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ABSTRACT
Analytic gradient expressions for the algebraic diagrammatic construction (ADC) scheme for the polarization propagator up to third order
are derived using a Lagrangian approach. An implementation within the Q-CHEM electronic structure package for excited-state nuclear
gradients of the ADC(2), ADC(2)-x, and ADC(3) models based on restricted and unrestricted Hartree–Fock references is presented. Details of
the implementation and the applicability of the newly derived gradients for geometry optimizations and the quality of the resulting structures
are discussed.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5085117

I. INTRODUCTION

Since the early work of Pulay,1 energy derivatives have become
a key tool for the quantum chemical description of various opti-
cal phenomena and the understanding of chemical reactions. As
Pulay wrote in a recent review article:2 “Analytical calculation of
energy derivatives with respect to nuclear coordinates revolution-
ized applied molecular quantum mechanics by allowing the rou-
tine calculation of molecular structures and related properties.” The
efficient evaluation of energy derivatives using analytical derivative
techniques is an important trait for quantum chemical methods
since energy derivatives are needed in almost all in silico quantum
chemical studies. In general, the investigation of potential energy
surfaces (PESs) is one of the most prominent examples for the
use of derivatives with respect to nuclear coordinates. The efficient
localization of characteristic stationary points on PESs like min-
ima and maxima corresponding to stable isomers and transition
states, respectively, or minimum energy pathways describing chem-
ical reactions connects quantum chemical calculations with real-life
chemistry. This is true for thermal, mostly ground-state chemistry,

as well as photochemistry occurring in excited electronic states. Also
in the latter cases, exploration of excited state PESs with the help
of analytic nuclear gradients leads straightforwardly to insight into,
for instance, fluorescence properties, nonadiabatic transitions, and
conical intersections.

Recently, the second-order algebraic diagrammatic construc-
tion method [ADC(2)]3,4 for the polarization propagator has gained
more attention due to its computational efficiency and reliability for
organic molecules with a single-reference electronic ground state.
A promising method for the description of electronically excited-
states of medium-sized organic molecules is the third order ADC
method [ADC(3)],5,6 which has been demonstrated recently to pos-
sess the accuracy of the approximate third-order coupled cluster
(CC3) method7 in the description of vertical excitation energies of
organic molecules at lower computational effort. The total energies
of the excited states within a given ADC method are given as the sum
of its excitation energy and the ground state Møller-Plesset8 energy
of the respective order. Thus, excited-state potential energy surfaces
at the ADC(2) or ADC(3) level inevitably inherit the limitations of
the parent MP(2) or MP(3) method.
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It should be noted that gradients of any energy functional can
simply be obtained via finite differences for each component of the
perturbation. However, the applicability of numerical derivatives of
quantum chemical energy functionals is strongly limited for differ-
ent reasons. A limiting factor for numerical differentiation is the
required number of single point energy calculation of at least two
points for each component of the perturbation. If the perturbation
is a geometrical distortion and the system has N atoms, then (in
the absence of symmetry) at least 3N − 5 single point energy cal-
culations have to be performed, one at the starting geometry and
one along each degree of freedom. Additionally, numerical differen-
tiation suffers from numerical instabilities which can lead to slow
or failing convergence. In contrast to finite differences, analytical
derivatives are numerically stable and can be performed at a com-
putational cost comparable to a single energy calculation for many
quantum chemical methods.2

The derivation of analytical gradients in quantum chemical
methods is based on the realization of Hellmann and Feynman,9,10

the so-called Hellmann-Feynman theorem, that the derivative of the
energy ⟨Ψ|Ĥ|Ψ⟩ of the exact wavefunction |Ψ⟩ with respect to an
external perturbation ξ can be obtained as the expectation value
of the perturbed Hamiltonian. For approximate wavefunctions, the
first term on the right-hand side (rhs) of Eq. (1), the so-called
Hellmann-Feynman term, is in many cases a good approximation
of the total derivative. However, additional contributions enter the
total derivative

dE
dξ

= ⟨Ψ∣
∂Ĥ
∂ξ
∣Ψ⟩ +

∂⟨Ψ∣Ĥ∣Ψ⟩
∂∆

d∆
dξ

(1)

due to the chain rule. These arise from the dependence of the
energy on nonvariational parameters ∆. The in general very cum-
bersome evaluation of these non-Hellman-Feynman contributions
can be circumvented as shown by Handy and Schäfer using the so-
called Z-vector method.11 A generalization and rigorous derivation
of this Z-vector method is the Lagrangian formalism, which has
become the standard method for the derivation of analytical gradi-
ents in quantum chemistry.2,12 The Lagrangian technique involves
the introduction of the Lagrangian energy functional

L = E +∑
i
κifi(∆) (2)

and the undetermined Lagrange multipliers {κi}. The conditions
{f i(∆) = 0} are chosen such that the Lagrangian is stationary with
respect to the Lagrange multipliers. By requiring that the Lagrangian
is additionally stationary with respect to all nonvariational param-
eters of the original energy functional, conditional equations for
the Lagrange multipliers are obtained. Once the Lagrange multi-
pliers are determined by solving these conditional equations, the
Lagrangian fulfills the Hellmann-Feynman theorem, and by evalu-
ating its partial derivative the total derivative of the original energy
functional can be obtained.

Today, analytical derivatives for several excited state meth-
ods are available and extensively used for the investigation of
molecular photochemistry. For example, analytical derivatives
have been realized for the semiempirical multireference con-
figuration interaction method OM2/MRCI13,14 as well as for
standard MRCI,15 which allow nowadays for efficient excited-
state surface hopping dynamics.16,17 Also for density functional

theory (DFT)-based methods like time-dependent DFT (TDDFT),18–20

analytic derivatives are available.21–24 In the context of ab initio
wavefunction-based approaches, analytic nuclear gradients exist,
for example, for the complete-active-space size-consistent field
(CASSCF) method,25–29 the complete-active-space perturbation
theory of second-order (CASPT2),30,31 the approximate second-
order coupled-cluster model CC2,7,32–35 or the equation of motion
and linear-response coupled-cluster methods EOM-/LR-CCSD.36–43

Also, for ADC(2), analytic excited-state gradients have already been
realized.34

In this paper, the Lagrangian formalism is used to derive ana-
lytical expressions for energy derivatives of the ADC approach of
the polarization propagator up to third order. For the first time,
analytical derivative expressions for the extended second order
ADC model [ADC(2)-x]3 and the third order ADC(3) are pre-
sented. Extending the procedure for the computation of analyti-
cal energy derivatives for ADC(2) to the ADC(2)-x model requires
only few additional modifications. By contrast, the ADC(3) energy
contains additional parameters from the perturbation theoretical
treatment, which require the introduction of additional terms in
the Lagrangian. After the general Lagrangian for ADC models is
introduced, the expressions for the amplitude response for mod-
els up to ADC(3) are presented. How the expressions for the den-
sity matrices can be derived is briefly demonstrated for the expres-
sions of ADC(2), and the results for all models are collected in the
Appendix.

II. THEORY AND IMPLEMENTATION
A. The ADC energy expression

The central equation in an ADC scheme of a particular propa-
gator is the Hermitian eigenvalue problem

MX = XΩ, (3)

which needs to be solved. In the case of ADC for the polarization
propagator, the so-called ADC matrix M has originally been derived
as a “nondiagonal” matrix representation of the polarization propa-
gator Πpq,rs = Π+

pq,rs + Π−
pq,rs which has in the spectral representation

the form

Πpq,rs(ω) = ∑
n≠0

⎛

⎝

⟨Ψ0∣ĉ†q ĉp∣Ψn⟩⟨Ψn∣ĉ†r ĉs∣Ψ0⟩

ω − (En − E0)

⎞

⎠
+ Π−

pq,rs(ω). (4)

Here, |Ψ0⟩ denotes the electronic ground state wavefunction with the
corresponding energy E0, ĉ†q and ĉq are creation (and annihilation)
operators defined with respect to the Hartree–Fock (HF) reference.
The summation on the rhs of Eq. (4) is carried out over all elec-
tronically excited states |Ψn⟩ with respective energies En. The ADC
approach postulates the existence of a representation

Πpq,rs(ω) = F†
(1ω −M)−1F + Π−

pq,rs(ω). (5)

The excitation energies {ωn = En − E0} can be found as poles of
Π+

pq,rs, which yields Eq. (3), where 
 is a diagonal matrix of the
excitation energies and X is a unitary matrix of the eigenvectors
xn of the ADC matrix and connects the ADC representation of
the polarization propagator to the “diagonal” form. Additionally,
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transition properties can be obtained through the so-called “mod-
ified transition amplitudes” F.

Originally, the expressions of the ADC matrix have been
obtained by comparing a perturbation expansion of the polarization
propagator with a series expansion of M

M =M(0) + M(1) + M(2) +⋯. (6)

The diagrammatic analysis of the perturbation expansion of the
polarization propagator using the MP partitioning8 leads to alge-
braic expressions for the matrix elements of M.

