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Abstract
The performance of the second-order methods for excitation energies CC2 and ADC(2) is investigated and com-
pared with the more approximate CIS and CIS(D) methods as well as with the coupled-cluster models CCSD,
CCSDR(3) and CC3. As a by-product of this investigation the first implementation of analytic excited state gra-
dients for ADC(2) and CIS(D∞) is reported.

It is found that for equilibrium structures and vibrational frequencies the second-order models CIS(D), ADC(2)
and CC2 give often results close to those obtained with CCSD. The main advantage of CCSD lies in its robustness
with respect to strong correlation effects. For adiabatic excitation energies CC2 is found to give from all second-
order methods for excitation energies (including CCSD) the smallest mean absolute errors. ADC(2) and CIS(D∞)
are found to give almost identical results.

An advantage of ADC(2) compared to CC2 is that the excitation energies are obtained as eigenvalues of a
Hermitian secular matrix, while in coupled-cluster response the excitation energies are obtained as eigenvalues
of a non-Hermitian Jacobi matrix. It is shown that, as a consequence of the lack of Hermitian symmetry, the latter
methods will in general not give a physically correct description of conical intersections between states of the
same symmetry. This problem does not appear in ADC(2).
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1. INTRODUCTION

Since the early days of response theory[1–4] the description of electronic excitations, in-
cluding ionization and electron attachment, has been a central subject of this branch of
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theoretical chemistry. Its main idea, the direct calculation of molecular properties as,e.g.,
excitation and ionization energies, transition strengths, frequency-dependent properties,
etc., provides a viable alternative to state specific approaches. For frequency-dependent
properties the response function approach,i.e., the evaluation of (higher-order) polarization
propagators, is today the most successful and efficient route to calculate such quantities.
For excitation and ionization energies it bypasses through the evaluation of these quanti-
ties as poles of the polarization propagator some subtle balance problems encountered in
state specific approaches. But at least as important for the response function or propaga-
tor approach to molecular properties has been that it offers a route for the description of
electronic excitations with single reference wavefunction models since it does not require
(non-linear) optimizations for excited states. This ansatz is the basis for such successful
and widely applied approaches as time-dependent density functional theory (TDDFT) and
coupled-cluster response theory.

Partially because of the success of the latter two methods and their availability in several
quantum chemistry packages, the interest in earlier ansätze for approximate calculations
of polarization propagators or response functions as,e.g., the polarization propagator ap-
proaches (SOPPA[5–7], TOPPA[5], etc.) or the algebraic diagrammatic construction[6]
has in recent years been relatively limited. These approaches aimed at a direct expansion
of the response functions in orders of the electron fluctuation potential without reference
to a specific wavefunction model for the ground state. Giving up the reference to a certain
model for the ground state energy, introduces additional freedom which allows,e.g., to en-
force some properties of the exact response function, which else are often lost. On the other
hand, if total energies are needed—for example for the determination of equilibrium struc-
tures of excited or ionized states—the reference to a specific model for the ground-state
energy or wavefunction is unavoidable.

Excitation energies may be taken as an example to demonstrate what is meant above:
Given a ground-state model for the energy, a general approach to derive the expressions
for the response functions is through the construction of a time-dependent quasi-energy
Lagrangian. The latter is made up of the expectation value for the energy〈H 〉 and some
constraintsfk[H ] for the (wavefunction) parametersλk, both generalized for the time-
dependent case by replacing the time-independent Hamiltonian with the Schrödinger op-
eratorH(t) − i ∂

∂t
:

(1)L(λ̄k, λk, t) =
〈
H(t) − i

∂

∂t

〉
+

∑
k

λ̄kfk

[
H(t) − i

∂

∂t

]
(λk′ , t).

The expressions for the response functions are then obtained by taking the derivatives of
L(λ̄k, λk, t) with respect to strengths parameters of harmonic time-dependent perturba-
tions with the sum of all frequencies restricted to zero[7–9]. The poles of the response
functions occur at the eigenvalues of the stability matrix of the Lagrangian,i.e., for varia-
tional methods (SCF, DFT, MCSCF, CI,etc.) at the eigenvalues of the electronic Hessian

(2)(E − ωkS)�c(k) = 0, Eij =
(

d2〈H 〉
dλi dλj

)
0
,

and for non-variational methods, as the coupled-cluster methods are, at the eigenvalues of
the electronic Jacobian

(3)(A − ωkS)�c(k) = 0, Aij =
(

d2L

dλ̄i dλj

)
0
.
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For response methods derived from an approximation for the ground-state energy or wave-
function, the expressions for the stability matrix, and thus its structure, properties, and
symmetries are determined by the approximations used for the ground-state. In particu-
lar, the stability matrix will in general be non-symmetric for any non-variational method.
A well-known example for this is the non-symmetric coupled-cluster eigenvalue problem
[10,11]. The loss of Hermitian symmetry leads to different left and right eigenvectors,
which increases somewhat the computational costs if both vectors are needed, but else
does not give rise to major problems. But a potentially more severe consequence is that
eigenvalues may become complex and then can no longer be used to obtain a qualita-
tively correct and quantitatively accurate description of the corresponding excited states.
In propagator type methods which avoid such a connection to a ground-state model these
problems can be bypassed by imposing Hermitian symmetry of the stability or secular
matrix by construction, as it is done,e.g., in SOPPA and in the ADC methods.

In the present article some of the above mentioned problems will be studied at the ex-
ample of three iterative second-order methods, namely the approximate coupled-cluster
singles-and-doubles model[12] CC2, the iterative variant of the doubles correction to con-
figuration interaction singles[13] CIS(D∞) and the algebraic diagrammatic construction
through second order[6,14]ADC(2). As shown in the next section these three methods are
closely related to each other and thus are an interesting example to discuss some aspects
of response theory. In Section3 the problems that may arise from non-Hermitian secu-
lar matrices will be discussed in connection with conical intersections between two excited
states. The remaining sections will be concerned with the implementation of analytic deriv-
atives for CIS(D∞) and ADC(2), which are a prerequisite for an efficient determination of
stationary points on the (excited state) potential energy surfaces, and a comparison of the
performance of the three methods CC2, CIS(D∞) and ADC(2) for equilibrium structures
and vibrational frequencies.

