ADC(2)-x, and ADC(3) methods and three different basis sets. Oscillator strengths are

given in parentheses below. In addition, the wall times (in minutes) for the calculations run on a Intel Xeon

machine with 16 cores and 128GB memory are listed.

ADC(2) ADC(2)-x ADC(3)

Basis set 11A2 11B1 Time 11A2 11B1 Time 11A2 11B1 Time

aug-cc-pVDZ 3.83 6.25 0.4 3.03 5.97 1.1 3.88 7.59 2.7
(0.000) (0.018) (0.000) (0.016) (0.000) (0.021)

aug-cc-pVTZ 3.83 6.49 1.8 3.02 6.18 8.7 3.82 7.65 27.8
(0.000) (0.018) (0.000) (0.016) (0.000) (0.021)

aug-cc-pVQZ 3.84 6.59 6.8 3.04 6.28 68.6 3.82 7.68 236.6
(0.000) (0.018) (0.000) (0.016) (0.000) (0.021)

Table 2. Comparison of the fifteen lowest core-excited states of thymine for 1s-excitation from C calculated

using our implementation of CVS-ADC(2)-x with previously published data and experimental values [58].

CVS-ADC(2)-x/6-311++G**a CVS-ADC(2)-x/6-31+Gb Expt.b

State ωex [eV] fosc ωex [eV] fosc ωex [eV]
1 284.84 0.025 287.02 0.024 284.9 (A)
2 286.36 0.049 288.54 0.045 285.9 (B)
3 286.89 0.000 288.97 0.000
4 287.11 0.004 289.05 0.004
5 287.29 0.000 289.38 0.000
6 287.95 0.015 290.06 0.015 287.3 (C)
7 288.03 0.007 289.98 0.007
8 288.07 0.002 290.23 0.002
9 288.24 0.058 290.42 0.056 287.8 (D)
10 288.34 0.000 290.46 0.000
11 288.39 0.004 290.37 0.005
12 288.45 0.013 290.40 0.013
13 288.63 0.000 290.62 0.000
14 288.88 0.009 290.95 0.009 288.4 (E)
15 289.10 0.002 291.00 0.002
aour work, bdata and assignment according to Ref. [58]

Table 3. Transition properties for the four energetically lowest states of pyridine calculated with ADC(3) and

aug-cc-pVDZ basis set. The excitation energies from the ground state are given in the last column, while the

diagonal contains the state dipoles in Debye. The remaining values are the oscillator strengths of the respective

transition.

GS 1 1B2 1 1B1 1 1A2 2 1A1 ωex [eV]

GS 1.925 0.00472 0.03513 0.00000 0.00966 0.00
1 1B2 0.765 0.00000 0.00053 0.00008 5.02
1 1B1 1.910 0.00007 0.00014 5.05
1 1A2 1.022 0.00000 5.73
1 1A1 2.381 6.42
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Table 4. Comparison of two-photon transition strengths obtained via the sum-over-states expression (TPA-

SOS) and via the intermediate state representation (TPA-ISR) for the four (six) energetically lowest states of

formaldehyde (benzene) calculated using the ADC(2) method and aug-cc-pVDZ basis set. The sum-over-states

expression has been evaluated using 16 and 32 states in case of formaldehyde and benzene, respectively.

State ωex [eV] fosc TPASOS [a.u.] TPAISR [a.u.]

Formaldehyde 1 1A2 3.87 0.000 0.66 0.26
1 1B1 6.25 0.022 273.14 143.86
2 1A1 7.26 0.057 298.96 201.82
2 1B1 7.36 0.034 4.70 6.13

Benzene 1 1B3u 5.19 0.000 0.00 0.00
1 1B3g 6.33 0.000 163.02 101.30
1 1B2g 6.33 0.000 164.56 101.30
1 1B2u 6.40 0.000 0.00 0.0
1 1B1u 6.86 0.071 0.00 0.0
1 1Au 6.92 0.000 0.00 0.0
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Appendix A. Density and Transition Density Matrices in ADC

As described in section 2, the one-particle reduced (transition) density matrices
can be computed from the excited state eigenvectors Yn of the ADC matrix in
combination with the spectroscopic amplitude vector fpq or the matrix of IS tran-
sition densities Bpq. This requires explicit equations for fpq and Bpq which have to
be derived using the ISR representation for specific orders in perturbation theory.
Combining them with the excited state eigenvectors directly yields the equations
to compute the transition density matrices. The equations for transition density
matrices up to second order in perturbation theory are presented below.
In the following occupied (hole) indices are referred to as i, j, ..., while vir-
tual (particle) indices are named a, b, .... For notational convenience the following
abbreviations are used. The Møller-Plesset (MP) T2 amplitudes are denoted by

tijab =
〈ij||ab〉

εa+εb−εi−εj
, while ρ

(2)
0,pq refers to the MP(2) correction to the ground state

density matrix. The elements of the density matrix correction are given by

ρ
(2)
0,ij = −

1

2

∑

kab

t?ikabtjkab

ρ
(2)
0,ia = −

1

2 (εa − εi)




∑

jbc

tijbc〈ja||bc〉+
∑

jkb

〈jk||ib〉tjkab





ρ
(2)
0,ab =

1

2

∑

ijc

t?ijactijbc

A.1. Transition Density Matrices from the Ground State

The equations for the transition density matrices from the ground state are ob-
tained from the perturbation expansion of fpq. In zeroth and in first order this
results in the following non-zero contributions to the density matrices