An alternative route to the ADC matrix equation is offered
by the so-called intermediate state representation (ISR).44 Here,
the matrix M is identified as a representation of the ground-state-
energy-shifted electronic Hamiltonian H of the molecular system in
the orthonormal basis of so-called intermediate states {∣Ψ̃I⟩},

MIJ = ⟨Ψ̃I ∣H − E0∣Ψ̃J⟩ = ⟨Ψ̃I ∣H∣Ψ̃J⟩ − δIJE0. (7)

The intermediate states are constructed from so-called correlated
excited states ∣ΨI

0⟩, which are formed by letting excitation opera-
tors {ĈI} act on the exact ground state wavefunction. The successive
orthonormalization with respect to the ground state and each other
using the Gram-Schmidt procedure yields the intermediate states

∣ΨI
0⟩ = ĈI ∣Ψ0⟩

GS
Ð→ ∣Ψ̃I⟩. (8)

To obtain the ADC matrix expressions, the intermediate states
are constructed as indicated in Eq. (8) and the exact ground state
wavefunction and energy are replaced by series expansions

∣Ψ0⟩ = ∣Ψ0⟩
(0) + ∣Ψ0⟩

(1) + ∣Ψ0⟩
(2) +⋯, (9)

E0 = E(0)0 + E(1)0 + E(2)0 +⋯. (10)

Again by using the MP-splitting of the Hamiltonian and collecting
terms up to the respective order of a given ADC model, the identi-
cal algebraic expressions are obtained as in the original derivation.
Following the ISR concept yields two major results which exceed the
original derivation of the ADC expressions using propagator theory.
First of all, the ISR offers an efficient and convenient way to calculate
excited-state and transition properties since every operator, e.g., the
dipole operator, can be represented in the intermediate state basis.
Second, absolute energies can be obtained as eigenvalues of the rep-
resentation of the unshifted Hamiltonian in the intermediate state
basis

M̃IJ = ⟨Ψ̃I ∣H∣Ψ̃J⟩ =MIJ + δIJE0, (11)
which are given as

En = x†
nM̃xn = x†

nMxn + E0 = ωn + E0. (12)

Thus, the ground state energy corresponding to a given ADC(N)
model is given by the ground state MP(N) energy.

B. ADC Lagrangian and analytic energy derivatives
As given in Eq. (12), the total ADC energy En of an excited state

depends on the eigenvector xn and the parameters stemming from
the MP-expansion of the wavefunction and energy, which will be

called T in the following. In addition, En depends on the parameters
from the reference state ∣Ψ0⟩

(0) and the elements {Cµp} of the orbital
transformation matrix C, which transforms from atomic orbitals
{χµ} to molecular orbitals {�p},

φp = ∑
µ
Cµpχµ. (13)

The total derivative of E(x, T, C) with respect to a perturbation
ξ is given as

dE
dξ

=
∂E
∂ξ

+
∂E
∂x

dx
dξ

+
∂E
∂T

dT
dξ

+
∂E
∂C

dC
dξ

, (14)

where the index n has been dropped for brevity. The first thing to
note is that the second term on the rhs of Eq. (14) vanishes since
the excitation energy is stationary with respect to the eigenvector.
From the remaining three contributions to the total derivative, the
first term, the so-called Hellmann-Feynman term, can, in principle,
directly be evaluated in a straightforward way from the perturbed
Hamiltonian. This is done by contracting the one- and two-particle
density matrices with the derivative of the one- and two-electron
integrals (hpq = ⟨ p|ĥ|q⟩ and ⟨pq||rs⟩)

∂E
∂ξ

= ∑
pq

hξpqγpq +
1
4 ∑pqrs
⟨pq∣∣rs⟩ξΓpqrs. (15)

More demanding is the evaluation of the two remaining terms, i.e.,
the dependence of the parameters with respect to the perturbation.
However, the so-called amplitude and orbital response contribu-
tions, dT

dξ and dC
dξ , respectively, can be avoided and the total derivative

can be obtained in a convenient and efficient way offered by the
Lagrangian method.

As first realized by Handy and Schaefer,11 the total derivative
can be evaluated for all post-Hartree–Fock methods, including ADC,
in the same way as the partial derivative and requires in addition
only a set of Lagrange multipliers Θ = {θpq} and the derivative of the
overlap matrix S = {Spq} = {⟨�p|�q⟩} of the molecular orbitals, which
can be obtained by transforming from the AO basis,

∂Spq
∂ξ

= Sξpq = ∑
µν

CµpSξµνCνq. (16)

By introducing effective one- and two-particle density matrices γe
and Γe, the total derivative can be written as

dE
dξ

= ∑
pq

hξpqγ
e
pq +

1
4 ∑pqrs
⟨pq∣∣rs⟩ξΓepqrs +∑

pq
θpqSξpq. (17)

Three different parts contribute to the effective density matrices in
Eq. (17), and their explicit form can be derived using the Lagrange
formalism. Generally, a Lagrangian for wavefunction-based meth-
ods can be used to avoid the computation of partial derivatives with
respect to nonoptimized wavefunction parameters. It can be con-
structed using the conditions for the equations of the underlying
reference state and the correlation treatment. If canonical Hartree–
Fock is used, the Fock matrix F = {f pq} is diagonal and the overlap
matrix S is the unity matrix, which can be expressed as
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fpq − δpq�p = 0 and Spq − δpq = 0. (18)

In the same way, {f z} are equations that satisfy the condition

fz(tz) = 0 (19)

for the parameters of the MP perturbation expansion (or in gen-
eral the correlation treatment) T = {tz}. Using Eqs. (18) and (19),
a general Lagrangian for methods based on canonical Hartree–Fock
(restricted and unrestricted) can be constructed as36

L(C,T,Λ,Θ, T̃) = E(C,T) +∑
pq
λpq( fpq − δpq�p)

+∑
pq
ωpq(Spq − δpq) +∑

z
t̃zfz(tz). (20)

Here, Λ = {λpq} and T̃ = {t̃z} are additional sets of undetermined
Lagrange multipliers. It should be noted that the Lagrange multi-
plier matrices Λ and Θ are symmetric. The additional terms besides
the energy are zero, if the conditions of Eqs. (18) and (19) are
satisfied.

From the definition of the Lagrangian L follows directly that it
is stationary with respect to the Lagrange multipliers

∂L
∂λpq

= fpq − δpq�p = 0,

∂L
∂ωpq

= Spq − δpq = 0,

∂L
∂tz

= fz(tz) = 0.

(21)

The undetermined Lagrange multipliers can be chosen freely and are
defined by imposing

∂L
∂C

!
= 0 (22)

and

∂L
∂T

!
= 0, (23)

meaning that L is stationary with respect to all nonvariational
parameters. Thus, the Lagrangian is stationary with respect to all
wavefunction parameters (and Lagrange multipliers) and the total
derivative of L becomes equal to the partial derivative. From the def-
inition of L in Eq. (20) follows that the total derivative of the energy
E with respect to a perturbation ξ is given by

dE
dξ

=
dL
dξ

!
=
∂L
∂ξ

, (24)

if the Lagrange multipliers satisfy Eqs. (22) and (23).
The partial derivative of L with respect to ξ is given by

∂L
∂ξ

=
∂E
∂ξ

+∑
pq
λpq

∂fpq
∂ξ

+∑
pq
ωpq

∂Spq
∂ξ

+∑
i
t̃i
∂fi(ti)
∂ξ

(25)

and can be sorted and rewritten as

∂L
∂ξ

= ∑
pq

hξpq(γpq(T) + γOpq(Λ) + γApq(T̃))

+
1
4 ∑pqrs
⟨pq∣∣rs⟩ξ(Γpqrs(T) + ΓOpqrs(Λ) + ΓApqrs(T̃))

+∑
pq
ωpqSξpq. (26)

By comparison with Eq. (26), the effective density matrices occur-
ring in Eq. (17) can be identified as

γe = γ(T) + γO(Λ) + γA(T̃) (27)

and

Γe = Γ(T) + ΓO(Λ) + ΓA(T̃). (28)

The so-called unrelaxed densities γ(T) and Γ(T) are identical to
those in Eq. (15) and depend on the parameters of the correlation
treatment. Both remaining terms on the rhs of Eqs. (27) and (28)
depend on the Lagrange multipliers. The orbital response contri-
butions, γO(Λ) and ΓO(Λ), depend on the set of Lagrange multipli-
ers, which guarantees stationarity of the Lagrangian with respect to
changes in the parameters of the orbital basis. Their explicit form
is method-independent, and its derivation is only briefly reviewed
in Sec. II C. A detailed derivation can be found in the work of
Levchenko et al.36 The method-dependent amplitude response con-
tributions, γA(T̃) and ΓA(T̃), depend on the Lagrange multipliers
ensuring stationarity of L with respect to the parameters of the cor-
relation treatment. Their explicit form is discussed for each model
individually in Sec. II D.