2. RELATION BETWEEN CC2 AND THE CIS(D∞) AND ADC(2)
MODELS

For the CC2 model, which has been designed such that for single replacement dominated
transitions the excitation energies are correct through second-order in the fluctuation po-
tential, the Jacobian becomes

(4)ACC2 =
(〈 a

i
|[(Ĥ + [Ĥ , T2]), τ c

k ]|HF〉 〈 a
i
|[Ĥ , τ cd

kl ]|HF〉
〈 ab

ij
|[Ĥ , τ c

k ]|HF〉 〈 ab
ij

|[F, τ cd
kl ]|HF〉

)
whereF is the usual Fock operator and̂H = exp(−T1)H exp(T1), i.e., a Hamiltonian
similarity transformed with the exponential function of the single replacement part of the
cluster operatorT = T1 + T2. Here and in the following indicesi, j , k, . . . are used for
orbitals which are occupied in the reference determinant|HF〉 and indicesa, b, c, . . . are
used for virtual orbitals.τ c

k andτ cd
kl denote, respectively, single and double replacement

operators.
As by-product of its construction as derivative of the residual of ground-state cluster

equations, the CC2 Jacobian contains some contributions which would not be needed
to obtain excitation energies correct through second-order: the terms introduced via the
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similarity transformation with exp(−T1) contribute only in third and higher orders to the
excitation energies of single replacement dominated transitions. The “minimal” Jacobian
which gives excitation energies correct through second order is obtained by replacing in
ACC2 the CC2 ground-state cluster amplitudes by the amplitudes from first-order pertur-
bation theory—which implies that the singles replacement part of the cluster operator
T1 vanishes, if the Brillouin condition is fulfilled. The resulting Jacobian is that of the
CIS(D∞) model, an iterative variant of CIS(D) introduced by Head-Gordonet al. [15]:

(5)ACIS(D∞) =
(〈 a

i
|[(H + [H, T

(1)
2 ]), τ c

k ]|HF〉 〈 a
i
|[H, τcd

kl ]|HF〉
〈 ab

ij
|[H, τc

k ]|HF〉 〈 ab
ij

|[F, τ cd
kl ]|HF〉

)
.

Similar as the CIS(D) perturbative second-order correction to CIS excitation energies, also
the CIS(D∞) excitation energies cannot directly be derived from the response function
of a known (ground-state) wavefunction model. A characteristic it has in common with
propagator methods. Indeed, the secular matrix for CIS(D∞) differs only in a small (but
important) detail from a propagator method proposed about two decades ago by Schirmer
[6]: the algebraic diagrammatic construction through second order ADC(2). The secular
matrix used in ADC(2) is just the symmetric or, in the complex case, the Hermitian part of
that for the CIS(D∞) model:

(6)AADC(2) = 1

2

(
ACIS(D∞) + (

ACIS(D∞)
)†)

.

Provided that the Hartree–Fock reference determinant fulfills the Brillouin condition
〈 a

i
|H |HF〉 = 0, i.e., for a closed-shell or an unrestricted open-shell case, the CIS(D∞)

Jacobian can be rewritten as:

(7)ACIS(D∞) =
(〈 a

i
|H − EHF| c

k
〉 + 〈 a

i
|[[H, T

(1)
2 ], τ c

k ]|HF〉 〈 a
i
|H | cd

kl
〉

〈 ab
ij

|H | c
k
〉 〈 ab

ij
|F − E0| cd

kl
〉

)
with EHF = 〈HF|H |HF〉 andE0 = 〈HF|F |HF〉. Thus, in these cases the symmetrization
in equation(6) affects only the second-order contribution to the singles-singles block,i.e.,
the terms proportional to the ground-state doublesT

(1)
2 . All other contributions are already

Hermitian.
The above relations between CC2, CIS(D∞), and ADC(2) provide a simple recipe to

implement the latter two methods in an existing CC2 program:

• For CIS(D∞) the only modification required is that the converged CC2 ground-state
amplitudes are replaced by those from first-order perturbation theory.

• For ADC(2) in addition the contributions of[H, T
(1)
2 ] to the singles-singles block have

to be symmetrized. This can be achieved with a few additional operations at costs of
O(n2N2).

3. INTERSECTIONS OF EXCITED STATES IN COUPLED-CLUSTER
RESPONSE THEORY

As pointed out in the introduction, the coupled-cluster response or equation-of-motion
methods lead to Jacobi or secular matrices which in general are not symmetric. While this
usually does not cause any problems in single-point calculations for vertical excitation
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spectra or in the optimization of excited state equilibrium structures, it has serious conse-
quences for the topology of the potential surfaces at intersections between excited states.

If one assumes that the Jacobi matrix has been block diagonalized by applying a (non-
unitary) transformation

(8)Ã = LAR with LR = 1,

such that for a pair of nearly degenerate states (i, j ) one is left with a 2×2-problem which
has been decoupled from all other eigenvalues:

(9)Ã =


. . . 0 0 0
0 Aii Aij 0
0 Aji Ajj 0

0 0 0
. . .

 .

The 2× 2 block for this effective two-state problem can in general be written in the form

(10)Ã2×2 =
(

Ē − ∆ S − A

S + A Ē + ∆

)
.

which gives the eigenvaluesE1,2 = Ē ± √
∆2 + S2 − A2. For a symmetric matrix,i.e.,

whenA = 0 for all values of the coordinates, the two states will be degenerate if both
parameters∆ andS become zero. This leads to the well-known result[16,17]that (ignoring
spin-orbit effects) states of the same symmetry may have a seam of intersection with the
dimensionN int − 2, whereN int is the number of internal degrees of freedom (nuclear
coordinates). For states of different symmetryS vanishes for symmetry reasons and the
intersection seam may have the dimensionN int − 1.

For a non-symmetric Jacobi matrix, as in general obtained for the iterative coupled-
cluster response or equation-of-motion coupled-cluster methods, a number of different
cases can be distinguished, depending on the magnitude of the antisymmetric contribu-
tion to the couplingA:

1. A2 < ∆2 + S2, which is the situation usually encountered in single-point calculations
for vertical excitation energies and in the optimization of equilibrium structures for
excited states: One obtains two real eigenvaluesE1,2 = Ē ± √

∆2 + S2 − A2.
2. A2 > ∆2 + S2: this leads to a conjugated pair of degenerate roots with eigenvalues

E1,2 = Ē ± i
√

A2 − ∆2 − S2.
3. A2 = ∆2 + S2, a condition, which for states of the same symmetry in general will

be fulfilled in N int − 1 dimensions. In this case one obtains an unphysical apparent
degeneracy. It can be considered as a kind of instability along a path which connects the
two previous cases.

4. Only for A = ∆ = S = 0 a true intersection of the states is found. For states of the
same symmetry this condition will only be fulfilled inN int − 3 dimension,i.e., in a
manifold which compared to the intersection seam of a symmetric matrix is reduced by
one dimension.

Methods with a non-symmetric secular matrix will thus in general not be able to describe
conical intersections between states of the same symmetry qualitatively correct.Figure 1
shows a typical two-dimensional cut through potential energy surfaces in a plane where
the two states intersect. While a symmetric secular matrix leads to a conical intersection,
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Fig. 1. Intersection of two states of the same symmetry as described by a symmetric and a
non-symmetric secular matrix. The potential curves obtained with a symmetric secular ma-
trix are shown as broken lines. The full lines are the potential curves for a non-symmetric
secular matrix in the region where both eigenvalues are real, while for the region where the
eigenvalues are complex only the real part is shown as a dashed and dotted line.

the potential energy curves obtained with a non-symmetric secular matrix pass—as the in-
tersection is approached—through a point with an (apparent) degeneracy of the two states
before a region is entered in which the eigenvalues are complex. This region encloses the
intersection seam obtained with a symmetric matrix. At the points with apparent degenera-
cies the derivatives of the potential energy curves with respect to the coordinateQ become
singular.

