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1. Introduction

Photoinitiated processes play important roles in many living
organisms. Plants, algae, and bacteria absorb sunlight to per-
form photosynthesis[1,2] and convert water and carbon dioxide
into oxygen and carbohydrates, thus forming the basis for life
on Earth. The vision of animals and humans is accomplished in
the eye by a protein called rhodopsin, which upon absorption
of a photon performs an ultrafast isomerization of the central
retinal chromophore.[3,4] Many other biological functions, for in-
stance phototaxis of bacteria and plants[4] or sensing of the
Earth’s magnetic field by birds,[5] start with photoexcitation of
a pigment protein followed by complicated processes compris-
ing, for example, electron transfer, excitation energy transfer,
isomerization, or other reactions.
With the advent of ultrafast spectroscopy, it is now possible

to study the evolution of molecular reactions experimentally
on a sub-picosecond timescale, sometimes with a resolution of
only a few tens of femtoseconds. In recent years, techniques
such as transient absorption spectroscopy or fluorescence up-
conversion have been applied to biological systems to study
photoinitiated processes like those mentioned above. Very
often, the resulting spectra are complicated and difficult to in-
terpret, and theoretical assistance is needed. Also within the
last 10 years, computer technology has advanced substantially
making the calculation of ever larger molecules feasible. Still,
by employing highly accurate methods one reaches the com-
putational limit for molecular size quite quickly. At present,
molecules with approximately 20 atoms of the second row of

the periodic table can be calculated with “chemical accuracy”1

on a typical computer cluster within about a week of compu-
tation time.
As a consequence, if one wishes to study photoinitiated pro-

cesses in biological systems theoretically, one immediately
faces a dilemma. On the one hand, light-induced processes
always demand a quantum treatment of the electronic struc-
ture, since absorption and fluorescence as well as the subse-
quent, usually ultrafast, photochemical processes are quantum
mechanical events. On the other hand, biological systems are
usually large molecular assemblies comprising several hun-
dreds, sometimes thousands, of atoms making a quantum me-
chanical treatment of all electrons and nuclei impossible. To
overcome this dilemma, one is forced to resort to molecular
and theoretical models that capture the physical properties of
the pigment protein of interest. Indeed, the absorption of a
photon and the subsequent ultrafast processes, which are
faster than a few hundred picoseconds, usually occur in a
small spatial region of the protein and are mostly governed by
only a few nuclear degrees of freedom of the pigment. The re-
maining protein environment has often only negligible influ-
ence on the relevant excited states of the pigment compared
to the errors of the applied, necessarily approximate, theory.
This makes the construction of small molecular models possi-
ble and allows for the employment of electronic structure the-

With the advent of modern computers and advances in the de-
velopment of efficient quantum chemical computer codes, the
meaningful computation of large molecular systems at a quan-
tum mechanical level became feasible. Recent experimental effort
to understand photoinitiated processes in biological systems, for
instance photosynthesis or vision, at a molecular level also trig-
gered theoretical investigations in this field. In this Minireview,
standard quantum chemical methods are presented that are ap-
plicable and recently used for the calculation of excited states of
photoinitiated processes in biological molecular systems. These

methods comprise configuration interaction singles, the complete
active space self-consistent field method, and time-dependent
density functional theory and its variants. Semiempirical ap-
proaches are also covered. Their basic theoretical concepts and
mathematical equations are briefly outlined, and their properties
and limitations are discussed. Recent successful applications of
the methods to photoinitiated processes in biological systems are
described and theoretical tools for the analysis of excited states
are presented.
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ories to study the initial reactions with gradient techniques,
without bothering about many nuclear degrees of freedom or
slow protein motions. However, if one wants to study the ef-
fects of photoinitiated processes on longer timescales of nano-
seconds and more, one must investigate the protein environ-
ment, since the initial excitation of the pigment induces large-
scale structural changes of the protein, which finally lead to
signal transduction. This can be accomplished by treating the
protein that is not included in the quantum mechanical region
classically, thus neglecting all quantum effects. In general, this
strategy is summarized under the notion of quantum mechani-
cal/molecular mechanical (QM/MM) approaches.[6,7]

The typical size of a molecular model for a pigment protein
that needs to be described quantum mechanically ranges from
20 up to 200 atoms depending on the pigment molecule and
the influence of the surrounding protein. For example, in blue
light receptors such as photoactive yellow protein the light-ab-
sorbing pigments are usually small, and thus a molecular QM
model of approximately 30 atoms can be sufficient. On the
contrary, in light-harvesting complexes the pigments are huge,
and QM models of more than 200 atoms can be demanded to
study pigment–pigment interactions. Clearly, such models are
still too large to be tractable with highly accurate quantum
chemical methods, and thus one is restricted to more approxi-
mate and less accurate methods, which are computationally
less expensive. For electronic ground states, density functional
theory (DFT)[8–10] constitutes a reliable black-box method and,
most importantly, it represents an ideal compromise between
accuracy and computation time. It has thus become the work-
horse for the calculation of ground-state properties of
medium-sized to large molecules in all areas of chemistry,
physics, and biology. Due to its good performance, DFT is suc-
cessfully applied within QM/MM schemes. Unfortunately, as we
will see later, no comparably reliable and computationally
cheap method exists for the quantum chemical calculation of
the excited states that determine photoinitiated processes.
Before we discuss different excited-state methods and their

individual drawbacks in detail, one may first want to define a
list of properties a theoretical method for excited states should
possess beyond the desirable properties for ground-state cal-
culations. In general, a quantum chemical method for the cal-
culation of excited states of large molecular systems should
possess the following properties:[11]

1) The method should treat the electronic ground state and
all excited states relevant for the photoinitiated process in
a balanced way, thus leading to reliable relative energies.

2) The accuracy of the method should allow for direct com-
parison with experimental data. An error of 0.1–0.2 eV for
the excitation energies is desirable, but errors of 0.5 eV are
more realistic. Transition moments and excited-state geo-
metries should be reliable and the errors that occur should
be predictable.

3) The method should be a black-box method yielding rea-
sonable results without a priori knowledge of the system
under investigation and without large human effort to set
up the calculation.

4) The method should be computationally cheap with respect
to memory and CPU requirements.