C. Orbital response expressions
To determine the orbital response Lagrange multipliers, a

system of linear equations has to be solved, determined by the
imposed condition given in Eq. (22). This system of linear equa-
tions can be derived starting from the definition of the Lagrangian in
Eq. (20),

L = E +∑
pq
λpq( fpq − δpq�p) +∑

pq
ωpq(Spq − δpq) +∑

z
t̃zfz(tz). (29)

It is useful to express the energy, using the relation between the Fock
matrix

fpq = hpq +∑
i
⟨pi∣∣qi⟩ (30)

and the core Hamiltonian hpq, as

E = ∑
pq

fpqγ̃pq +
1
4 ∑pqrs
⟨pq∣∣rs⟩Γ̃pqsr . (31)

The introduced densities γ̃ and Γ̃ are identified as

γ̃pq = γpq, (32)

Γ̃pqrs = Γpqrs − γpsδqrδq∈occ. + γprδqsδq∈occ. + γqsδprδp∈occ. − γqrδpsδp∈occ..
(33)
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Here, Γ̃ is the so-called nonseparable part of the two-particle den-
sity matrix and δp∈occ. means that the nonseparable density matrix
has only nonzero blocks where p is an occupied index. In the same
way, the explicit form of the orbital response contributions can be
identified as

γOpq = λpq, (34)

ΓOpqrs = 2(−λpsδqrδq∈occ. + λprδqsδq∈occ. + λqsδprδp∈occ. − λqrδpsδp∈occ.).
(35)

The Lagrangian is sorted, collecting all contributions besides
the orbital response Lagrange multipliers in

γ′(T, T̃) = γ(T) + γA(T̃) and Γ′(T, T̃) = Γ̃(T) + ΓA(T̃) (36)

and, thus, written as

L = ∑
pq

fpqγ′pq +
1
4 ∑pqrs
⟨pq∣∣rs⟩Γ′pqrs +∑

pq
λpq( fpq − δpq�p) +∑

pq
ωpqSpq.

(37)

Now, the partial derivatives with respect to the elements of the
orbital transformation matrix C are evaluated. The Lagrangian
depends on the elements of C through the Fock matrix, the two-
electron integrals, and the overlap matrix. The system of linear
equations according to Eq. (22) has the form

0 = ∑
pq

∂fpq
∂Cµp

(γ′pq + λpq) +
1
4 ∑pqrs

∂⟨pq∣∣rs⟩
∂Cµp

Γ′pqrs +∑
pq
ωpq

∂Spq
∂Cµp

. (38)

To obtain programmable expressions from Eq. (38) and to
avoid expressions with partially transformed integrals,

∂L
∂Cµp

= 0 (39)

is replaced by

∑
µ
Cµq

∂L
Cµp

= 0, (40)

and the partial derivatives are performed. Evaluation of the required
derivatives of the Fock matrix, the two-electron integrals, and the
overlap matrix is straightforward.36 Equation (39) yields

0 = ∑
µ
Cµu

∂L
∂Cµt

= ∑
pq
(λpq + γ′pq)(δptfuq + δqtfpu + (⟨pu∣∣qt⟩ + ⟨pt∣∣qu⟩)δt∈occ.)

+∑
pqr

1
2
(Γ′tpqr⟨up∣∣qr⟩ + Γ′qrtp⟨qr∣∣up⟩)

+∑
pq
ωpq(δptSuq + δqtSpu), (41)

which can be simplified by assuming real two-electron integrals and
using f pq = �pδpq, Spq = δpq, as well as the symmetry of Λ and 
 to
arrive at

0 = ∑
µ
Cµu

∂L
∂Cµt

= 2(λtu + γ′tu)�u +∑
pq
(γ′pq + λpq)(⟨pu∣∣qt⟩δt∈occ.)

+∑
pqr

Γ′tpqr⟨up∣∣qr⟩ + 2ωut . (42)

Choosing the indices t and u in Eq. (42) from different orbital
spaces, respectively, enables the decoupling of Λ and 
. Through-
out this paper, indices i,j,k, . . . refer to occupied orbitals and indices
a,b,c, . . . refer to virtual orbitals,

0 = ∑
µ
Cµi

∂L
∂Cµa

−∑
µ
Cµa

∂L
∂Cµi

= 2(λia + γ′′ia)(�i − �a) +∑
pq
(λpq + γ′′pq)(⟨pa∣∣qi⟩ − ⟨pi∣∣qa⟩)

+∑
pqr
(Γ′′ipqr⟨ap∣∣qr⟩ − Γ′′apqr⟨ip∣∣qr⟩). (43)

If no approximations restricting the active orbital space are
employed, λij and λab are zero since the energy is invariant with
respect to orbital rotations within the space of occupied or virtual
orbitals. However, for frozen core or frozen virtual approximations,
λij and λab can be obtained through the equations,

0 = ∑
µ
Cµi

∂L
∂Cµj

−∑
µ
Cµj

∂L
∂Cµi

and 0 = ∑
µ
Cµa

∂L
∂Cµb

−∑
µ
Cµb

∂L
∂Cµa

(44)

and then enter Eq. (43).
It should be noted that the contributions from the Hartree–

Fock energy to Eq. (43) cancel and, thus, γ′ and Γ′ are replaced
by

γ′′pq = γ
′
pq − δpqδp∈occ. and

Γ′′pqrs = Γ′pqrs + δpsδqrδp∈occ.δq∈occ. − δprδqsδp∈occ.δq∈occ.. (45)

After the occupied-virtual block of Λ has been determined itera-
tively, Eq. (42) can be used to determine 
.

D. Amplitude response expressions
The total ADC energy E of an excited state in terms of the

excited state vector x = (xia, xijab,...)
T is given as

E = EMP
0 + ωADC

= EMP
0 + x†Mx. (46)

A general Lagrangian for the total energy at a given ADC(n) level for
n⩾1 is thus constructed as

LADC(n) = EHF +
N
∑
i>1
(E(i) + x†M(i)x) + RADC(N)

A + RO(Λ,Ω)

= EHF +∑
pq

fpqγNpq +
1
4 ∑pqrs
⟨pq∣∣rs⟩ΓNpqrs + RO(Λ,Ω) (47)
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with the orbital response contributions collected in

RO(Λ,Ω) = ∑
pq
λpq( fpq − δpq�p) +∑

pq
ωpqSpq. (48)

The Lagrange multipliers and conditions RA, i.e., the amplitude
response contribution, ensure stationarity with respect to parame-
ters originating from the perturbation treatment occurring in the
ADC(N) matrix and EMP(N)

0 . These are the so-called t-amplitudes for
MP(2), ADC(2), and ADC(2)-x, additionally the TD-amplitudes for
MP(3), and furthermore the second order ground state density cor-
rection ρ(2) for ADC(3). For the ADC(0–1) schemes, the total energy
of an excited state depends only on the parameters of the underly-
ing reference state and the excitation vector, and thus, no additional
Lagrange multipliers are required. The explicit form of the ampli-
tude response contribution for MP and ADC models up to third
order is given here,

RADC(0)
A = RADC(1)

A = 0, (49)

RADC(2)
A = RADC(2)−x

A = ∑
ijab

t̄ijabf (tijab) = RMP(2)
A , (50)

RMP(3)
A = ∑

ijab
t̄ijabf (tijab) +∑

ijab
T̄D
ijabg(T

D
ijab)

= RMP(2)
A +∑

ijab
T̄D
ijabg(T

D
ijab), (51)

RADC(3)
A = ∑

ijab
t̄ijabf (tijab) +∑

ijab
T̄D
ijabg(T

D
ijab) +∑

pq
ρ̄pqh(ρ(2)pq )

= RMP(3)
A +∑

pq
ρ̄pqh(ρ(2)pq ). (52)

These amplitude response contributions depend on the parameters
contained in the MP perturbation expansions

tijab =
⟨ij∣∣ab⟩

�a + �b − �i − �j
, (53)

TD
ijab =

∑kc tikac⟨kb∣∣ jc⟩ − 1
2(∑cd tijcd⟨ab∣∣cd⟩ +∑kl tklab⟨ij∣∣kl⟩)
�a + �b − �i − �j

=
ITijab

�a + �b − �i − �j
, (54)

ρ(2)ia = −
1

2�a − �i
⎛

⎝
∑
jbc

tijab⟨ ja∣∣bc⟩ + tjkab∑
jkb
⟨ jk∣∣ib⟩

⎞

⎠
=

Iρia
�a − �i

. (55)

Here, the intermediates ITijab and Iρia have been introduced as short-
hand notation. In this work, the second order MP correction to the
ground state density matrix is used in the ADC(3) matrix and the
stationarity of the Lagrangian with respect to the occupied-occupied
and virtual-virtual blocks of ρ(2) is guaranteed through the Lagrange
multipliers {t̄} since they contain only products of t-amplitudes.
However, for the occupied-virtual part, additional Lagrange mul-
tipliers {ρ̄ia} are required. If higher-order corrections for the one-
particle ground state density are employed, e.g., using the so-called
Dyson expansion method (DEM),45 different side conditions have to
be included in the Lagrangian.

The conditions for the amplitude response equation for each
parameter set follow directly from their definition as

0 = f (tijab) = tijab(�a + �b − �i − �j) − ⟨ij∣∣ab⟩, (56)

0 = g(TD
ijab) = TD

ijab(�a + �b − �i − �j) − ITijab, (57)

0 = h(ρ(2)ia ) = ρ
(2)
ia (�a − �i) − Iρia. (58)

Once the Lagrange multipliers are obtained, the amplitude-relaxed
density matrices can be straightforwardly computed. The explicit
form of these density matrices γN and ΓN is identified for each
ADC(N) model by comparison of the left- and right-hand sides
of

N
∑
i>1
(E(i) + x†M(i)x) + RADC(N)

A = ∑
pq

fpqγNpq +
1
4 ∑pqrs
⟨pq∣∣rs⟩ΓNpqrs.