Figure 2shows a three-dimensional plot of a similar situation, but now the energy axis
has been skipped and instead the points where the two eigenvalues are degenerate are
shown in a space spanned by the tuning coordinates of the conical intersection and one
coordinate along the intersection seam. In this subspace, the points at which the two states
become degenerate with a non-symmetric Jacobian (A2 = ∆2 + S2) form a tube or cone
around the intersection seam obtained with a symmetric secular matrix. If the antisym-
metric contribution to the off-diagonal matrix elementA is a parameter independent of
the symmetric contributionS, a true intersection of the two states is only found in a sub-
space with a dimensionality which—compared to the dimensionality of intersection seam
obtained with a symmetric secular matrix—is reduced by one.

The standard coupled-cluster response and equation-of-motion coupled-cluster methods
(CC2, CCSD, . . . ) will thus ingeneral not give a qualitatively correct description of po-
tential energies surfaces (for excited states) at or close to conical intersections. Only if,
e.g., because of symmetry reasons, the antisymmetric and the symmetric contribution to
the coupling matrix element vanish simultaneously a true intersection will be found. To
obtain a qualitatively correct description of intersections between states of the same sym-
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Fig. 2. Intersection of two states shown in a space spanned by the two tuning coordinates
of the conical intersection and one coordinate along the intersection seam. The thick line
is the intersection seam obtained with a symmetric secular matrix. For the non-symmetric
matrix the surface on which the two eigenvalues are degenerate is plotted.

metry requires a symmetric secular matrix. For such problems the algebraic diagrammatic
construction methods could be a useful alternative. But in order to make them applicable
to intersections in molecules with more than a few atoms, efficient techniques for the lo-
calization of stationary points on (excited state) potential energy surfaces are needed[16].
Analytic gradients for excitation energies and total energies of excited states are one im-
portant prerequisite for this.

4. IMPLEMENTATION OF ANALYTIC EXCITED STATE GRADIENTS
FOR ADC(2) AND CIS(D∞)

4.1. The relaxed excited state Lagrange function

Since in contrast to the CC2 model, ADC(2) and CIS(D∞) are not derived from the re-
sponse function of a ground state method, there is no unique definition of total energies.
One could combine the excitation energies provided by these methods with ground state
energies of any suitable method. However, both for consistency to which order in the fluc-
tuation potential correlation effects are accounted for and for computational convenience
second-order Møller–Plesset perturbation theory appears to be the most natural choice.
With this definition of the total energies, the implementation of analytic gradients for ex-
cited states becomes a relatively simple task. Indeed, all the expressions can be obtained as
simplifications of those for the CC2 model[18]. In particular, one can define a variational
Lagrange function for the total energy of an excited statef as[18,7,19]:
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Lf = 〈HF|H + [H, T2]|HF〉 +
2∑

i,j=1

∑
µiνj

Ēf
µi

Aµiνj
Ef

νj

(11)+ ωf

(
1 −

2∑
i=1

∑
µi

Ēf
µi

Ef
µi

)
+ t̄ fµ2

Ωµ2 +
∑
µ0

κ̄f
µ0

Fµ0.

The first term on the right hand side gives the MP2 ground state energy, with|HF〉 the
Hartree–Fock reference wave functions andT2 = ∑

µ2
tµ2τµ2 the cluster operator for the

first-order doubles. (In the followingµ1 or ν1 will be used to enumerate single replace-
ments andµ2 or ν2 for double replacements.)

The second term in equation(11) represents the excitation energy and the subsequent
term ensures the (bi-)orthonormality of the eigenvectorsĒf andEf . To cover both the
ADC(2) and the CIS(D∞) model, different left (̄Ef ) and right (Ef ) eigenvectors are al-
lowed in the above equation. Requiring stationarity of the Lagrangian with respect toEf

andĒf leads to the left and right eigenvalue problems for the JacobianA, which determine
Ēf , Ef andωf . Since for ADC(2) the JacobianA is Hermitian, for this model left and
right eigenvectors will be equivalent.

The last two terms of the Lagrangian in equation(11) resemble terms in the Lagrange
function for the MP2 ground state energy. The first one determines the Lagrange multipliers
t̄µ2 for the ground states doubles equations,

(12)Ωµ2 = 〈µ2|H + [F, T2]|HF〉 = 0

whereF is the Fock operator (for the definition of the projection manifold〈µ2| see,e.g.,
Ref. [20]), and the other determines the Lagrange multipliersκ̄µ0 for the Hartree–Fock
equations,i.e., it implements the constraint that the subspaceµ0 of the Fock matrix ele-
ments is zero. Depending on the choice for the manifoldµ0 one obtains either the Brillouin
condition (Fia = 0) or the canonical condition (diagonal Fock matrix) or an intermediate
semi-canonical condition. The Hartree–Fock state is for the following parameterized as

(13)|HF〉 =
∑

expµ0

(
κµ0(τµ0 − τ†

µ0
)
)|HF0〉

where |HF0〉 is either the unperturbed state, or if the orbital basis depends on the
perturbation—as it does in the case of geometric derivatives and also for magnetic fields if
GIAOs are used—a determinant build from the orthonormalized molecular orbital (OMO)
basis for the distorted system[21].

Similar as MP2 and CC2, also the ADC(2) and CIS(D∞) models can be implemented
very efficiently using the resolution-of-the-identity (RI) approximation which allows for a
fast AO to MO transformation

(14)B
Q
ai =

∑
P

(∑
α

Cαa

∑
β

Cβi(αβ|P)

)
V

−1/2
PQ

and a subsequent fast formation of four-index integrals in the MO basis

(15)(ai|bj) ≈ (ai|bj)RI =
∑
Q

B
Q
aiB

Q
bj .

In the latter equationsVPQ = (P |Q) and(αβ|P) are, respectively, two- and three-index
electron repulsion integrals (ERIs) andP , Q denote orbitals from an auxiliary basis used
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to resolve the identity. Since onlyN3-scaling intermediates are needed on disk, the I/O re-
quirements are reduced drastically compared to a conventional four-index transformation.
For further details about the RI approximation,e.g., the choice of auxiliary basis sets and
the accuracies obtained for ground and excited state energies and properties, the reader is
referred to Refs.[18,22,23].