ρn←0ai = Y ?n,ia (0th order) (A1)

ρn←0ia = −
∑

jb

t?ijab Y
?
n,jb (1st order). (A2)

where Y ?n,ia denotes the ph part of the excited state eigenvector. In second order,
there are non-zero contributions to all four parts of the density matrix

ρn←0ij = −
∑

a

ρ
(2)
0,ia Y

?
n,ja −

∑

kab

Y ?n,ikab tjkab

ρn←0ia = −
∑

jb

Y ?n,jb t
D
ijab

ρn←0ai =
1

2

∑

jb

tijab
∑

kc

t?jkbc Y
?
n,kc −

1

2

∑

b

ρ
(2)
0,ab Y

?
n,ib +

1

2

∑

j

ρ
(2)
0,ij Y

?
n,ja

ρn←0ab =
∑

i

Y ?n,ia ρ
(2)
0,ib +

∑

ijc

Y ?n,ijac t
?
ijbc

(A3)
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Here, Y ?ia and Y
?
ijab refer to the ph and 2p2h part of the excited state eigenvectors,

while the newly introduced intermediate tDijab is given by

tDijab =
Xijab −Xjiab −Xijba +Xjiba

εa + εb − εi − εj

with Xijab =
∑

ck

t?ikac〈kb||jc〉 −
1

8

∑

cd

〈ab||cd〉t?ijcd −
1

8

∑

kl

〈kl||ij〉t?klab (A4)

A.2. State-to-State Transition Density Matrices

Similar to the equations for transition density matrices from the ground state,
the state-to-state transition density matrices are derived from the perturbation
expansion of Bpq. Before presenting the equations it is useful to introduce a few
more intermediates

Pm←nij = −
∑

a

Y ?m,ja Yn,ia , Qm←nij = −
∑

kab

Y ?m,jkab Yn,ikab

Pm←nab =
∑

i

Y ?m,ia Yn,ib , Qm←nab =
∑

ijc

Y ?m,ijac Yn,ijbc

Pm←nia = −2
∑

i

Y ?m,jb Yn,ijab , Pm←nai = −2
∑

i

Y ?m,ijab Yn,jb

Rn,ia =
∑

jb

t?ijabYn,jb , Sn,ij =
∑

kab

t?ikabYn,jkab , Sn,ab =
∑

ijc

t?ijacYn,ijbc

where Y ?m,ia and Y
?
m,ijab refer to the ph and 2p2h parts of the left excited state

eigenvector, while Yn,ia and Yn,ijba denote the ph and 2p2h parts of the right excited
state eigenvector. With these intermediates the zeroth order contributions to the
transition density matrices become

ρm←nij = Pm←nij +Qm←nij , ρm←nab = Pm←nab +Qm←nab

ρm←nia = Pm←nia , ρm←nai = Pm←nai

(A5)

while all first order contributions vanish. Instead one obtains a wealth of second
order contributions to all parts of the density matrices

ρm←nij =
1

2

∑

k

[
Pm←nik ρ

(2)
0,kJ + ρ

(2)
0,ikP

m←n
kj

]
−
∑

a

R?m,iaRn,ja

−
1

2

∑

cdk

tikcd
∑

l

t?jlcdP
m←n
lk +

∑

cdk

tikcd
∑

b

Pm←ncb t?jkbd

−
1

2

∑

a

Yn,ia
∑

ck

R?m,kct
?
jkac −

1

2

∑

a

Y ?m,ja
∑

ck

tikacRn,kc

(A6)

20

Acc
ep

ted
 M

an
us

cri
pt

D
ow

nl
oa

de
d 

by
 [

A
st

on
 U

ni
ve

rs
ity

] 
at

 1
6:

44
 2

0 
Ja

nu
ar

y 
20

14
 



October 24, 2013 Molecular Physics TMPH˙A˙859313

ρm←nab = −
1

2

∑

c

[
ρ
(2)
0,acP

m←n
cb + Pm←nac ρ

(2)
0,cb

]
+
∑

i

R?m,ibRn,ia

−
1

2

∑

ckl

tklbc
∑

d

t?kladP
m←n
cd +

∑

ckl

tklbc
∑

j

Pm←njk t?jlac

+
1

2

∑

i

Yn,ib
∑

ck

R?m,kct
?
ikac +

1

2

∑

i

Y ?m,ia
∑

ck

tikbcRn,kc (A7)

ρm←nia =
∑

b

Pm←nba ρ
(2)
bi +

∑

j

ρ
(2)
aj P

m←n
ij −

∑

bj

t?ijabP
m←n
bj

−
∑

c

S?m,acYn,ic −
∑

j

S?m,ijYn,ja (A8)

ρm←nai =
∑

b

ρ
(2)
ib P

m←n
ab +

∑

j

Pm←nji ρ
(2)
ja −

∑

bj

tijabP
m←n
jb

−
∑

c

Y ?m,icSn,ac −
∑

j

Y ?m,jaSn,ij (A9)

The equations above can also yield the excited state density matrices ρnpq. There-
fore, the same excited state eigenvector has to be employed as left and right vectors
Ym = Yn. The resulting density matrices then represent the difference density ma-
trix between the excited state and the ground state.
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