(59)

To obtain the numerical equations for the Lagrange multipliers, the
partial derivative of the Lagrangian with respect to each parameter
set has to be evaluated.

As mentioned already above, in the ADC(2) and ADC(2)-x
schemes, the only nonvariational parameters are the t-amplitudes
besides the parameters of the reference state. Evaluating the partial
derivative of the respective Lagrangian

0 =
∂L
∂tijab

=
∂(E(2) + ωADC(2)

)

∂tijab
+
∂∑klcd t̄klcdf (tklcd)

∂tijab

= − ⟨ij∣∣ab⟩ +
∂ωADC(2)

∂tijab
+ t̄ijab(�a + �b − �i − �j) (60)

yields the numerical equations for the Lagrange multipliers, which
reads

t̄ADC(2)ijab = tijab −
∂ωADC(2)

∂tijab

�a + �a − �i − �j
. (61)

It should be noted that for MP(2), the Lagrange multipliers {t̄} do
not need to be computed separately since they are equivalent to the t-
amplitudes.46 The partial derivative of the ADC(2) excitation energy
with respect to the t-amplitudes yields (for details, see the Appendix)

∂ωADC(2)

∂tijab
= (1 − P̂ab)∑

c
⟨ij∣∣bc⟩∑

k
xkaxkc

−(1 − P̂ij)∑
k
⟨ jk∣∣ab⟩∑

c
xicxkc

−(1 − P̂ij)(1 − P̂ab)xia∑
ck
⟨ jk∣∣bc⟩xkc. (62)

Here, the permutation operator P̂pq has been introduced which
interchanges indices p and q.

In the ADC(3) scheme, the amplitude response contains two
additional sets of Lagrange multipliers besides the t-amplitudes.
Since the determining equations for {t̄} depend on the Lagrange
multipliers for the TD-amplitudes and the second order one-particle
density ρ(2), these last two sets of Lagrange multipliers must be
computed first according to
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T̄D
ijab = tijab −

∂ωADC(3)

∂TD
ijab

�a + �a − �i − �j
. (63)

Similar to MP(2), the Lagrange multipliers {T̄D
} do not have to be

computed separately for MP(3) since they can be replaced by the
scaled t-amplitudes.47 The TD-amplitudes enter the ADC(3) matrix
at the same positions as the t-amplitudes enter the ADC(2) matrix,
and thus the partial derivative of the ADC(3) excitation energy
with respect to the TD-amplitudes yields the same expression as in
Eq. (62)

∂ωADC(3)

∂TD
ijab

=̂
∂ωADC(2)

∂tijab
. (64)

By evaluating the partial derivative of L with respect to the occupied-
virtual part of ρ(2), the equations for the Lagrange multipliers ρ̄ia are
determined via

ρ̄ia =
−∂ωADC(3)

∂ρ(2)
ia

�a − �i
=

2
�a − �i

⎛

⎝
−∑

jk
⟨ij∣∣ka⟩∑

c
xjcxkc +∑

jb
xjb∑

k
⟨ij∣∣kb⟩xka

−∑
bc
⟨ic∣∣ab⟩∑

k
xkbxkc +∑

jb
xjb∑

c
⟨ jc∣∣ab⟩xic

⎞

⎠
.

(65)

For ADC(3), the expressions determining t̄ are sorted into four
different parts, i.e.,

t̄ADC(3)ijab = tijab +
∑

6
n=1

n t̃ijab + t̃T
D

ijab + t̃ρijab
�a + �b − �i − �j

. (66)

The first term on the rhs of Eq. (66), the t-amplitudes, stems from the
second order contribution to the ground state energy. The second
term is the partial derivative of ω with respect to the t-amplitudes
again split into six contributions from different canonical blocks of
the two-particle density matrix. The remaining contributions arise
from the partial derivatives of the equations determining TD and
ρ(2)ia . Explicit expressions for the terms in Eq. (66) can be found in
the Appendix.

E. Implementation
The analytical energy derivatives have been implemented in

a development version of the quantum chemical program pack-
age Q-Chem 4.4.48 All implementations have been integrated in the
adcman module,49 which is a C++ project containing different vari-
ants of ADC and which can in principle be integrated into other
quantum chemical programs as well due to the modular structure
of adcman and the related libraries. The implementation relies on
the open-source tensor library libtensor,50 which handles all alge-
braic operations using optimized linear algebra routines at its core. It
splits large tensors into smaller blocks, which are stored on different
levels of memory, i.e., core memory and disk-space, enabling parallel
algorithms. In addition, libtensor provides a convenient interface
facilitating straightforward implementations of tensor expres-
sions. It treats symmetries which are encountered in quantum

chemical calculations, i.e., permutation and spin symmetry as well
as point-group symmetry.

The evaluation of analytical energy derivatives is performed fol-
lowing the same algorithm for all implemented ADC models. First,
the eigenvalue problem of the respective ADC matrix is solved using
the Davidson algorithm.51 In the next step, the amplitude Lagrange
multipliers are computed. In the case of ADC(3), the Lagrange mul-
tipliers for the MP(2) density and the TD-amplitudes have to be
evaluated first because they are required for the computation of
the t-amplitude Lagrange multipliers. Successively, the amplitude-
relaxed one- and two-particle density matrices are computed, which
are used as input for the orbital response. The orbital response
Lagrange multipliers are found as the solution of a system of lin-
ear equations, which is solved using the DIIS algorithm.52 In the
last step, the fully relaxed density matrices and the overlap Lagrange
multipliers are transformed into the AO basis and contracted with
the perturbed integrals and overlap matrix to obtain the energy
derivative.

To validate the correct derivation and implementation of the
analytic derivatives, a comparison with numerical derivatives has
been made.53 A compilation of results for numerical and analytical
derivatives can be found in the supplementary material.

III. APPLICATIONS
To test the accuracy and elucidate the range of applicability of

the newly derived analytic nuclear gradients of the ADC schemes of
the polarization propagator up to third order, three different classes
of molecules have been chosen and the equilibrium geometries of
their excited singlet S1 states have been computed. All excited-state
optimizations have been performed using the implementation pre-
sented in this work. In the following, equilibrium distances in the
first excited singlet state of the three diatomic molecules N2, BF,
and CO have been calculated since highly accurate experimental
as well as theoretical reference data are available. To compare with
existing results at the ADC(2) level from the literature,34 the equi-
librium distances have been obtained using the aug-cc-pwCVQZ
basis set.54–56 As the second test, the equilibrium structures of two
small organic molecules, s-trans-butadiene (butadiene) and s-trans-
acrolein (acrolein) (Fig. 1), in the excited S1 state are computed, for
which CASPT2 reference data are available. For direct comparison,
butadiene and acrolein have been optimized at ADC levels using
the 6-31G∗ basis set enforcing C2h and CS point group symmetry,
respectively.

As the third example, the vertical fluorescence and absorp-
tion energies of s-trans-(2,2′)-bithiophene (BT) (Fig. 1) have been
calculated and are compared to experimental results. Oligothio-
phenes play important roles in medical and technical applications,
and their derivatives are often used as electron donors in the field
of organic solar cells57–59 and as imaging agents for the detection
of β-amyloid protein deposits,60 which are the main effectors in
Alzheimer’s disease. The key mechanism, which can also be studied
in the bithiophene molecule, is the planarization of the otherwise
nonplanar bithiophene upon electronic excitation. It is accompa-
nied by a significant Stokes shift of the fluorescence wavelength
and induces conformational changes in its molecular environment.
For the simulation of the Stokes shift, the equilibrium structure
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FIG. 1. Molecular structure of test molecules, for which high-quality data for the
excited-state equilibrium geometries is available for comparison.

of the first excited singlet state of bithiophene has been com-
puted at ADC levels using the cc-pVDZ basis set and enforcing C2
symmetry.

A. Excited-state interatomic distances in diatomics
The first and simplest test of the accuracy of the nuclear

gradients of ADC methods is performed for the interatomic dis-
tances in the diatomics N2, CO, and BF. In Table I, the equilib-
rium interatomic distances for the lowest excited singlet state of
these diatomics obtained at ADC levels are compared to the theo-
retical values obtained at EOM-CCSD and CC3 levels34 as well as
with experimental ones.61 A detailed comparison for interatomic
distances between ADC(2) and CC2 equilibrium structures is
already available in the literature34 and thus omitted here.

Overall, CC3 shows clearly the best agreement for the three cal-
culated intermolecular distances of the S1 states compared with the
experimental data. ADC(3) and CCSD underestimate the equilib-
rium intermolecular distances, while ADC(2) and ADC(2)-x overes-
timate them. ADC(2) shows the largest errors, and in all three cases,
ADC(2)-x improves over the ADC(2) results. For the first excited
1Σu state of N2, ADC(3) yields results with an accuracy comparable

TABLE I. Comparison of the equilibrium distances of the first excited singlet states of
the three isoelectronic diatomic molecules N2, CO, and BF computed at ADC levels
compared to the values obtained at CCSD and CC3 levels. For these calculations,
the aug-cc-pwCVQZ basis set has been used.