4.2. The effective orbital-relaxed one- and two-particle density matrices

In the present implementation the Hartree–Fock equations are still solved using conven-
tional four-index integrals. Therefore, one needs to distinguish between contributions to
the Lagrangian which arise from the reference state and the Fock operator and those which
are calculated using the RI approximation. However, this is anyway advantageous since it
leads to simple expressions to account for a frozen core approximation. For this purpose,
the Lagrange function, equation(11), is rewritten as

L = 〈HF|H |HF〉 +
∑
µ0

κ̄µ0Fµ0 +
∑
pq

(
DF,ξ

pq (t̄ ) + DF,A
pq (Ē, E)

)
Fpq

+ ω̄

(
1 −

∑
i=1,2

∑
µ

ĒµEµ

)

(16)+ 1

2

∑
pqrs

(
d

nsep,ξ
pqrs (t̄ ) + d

nsep,A
pqrs (Ē, E)

)
(pq|rs)RI,

where the superscriptf is from now on omitted for brevity. Above, the one-particle densi-
ties

(17)DF,ξ
pq (t̄ ) =

∑
µ2

t̄µ2〈µ2|[Epq, T2]|HF〉

and

DF,A
pq (Ē, E) =

∑
i=1,2

∑
µ1νi

Ēµ1〈µ1|[Epq, τνi
]|HF〉Eνi

(18)+
∑
µ2ν2

Ēµ2〈µ2|[Epq, τν2]|HF〉Eν2

have been introduced. These densities contain only contributions from the correlation and
excitation treatment. The two contributions to the non-separable two-electron density read:

(19)d
nsep,ξ
pqrs (t̄ ) = 〈HF|[epqrs, T2]|HF〉 +

∑
µ2

t̄µ2〈µ2|epqrs |HF〉

and

d
nsep,A
pqrs (Ē, E) =

∑
µ1ν1

Ēµ1〈µ1|[epqrs, τν1] + [[epqrs, τν1], T2
]|HF〉Eν1

+
∑
µ1ν2

Ēµ1〈µ1|[epqrs, τν2]|HF〉Eν2

(20)+
∑
µ2ν1

Ēµ2〈µ2|[epqrs, τν1]|HF〉Eν1.
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Explicit expressions for the densities are given inTables 1 and 2for a closed-shell RHF
reference determinant and an excited singlet state. For the modifications needed for excited
triplet states or for an UHF reference determinant see Refs.[24,18]. Note that the elements
of DF anddnsepare non-zero only if all indices refer to active orbitals.D

F,ξ
pq anddnsep,ξ are

related to the unrelaxed correlation contributions to the MP2 one- and two-electron densi-
ties, which are recovered asD

F,ξ
pq (t̄MP1) andd

nsep,ξ
pqrs (t̄MP1) wheret̄MP1 are the Lagrangian

multipliers from first-order Møller–Plesset perturbation theory.DF,A anddnsep,A contain
the contributions from the eigenvectors, which do not have counterparts in the expressions
for the MP2 ground state densities.

The equations determining the Lagrangian multiplierst̄ν2 for the ground state doubles
equations are obtained as∑

µ2

t̄µ2〈µ2|[F, τν2]|HF〉 = −〈HF|[H, τν2]|HF〉

(21)−
∑
µ1γ1

Ēµ1〈µ1|
[[H, τγ1], τν2

]|HF〉Eγ1.

They reduce to the calculation of MP1-like doubles amplitudes with modified two-electron
integrals[23,25,26]and can in the canonical orbital basis directly be inverted. Similar the

Table 1. Explicit expressions for the one-particle densitiesDF,ξ (t̄ ) andDF,A(Ē, E) de-
fined in equations(17) and (18)

DF,ξ (t̄ ) DF,A(Ē, E)

Dij − ∑
abk t̄ab

jk tab
ik − ∑

a ĒajEai − ∑
abk Ēab

jkEab
ik

Dia 0
∑

jb Ēbj (2Eab
ij − Eba

ij )

Dab

∑
ijc t̄ ac

ij tbc
ij

∑
i ĒaiEbi + ∑

ijc Ēac
ij Ebc

ij

Table 2. Explicit expressions for the non-separable two-particle density matricesdF,ξ (t̄ )

anddF,A(Ē, E) defined in equations(19) and (20)

dξ (t̄ ) dA(Ē, E)

dijka 0 − ∑
b Ēbj (2Eba

ik − Eab
ik ) − ∑

b Ēba
jkEbi

dijab 0 −ĒajEbi

diajb 4tab
ij − 2tba

ij + t̄ ab
ij Sab

ij {2CaiEbj − CbiEaj − ∑
k(

∑
c ĒckEcj )(2tba

ki − tab
ki )

− ∑
c(

∑
k ĒckEbk)(2tcaji − tac

ji )} + 2ĒbjEai

diabc 0
∑

j Ēbj (2Eac
ij − Eba

ij ) + ∑
j Ēab

ij Ecj

The intermediateC used for the formulation ofdF,A(Ē, E) is defined asCai = ∑
jb Ēbj (2tab

ij
− tba

ij
); for the

definition of the Lagrangian multipliers̄tab
ij

and the symmetrization operatorS see text.
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double replacement parts of the eigenvectorsE andĒ are obtained as:

(22)
∑
ν2

(〈µ2|[F, τν2]|HF〉 − ωδµ2ν2

)
Eν2 = −

∑
ν1

〈µ2|[H, τν1]|HF〉Eν1,

and

(23)
∑
µ2

Ēµ2

(〈µ2|[F, τν2]|HF〉 − ωδµ2ν2

) = −
∑
µ1

Ēµ1〈µ1|[H, τν2]|HF〉.

The Lagrangian multipliers for the Hartree–Fock equationsκ̄ are determined as usual from
a set of CPHF or Z-vector equations:

(24)
∑
AI

κ̄AI (AAIBJ − δABεA − δIJ εI ) = −ηκ
BJ

where the indicesI , J andA, B denote, respectively, general (i.e., active and frozen) oc-
cupied and virtual orbitals andεp are the SCF orbital energies. The CPHF matrixApqrs

is defined asApqrs = 4(pq|rs) − (pr|qs) − (ps|rq) with conventional four-index ERIs.
The evaluation of the right-hand side vectorηκ from one- and two-electron density inter-
mediates is done in the same way as described for CC2 in Ref.[18].

The first derivative of the excited state energy with respect to an external perturbationx

can now be evaluated from an expression which is analogous to that for RI-CC2[25,18]:(
dL

dx

)
x=0

=
∑
αβ

D
eff,ao
αβ h

[x]
αβ + 1

2

∑
αβγ δ

d
sep,ao
αβγ δ (αβ|γ δ)[x] −

∑
αβ

F
eff,ao
αβ S

[x]
αβ

(25)+
∑
αβP

∆
ao,P
αβ (αβ|P)[x] −

∑
PQ

γPQV
[x]
PQ,

whereh[x], S[x], (αβ|γ δ)[x], (αβ|P)[x] andV
[x]
PQ are the derivatives of, respectively, the

one-electron Hamiltonian, the overlap and the four-, three- and two-index coulomb inte-
grals in the AO basis.Deff,ao

αβ is the relaxed one-particle density in the atomic orbital basis

andd
sep,ao
αβγ δ the separable part of the two-electron density which is easily constructed on-

the-fly:

(26)d
sep,ao
αβγ δ = Sαβ

γ δ

(
1 − 1

2
Pβδ

)(
D

eff,ao
αβ − 1

2
D

SCF,ao
αβ

)
D

SCF,ao
γ δ .

Here,Sαβ
γ δ symmetrizes a function according toSαβ

γ δ f
αβ
γ δ = f

αβ
γ δ + f

βα
δγ andPαβ denotes

a permutation operator which interchanges two indices.F
eff,ao
αβ is the usual effective Fock

matrix that appears in expressions for gradients of correlated methods and the densities
∆

ao,P
αβ andγPQ are defined as:

(27)∆
ao,P
αβ =

∑
pq

CαpCβq

∑
rsQ

d
nsep,ex
pqrs (rs|Q)V −1

PQ,

and

(28)γPQ =
∑
αβR

(αβ|R)∆
ao,P
αβ V −1

RQ.
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For ADC(2) and CIS(D∞) the course of a gradient calculation after the solution of the
eigenvalue problem (which for CIS(D∞) implies the determination of both the right and
the left eigenvectors) can be sketched as follows:

• First the eigenvectors are normalized as
∑

i=1,2
∑

µi
Ēµi

Eµi
= 1.