The first two requirements are particularly important for the
treatment of excited states of large molecular systems, since
their excited states usually lie energetically close together and
thus curve crossings are likely. Just these curve crossings are
essential for the dynamics of the photoinitiated processes, and
knowledge of their occurrence and location is a prerequisite to
understand the ongoing processes, especially when optically
dark states lie energetically below the initially excited states.
For instance, this is the case in carotenoids,[12] where the initial-
ly excited state (S2) decays usually very fast within 50–200 fs
into the lower-lying state (S1), which then determines the dy-
namics of the photoinitiated process. As a consequence, the
relative energies of the states, their oscillator strengths, the
shape of their potential energy surfaces, and possible curve
crossings must be reliably known, which is only possible if the
applied theoretical approach fulfills the requirements (1) and
(2).
The requirements (3) and (4) are generally favorable to pos-

sess, but they become crucially important if QM/MM schemes
for photoinitiated processes are desired. In QM/MM schemes,
the dynamics of the photoinitiated process is studied by let-
ting the system evolve in time after the initial excitation, that
is, on the potential energy surface of the excited state. The
time evolution of the system then requires the repeated calcu-
lation of the excited states and their gradients. For a simula-
tion time of 1 ns, approximately 10000 sequential excited-state
calculations need to be performed. This restricts the applicable
QM methods to only the computationally cheapest ones, for
example semiempirical or approximate DFT methods, which of
course are also the least accurate ones. It is also clear that the
applied QM method should be a black-box method in a QM/
MM scheme, since one wants to avoid tedious manual adjust-
ment of input parameters for that many calculations. Besides
easy setup, black-box methods also have the general advant-
age that the results are independent of a priori knowledge
and/or expectation of the researcher.
Today, several quantum chemical approaches for the calcula-

tion of excited states and their properties are available. In gen-
eral they can be divided into three groups: 1) wavefunction-
based ab initio methods, 2) semiempirical methods, and
3) density functional theory-based approaches. Due to the usu-
ally enormous molecular size of biological systems and the
need to study large model systems for a meaningful investiga-
tion of photoinitiated processes in biological systems, only a
few methods remain applicable because of computational limi-
tations. This Minireview is intended to give a brief overview of
the most widely used quantum chemical methods for the
treatment of excited states of molecular systems of biological
interest, that is, of large molecular systems. Therefore the pre-
sentation is restricted to the wavefunction-based theories of
configuration interaction singles (CIS)[13,14] and complete active
space self-consistent field (CASSCF),[15,16] and to density func-
tional theory-based approaches such as the restricted open-
shell Kohn–Sham (ROKS) scheme[17] and time-dependent densi-
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ty functional theory (TDDFT)[18–20] and its variants. In recent
years, semiempirical approaches were also successfully applied
to the calculation of photoinitiated processes in biological sys-
tems, most notably the intermediate neglect of differential
overlap (INDO/S) method[21,22] in combination with a CIS for-
malism, and very recently the orthogonalization model 2
(OM2)[23] in a multireference configuration interaction (MRCI)
framework.[24,25] Typical applications of these methods to a few
selected biologically relevant systems, for example, rhodopsin,
DNA bases, and photosynthetic systems, will be presented.
The Minireview is organized as follows. In Section 2, the

basic concepts and mathematical framework of the wavefunc-
tion-based methods CIS and CASSCF will be outlined and their
properties discussed. Selected applications of CASSCF and also
of the more expensive CASPT2 method will be presented,
which comprise investigations of the ultrafast photoisomeriza-
tion of retinal in rhodopsin, of green fluorescent protein and
of p-coumaric acid in photoactive yellow protein, and of the
photoprotection mechanism of DNA bases. In Section 3, semi-
empirical methods for the calculation of excited states will be
introduced and their application to energy-transfer processes
in photosynthetic pigments will be highlighted. In Section 4,
the density-based ROKS approach, but most notably TDDFT,
are presented and their application to energy- and electron-
transfer processes in light-harvesting complexes are described.
General tools for the analysis of the electronic structure of ex-
cited states are described in Section 5. The Minireview con-
cludes with a brief comparison of the described theoretical
methods and an outlook on the perspectives of the methods.

2. Wavefunction-Based Ab Initio Methods

A wide variety of wavefunction-based ab initio methods exist
for the calculation of excited states of molecular systems,
which can be divided into single reference and multireference
methods on the one hand, and into configuration interaction
and coupled-cluster methods on the other. Among these are
highly accurate methods such as MRCI approaches,[26,27] multi-
reference perturbation theory,[28–33] and multireference cou-
pled-cluster (MRCC),[34,35] single-reference equation-of-motion
coupled-cluster, or linear-response coupled-cluster (EOM-CC,
LR-CC) methods.[36–42] Closely related to the single-reference
coupled-cluster theories is the symmetry-adapted cluster con-
figuration interaction (SAC-CI) approach[43] and approximate
coupled-cluster schemes of second or third order (CC2,
CC3).[44–47] A perturbative correction to CIS (see below) is the
CIS(D) approach,[48–50] which approximately introduces effects
of double excitations for the excited states in a noniterative
scheme very similar to the Møller–Plesset perturbation theory
of second order (MP2), in which doubly excited states are cou-
pled to the ground state. Propagator theories emerging from
the Green’s function formalism, such as the algebraic diagram-
matic construction (ADC) scheme,[51–54] also provide an elegant
route to the calculation of excited-state properties. Due to
their high computational costs, these accurate methods are
not applicable to such large molecular systems like those re-
quired for the study of photoinitiated processes in biological

systems. Instead, one is essentially restricted to CIS[13] and
CASSCF[55] calculations employing small active spaces and
small atomic basis sets. Both methods are frequently applied
to the study of photoinitiated processes in biological systems.
The basic concepts and working equations of these two meth-
ods will be briefly outlined in the following discussion.
A prerequisite of wavefunction-based ab initio calculations

of excited states is usually a canonical Hartree–Fock (HF) calcu-
lation of the electronic ground state.[56,57] The obtained HF
ground-state wavefunction F0(r) corresponds to the best
single Slater determinant describing the electronic ground
state of the system. It reads [Eq. (1)]:

F0ðrÞ ¼ jj�1ðrÞ�2ðrÞ � � � �nðrÞjj ð1Þ

For simplicity, we assume a closed-shell ground-state elec-
tronic configuration and, thus, the fi(r) correspond to doubly
occupied spatial molecular orbitals and n=N/2 (N is the
number of electrons). In general, a HF calculation within a
given atomic basis set of size K yields n occupied molecular or-
bitals fi(r) and v=K�n virtual orbitals fa(r). Here and in the fol-
lowing, we use the indices i,j,k… for occupied orbitals, a,b,c…
for virtual ones, and p,q,r… for general orbitals.
In configuration interaction-type calculations,[58] the electron-

ic many-body wavefunction is constructed as a linear combina-
tion of the ground-state Slater determinant and so-called “ex-
cited” determinants, which are obtained by replacing occupied
orbitals fi(r) with virtual ones fa(r). If only one occupied orbita-
l i is replaced by one virtual orbital a, one obtains “singly excit-
ed” Slater determinants Fa

i ðrÞ ; if two occupied orbitals are re-
placed by two virtual orbitals, one obtains “doubly exited” de-
terminants Fab

ij ðrÞ and so on. The wavefunction then reads
[Eq. (2)]:

YCI ¼ c0F0ðrÞ þ
X
ia

cai F
a
i ðrÞ þ

X
ijab

cabij F
ab
ij ðrÞ þ

X
ijkabc

cabcijk F
abc
ijk ðrÞ � ��

ð2Þ

If all possible “excited” determinants are included and this
ansatz for the many-body wavefunction is substituted into the
exact electronic Schrçdinger equation, one arrives at the full CI
method, which corresponds to the exact numerical solution of
the Schrçdinger equation within the chosen atomic basis set.
Such calculations are very expensive and at present only feasi-
ble with basis sets of good quality for very small systems such
as CO, N2, CH4, or H2O. As a consequence, one has to introduce
approximations to treat large molecular systems.