ADC(2) ADC(2)-x ADC(3) CCSDa CC3a Expt.b

N2
1Σ−u 1.290 1.288 1.272 1.248 1.280 1.275

CO 1Π 1.278 1.250 1.210 1.222 1.245 1.235
BF 1Π 1.312 1.312 1.294 1.301 1.307 1.304

aReference 34.
bReference 61.

to CC3, while CCSD underestimates the bond lengths by 0.027 Å.
All ADC models show the largest error for the first excited 1Π state
of CO. ADC(2) largely overestimates the excited-state bond lengths
by 0.043 Å, while ADC(3) underestimates it by 0.025 Å. For the
BF molecule, ADC(2) and ADC(2)-x yield identical values overes-
timating the equilibrium distance of the 1Π excited state by 0.008 Å;
by contrast, ADC(3) underestimates it by approximately the same
amount of 0.010 Å.

B. Excited-state equilibrium geometries
of s-trans -butadiene and s-trans -acrolein

As the first test for organic molecules, the equilibrium struc-
tures of s-trans-butadiene in the primarily single excited 11B+

u and
the primarily doubly excited 21A−

g have been optimized at ADC lev-
els and compared to CASPT2 reference data. The bond lengths and
angles of the excited-state equilibrium structure are summarized in
Table II. For the singly excited 11B+

u state of butadiene, the optimized
geometrical parameters of the equilibrium structure are very similar
at all ADC levels and close to those obtained by CASPT2. The single
bonds are obtained as 1.399 Å at the CASPT2 level and as 1.397 Å
in the ADC(2) and ADC(3) structure. ADC(2)-x yields a length for
the single bonds of 1.400 Å. At the CASPT2 level, the original double
bonds are 0.022 Å longer than the original central single bond at the
equilibrium structure of the 11B−g state. This effect of bond-length
inversion in this state is slightly more pronounced at the ADC(2)
and ADC(3) levels (0.027 Å), as well as in the ADC(2)-x optimized
equilibrium structure (0.025 Å).

In general, the 21A−
g state of s-trans-butadiene and linear

all-trans-polyenes is recognized as notoriously difficult to be
described correctly by electronic structure methods. For this pre-
dominantly doubly excited state, the single bond length of the equi-
librium structures is again very similar at ADC(2) and ADC(3)
levels, both with 1.399 Å, and 1.401 Å at the CASPT2 level. Only
ADC(2)-x gives a smaller value of 1.381 Å. However, the bond-
length inversion is generally larger in the 21A−

g state compared to
the 1B+

u state due to the double-excitation character of the former.
Compared to the CASPT2 equilibrium structure, the inversion pat-
tern is described qualitatively differently by ADC(2) compared to

TABLE II. Excited state equilibrium bond lengths and angles in Å and degrees for the
first two excited states of butadiene. The ADC results have been obtained using the
6-31G∗ basis set, and CASPT2 results are taken from Ref. 62.

CASPT2a ADC(2) ADC(2)-x ADC(3)

11B+
u π→ π∗

C==C 1.421 1.424 1.425 1.424
C−−C 1.399 1.397 1.400 1.397
∠ C==C−−C 124.1 124.9 124.7 124.7

21A−
g π→ π∗

C==C 1.500 1.488 1.563 1.543
C−−C 1.401 1.399 1.381 1.399
∠ C==C−−C 123.3 121.3 124.3 124.0

aReference 62.
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ADC(2)-x and ADC(3). This different behavior has its origin in the
different perturbation-theoretical treatment of doubly excited states.
While doubly excited states are described correctly only at zeroth
order on ADC(2), at ADC(2)-x and ADC(3) levels, they are cor-
rect up to first order. As a consequence, ADC(2) underestimates
the difference between single and double bond lengths with 0.089
Å in the 21A−

g state with only 0.089 Å, while ADC(2)-x and ADC(3)
overestimate it with 0.183 Å and 0.144 Å, respectively, compared to
CASPT2.

Turning to acrolein as the second organic test molecule, the
computed bond lengths and angles of the equilibrium structure of
acrolein for the first excited state 11A″ are given in Table III. In this
case, the largest difference in the geometrical parameters obtained
at different ADC models is observed for the carbon-oxygen bond
length. Compared to the CASPT2 structure which has a C−−O bond
length of 1.345 Å, ADC(2) and ADC(2)-x (1.392 overestimate the
carbon-oxygen bond length to be 1.425 and 1.392 Å, respectively.
As in the case of CO, ADC(3) underestimates also this C−−O bond
lengths with 1.300 Å. Considering the C−−C bond lengths, CASPT2
describes the single bond slightly shorter with 1.384 Å compared
to 1.393 Å for the carbon-carbon double bond in the 11A

″
state.

For both ADC(2) and ADC(2)-x structures, the C−−C double bond
is longer than the single bond in the excited state. However, while
the difference in length is the same as for CASPT2 and ADC(2)
with 0.009 Å, in the case of ADC(2)-x, it is significantly larger with
0.059 Å. In contrast to ADC(2) and ADC(2)-x, ADC(3) describes
the changes in the carbon-carbon bonds qualitatively different com-
pared to CASPT2. Here, the bond length of the double bond is
shorter than the single bond by 0.015 Å.

C. Fluorescence of s-trans -(2,2′)-bithiophene
As the third example, the equilibrium geometry of s-trans-

(2,2′)-bithiophene (BT) has been optimized in the first excited
11B1 singlet state at ADC levels and the corresponding fluores-
cence energy has been calculated. The 11B1 excited singlet state
has predominantly single excitation character and is essentially
characterized as one-electron transition from the highest occupied
into the lowest unoccupied molecular orbital. The obtained geo-
metrical parameters for the equilibrium structure of BT are com-
piled in Table IV together with those obtained previously at the
CASSCF(12,10)/cc-pVDZ level63 for the 11B1 state and those for the

TABLE III. Excited state equilibrium bond lengths and angles in Å and degrees for the
first excited state 11A″ of acrolein obtained using ADC(2)-x, ADC(3), and CASPT2
using the 6-31G∗ basis set.

CASPT2a ADC(2) ADC(2)-x ADC(3)

11A″ n→ π∗

C==O 1.345 1.425 1.392 1.300
C−−C 1.384 1.376 1.359 1.400
C==C 1.393 1.385 1.418 1.385
∠ C==C−−C 122.1 121.9 122.9 124.4
∠ C−−C==O 125.2 125.3 124.4 124.3

aReference 62.

TABLE IV. Parameters of the first excited state 11B1 equilibrium structure of s-trans-
(2,2′)-bithiophene in Å and degrees obtained using ADC(2), ADC(2)-x, ADC(3), and
CASSCF(12,10) using the cc-pVDZ basis set compared to those of the MP(2)/def-
TZVPP ground state equilibrium structure.

MP CASSCF ADC ADC ADC
(2)a (12,10)b (2) (2)-x (3)

11A1 11B1 π→ π∗
∠ S−−C2−−C′

2−−S′ 150.1 180.0c 180.0 180.0 180.0
∠ S−−C2−−C′

2 120.7 . . . 119.5 119.1 120.3
∠ C2−−S−−C5 92.7 . . . 90.9 91.1 90.8
S−−C2 1.714 1.768 1.792 1.788 1.786
S−−C5 1.702 1.739 1.728 1.728 1.734
C2−−C′

2 1.445 1.378 1.388 1.390 1.392
C2−−C3 1.385 1.446 1.444 1.446 1.443
C3−−C4 1.407 1.401 1.395 1.398 1.397
C4−−C5 1.377 1.405 1.414 1.417 1.408

aMP(2)/def-TZVPP.
bReference 63.
cAngle of 180○ enforced by C2v symmetry.

electronic ground state computed at the MP2 level. BT is not planar
in the electronic ground state and exhibits a central dihedral angle
of about 150○ at the MP2 level; however, it is known to planarize
upon electronic excitation.60 All excited state methods, ADC as well
as CASSCF, reproduce this planarization of BT in the first excited
state, and the obtained equilibrium structure of the 11B1 state has
C2v symmetry. Overall, all computed bond lengths of the equilib-
rium structures at all three tested ADC levels agree very favorably
and differ by less than 0.01 Å. Also, CASSCF yields a very similar
excited-state equilibrium geometry and the largest difference com-
pared to the ADC structures is found in the sulfur-carbon bond
S−−C2 of about 0.02 Å.

To relate the optimized S1 equilibrium structures of BT to an
experimental observable, vertical absorption and fluorescence ener-
gies, as well as the resulting Stokes shifts, have been computed at
all ADC levels, which are compiled in Table V. The corresponding

TABLE V. Vertical absorption and fluorescence energies (in eV) with the correspond-
ing oscillator strengths as well as the Stokes shift for the 11B1 state of s-trans-(2,2′)-
bithiophene at ADC(2), ADC(2)-x, and ADC(3) levels using the cc-pVDZ basis set
compared to experimental values.