• Then the unrelaxed one-electron densitiesDF,ξ and DF,A and intermediates for the
two-electron densities are computed.

• The right-hand sideηκ for the CPHF equations and the effective Fock matrixF eff are
set up and the CPHF equations are solved.

• Finally the contributions to the gradient are evaluated by contracting the derivative inte-
grals with the respective densities.

Note, that in contrast to CC2 for ADC(2) and CIS(D∞) after the solution of the eigenvalue
problem no other equations withO(N5) scaling costs must be solved iteratively.

5. PERFORMANCE OF CORRELATED SECOND-ORDER METHODS
FOR EXCITED STATE STRUCTURES AND VIBRATIONAL
FREQUENCIES

From the discussion in Sections2 and 3it follows that for well-isolated states,i.e., far from
same-symmetry intersections, the non-Hermitian contribution to the Jacobian in which
ADC(2) and CIS(D∞) differ should have only a small effect on the eigenvalues and vectors.
Test calculations on a few diatomic molecules and CH2O and C2H2 show (seeTable 3) that
indeed ADC(2) and CIS(D∞) give not only vertical excitation energies, but also adiabatic
excitation energies, bond lengths and vibrational frequencies, which are almost identical.
The differences are close to or fall even below the convergence threshold used for the calcu-
lations. Since ADC(2) has both conceptual and computational advantages over CIS(D∞),
the latter model will in the following not be considered further.

In the next two subsections the results of two sets of test calculations are presented.
The first test is a comparison of a hierarchy of single-reference methods for excited states
up to approximated coupled-cluster singles, doubles and triples methods in large basis
sets but restricted to diatomic molecules. In the second part only ADC(2) and CC2 are
compared for a set of small and medium sized polyatomic molecules for which excited
state geometries and frequencies are experimentally well-known.

5.1. Benchmark study on the four diatomic molecules N2, CO, BH, and BF

For the comparison of the second-order methods for excitation energies with highly cor-
related methods which account also for the effects of connected triples, four molecules
N2, CO, BH, and BF have been selected since for these several excited states are experi-
mentally well known and have minima at not too far stretched internuclear distances and
accurate basis sets are available. The test set consists of 11 singlet and 19 triplet states:

N2: A3Σ+
g , B3Πg, B ′3Σ−

u , a′1Σ−
u , a1Πg, w1∆u, C3Πu,

CO: a3Π , A1Π , B1Σ+, C1Σ+,
BF: a3Π , A1Π , B1Σ+, C1Σ+, b3Σ+, d3Π ,
BH: A1Π , B1Σ+
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Table 3. Comparison of ADC(2) and CIS(D∞) for excitation energies and structures of
excited states

Molecule State Property CIS(D∞) ADC(2) CC2 Exp.

N2 w1∆u Tvert 10.629 eV 10.628 eV 10.584 eV
Te 9.36 eV 9.36 eV 9.37 eV 8.94 eV
Re 128.1 pm 128.1 pm 129.3 pm 126.8 pm
ωe 1449 cm−1 1449 cm−1 1360 cm−1 1559 cm−1

BF A1Π Tvert 6.424 eV 6.424 eV
Te 6.36 eV 6.37 eV 6.36 eV 6.34 eV
Re 131.2 pm 131.2 pm 131.4 pm 130.4 pm
ωe 1214 cm−1 1214 cm−1 1213 cm−1 1265 cm−1

CH2O 11A′′ Tvert 3.930 eV 3.930 eV 4.025 eV
T0 3.30 eV 3.30 eV 3.52 eV 3.49 eV
d(CO) 138.2 pm 138.2 pm 135.5 pm 132.3 pm
φd 14.6 deg 14.6 deg 25.7 deg 34.0 deg
ν2(a

′) 1344 cm−1 1344 cm−1 1321 cm−1 1293 cm−1

CH2O 13A′′ Tvert 3.477 eV 3.476 eV 3.556 eV
T0 2.91 eV 2.91 eV 3.05 eV 3.12 eV
d(CO) 134.5 pm 134.5 pm 133.6 pm 132.3 pm
φd 33.4 deg 33.5 deg 38.1 deg 41.1 deg
ν2(a

′) 1323 cm−1 1320 cm−1 1298 cm−1 1283 cm−1

C2H2 11Au Tvert 7.224 eV 7.224 eV 7.199 eV
T0 5.38 eV 5.38 eV 5.33 eV 5.23 eV
d(CC) 137.3 pm 137.3 pm 138.1 pm 137.5 pm
ν2(ag) 1426 cm−1 1426 cm−1 1368 cm−1 1385 cm−1

The calculations on N2 and BF where carried out in the aug-cc-pwCVQZ basis sets and all electrons have been ac-
tive, while for CH2O and C2H2 the aug-cc-pVQZ basis and a frozen core approximation was used. Experimental
values taken from Refs.[27–29].

and the following methods have been included in the comparison:

• configuration interaction singles (CIS), which is equivalent to coupled-cluster singles
(CCS)—provided that the Hartree–Fock reference wavefunction fulfills the Brillouin
condition;

• CIS(D), a perturbative doubles correction to CIS;
• the algebraic diagrammatic construction through second order ADC(2);
• the approximate coupled-cluster singles and doubles model CC2;
• coupled-cluster singles and doubles (CCSD);
• CCSDR(3), a perturbative triples correction to CCSD—since for this method no imple-

mentation for triplet excited states is available, the results for CCSDR(3) include only
the 11 singlet states of the test set;

• the approximate coupled-cluster singles, doubles, and triples model CC3.
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For single excitation dominated transitions, as the investigated states are, CIS is cor-
rect through first order in the fluctuation potential, the methods CIS(D), ADC(2), CC2 and
CCSD are correct through second order, and CCSDR(3)[30] and CC3[31,32]are correct
through third order. As in Section4 the total energies for CIS(D) and ADC(2) were de-
fined as the sum of the excitation energies obtained with these models and the MP2 ground
state energy, the CCSDR(3) excitation energies were combined with the ground state ener-
gies from the CC(3) perturbative triples correction[30] to CCSD. The CCSD, CCSDR(3),
CC(3), and CC3 calculations have been carried out with the Dalton quantum chemistry
package[33]; for all other calculations a development version of Turbomole was used.

To avoid any bias of the results due to core correlation effects all electrons have been cor-
related and the aug-cc-pwCVQZ basis[34–37]has been used. This basis set should even
for the triples methods CCSDR(3) and CC3 give results close to the basis set limit. Detailed
results for the bond lengths, the harmonic vibrational frequencies and the adiabatic excita-
tion energies are given inAppendix A; a summary of the results is shown inFigs. 3–5.