The simplest and also crudest approximation is to truncate
the CI expansion after the “singly” excited determinants, which
yields the CIS ansatz [Eq. (3)]:

YCIS ¼
X
ia

cai F
a
i ðrÞ ð3Þ

The ground-state determinant F0(r) occurring in Equation (2)
vanishes here, since it is uncoupled from the Fa

i ðrÞ owing to
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Brillouin’s theorem.[56] Substitution of YCIS into the molecular
Schrçdinger equation and projection onto the space of singly
excited determinants yields, after some algebra, a matrix equa-
tion [Eq. (4)]:

HX ¼ wX ð4Þ

in which H is the matrix representation of the Hamiltonian in
the space of the singly excited determinants, w is the diagonal
matrix of the excitation energies, and X is the matrix of the CIS
expansion coefficients. The matrix elements of H are given as
Equation (5):

Hia,jb ¼ ðea�eiÞdijdab þ ðjajjibÞ ð5Þ

where ea and ei correspond to the orbital energies of the
single-electron orbitals fa and fi, respectively, and (ja j j ib) cor-
responds to the antisymmetrized two-electron integrals in
standard notation.[56]

The excitation energies are finally obtained by solving the
following secular equation [Eq. (6)]:

ðH�wÞX ¼ 0 ð6Þ

that is, by diagonalization of the matrix H. The obtained eigen-
values correspond to the excitation energies of the excited
electronic states, and its eigenvectors to the expansion coeffi-
cients according to Equation (3).
Although the CIS ansatz appears to be a rather crude ap-

proximation, this method possesses some useful properties.
1) Since CIS is variational, the total energies of ground and ex-
cited states correspond to upper bounds to their exact values.
2) The excited-state wavefunctions are properly orthogonal to
the ground state. 3) CIS is size consistent. 4) It is possible to
obtain pure spin singlet and triplet states for closed-shell mole-
cules by allowing positive and negative combination of a and
b excitations from one doubly occupied orbital. 5) The excited-
state energies are analytically differentiable with respect to ex-
ternal parameters as, for example, nuclear displacements and
external fields, which makes possible the application of analyt-
ic gradient techniques for the calculation of excited-state prop-
erties such as equilibrium geometries and vibrational frequen-
cies.[14,59] 6) Formally, the computation time scales with O(n4)
(n=nocc+nvirt is the number of basis functions). However, since
one is mostly interested only in the energetically lowest excit-
ed states, in most implementations the so-called Davidson
method is used[60] for the diagonalization of the CIS matrix
[Eq. (5)] , which in practice scales as O(n2) to O(n3) for larger sys-
tems. On today’s standard computers this allows for the treat-
ment of fairly large molecules of about 200 first-row atoms
comprising about 3500 basis functions.
However, excitation energies computed with the CIS

method are usually overestimated, that is, they are usually too
large by about 0.5–2 eV compared with their experimental
values (see, for instance, refs. [14, 61, 62]), which makes direct
comparison with experimental values difficult. Also the state
ordering is sometimes wrong, as for example in polyenes.[63,64]

The large error is due to the fact that the energies of the
“singly excited” determinants derived from the HF ground
state are only very poor first-order estimates for the true excit-
ed-state energies, since the virtual orbital energies ea are calcu-
lated for the (N+1)-electron system instead of for the N-elec-
tron system.[56] Consequently, the orbital energy difference
(ea�ei), which is the leading term in Equation (5), is not related
to an excitation energy if the canonical HF orbitals are used as
reference. On the other hand, electron correlation is treated in
a very unbalanced way within the CIS method. While the elec-
tronic ground state remains fully uncorrelated, CIS treats elec-
tron correlation of the excited states in an unbalanced way. Al-
though it neglects most parts of the electron correlation and
orbital relaxation for the excited states, some singly excited de-
terminants relate to a typical state as single or double excita-
tion, and thus lead to unbalanced correlation of different
states. In general, the error can be expected to be the differen-
tial correlation energy, which must be at least on the order of
the correlation energy of one and sometimes several electron
pairs. Such energies are typically on the order of 1 eV per elec-
tron pair, and hence one should expect errors of this magni-
tude. The wrong order of states is mostly owing to the neglect
of doubly and higher excited determinants in the CI expansion
[Eq. (2)] , since doubly excited states can be important in the
low-energy region of the electronic spectrum, and those are
not included in CIS.
Today, CIS is practically no longer employed for the calcula-

tion of excited states, and it is mostly substituted by TDDFT
when large molecules are studied, or by more sophisticated
wavefunction-based approaches when medium-sized or small
molecules are investigated. As we will see later, TDDFT yields
fairly accurate results for valence excited states but exhibits
substantial problems, in particular with charge-transfer (CT) ex-
cited states. On the contrary, CT excited states are reasonably
well described within CIS, and thus CIS constitutes a viable ap-
proach to gain insight into whether charge-transfer excited
states are relevant to the problem of interest. Also, CIS can be
used to obtain asymptotically correct potential energy surfaces
for CT excited states with respect to charge separation coordi-
nates.
Another possibility to restrict the CI ansatz [Eq. (2)] is not to

limit the excitation level of the determinants, but to restrict
the molecular orbitals from which and to which electrons
should be excited. In other words, one can define an active
space of occupied and virtual orbitals in which all possible “ex-
cited” determinants are constructed, that is, in which a full CI
calculation shall be performed (Figure 1). Since such an ap-
proximation is a severe limitation of the flexibility of the CI
wavefunction, it usually leads to substantial errors, and one
has to reoptimize the molecular orbitals during the minimiza-
tion procedure to improve the accuracy. Loosely speaking, one
couples the self-consistent HF-like scheme with the CI formal-
ism, and thereby one obtains a set of nonlinear multiconfigura-
tion self-consistent field (MCSCF) equations, which need to be
solved in an iterative manner until self-consistency is reached.
The definition of an active space as in Figure 1, in which the
full CI expansion is performed, gives the most widely used
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wavefunction-based method for large molecules its name:
complete active space self-consistent field (CASSCF).[55, 57]