ADC ADC ADC
(2) (2)-x (3) Exp.

11B1 π→ π∗
Vertical absorption 4.74 4.14 4.58 4.13a, 3.86 (0-0)a

fosc 0.47 0.36 0.43
Vertical fluorescence 3.81 3.23 3.63 3.40b

fosc 0.50 0.38 0.45
Stokes shift 0.93 0.91 0.95 0.46–0.73

aReference 64.
bReference 65.
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absorption energies have been obtained at the MP2/def2-TZVPP
ground state structure, and the Stokes shift is defined as the differ-
ence between the absorption and fluorescence energy.

The calculated absorption and fluorescence energies at the
ADC levels show the typical behavior previously observed for
ADC(2), ADC(2)-x, and ADC(3).6 ADC(2) overestimates the verti-
cal excitation energies, while ADC(2)-x excitation energies are sub-
stantially smaller and ADC(3) results lie usually in between. In detail,
the computed vertical absorption energies are 4.74, 4.14, and 4.58 eV
at ADC(2), ADC(2)-x, and ADC(3) levels of theory, and also the
computed fluorescence energies follow the same trend with 3.81,
3.23, and 3.63 eV, respectively. In comparison with the experimen-
tal values, ADC(2)-x seems to be the most accurate; however, the
computed vertical energies do not directly correspond to the experi-
mental values because vibrational and environmental effects are not
included. In addition, a rather small basis set has been used for
these first proof-of-principle calculations. However, the experimen-
tally observed large Stokes shift of about 0.7 eV is well reasonably
reproduced by all ADC models with 0.91–0.95 eV, considering the
limitations mentioned above.

IV. DISCUSSION
In general, it is difficult to judge the quality of excited state

equilibrium structures since reliable experimental values are often
not available. However, in the case of the three tested diatomic
molecules N2, CO, and BF, experimental data are available and a
thorough evaluation is possible. ADC(2) and ADC(2)-x turned out
to overestimate the equilibrium interatomic distances of the first
excited electronic states. In the case of these three diatomics, going
from ADC(2) to ADC(2)-x improves the results most likely due to
the higher-order treatment of double excitations at the ADC(2)-x
level. Going to ADC(3), the equilibrium distances are underesti-
mated with the approximately same absolute error as ADC(2)-x for
all three diatomics. The fact that ADC(3) does not perform bet-
ter than ADC(2)-x may be attributed to the underlying MP(2) and
MP(3) ground state methods since the ADC total energies inherit
their problems. In fact, MP(3) is well known generally not to yield
a systematic improvement over MP(2).66 For the tested diatomics,
MP(3) yields indeed too short ground state equilibrium distances
in the case of CO with a bigger absolute error than MP(2) which
yields too long bond distances, explaining the behavior of the ADC
methods for the excited state structures.

For the first excited state, bright 11B+
u state of butadiene, which

has predominantly single excitation character, ADC(2) and ADC(3)
yield identical results, which are also very similar to those obtained
at ADC(2)-x and CASPT2 levels. For the primarily doubly excited
21A−

g state, ADC(2) yields a qualitatively different equilibrium struc-
ture than ADC(2)-x and ADC(3), which is certainly due to the
higher-order description of doubly excited states at the latter two
levels. However, compared to CASPT2, ADC(2)-x and ADC(3)
overestimate the bond-length inversion at the 21A−

g equilibrium
structure, which is caused by two major factors. First, in particu-
lar, ADC(2)-x and also still ADC(3) overestimate the amount of
double-excitation character of the 21A−

g state. Second, due to the
large geometrical changes of the excited-state structure compared
to the ground-state structure, accompanied by a significant change

in bond-order, MP(2) and MP(3) do not necessarily provide an
accurate description of the ground state at the excited-state mini-
mum structure.

In the case of acrolein, the different ground-state methods MP2
and MP3 as well as the different treatment of the double excita-
tions in the description of the 11A″ state lead to qualitative differ-
ent results at the three different levels of ADC(2), ADC(2)-x, and
ADC(3). Here, it is hard to judge whether CASPT2 yields a better
description than ADC(3). However, ADC(2) is reasonable to assume
to yield a too long C==O carbonyl bond and ADC(2)-x to overesti-
mate bond-length inversion in the carbon-carbon bonds due to the
overestimation of its double excitation character.

Similar to the first excited state of butadiene, all three ADC
models yield a very similar description of the equilibrium structure
of the first excited 11B1 state of bithiophene. This is on the one hand
due to the pure single-excitation character of this excited state and
the comparable small changes in the geometrical parameter in the
excited state compared to the ground state on the other. Although
the planarization of the central dihedral angle in the excited state
leads to a strong Stokes shift, the ground state description by MP2
or MP3 does not break down because the degree of multirefer-
ence character does not increase along with the geometric relax-
ation in the excited state. Hence, all ADC methods yield similar
results.

V. SUMMARY AND CONCLUSIONS
In this work, analytical expressions for the nuclear gradient

of the total excited-state energies have been derived for the alge-
braic diagrammatic construction scheme of the polarization prop-
agator of up to third order. These have been implemented into a
development version of the Q-Chem program package and have
been used for excited-state geometry optimization of the S1 states
of the diatomics N2, CO, and BF as well as the organic molecules
s-trans-butadiene, s-trans-acrolein, and s-trans-(2,2′)-bithiophene.
The calculated S1 equilibrium geometries of the diatomics revealed
ADC(2)-x to be more accurate than ADC(2) and ADC(2)-x and
ADC(3) to exhibit a similar accuracy as EOM-CCSD. The com-
puted excited-state geometries of butadiene and acrolein demon-
strated clear limitations of the applicability of ADC(2), ADC(2)-x,
and ADC(3) for the description of excited state potential energy sur-
faces. The deficiencies have been largely imputed to the underlying
MP(2) and MP(3) ground state description in ADC(2), [ADC(2)-
x], and ADC(3), respectively, which breaks down as soon as the
excited-state geometry is distorted from one of the ground states in a
way that it acquires some multireference character. For well-behaved
organic molecules, such as BT, in which the S1 state corresponds to
a pure single-electron transition, all three ADC schemes are applica-
ble and yield very similar results for the equilibrium geometry of the
first excited singlet state.

One can expect ADC methods to become more and more reli-
able the larger the investigated organic molecule is, because the
induced geometric changes in the excited state become smaller, and
the MP treatment of the ground state remains reliable. In addi-
tion, the low-lying excited states of typical fluorescent organic chro-
mophores are mostly pure single-electron excitations and thus well-
described by ADC methods. The situation may change when the S1
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state has substantial double excitation character, as the famous 2A−
g

state of linear polyenes, or photo-induced reactions occur involving
bond-breaking or conical intersections. Then, care must be taken
and the applicability and accuracy of ADC methods need to be
individually evaluated.

SUPPLEMENTARY MATERIAL

See supplementary material for the details of the comparison
of the implemented analytical derivatives with values obtained from
finite differences.

APPENDIX: EXPLICIT EXPRESSIONS
FOR THE LAGRANGE MULTIPLIERS
AND EFFECTIVE ONE- AND
TWO-PARTICLE DENSITY MATRICES

First, to demonstrate how the expressions for the density matri-
ces can be obtained for the evaluation of the analytical nuclear
gradient, the expressions up to ADC(2) are derived, starting from
the excitation energy in terms of the excited state vectors. All
expressions presented in this section are derived from the equa-
tions published for ADC(2),3 ADC(2)-x,3 and ADC(3)5 as they are
implemented in the adcman module4,6,49 embedded in the Q-Chem
package of programs.48 The final expressions for the Lagrange mul-
tipliers and the effective density matrices for the different methods
are compiled in Tables VII–X.

All quantities are assumed to be real in this section. Thus, the
following symmetry rules apply to the two-electron integrals and the
two-particle density matrices:

⟨pq∣∣rs⟩ = −⟨qp∣∣rs⟩ = ⟨qp∣∣sr⟩ = ⟨rs∣∣pq⟩ (A1)

and

Γpqrs = −Γqprs = Γqpsr = Γrspq. (A2)

Using Eqs. (A1) and (A2), the sum

∑
pqrs

Γpqrs⟨pq∣∣rs⟩ (A3)

can be split into six canonical blocks,

∑
pqrs

Γpqrs⟨pq∣∣rs⟩ =∑
ijkl

Γijkl⟨ij∣∣kl⟩ + 4∑
ijka

Γijka⟨ij∣∣ka⟩

+ 2∑
ijab

Γijab⟨ij∣∣ab⟩ + 4∑
ijab

Γiajb⟨ia∣∣ jb⟩

+ 4∑
iabc

Γiabc⟨ia∣∣bc⟩ + ∑
abcd

Γabcd⟨ab∣∣cd⟩. (A4)

Recognizing the factors on the right-hand side of Eq. (A4) is impor-
tant to assign the correct coefficients to the contributions of the
two-particle density matrix.

Now, the expressions for the one- and two-particle density
matrix are derived for ADC(2). The first order γADC(1) = γADC(0)

and ΓADC(1) stem from the zeroth and first order contributions to
ωADC(2),

TABLE VI. Intermediates and permutation operators used in Tables VII–X in addition
to Eqs. (53) and (54).