For none of the three investigated quantities (bond lengths, vibrational frequencies and
adiabatic excitation energies) the convergence within the coupled-cluster hierarchy is as
smooth as it is usually found for vertical excitation energies. In particular for the bond
lengths and the vibrational frequencies the results indicate some oscillations within the
CC model hierarchy, similar to that found for ground state bond length and vibrational
frequencies[20]: CIS gives, similar as SCF for the ground state, much too short bond
lengths—for the 19 states included in this test setRe is on the average underestimated by
about 3 pm. CC2 overestimates the correlation contribution and thus the bond lengths and
their change upon excitation, while CCSD gives again too short bond lengths, even though
CCSD is much more robust with respect to strong correlation effects, as encountered in
N2 and CO if the bond is stretched upon excitation from a bounding into an anti-bonding
orbital. After inclusion of the effects of connected triples at the CCSDR(3) and the CC3
level the results are very accurate.

Fig. 3. Errors in calculated bond lengths for 19 excited states. Experimental data from
Ref. [28]; for technical details of the calculations see text.
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Fig. 4. Errors in calculated harmonic frequencies for 19 excited states in N2, CO, BH, and
BF. Experimental reference data taken from Ref.[28]; for technical details of the calcula-
tions see text.

Fig. 5. Errors in adiabatic excitation energies for 19 excited states in N2, CO, BH, and BF.
Experimental reference data taken from Ref.[28]; for technical details of the calculations
see text.

Compared to CC2 the ADC(2) model profits from the somewhat better stability of the
underlying MP2 for the ground state, while the results for the perturbative doubles cor-
rection CIS(D) are intermediate between the results for CIS and ADC(2). However, two
of the example molecules, N2 and CO, are difficult cases for single-reference methods
and in particular for CC2. Taking this into account, one can, based on the above trends,
expect that for single replacement dominated excited states CC2 and CC3 for larger mole-
cules with polyatomic chromophores give equilibrium geometries of similar accuracy as
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obtained with these methods for the ground state,i.e., close to the accuracy obtained with,
respectively MP2 and CCSD(T). Similar, CCSD cannot be expected to give for excited
states geometries which are more accurate than those for ground states. Its main advantage
lies in its robustness.

The results for harmonic frequencies corroborate the above observations. For almost
all excited states it is found that the vibrational frequencies are overestimated (underesti-
mated) the more the bond lengths are underestimated (overestimated). Thus, CIS and, to
a lesser extend, CCSD give too high vibrational frequencies, while CC2 usually yields to
low vibrational frequencies. Again, after inclusion of approximate triples in the methods
CCSDR(3) and CC3 the results are close to the experimental values.

In contrast to the smooth convergence of vertical excitation energies in the hierarchy
CCS–CC2–CCSD–CC3, the adiabatic excitation energies change more irregular: no im-
provement is obtained when going from CC2 to CCSD. The CCSD results have about the
same accuracy as those obtained with ADC(2). The errors obtained with the perturbative
doubles correction CIS(D) are slightly larger. First after the inclusion of connected triples
at the CCSDR(3) and CC3 level a systematic and significant improvement upon CC2 is
obtained.

5.2. Comparison of ADC(2) and CC2 for polyatomic molecules

The benchmark results from the previous subsection include only states in four diatomic
molecules. It will of cause require further studies, in particular for polyatomic molecules to
see how general these findings are. But, for polyatomic molecules excitations are usually
delocalized over chromophores which comprise several atoms and, as a consequence, the
changes in the bond lengths upon excitation will be more moderate than they are in small
molecules.

This means that the results will be much more dominated by the performance of the
underlying ground state method. Though, one would expect for polyatomic molecules—
in particular if the differences between the bond lengths in the ground and the excited
states are not large—that the approximate doubles methods ADC(2) and CC2 give results
of almost the same accuracy as obtained for ground state geometries with MP2 and CC2.
However, for small molecules like CH2O, C2H2, where the excitation process is essentially
localized at one bond, similar difficulties as found above for the diatomic molecules have
to be expected.

In Tables 4–6some results are listed for 0–0 transition energies, equilibrium bond
lengths and angles and vibrational frequencies for 13 excited states of small polyatomic
molecules, where accurate experimental results are available. The CC2 results, which have
been taken from Ref.[18], and the ADC(2) results, which are from the present work, have
been obtained in the aug-cc-pVQZ basis sets (aug-cc-pV(Q + d)Z for the atoms Si–Cl)
[34–36,39]. The frozen core approximations has been used throughout, with the 1s orbitals
frozen for the atoms B–F and 1s2s2p frozen for Si–Cl.

In contrast to the diatomic molecules investigated in Section5.1, where from the exper-
imental data values forTe, Re andωe could be extracted, for the excited states in these
molecules experimental data is only available forT0, R0 and fundamental frequencies.
This limits somewhat the comparability with the calculated values, which have been ob-
tained within the harmonic approximation. This impairs in particular the results for C–H
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Table 4. 0–0 transition energies (in eV) in the harmonic approximation

Molecule State CC2 ADC(2) Exp.

SO2 13B1 2.92 2.94 3.19a

SiF2 11B1 5.49 5.44 5.34b

CCl2 11B1 2.11 2.00 2.14b

CS2 13A2 3.29 3.18 3.25a

HCN 11A′′ 6.72 6.82 6.48a

HCP 11A′′ 4.48 4.51 4.31a

C2H2 11Au 5.33 5.38 5.23a

CH2O 11A′′ 3.52 3.30 3.49c

13A′′ 3.05 2.91 3.12c

CH2S 11A2 2.15 2.03 2.03c

13A′′ 1.79 1.69 1.80c

CHOCHO 11Au 2.70 2.63 2.72a

HC2CHO 11A′′ 3.17 2.90 3.24a

a From Ref.[28]. b From Ref.[38]. c From Ref.[29].

bond lengths and the corresponding stretchings modes, for which anharmonic effects are
sizable.

The results listed inTables 4–6indicate that the above anticipated trends are indeed
found for polyatomic molecules. In the 0–0 transition energies f.ex. the mean absolute
error (MAE) is for CC2 0.1 eV, only for SO2 and HCN the errors are larger than 0.2 eV.
Also for ADC(2) the MAE of 0.17 eV for these polyatomic molecules is considerable
smaller than for the diatomic molecules studied in Section5.1. Interestingly, the difference
in mean absolute errors for CC2 and ADC(2) is almost the same for the excited states in the
polyatomic molecules listed inTable 4and for the excited states in the diatomic molecules
(Table A.3) studied in the previous subsection.

For bond lengths and angles and for vibrational frequencies the performance of the two
methods is—at least for the present test set—on the average very similar. ADC(2) improves
upon CC2 in several cases where multiple bonds are weakened upon excitation,e.g., for
HCN, HCP, C2H2 or the difficult case of SO2. On the other hand, ADC(2) performs inferior
for n → π∗ transitions as in CH2O, CH2S and HC2CHO, where it gives by far too long
C–O distances and too low frequencies for the modes involving these bonds. However, one
has to keep in mind that the calculated CC2 and ADC(2) results are not strictly comparable
to the experimental reference data, since in the calculations anharmonic effects have been
neglected. Even though this is not expected, it cannot, without further investigations, be
excluded that corrections from the anharmonicities will change the conclusions about the
performance of CC2 and ADC(2) for excited state equilibrium structures.