In analogy to CIS, CASSCF is variational, size-consistent, and
possesses all the positive properties of CIS. The size-consisten-
cy of CASSCF, however, is only achieved when the CASSCF
space is properly chosen, which in practice is often impossible.
Also, analytical derivatives are available allowing for efficient
optimization of excited-state geometries and localization of
conical intersections.[65–67] However, from a computational
point of view, CASSCF calculations become very quickly very
expensive, since the computational effort increases exponen-
tially with the size of the active space. At present, active
spaces with 12 electrons in 12 orbitals constitute the computa-
tionally feasible limit[11] for small molecules, and thus for large
molecules one is usually confined to smaller active spaces. The
computational cost for the orbital optimization step is roughly
the same as that for a CIS calculation. In general, the accuracy
of CASSCF calculations strongly hinges on the size of the
chosen active space and the quality of the atomic basis set.
For the investigation of photoinitiated processes in biological
systems, the active space is usually chosen as large as necessa-
ry and as small as possible to find a good compromise be-
tween computational effort and accuracy, typically containing
six electrons in six orbitals. This results in errors in the excita-
tion energies of about 0.5 to 1.0 eV.
However, three general problems exist with CASSCF calcula-

tions. Firstly, one has to choose for which state the orbitals are
to be optimized. Unfortunately, this choice is not unique but
has an influence on the relative energies of the calculated ex-
cited states and can even change their energetic ordering. One
way to partially circumvent this problem is to perform a state-
averaged CASSCF calculation, in which the orbitals are opti-
mized with respect to a weighted mean of all states of interest.
Secondly, the choice of the active space is not unique as well,
and requires first and foremost a careful consideration of the

processes to be studied and a priori knowledge of the relevant
orbitals. An unbalanced choice of active orbitals will lead to an
unbalanced treatment of the excited states. For example, if the
chosen active space consists only of p and p* orbitals of an
unsaturated molecule, the calculated spectrum will contain
only pp* excited states. Other states, for instance np* states,
will not be found, although in general they cannot a priori be
excluded, since they might become important in the course of
the studied photoinitiated process. In principle, one has to in-
crease the active space successively until the excited states of
interest are converged, which unfortunately is in most cases
computationally not feasible, and very often the employed
active spaces are far from being converged. Thirdly, too small
active spaces and the concomitant neglect of large parts of dy-
namical electron correlation can lead to significant errors and
an unbalanced treatment of different classes of electronic
states, since states with different electronic structures can ex-
hibit varying degrees of electron correlation.
A very successful approach to correct for the missing dy-

namic electron correlation is second-order perturbation theory
building up on the CASSCF wavefunctions (CASPT2) already
mentioned above.[29–31] In general, one performs a state-aver-
aged CASSCF calculation first, in which the orbitals are opti-
mized for an averaged state vector consisting of an equally
weighted sum of the electronic states of interest. Thereby, a
balanced molecular orbital basis is obtained for the subse-
quent perturbation theory calculation. Very often this proce-
dure leads to an improved description of the excited states,
and indeed CASPT2 has proven to give quantitative results for
small molecules. However, if the amount of neglected dynamic
correlation is a significant part of the total dynamic correlation,
which is usually the case for larger molecules, then second-
order perturbation theory cannot be sufficient to correct for
the introduced imbalances.
CASSCF and CASPT2 calculations have been successfully em-

ployed to study the first events in photoinitiated processes in
many biological systems with not-too-large photoactive pig-
ments. Such calculations contributed largely to the under-
standing of, for example, the ultrafast photoisomerization of
retinal, the photoactive pigment of rhodopsin that is responsi-
ble for vision. It is well-known that retinal in rhodopsin under-
goes an 11-cis!all-trans isomerization upon photoexcitation
within 200 fs, which leads to the signaling state of the pro-
tein.[68] CASSCF calculations revealed that the isomerization
proceeds via a conical intersection between the first excited S1
state and the electronic ground state, which explains the ultra-
fast reaction and gives an atomistic model for the isomeriza-
tion mechanism.[69–71] A conical intersection can be understood
as a photochemical funnel that allows for ultrafast transitions
between electronic states and concomitantly ultrafast photore-
actions.[72,73] Recent calculations on retinal model systems[74–76]

and on the real system including the protein environment[77]

could give an explanation for the acceleration of the isomeriza-
tion of 11-cis-retinal in the protein compared to retinal in the
gas phase. The effect of the counterion on the photoinitiated
isomerization has been studied,[78–80] and the origin of the
bathochromic shift in the early photointermediates of the rho-

Figure 1. Pictorial scheme of the definition of an active space as required in
CASSCF theory. The chosen orbital selection would correspond to a six-elec-
trons-in-six-orbitals (6,6) CASSCF calculation.
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dopsin photocycle has been investigated by employing
CASSCF calculations.[81]

Recently, a special hybrid QM/MM force field was developed
for studying the retinal chromophore in rhodopsin that cou-
ples CASPT2 single-point calculations at CASSCF geometries
for retinal with the Amber force field for the rest of the pro-
tein.[80] This new QM/MM scheme was employed to study the
counterion effect on the isomerization of retinal in rhodopsin
and bacteriorhodopsin.[82] It was demonstrated that the coun-
terion influences the relative stability of the relevant excited
states, introduces reaction barriers along reaction paths differ-
ent from the 11-cis!all-trans isomerization, and furthermore
changes the nature of the decay funnel. The excited-state
structures, the spectral fine-tuning by the environment, and
the spectroscopy of the retinal chromophore have also been
addressed.[83–86] A quantum dynamics investigation using
CASSCF/CASPT2 potential energy surfaces revealed that small
barriers on excited-state surfaces can induce a multiexponen-
tial decay of the photoexcited retinal chromophore.
Similarly, CASSCF/CASPT2 methodology has been employed

to study the photoinitiated processes in the famous green flu-
orescent protein (GFP), which is widely used in molecular biol-
ogy to stain living cells. Elaborate gas-phase model calcula-
tions allowed the identification of an efficient radiationless
decay channel in the gas phase, which is hampered in the
native protein environment.[87,88] Inclusion of the environment
by a QM/MM simulation revealed that the counterion effect is
only small and that the charges of the protein backbone seem
to compensate its effect.[89]

A similar example for the successful application of CASSCF is
the investigation of the photocycle of the photoactive yellow
protein (PYP), which is the primary photoreceptor for the neg-
ative phototactic response of the bacterium Halorhodospira
halophila.[90] Upon photoexcitation, the p-coumaric acid chro-
mophore of PYP undergoes an ultrafast photoisomerization
from the trans to the cis configuration similar to retinal in rho-
dopsin (Figure 2). CASSCF calculations clearly revealed that the

isomerization in PYP is also mediated by a conical intersec-
tion.[91–94] The influence of the protein environment was stud-
ied by a QM/MM approach, in which (6,6)-CASSCF calculations
with a 3-21G basis set were used to model the excited-state
dynamics of the chromophore quantum mechanically. It was
shown that the protein stabilizes the S1 excited state of the
chromophore, and as a consequence the relevant S1/S0 conical
intersection is moved into a position that is faster and more ef-
ficiently reached compared to the free molecule, thus allowing
for a very efficient photoinitiated isomerization process in the
protein.[91]