P̂pqEpq = Eqp P̂rs
pqEpqrs = Erspq

γ(0)ij = −∑c xjcxic γ(0)ab = ∑k xkaxkb Γ(1)iajb = xiaxjb
t2
iajb = ∑kc tikactjkbc t2

abcd = ∑kl tklabtklcd t2
ijkl = ∑cd tijcdtklcd

ρ(2)ij = 1
2 ∑kab tikabtjkab ρ(2)ab = 1

2 ∑ijc tijactijbc rxia = ∑jb xjbtijab

ωADC(1)
=∑

ab
fab∑

i
xiaxib −∑

ij
fji∑

a
xiaxja −∑

ijab
⟨ia∣∣jb⟩xjaxib

=∑
pq

fpqγADC(1)pq +
1
4 ∑pqrs
⟨pq∣∣rs⟩ΓADC(1)pqsr , (A5)

and it is obvious that

γ(0)ab = γADC(0)ab = γADC(1)ab = ∑
k
xkaxkb,

γ(0)ij = γADC(0)ij = γADC(1)ij = −∑
c
xjcxic,

ΓADC(1)iajb = −xjaxib.

(A6)

The density matrices for the correlated part of the total ADC(2)
energy are defined by

E(2)+ωADC(2)+RADC(2)
A = ∑

pq
fpqγADC(2)pq +

1
4 ∑pqrs
⟨pq∣∣rs⟩ΓADC(2)pqrs . (A7)

The first term on the left-hand side comprises the ground-state
energy, and it can readily be seen that its contribution to the
occupied-occupied-virtual-virtual part of the 2RDM is − 1

2 tijab. The
third term, RADC(2)

A , contains the Lagrange multipliers t̄, which read

RADC(2)
A = ∑

ijab
t̄ijab(tijab(∑

c
fac +∑

c
fbc −∑

k
fik −∑

k
fjk) − ⟨ij∣∣ab⟩).

(A8)

Resorting the indices in Eq. (A8) yields

RADC(2)
A = −∑

ijab
⟨ij∣∣ab⟩t̄ijab +∑

ab
fab∑

ijc
(t̄ijbctijac + t̄ijactijbc)

−∑
ij
fij∑

kab
(t̄jkabtikab + t̄ikabtjkab). (A9)

The second order contribution to the excitation energy com-
prises four distinct terms

TABLE VII. Expressions for the one- and two-particle density matrices for ADC(1).

γADC(1)ij = γADC(0)ij = −∑c xjcxic
γADC(1)ab = γADC(0)ab = ∑k xkaxkb

ΓADC(1)iajb = −xjaxib
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TABLE VIII. Expressions for the one- and two-particle density matrices for ADC(2) and ADC(2)-x.

γADC(2)−xij = γADC(2)ij = γ(0)ij − 2∑kab xjkabxikab − (1 + P̂ij)∑kab t̄ikabtjkab

γADC(2)−xab = γADC(2)ab = γ(0)ab + 2∑ijc xijacxijbc + (1 + P̂ab)∑ijc t̄ijactijbc

ΓADC(2)iajb = ΓADC(1)iajb = xjaxib

ΓADC(2)−xiajb = ΓADC(2)iajb − 4∑kc xikbcxjkac

ΓADC(2)−xijab = ΓADC(2)ijab = −
1
2
⎛

⎝
tijab + 4t̄ijab + (1 − P̂ab)∑

c
tijbcγ

(0)
ca

− (1 − P̂ij)∑
k
γ(0)jk tikab + (1 − P̂ij)(1 − P̂ab)xiar

x
jb
⎞

⎠

ΓADC(2)−xijka = ΓADC(2)ijka = −2∑b xkbxijab

ΓADC(2)−xiabc = ΓADC(2)iabc = −2∑j xjaxijbc

ΓADC(2)−xijkl = 2∑ab xijabxklab

ΓADC(2−x)abcd = 2∑ij xijcdxijab

t̄ijab =
1

�a + �b − �i − �j
⎛

⎝
⟨ij∣∣ab⟩ + (1 − P̂ab)∑

c
⟨ij∣∣bc⟩γ(0)ac − (1 − P̂ij)∑

k
⟨ jk∣∣ab⟩γ(0)ik

+ (1 − P̂ij)(1 − P̂ab)xia∑
ck
⟨ jk∣∣bc⟩xkc

⎞

⎠

ω(2) = ω11 + ω12 + ω21 + ω22. (A10)

The first one, ω11, is given as

ω11 =
1
4∑ab
(∑

klc
tklac⟨kl∣∣bc⟩ +∑

klc
⟨kl∣∣ac⟩tklbc)∑

i
xiaxib

+
1
4∑ij
(∑
kcd

tikcd⟨ ∣cd⟩ +∑
kcd
⟨ik∣∣cd⟩tjkcd)∑

a
xiaxja

−
1
2∑ijab
(∑

kc
tikac⟨ ∣bc⟩ +∑

kc
⟨ik∣∣ac⟩tjkbc)xiaxjb. (A11)

Again, by resorting the indices and using the derived expressions
above for γ(0), one finds

ω11 = +∑
ijab
⟨ij∣∣ab⟩

1
4
(∑

c
tijcbγ

(0)
ca −∑

c
tijcaγ(0)cb )

−∑
ijab
⟨ij∣∣ab⟩

1
4
(∑

k
γ(0)ik tkjab −∑

k
γ(0)jk tkiab)

−∑
ijab
⟨ij∣∣ab⟩

1
4
⎛

⎝
xia∑

kc
tjkbcxkc − xja∑

kc
tikbcxkc

− xib∑
kc
tjkacxkc + xjb∑

kc
tikacxkc

⎞

⎠
. (A12)

The next two contributions to ω(2),

ω12 = ∑
ijka
⟨ij∣∣ka⟩∑

b
xkbxijba +∑

iabc
⟨ia∣∣bc⟩∑

j
xjaxjibc (A13)

TABLE IX. Expressions for the one-particle density for ADC(3).

γADC(3)ij =γ(0)ij − 2∑
kab

xjkabxikab

− (1 + P̂ij)(∑
kab

t̄ikabtjkab +∑
kab

T̄D
ikabT

D
jkab +

1
2∑a

ρ̄iaρ(2)ja )

γADC(3)ab =γ(0)ab + 2∑ijc xijacxijbc

+ (1 + P̂ab)
⎛

⎝
∑
ijc

t̄ijactijbc +∑
ijc

T̄D
ijacT

D
ijbc +

1
2∑i ρ̄iaρ

(2)
ib
⎞

⎠
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and

ω21 = ∑
ijka
⟨ia∣∣jk⟩∑

b
xjkbaxib +∑

iabc
⟨ab∣∣ic⟩∑

j
xjiabxjc, (A14)

can be summed up to yield

ω12 + ω21 = 2∑
ijka
⟨ij∣∣ka⟩∑

b
xkbxijba + 2∑

iabc
⟨ia∣∣bc⟩∑

j
xjaxjibc, (A15)

and the last contribution reads

ω22 = 2∑
ab

fab∑
ijc

xijacxijbc − 2∑
ij
fji∑

kab
xikabxjkab. (A16)

As a result, we can identify the one- and two-particle density matri-
ces for ADC(2) including the zeroth- and first-order contributions

from Eq. (A6) as

γADC(2)ab = γ(0)ab + (1 + P̂ab)∑
ijc

t̄ijbctijac + 2∑
ijc

xijacxijbc, (A17)

γADC(2)ij = γ(0)ij − (1 + P̂ij)∑
kab

t̄jkabtikab − 2∑
kab

xjkabxikab, (A18)

and

ΓADC(2)ijab = −
1
2
tijab − 2t̄ijab

−
1
2
(1 − P̂ab)∑

c
tijbcγ

(0)
ca +

1
2
(1 − P̂ij)∑

k
γ(0)ik tjkab

−
1
2
(1 − P̂ij)(1 − P̂ab)xia∑

kc
tjkbcxkc, (A19)

TABLE X. Expressions the two-particle density matrix for ADC(3).