6. SUMMARY AND CONCLUSIONS

The coupled-cluster methods CCS (CIS), CIS(D), CC2, CCSD, CCSDR(3), and CC3 form
today a relatively well-established hierarchy of black-box methods for excited states. The
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Table 5. Excited state structure parameters (bond lengths in pm and angles in degrees)
calculated with CC2 and ADC(2)

Molecule State Parameter CC2 ADC(2) Exp.

SO2 13B1 d(SO) 155.4 151.8 149.4

 (OSO) 128.8 126.5 126.1

SiF2
a 11B1 d(SiF) 162.8 162.3 160.1


 (FSiF) 115.9 116.0 115.9
CCl2a 11B1 d(CCl) 164.8 164.7 165.2


 (ClCCl) 132.0 131.6 131.4
CS2 13A2 d(CS) 164.9 163.7 164.0


 (SCS) 135.7 136.7 135.8
HCN 11A′′ d(CH) 111.5 111.3 114.0

d(CN) 132.1 129.3 129.7

 (HCN) 122.3 127.6 125.0

HCP 11A′′ d(CP) 171.6 168.2 169.0

 (HCP) 128.4 137.1 128.0

C2H2
b 11Au d(CC) 138.1 137.3 137.5

d(CH) 109.2 109.1 110.5

 (HCC) 122.0 122.2 121.4

CH2Oc 11A′′ d(CH) 108.7 108.4 109.8
d(CO) 135.5 138.2 132.3

 (HCH) 121.6 124.1 118.4
φd 25.7 14.6 34.0

CH2Oc 13A′′ d(CH) 109.2 108.9 108.4
d(CO) 133.6 134.5 130.7

 (HCH) 118.0 119.8 117.9
φd 38.1 33.5 41.1

CH2Sc 11A2 d(CH) 108.3 108.3 107.7
d(CS) 170.6 171.9 168.2

 (HCH) 121.2 121.2 120.7

CH2Sc 13A′′ d(CH) 108.2 108.2 108.2
d(CS) 168.9 169.3 168.3

 (HCH) 120.5 121.3 119.3
φd 15.0 4.3 11.9

trans-(CHO)2e 11Au d(CC) 147.9 147.7 146.0
d(CH) 109.5 109.4 112.0
d(CO) 125.4 125.0 125.0

 (HCC) 114.5 114.9 114.0

 (OCC) 123.9 123.6 124.0

(Continued)

performance of these methods for vertical excitation energies has been investigated in sev-
eral benchmark studies[44] and are well understood. With the implementation of analytic
gradients[18,45,46]it is for some of these methods now possible to obtain equilibrium
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Table 5. (Continued)

Molecule State Parameter CC2 ADC(2) Exp.

HC2CHO 11A′′ d(C1C2) 123.8 122.9 123.8
d(C1H) 106.3 106.3 107.5
d(C2C3) 136.0 135.8 136.4
d(C3H) 108.5 108.3 109.1
d(C3O) 140.6 144.9 132.5

Unless otherwise stated the experimental data was taken from Refs.[28,27].
a Experimental values from[38]. b Experimental values from[40]. c Experimental values from[29]. d Out-of-
plane angle of the oxygen or sulfur atom, respectively.e Experimental values from Ref.[41].

Table 6. Harmonic vibrational frequencies (cm−1) calculated with CC2 and ADC(2)

Molecule State Parameter CC2 ADC(2) Exp.

SO2 13B1 ν1(a1) 673 852 906
ν2(a1) 285 337 360

SiF2 11B1 ν1(a1) 705 714 598
ν2(a1) 235 236 342

CCl2a 11B1 ν1(a1) 641 643 634
ν2(a1) 308 310 303

CS2 13A2 ν1(a1) 682 727 692
ν2(a1) 243 311 311

HCN 11A′′ ν2(a
′) 1345 1661 1496

ν3(a
′) 963 973 941

HCP 11A′′ ν2(a
′) 888 1061 951

ν3(a
′) 636 647 567

C2H2 11Au ν2(ag) 1368 1426 1385
ν3(ag) 1086 1088 1048

CH2Ob 11A′′ ν1(a
′) 3064 3107 2846

ν2(a
′) 1321 1344 1293

ν3(a
′) 1015 859 1183

ν5(a
′′) 3202 3255 2968

ν6(a
′′) 873 867 904

13A′′ ν2(a
′) 1298 1320 1283

CH2Sb 11A2 ν1(a1) 3127 3124 3034
ν2(a1) 1343 1346 1320
ν3(a1) 799 751 859
ν4(b1) 3253 3254 3081
ν5(b1) 769 772 799
ν2(a

′) 1337 1342 1320
ν3(a

′) 846 826 859

(Continued)
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Table 6. (Continued)

Molecule State Parameter CC2 ADC(2) Exp.

trans-(CHO)2c 11Au ν1(ag) 3052 3070 2809
ν2(ag) 1369 1410 1391
ν3(ag) 1233 1252 1195
ν4(ag) 995 1019 952
ν5(ag) 494 504 509
ν6(au) 754 760 720
ν7(au) 219 221 233
ν8(bg) 763 782 735
ν10(bu) 1248 1219 1281
ν11(bu) 1176 1096 1172
ν12(bu) 372 372 379

HC2CHOd 11A′′ ν2(a
′) 3170 3200 2953

ν3(a
′) 1898 1970 1946

ν4(a
′) 1218 1205 1304

ν5(a
′) 1074 1090 1120

ν6(a
′) 780 695 952

ν7(a
′) 642 655 650

ν8(a
′) 471 477 507

ν9(a
′) 171 172 189

ν10(a
′′) 550 593 507

ν11(a
′′) 416 449 390

ν12(a
′′) 324 340 346

Unless stated otherwise, the experimental values are taken from Refs.[28,27].
a Experimental values from Ref.[38]. b Experimental values from Ref.[29]. c Experimental values from

Ref. [42]. d Experimental values from Ref.[43].

structures for electronically excited states of small and medium sized molecules in an al-
most routine manner.

The benchmark study in Section5.1, which compares the performance these methods,
indicates, in agreement with previous results in the literature[46–49], that the accuracies
obtained for equilibrium structures and harmonic frequencies of single excitation domi-
nated excited states are almost comparable to those obtained for the ground state. It is
found that CCSD, even though much more robust with respect to strong correlation effects
than the approximate singles-and-doubles methods CIS(D), ADC(2), and CC2, is in gen-
eral for equilibrium structures not systematically more accurate than these methods. As a
consequence CCSD is also not able to improve for adiabatic excitation energies upon the
results obtained at the CC2 level.