One last example of the application of CASSCF calculations
to photoinitiated processes in biological systems is the investi-
gation of the ultrafast photodynamics of DNA bases upon irra-
diation with UV light. By employing mainly CASSCF-based cal-
culations, it has been shown that DNA bases can undergo
rapid, radiationless deactivation via hydrogen predissocia-
tion.[95] The detailed mechanism is based on a ps* state that is
repulsive along the H-abstraction coordinate and that inter-
sects the initially excited pp* and np* states as well as the
electronic ground state.[95–98] It is believed that this process is
the main mechanism of how DNA is protected against UV irra-
diation.[96,99] The photochemistry of different isomers of DNA
bases has also been studied by employing a hybrid approach
consisting of DFT and multireference CI.[100] A conical intersec-
tion between the first excited state and the ground state of cy-
tosine could be identified for the keto isomer and ketoimine
tautomer, thus explaining the short observed excited-state life-
times of these species.[101] In combined experimental and theo-
retical studies such calculations contributed largely to the un-
derstanding of the excited-state dynamics of 2-aminopurine
and protonated adenine.[102,103]

3. Semiempirical Molecular Orbital Theories

During the last few years, semiempirical methods have fre-
quently been used for the theoretical investigation of large
biological systems, which was largely triggered by the need for
theoretical support in the interpretation of experimental data.
The reason for the success of semiempirical methods lies in
their small computational demands, which allows for an ap-
proximate quantum mechanical treatment of very large molec-
ular systems, and in the lack of more reliable alternatives for
such large systems. The gist of semiempirical molecular orbital
theories is to substantially reduce the computational cost of
wavefunction-based ab initio theories by introducing chemical-
ly virtuous approximations.
At the heart of semiempirical methods lies the approxima-

tion of the one- and two-electron integrals that need to be cal-
culated explicitly prior to an ab initio HF calculation, which is
usually the starting point for excited-state approaches (see
Section 2). In general, the one- and two-electron integrals are
given in the atomic orbital basis as the matrices I and P, re-
spectively, which are defined as Equations (7) and (8):

Figure 2. Molecular structure of the p-coumaric acid chromophore in PYP in
the ground state and after absorption and photoisomerization according to
ref. [91] .
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ðIÞmn ¼
X
mn

Z
c*m ðrÞĥðrÞcnðrÞdr ð7Þ

ðPÞmnls ¼
X
mnls

Z Z
c*m ðr1Þcnðr1Þc*l ðr2Þcsðr2Þ

r1 � r2j j dr1dr2 ð8Þ

where the {cm} correspond to the chosen atomic basis func-
tions, ĥ(r) is the core Hamiltonian containing the kinetic
energy of the electrons and the electron–nucleus attraction,
and the indices run over all atomic basis functions. Calculation
of the matrix P is especially computationally demanding, since
it corresponds to a four-index quantity and scales thus formally
with O(n4) (n being the number of atomic basis functions).
Analysis of the matrix elements of P reveals that many of
them are close to zero, which allows for the introduction of
various approximations.

To illustrate the spirit of semiempirical approaches, one of
the easiest methods, the complete neglect of differential over-
lap (CNDO) method,[104, 105] will be briefly described. In this
method one Slater-type atomic basis function is employed for
each atomic valence orbital and as the name of the method al-
ready indicates, differential overlap between different basis
functions is generally neglected [Eq. (9)]:

Smn ¼
Z

c*m ðrÞcnðrÞdr ¼ dmn ð9Þ

where d is the Kronecker delta. All two-electron integrals
(P)mnls are parameterized in the following way [Eq. (10)]:

ðPÞmnls ¼ dmndlsðPÞmmll ð10Þ

that is, only matrix elements are considered between pairs of
identical basis functions, where each pair is located on one
atom. The two pairs, however, do not necessarily need to be
located on the same atom. If cm and cl are located on the
same atom A, the corresponding integral can be approximated
using the Pariser–Parr approximation [Eq. (11)]:[106]

ðPÞmmll¼ IPA�EAA

¼ pAA

ð11Þ

where IPA and EAA correspond to the experimental ionization
potential and electron affinity of atom A, respectively. Integrals
between function pairs on different atoms can be estimated
via Equation (12):

pAB ¼
pAA þ pBB

2þ rABðpAA þ pBBÞ
ð12Þ

where rAB is the distance between atoms A and B.[107] The one-
electron integrals are within the CNDO method approximated
as Equations (13) and (14):

ðIÞmm ¼ �IPA �
X
K

ZK � dZAZK

� �
pAK ð13Þ

ðIÞmn ¼
bA þ bBð ÞSmn

2
ð14Þ

where orbital cm is located on atom A and cn on B. Z refers to
the nuclear charge of the corresponding atom, and b is a reso-
nance parameter describing the strength of interaction be-
tween atoms. Note that the overlap matrix S contained in
Equation (14) is different from that defined in Equation (9). The
b parameters contained in Equation (14) are usually adjusted
such that the method reproduces certain experimental quanti-
ties. The introduced severe approximations reduce the compu-
tational cost from O(n4) for ab initio HF calculations to only
O(n2) for CNDO.

However, due to the severe approximations, CNDO is not a
reliable method for the calculation of molecular properties. Im-
provements of the simple CNDO scheme are achieved by lift-
ing the constraints for the two-electron integrals [Eq. (10] and
allowing for different values for the integrals for different basis
function types. This re-parameterization yields the INDO
method,[108] which exhibits reasonable accuracy for molecular
ground-state properties. The INDO/S2 model is specifically opti-
mized for spectroscopic properties,[21,22] that is, excited states,
and is thus regularly used as a starting point for CIS-type calcu-
lations (see Section 2). The simple structure of the one- and
two-electron integrals allows for an efficient and fast computa-
tion of excited states of very large molecular systems. The ac-
curacy of the method, however, is unpredictable, and careful
comparison with experiment and/or higher-level computations
must be made, if possible.
Among many other applications, excited-state calculations

based on the INDO/S model have been employed to study
energy-transfer processes in light-harvesting complexes and re-
action centers of the photosynthetic apparatus of purple bac-
teria and plants. For example, the solution of the structure of
the light-harvesting complex (LH2) of Rhodopseudomonas acid-
ophila and Rhodospirillum molischianum[109,110] revealed that
they contain two ring structures with nine or eight weakly cou-
pled and 18 or 16 strongly coupled B800 and B850 bacterio-
chlorophylls (BChls), respectively (Figure 3). This immediately
poses the questions as to whether the low-lying excited states
of these coupled rings are localized on individual BChls or
whether they are delocalized over several, and what the under-
lying mechanism of excitation energy transfer (EET) might be.
Early INDO/S-CIS calculations have been used to study energy-
transfer dynamics and they predicted the low-lying excitonic
states to be distributed essentially over all BChls.[111,112] The cal-
culated rates for EET were in excellent agreement with experi-
mental data. Calculations with a localized-density-matrix
method based on the INDO/S model Hamiltonian largely corro-
borated these findings, and gave evidence that the low-lying
excited state in the strongly coupled B850 ring is distributed
over at least five neighboring BChl molecules.[113,114] In the
latter investigation, the excitation energies of the Qy state of
BChl were underestimated by approximately 0.5 eV; however,
this at first glance large error does not play a crucial role when