ΓADC(3)ijkl =2∑
ab

xijabxklab +
1
2
(1 + P̂kl

ij )
⎛

⎝
2∑

ab
T̄D
ijabtklab +

1
2
(1 − P̂ij)∑

m
γ(0)jm t2

imkl

+ (1 − P̂kl)∑
c
xkc∑

b
tijbcr

x
lb + (1 − P̂ij)(1 − P̂kl)(ρ

(2)
jl γ(0)ik −∑

ab
t2
lajbΓ

(1)
iakb)
⎞

⎠

ΓADC(3)ijka = − 2∑
b
xkbxijab −∑

l
xla∑

bc
tijabxklbc + (1 − P̂ij)

⎛

⎝
2∑

c
xic∑

lb
tjlabxklbc

− xja∑
lbc

tilbcxklbc + ρ(2)ja γ(0)ik + xia∑
b
ρ(2)jb xkb −

1
2∑b

tijabρ̄kb
⎞

⎠

ΓADC(3)ijab =
1
2
⎛

⎝
− tijab − tDijab − 4t̄ijab − (1 − P̂ab)∑

c
(TD

ijbc + tijbc)γ
(0)
ac

+ (1 − P̂ij)∑
k
(TD

jkab + tjkab)γ
(0)
ik − (1 − P̂ab)(1 − P̂ij)xia(∑

kc
TD
jkbcxkc + rxjb)

⎞

⎠

ΓADC(3)iajb = − Γ(1)jaib − 4∑
kc
xikbcxjkac + ρ(2)ij γ(0)ab + ρ(2)ab γ

(0)
ij +

1
2
(1 + P̂ jb

ia )
⎛

⎝
− 4∑

kc
tikbcT̄

D
jkac

+ 4∑
c
t2
ibjcγ

(0)
ac −∑

k
t2
ibkaγ

(0)
jk +∑

k
xka∑

d
tikbcr

x
jc +∑

k
xjc∑

l
tikbcr

x
ka

+ xja∑
c
ρ(2)cb xic − xib∑

k
ρ(2)jk xka − 2∑

kc
t2
jckbΓ

(1)
icka

+
1
2∑cd

t2
acbdΓ

(1)
icjd +

1
2∑kl

t2
ikjlΓ

(1)
kalb
⎞

⎠

ΓADC(3)iabc = − 2∑
j
xjaxijbc +∑

d
xid∑

jk
tjkbcxjkad + (1 − P̂bc)

⎛

⎝
− 2∑

j
xjb∑

kd
tikcdxjkad

+ xib∑
jkd

tjkcdxjkad − ρ
(2)
ic γ(0)ab + xib∑

j
ρ(2)jc xja −

1
2∑b

tijbcρ̄ja
⎞

⎠

ΓADC(3)abcd =2∑
ij
xijcdxijab +

1
2
(1 + P̂cd

ab)
⎛

⎝
2∑

ij
T̄D
ijabtijcd +

1
2
(1 − P̂ab)∑

e
γ(0)eb t2

aecd

+ (1 − P̂ab)∑
i
xia∑

j
tjkcdr

x
jb + (1 − P̂ab)(1 − P̂cd)

⎛

⎝
ρ(2)bd γ

(0)
ac −∑

ij
t2
idjbΓ

(1)
iajc
⎞

⎠

⎞

⎠
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TABLE XI. Expressions for the ADC(3) amplitude Lagrange multipliers.

t̄ijab =
⟨ij∣∣ab⟩+

6
∑
n=1

n t̃ijab+t̃T
D

ijab+t̃ρijab
�a+�b−�i−�j

1 t̃ijab = −∑
kl
tklab∑

m
⟨ij∣∣km⟩γ(0)lm − (1 − P̂ab)∑

k
xka∑

l
⟨ij∣∣kl⟩rxlb

+ (1 − P̂ij)
⎛

⎝

1
2∑k

γ(0)ik ∑
lm
⟨jk∣∣lm⟩tlmab − 2∑

k
tjkab∑

lm
γ(0)lm ⟨il∣∣km⟩

⎞

⎠

− (1 − P̂ij)(1 − P̂ab)
⎛

⎝

1
2
xia∑

kc
xkc∑

lm
⟨jk∣∣lm⟩tlmbc −∑

k
xka∑

lm
⟨li∣∣km⟩∑

c
tjmbcxmc

⎞

⎠

2 t̃ijab =4
⎛

⎝
−∑

kc
⟨ij∣∣kc⟩∑

l
xlcxklab + (1 − P̂ij)∑

k
xikab∑

kc
⟨jl∣∣kc⟩xlc

− (1 − P̂ij)(1 − P̂ab)∑
kl
⟨jk∣∣lb⟩∑

c
xkcxilac

⎞

⎠

3 t̃ijab =(1 − P̂ab)∑
c
⟨ij∣∣bc⟩γ(0)ac − (1 − P̂ij)∑

k
⟨jk∣∣ab⟩γ(0)ik

+ (1 − P̂ij)(1 − P̂ab)xia∑
kc
⟨jk∣∣bc⟩xkc

4 t̃ijab =(1 − P̂ij)
⎛

⎝
− 2∑

k
tjkab∑

cd
⟨ic∣∣kd⟩γ(0)cd − 2∑

kl
tklab∑

cd
Γ(1)ickd⟨jc∣∣ld⟩

+∑
c
xic∑

k
tjkab∑

ld
xld⟨lc∣∣kd⟩ +∑

k
tjkab∑

c
xkc∑

ld
xld⟨lc∣∣id⟩

⎞

⎠

+(1 − P̂ab)
⎛

⎝
− 2∑

c
tijcb∑

kl
⟨ka∣∣lc⟩γ(0)kl − 2∑

cd
tijcd∑

kl
Γ(1)kalc⟨kb∣∣ld⟩

+∑
k
xka∑

c
tijbc∑

ld
xld⟨kd∣∣lc⟩ +∑

c
tijbc∑

k
xkc∑

ld
xld⟨kd∣∣la⟩

⎞

⎠

+(1 − P̂ij)(1 − P̂ab)
⎛

⎝
∑
c
γ(0)ac ∑

kc
⟨kc∣∣jd⟩tikbd −∑

kc
⟨jc∣∣kb⟩∑

d
tikadγ

(0)
cd

−∑
k
γ(0)ik ∑

lc
⟨lb∣∣kc⟩tjlac +∑

kc
⟨jc∣∣kb⟩∑

l
tilacγ

(0)
kl −∑

c
xic∑

k
⟨jc∣∣kb⟩rxka

− xjb∑
kc
xkc∑

ld
⟨lc∣∣id⟩tklad −∑

k
xka∑

c
⟨jc∣∣kb⟩rxic − xjb∑

kc
xkc∑

ld
⟨la∣∣kd⟩tilcd

+ 2∑
cd
(∑

k
xka⟨ic∣∣kd⟩)(∑

l
xlctjlbd) + 2∑

kl
(∑

c
xic⟨kc∣∣la⟩)(∑

d
xkdtljdb)

⎞

⎠

5 t̃ijab = −4
⎛

⎝
∑
kc
⟨kc∣∣ab⟩∑

d
xkdxijcd + (1 − P̂ab)∑

c
xijbc∑

kd
⟨kc∣∣ad⟩xkd

+ (1 − P̂ij)(1 − P̂ab)∑
cd
⟨jc∣∣bd⟩∑

k
xkdxikac

⎞

⎠

6 t̃ijab = −∑
cd

tijcd∑
e
⟨ab∣∣de⟩γ(0)ce − (1 − P̂ij)∑

c
xic∑

d
⟨ab∣∣cd⟩∑

ke
tjkdexke

− (1 − P̂ab)
⎛

⎝

1
2∑c

γ(0)ac ∑
de
⟨bc∣∣de⟩tijde − 2∑

c
tijbc∑

de
γ(0)de ⟨ad∣∣ce⟩

⎞

⎠

− (1 − P̂ij)(1 − P̂ab)
⎛

⎝

1
2
xia∑

kc
xkc∑

de
⟨bc∣∣de⟩tjkde − 2∑

c
xic∑

de
⟨ad∣∣ce⟩∑

k
tjkebxkd

⎞

⎠
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TABLE XI. (Continued.)

t̃T
D

ijab = 2(1 − P̂ij)(1 − P̂ab)
⎛

⎝
2∑

kc
T̄D
ikac⟨jc∣∣kb⟩ −∑

cd
T̄D
ijcd⟨ab∣∣cd⟩ −∑

kl
T̄D
klab⟨ij∣∣kl⟩

⎞

⎠

t̃ρijab = −(1 − P̂ij)∑
c
⟨jc∣∣ab⟩ρ̄ic − (1 − P̂ab)∑

k
⟨ij∣∣kb⟩ρ̄ka

T̄D
ijab = (1 − P̂ab)∑

c
⟨ij∣∣bc⟩γ(0)ac − (1 − P̂ij)∑

k
⟨jk∣∣ab⟩γ(0)ik + (1 − P̂ij)(1 − P̂ab)xia∑

ck
⟨jk∣∣bc⟩xkc

ρ̄ia =
2

�a − �i
⎛

⎝
∑
jk
⟨ij∣∣ka⟩γ(0)jk +∑

jb
xjb∑

k
xka⟨ij∣∣kb⟩ −∑

bc
⟨ic∣∣ab⟩γ(0)bc +∑

jb
xjb∑

c
xic⟨jc∣∣ab⟩

⎞

⎠

ΓADC(2)ijka = 2∑
b
xkbxijba, ΓADC(2)iabc = 2∑

j
xjaxjibc, (A20)

ΓADC(2)iajb = ΓADC(1)iajb . (A21)

The explicit form of t̄ for ADC(2) is given in Eq. (62) and again
in Table VIII. For the evaluation of the ADC(2)-x energy deriva-
tives, only additional terms in the Γijkl, Γabcd, and Γiajb blocks of the
two-particle density matrix are required. The same procedure has
been used to derive the expressions for the density matrices and
Lagrange multipliers for ADC(2)-x and ADC(3). Table VI contains
expressions for intermediates and permutation operators that are
used in Tables VII–XI.
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