A drawback of the standard CC response or equation-of-motion CC methods is the
lack of Hermitian symmetry of the Jacobi or secular matrix. While this will usually
not affect their performance for equilibrium structures, it leads to qualitative wrong
results for the potential energy surfaces of excited states in the vicinity of intersec-
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tions between states of the same symmetry: instead of a conical intersection seam
these methods will give a region with a conjugated pair of complex eigenvalues.
Propagator type methods, as the algebraic diagrammatic construction (ADC) models,
which have a Hermitian secular matrix could for such situations be a valuable alterna-
tive.

In Section4 the equations for orbital-relaxed one- and two-particle densities and ana-
lytic gradients of excited states have been derived for the ADC(2) and the CIS(D∞) model.
These have been implemented in theRICC2 module[50] of the Turbomole package[51]
and were used to investigate the performance of ADC(2) for excited state potential energy
surfaces. The results presented in Sections5.1 and 5.2show, that ADC(2) gives equilib-
rium structures and harmonic frequencies with an accuracy comparable to that of CC2. In
some cases, as for example N2 and CO, ADC(2) is due to the underlying MP2 ground state
more robust than CC2. Only for excitation energies ADC(2) gives somewhat larger errors
than CC2.
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APPENDIX A

In Tables A.1–A.3the data underlyingFigs. 3–5is collected.

Table A.1. Bond lengthsRe (pm) of diatomic molecules

Molecule State CIS CIS(D) ADC(2) CC2 CCSD CCSDR(3) CC3 Exp.

N2 A3Σ+
u 122.8 129.0 129.4 131.5 126.8 – 129.3 128.7

B3Πg 117.6 122.2 123.1 124.9 119.5 – 121.4 121.3
B′3Σ−

u 123.3 128.6 129.2 130.7 125.2 – 128.3 127.8
a′1Σ−

u 123.3 128.5 129.0 130.4 124.8 126.9 128.0 127.5
a1Πg 119.0 123.0 124.5 126.5 120.1 121.5 122.2 122.0
w1∆u 122.8 127.6 128.1 129.3 124.2 126.3 127.4 126.8
C3Πu 110.1 114.3 115.4 116.3 113.1 – 114.6 114.9

(Continued)
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Table A.1. (Continued)

Molecule State CIS CIS(D) ADC(2) CC2 CCSD CCSDR(3) CC3 Exp.

CO a3Π 117.5 121.0 121.4 122.7 119.4 – 121.1 120.6
A1Π 121.0 126.0 127.8 128.6 122.2 123.3 124.5 123.5
B1Σ+ 108.5 112.3 112.6 113.8 110.9 112.1 112.5 112.0
C1Σ+ 108.2 111.7 112.0 113.5 110.8 112.0 112.4 112.2

BF a3Π 129.8 131.5 131.6 131.9 130.6 – 131.1 130.8
A1Π 128.4 131.1 131.2 131.4 130.1 130.5 130.7 130.4
b3Σ+ 120.0 121.3 121.4 121.9 121.1 – 121.9 121.5
B1Σ+ 119.3 120.4 120.5 121.0 120.2 120.9 121.0 120.7
C1Σ+ 120.8 122.1 122.2 122.7 121.8 122.4 122.5 122.0
d3Π 119.9 121.0 121.0 121.5 120.7 – 121.5 121.0

BH A1Π 120.3 120.6 120.5 120.6 121.9 122.1 122.2 121.9
B1Σ+ 119.9 120.2 120.4 120.5 121.4 121.5 121.5 121.6

For the technical details see Section5.1; experimental values from Ref.[28].

Table A.2. Harmonic vibrational frequenciesωe (cm−1) of diatomic molecules

Molecule State CIS CIS(D) ADC(2) CC2 CCSD CCSDR(3) CC3 Exp.

N2 A3Σ+
u 1873 1407 1379 1223 1582 – 1420 1461

B3Πg 2008 1653 1576 1432 1884 – 1728 1733
B′3Σ−

u 1841 1440 1402 1290 1701 – 1480 1517
a′1Σ−

u 1841 1447 1412 1303 1732 1582 1491 1530
a1Πg 1904 1616 1505 1353 1858 1753 1685 1694
w1∆u 1859 1483 1449 1360 1752 1604 1509 1559
C3Πu 2533 2133 1994 1885 2265 – 2113 2047

CO a3Π 1965 1686 1645 1542 1830 – 1688 1743
A1Π 1646 1326 1214 1170 1594 1536 1426 1518
B1Σ+ 2480 1982 1830 1815 2233 2120 2064 2113
C1Σ+ 2488 2154 2111 1945 2287 2174 2124 2176

BF a3Π 1379 1298 1291 1277 1334 9999 1314 1324
A1Π 1365 1238 1214 1213 1279 1259 1251 1265
b3Σ+ 1744 1638 1631 1592 1652 9999 1599 1629
B1Σ+ 1784 1711 1699 1666 1724 1689 1670 1694
C1Σ+ 1703 1612 1607 1577 1631 1601 1587 1613
d3Π 1774 1704 1697 1663 1725 9999 1679 1697

BH A1Π 2550 2480 2480 2473 2335 2309 2305 2251
B1Σ+ 2528 2498 2484 2476 2398 2390 2389 2400

For the technical details see Section5.1; experimental values from Ref.[28].
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Table A.3. Adiabatic excitation energiesTe (eV) of diatomic molecules

Molecule State CIS CIS(D) ADC(2) CC2 CCSD CCSDR(3) CC3 Exp.

N2 A3Σ+
u 5.30 6.70 6.62 6.54 6.33 – 6.13 6.22

B3Πg 7.71 7.64 7.44 7.31 7.59 – 7.38 7.39
B′3Σ−

u 7.52 8.79 8.70 8.67 8.62 – 8.19 8.22
a′1Σ−

u 7.52 8.82 8.73 8.72 8.82 8.54 8.43 8.45
a1Πg 9.60 8.86 8.56 8.39 8.85 8.67 8.61 8.59
w1∆u 8.13 9.46 9.36 9.37 9.34 9.04 8.90 8.94
C3Πu 11.82 11.51 11.29 11.24 11.23 – 11.11 11.05

CO a3Π 5.78 6.26 6.18 6.08 6.17 – 6.02 6.04
A1Π 8.82 8.24 8.07 7.97 8.26 8.11 8.04 8.07
B1Σ+ 12.02 11.49 11.35 11.11 11.21 10.96 10.94 10.78
C1Σ+ 12.57 11.79 11.88 11.64 11.75 11.51 11.50 11.40

BF a3Π 2.73 3.44 3.42 3.43 3.59 – 3.60 3.61
A1Π 6.56 6.39 6.37 6.36 6.40 6.34 6.34 6.34
b3Σ+ 7.24 7.73 7.67 7.57 7.69 – 7.57 7.57
B1Σ+ 8.33 8.35 8.33 8.22 8.29 8.16 8.15 8.10
C1Σ+ 8.51 8.74 8.72 8.64 8.71 8.62 8.63 8.56
d3Π 8.58 8.87 8.85 8.77 8.87 – 8.76 8.77

BH A1Π 2.85 2.79 2.80 2.80 2.90 2.86 2.88 2.87
B1Σ+ 6.41 6.54 6.48 6.48 6.57 6.52 6.54 6.49

For the technical details see Section5.1; experimental values from Ref.[28].
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