2 While INDO is the method, that is, body of formulas, INDO/S is a model, since
it refers to a specific set of parameters used within an INDO calculation.
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describing the EET dynamics, since the same error is made for
all relevant states such that the error basically cancels com-
pletely.
Similarly, the excitation energy-transfer dynamics of chloro-

phyll excitations in photosystem I of Synechococcus elongatus
have been modeled with an effective excitonic Hamiltonian,
after the excitation energies of all present 96 chlorophyll mole-
cules and couplings between spatially close pairs had been cal-
culated with the INDO/S-CIS approach.[115] This procedure al-
lowed a tentative assignment of red chlorophylls and the cal-
culation of the absorption spectrum of the whole photosyste-
m I. Furthermore, a detailed study of the electronic couplings
and energy-transfer dynamics in the oxidized primary electron
donor of the bacterial photosynthetic reaction center that em-
ployed INDO/S-MRCI calculations unraveled the mechanism of
EET from neighboring accessory BChls to the oxidized special
pair.[116]

Another successful semiempirical method is the neglect of
diatomic differential overlap (NDDO) method which, in com-
parison with the INDO method, allows a more flexible parame-
terization of one-center two-electron integrals [Eq. (10)] and
also improves the two-center two-electron integrals. In this
context, a new NDDO-based semiempirical method has recent-
ly been proposed that is called orthogonalization model 2
(OM2).[23] It has been recognized that the neglect of all three-
and four-center two-electron integrals [Eq. (10)] is only then a
justified approximation if the atomic basis functions are or-
thogonal.[117–119] Within OM2, corrections have been included
that correct for valence-shell orthogonalization effects on the
resonance integrals and on repulsive core–valence interactions.
It is hoped that the inclusion of orthogonalization effects cures
some of the most dramatic failures of previous semiempirical
theories.[23] Recently, an MRCI scheme based on the OM2
model Hamiltonian has been implemented,[24,25] which allows
for the calculation of excited electronic states. It is expected
that the inclusion of orthogonalization effects and the con-
comitant increase of the occupied–virtual gap of the orbitals

also improves the accuracy of excited-state calculations, since
excitation energies were typically underestimated by previous
semiempirical models.[120] First calculations on small molecules
do indeed look promising,[25] but a thorough evaluation of the
model is still required.

4. Density Functional Theory-Based
Approaches

Ground-state DFT has the same role in excited-state calcula-
tions within the DFT framework as HF calculation has in wave-
function-based excited-state methods. Similar to the HF
method, DFT yields molecular orbitals and orbital energies,
which serve as a starting point for further excited-state calcula-
tions. DFT in the Kohn–Sham formulation (KS-DFT) relies on
the Hohenberg–Kohn (HK) theorems[121] and the existence of a
noninteracting reference system, whose electron density
equals that of the real system[122] (for reviews in the field of
ground-state DFT, the reader is referred to refs.
[8, 9, 123,10, 124]).
In principle, ground-state DFT calculations can be tweaked

to calculate a particular electronically excited state by introduc-
tion of constraints. These constraints may be, for example, a
different spin multiplicity than the ground state, or equally
well, the excited state of interest may belong to a different ir-
reducible representation of the molecular point group. Follow-
ing this procedure, excited-state properties such as equilibrium
geometries and static electric moments are accessible. The ex-
citation energy is given as the difference of the total energies
of the electronic ground state and the excited state obtained
in two independent calculations. This method is also common-
ly referred to as the DSCF method,[125] but the methodology
can be applied with any ground-state method. Logically, this
approach breaks down if one is interested in excited states of
the same spin multiplicity and same irreducible representation
of the spatial symmetry group as that of the electronic ground
state. This is particularly often the case if one wishes to study

Figure 3. Molecular arrangement of the weakly coupled B800 ring (red) and the strongly coupled B850 ring (green) in the light-harvesting complex (LH2) of
Rhodopseudomonas acidophila.

2266 www.chemphyschem.org 4 2006 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim ChemPhysChem 2006, 7, 2259 – 2274

A. Dreuw

www.chemphyschem.org


photoinitiated processes in biological systems, since large mo-
lecular models mostly do not exhibit any spatial symmetry.
A similar approach is the ROKS method,[17,126–128] which

allows the computation of the lowest excited singlet state
even if it belongs to the same irreducible representation as the
electronic ground state. It is closely related to the restricted
open-shell HF method for the low-spin case,[129] and relies on
the idea that the energy of the lowest singlet state can be ex-
tracted from the energy of the HOMO!LUMO singly excited
Slater determinant in singlet and triplet configuration
(Figure 4). It is apparent from Figure 4 that the energy of the
lowest singlet state is simply given as Equations (15) and (16):

Esing ¼ 2Esing
S � EtripS ð15Þ

Esing ¼ 2 Fsing
S F̂KS
�� ��Fsing

S

� �
� Ftrip

S F̂KS
�� ��Ftrip

S

� �
ð16Þ

Minimization of the energy expression (16) with respect to the
molecular orbitals fp(r) constituting the Slater determinants FS

and FT yields the ROKS scheme comprising two sets of nonlin-
ear differential equations, one for the doubly occupied orbitals

and one for the singly occupied orbitals. Thereby the energy
of the spin-adapted singlet state, the linear combination of
two singly excited determinants, is obtained. The equations
can either be solved by iterative diagonalization or direct mini-
mization, the latter of which is particularly useful for imple-
mentations of ROKS in a Car–Parinello molecular dynamics
(CPMD) framework.[17,130] However, since ROKS always yields
only the lowest singlet excited state, it is not possible to calcu-
late the complete electronic spectrum. Also, doubly excited
states are not included in the method, which may well be rele-
vant for large molecular systems. Recently, ROKS has been ap-
plied in a QM/MM scheme to study the ultrafast isomerization
of retinal in its binding pocket in rhodopsin.[131] Although at
ambient temperatures no photoisomerization could be ob-
served, ultrafast isomerization was obtained when the local
temperature was artificially increased to 690 K. Then, it could
be shown that no atom of the retinal had to move more than
0.8 S to perform the isomerization from the 11-cis to the all-
trans form of retinal.

Today, the most widely used theoretical method to investi-
gate electronically excited states of medium-sized to large mo-
lecular systems is linear-response time-dependent functional
theory (TDDFT). The Runge–Gross theorems[18] and their exten-
sions[132,133] have led to the formulation of the so-called time-
dependent Kohn–Sham equations [Eq. (17)]:

i
@

@t
�iðr; tÞ ¼ F̂KSðr; tÞ�iðr; tÞ ð17Þ

which yield the time-dependent one-particle density according
to Equation (18):

1ðr; tÞ ¼
Xnocc

i

�iðr; tÞj j2 ð18Þ

In the above equations, fi ACHTUNGTRENNUNG(r,t) correspond to time-dependent
occupied molecular orbitals and F̂KSðr; tÞ is the time-dependent
Kohn–Sham operator. For more details on formal aspects of
the derivation of the time-dependent Kohn–Sham equations,
the reader is referred to refs. [19, 20, 133,134] .

Two different strategies can be followed to obtain excitation
energies and oscillator strengths employing the time-depen-
dent Kohn–Sham approach. One possibility is to propagate the
time-dependent Kohn–Sham wavefunction in time, which is re-
ferred to as real-time TDDFT.[135, 136] This technique still has the
status of an expert’s method but it is beginning to be used in
chemistry and biophysics, and some successful applications
have been reported recently in the literature.[137,138] The other
possibility for obtaining excited-state properties is to analyze
the linear response of the time-dependent Kohn–Sham equa-
tions with respect to an external oscillating electric field, which
yields the linear-response TDDFT equations. If one speaks of
TDDFT today, one usually refers to the latter linear-response
TDDFT approach. The key steps of its derivation will be briefly
outlined in the following discussion.
The basic idea is to apply time-dependent perturbation

theory to first order and to describe the time-dependent linear
response of the one-particle density to a time-dependent oscil-
lating electric field. Before the time-dependent electric field is
applied, the molecular system is assumed to be in its electron-
ic ground state, that is, to obey the ground-state Kohn–Sham
equation [Eq. (19)]:

F̂KS;0ðrÞFKS
0 ¼ EKS0 FKS

0
ð19Þ

with [Eq. (20)]:

10ðrÞ ¼
Xnocc

i

�iðrÞj j2 ð20Þ

where F̂KS;0ðrÞ is the time-independent Kohn–Sham operator,
FKS

0 the ground-state Kohn–Sham Slater determinant, fi(r) the
occupied Kohn–Sham orbitals, and EKS0 the corresponding
ground-state total energy. Now a time-dependent oscillating
electric field of the form [Eq. (21)]:

Figure 4. A) Relevant singly excited determinants for the ROKS scheme.
B) Energies of the singly excited determinants compared with the energies
of the singlet and triplet states.
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EðtÞ ¼ feiwt þ f *e�iwt ð20Þ

is applied, and as a consequence the Kohn–Sham orbitals, the
electron density, and the Kohn–Sham operator will change,
since the latter depends itself on the orbitals. The applied field
is a small perturbation, and therefore the new density can in
first order be written as Equation (22):

1ðr,tÞ ¼ 10ðrÞ þ d1ðr,tÞ ð22Þ

and the time-dependent Kohn–Sham operator takes on the fol-
lowing appearance [Eq. (23)]:

F̂KSðr; tÞ ¼ F̂KS;0ðrÞ þ dF̂KS;0

d1ðrÞ

" #
t¼t0

d1ðr; tÞ þ EðtÞ ð23Þ

where the second term on the right-hand side corresponds to
the linear change of the ground-state Kohn–Sham operator
F̂KS;0ðrÞ when the perturbation is switched on. Substitution of
Equations (22) and (23) into Equation (16), collection of all first-
order terms, and careful analysis of orthogonality constraints
yields, after Fourier transformation into the energy space, the
TDDFT equation for the excitation energies and transition vec-
tors (see, for example, refs. [19,20, 139,140]). In compact matrix
notation, the TDDFT equations read [Eq. (24)]:

A B

B* A*

 !
X

Y

 !
¼ w

1 0

0 �1

 !
X

Y

 !
ð24Þ

where the matrix elements are given for a hybrid exchange-
correlation (xc) functional as Equations (25) and (26):

Aia,jb ¼ dijdabðea�eiÞ þ ðjajibÞ�cHFðjijabÞ þ ð1�cHFÞðjajf xcjibÞ
ð25Þ

Bia,jb ¼ ðjajbiÞ�cHFðjbjaiÞ þ ð1�cHFÞðjajf xcjbiÞ ð26Þ

Equation (24) is a non-Hermitian eigenvalue equation, the solu-
tion of which yields excitation energies w and transition vec-
tors jXY> determining the first-order change in the density
and thereby also the excited-state wavefunction. Although the
exchange-correlation kernel fxc of Equations (25) and (26) is for-
mally energy-dependent, in practical calculation standard
ground-state xc functionals, for instance SVWN,[141,142]

BLYP,[143,144] PBE,[145,146] or B3LYP,[147] are employed to evaluate
those terms. This is a consequence of the so-called adiabatic
local density approximation (ALDA), which requires that
[Eq. (27)]:

f xcðw,r,r0Þ ¼ f xcðrÞdðr�r0Þ ð26Þ

Notably, Equation (24) contains four different but closely re-
lated schemes for the calculation of excited states (Figure 5).[20]

If the coefficient cHF, which measures the amount of nonlocal
HF exchange in the xc functional, is equal to 1.0 in Equa-
tions (25) and (26), the scheme reduces to the well-known
time-dependent Hartree–Fock (TDHF) scheme.[148–152] If the

Tamm–Dancoff approximation (TDA) is performed, which
means that the B matrix is neglected in Equation (24), one ar-
rives in the case of TDDFT (cHF¼6 1.0) at the TDA/TDDFT
scheme[139] and in the case of TDHF (cHF=1.0) at CIS. The latter
becomes clear if Equations (24) and (25) with B=0 and cHF=
1.0 are compared with Equations (4) and (5) in Section 2.
Hence, there exist two routes to the CIS scheme: one is via the
CI formalism as presented previously, and the other is via
linear response theory. An approach that combines ground-
state DFT with CIS has been proposed previously,[153] in which
CIS computations according to Equation (4) are performed
with shifted Kohn–Sham orbital energies and empirically
scaled Coulomb-type two-electron integrals (second term on
the right-hand side of Equation (5)). A tight-binding approach
to TDDFT, the so-called TDDFTB method, has also been devel-
oped, which decreases the computational effort further.[154]

The computational expense of TDDFT calculations scales ap-
proximately like O(n3) and additional computation time can be
saved by a factor of 3–8 depending on the system of interest
if the resolution-of-the-identity (RI) approximation[155] is used
to evaluate the Coulomb-like terms of Equations (25) and
(26).[156,157] On a modern computer, molecular systems with up
to 2000 basis functions (approximately 150 first-row atoms)
can be treated by TDDFT in the standard implementation, and
systems with up to 4500 or so basis functions (300 atoms) can
be reached by TDDFT when the RI approximation is used.
For valence excited states, for example pp*, np*, or ns*

states, whose excitation energies are well below the ionization
potential, TDDFT exhibits an accuracy similar to that of sophis-
ticated wavefunction-based methods of approximately 0.2–
0.8 eV depending on the system. Very often these excited
states are slightly shifted in energy by an almost constant
value compared with the experimental electronic absorption
spectrum, but the relative energies between the states are re-
produced very favorably (see, for example, refs. [95, 158,159]).
Despite the success of TDDFT for valence excited states, it ex-
hibits substantial errors for the calculation of Rydberg excited
states, doubly excited states,[160, 161] ionic states of systems with
large p systems,[162, 163] and charge-transfer excited states,[164–167]

which are all well documented today.[20] Particularly, the three
latter problems prevent TDDFT from being a black-box
method for excited states, and instead they always demand a
careful examination of the calculated excited states and expert
knowledge. Nevertheless, if these failures can be cured, TDDFT
possesses the potential to become a viable approach to be
employed for large systems and/or in QM/MM schemes, since

Figure 5. Schematic diagram of the relation between HF and DFT, and time-
dependent Hartree–Fock (TDHF) and time-dependent DFT (TDDFT), as well
as configuration interaction singles (CIS) and the Tamm–Dancoff approxima-
tion (TDA) to TDDFT.
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then the method possesses all the requirements 1)–4) outlined
in the Introduction. It can yield reliable relative energies with
reasonable absolute accuracy, it will be a black-box method,
and the computational effort is relatively small.
In recent years, analytic gradients have been presented for

the excited states,[168–170] which makes the efficient calculation
of excited-state properties like equilibrium geometries and
dipole moments with TDDFT possible. The calculated proper-
ties for the excited states can be expected to be of the same
quality as those calculated with standard KS-DFT for the
ground state, if the studied state does not belong to one of
the classes of states mentioned above, for which TDDFT fails.
In combination with numerical calculation of the harmonic fre-
quencies, it has been shown that TDDFT can reproduce vibra-
tionally resolved electronic spectra of medium-sized organic
molecules with reasonable accuracy and allows for an assign-
ment of spectral features.[171,172]

The application of TDDFT to photoinitiated processes in bio-
logical systems is tedious due to the failures mentioned above,
which are particularly dramatic for large molecules or aggre-
gated systems, both being typical for biological systems. Most
notably, the failure for CT excited states leads to spurious
states in the low-energy region.[164,167,173] A first and helpful test
of the applicability of TDDFT is the investigation of the de-
pendence of the results on the xc functional. If, for instance, a
local functional (SVWN), a gradient-corrected functional (BLYP,
BP86), and a hybrid functional (B3LYP) yield substantially differ-
ent results for the excited states, one should not rely on
TDDFT for the investigation, whereas if the results are essen-
tially independent of the xc functional, the system can well be
treated with TDDFT. However, if possible, results from TDDFT
calculations should always be compared with experimental
data or calculations on higher levels of theory.
A very promising ansatz for the treatment of CT states is the

inclusion of nonlocal HF exchange at long-range electron–elec-
tron interaction, which has been realized in a couple of
schemes so far.[174–176] In all these schemes, the Coulomb opera-
tor of the Hamiltonian is split up into two parts, a short-range
and a long-range part, as for example in ref. [174] [Eq. (28)]:

1
r12

¼ 1� erf ðmr12Þ
r12

þ erf ðmr12Þ
r12

ð28Þ

where r12= j r1�r2 j . The first term on the right-hand side corre-
sponds to the short-range part and is evaluated using the
xc potential from DFT, while the second term, the long-range
part, is calculated with exact HF exchange. This idea is fairly
old and was originally suggested by Stoll and Savin in
1985.[177–180] The scheme [Eq. (28)] has been applied in combi-
nation with various xc functionals to yield, for instance, LC-
BLYP, which indeed corrects the failures of TDDFT for CT excit-
ed states.[174] A major drawback of this approach, however, is
that the standard xc functionals require a refitting procedure.
Similar in spirit is the approach of Baer and Neuhauser, who
also include long-range HF exchange but who employ a differ-
ent partition function for the Coulomb operator.[176] An exten-
sion of this approach has been presented by Yanai et al. who

combine B3LYP[147] at short range with an increasing amount
of exact HF exchange at long range, which results in a func-
tional called CAM-B3LYP[175] that gives excellent CT excitation
energies in comparison with benchmark calculations. However,
since they use at long range 60% HF exchange at most, the
long-range asymptotic behavior of the CT states is not fully
corrected.[175] A slightly different route is taken by Gritsenko
and Baerends who suggest a new long-range-corrected xc ker-
nel that shifts the orbital energy of the acceptor orbital to a
value related to the electron affinity. The wrong asymptotic be-
havior of the CT states is corrected by a distance-dependent
Coulomb term that corrects for electron transfer self-interac-
tion.[181]

In recent years, TDDFT has been applied successfully, for ex-
ample, to the investigation of energy- and electron-transfer
processes between carotenoids and chlorophylls,[63,182,183]

which has led to the correct prediction of a carotenoid radical
cation during nonphotochemical quenching (NPQ). NPQ is a
photosynthetic process by which plants protect themselves
against photodamage under high light conditions.[184] Among
other possible scenarios, one hypothesis for a molecular mech-
anism of NPQ is the formation of a quenching complex con-
sisting of chlorophyll a (Chl) and the carotenoid zeaxanthin
(Zea), the putative quencher.[183,185–187] Calculations of the excit-
ed states of a Chl-Zea complex along an intermolecular dis-
tance coordinate were performed to study the influence of
complex formation on the excited states of the pigments,
where a hybrid approach combining CIS calculations for the
CT excited states and TDDFT calculations for the valence excit-
ed states had to be used to correctly describe the CT excited
states, the valence excited states, and their relative energies in
the complex.[63,182] These calculations have shown that in such
complexes excess energy quenching is possible via two mech-
anisms. 1) At all distances the excitation energy can be trans-
ferred from Chl to Zea, since the S1 energy of Zea is lower
than the Qy energy of Chl (Figure 6). Having arrived in the S1
state of Zea, the excess energy is dissipated as heat. 2) At
short distances below 5.5 S, when a complex is formed, the
chlorophyll excited state can also be quenched via electron
transfer from Zea to Chl, which results in a carotenoid radical
cation and a chlorophyll radical anion (Figure 6). Based on
these calculations a femtosecond pump–probe experiment has
been suggested, in which the Qy state of Chl should be excited
and the typical carotenoid radical cation signal around
1000 nm should be probed.[182] In the meantime, this experi-
ment has been performed and the radical cation signal was
observed only during NPQ, which is a strong hint for the exis-
tence of a Chl-Zea complex under NPQ conditions.[188]

Recently, carotenoid radical formation has also been ob-
served in the light-harvesting complex 2 (LH2) of the purple
bacterium Rhodobacter sphaeroides upon photoexcitation of
the S2 state of the carotenoid spheroidene (Spher).[189] Al-
though TDDFT yields spurious low-lying Spher-to-BChl CT excit-
ed states, calculations employing the above-mentioned hybrid
approach between CIS and TDDFT[164] on Spher-BChl model
complexes allowed the unambiguous identification of one en-
ergetically accessible Spher-to-BChl state explaining the previ-
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ous observation of the radical cation.[167, 190] Analysis of the mo-
lecular orbitals of this state clearly shows that one electron is
transferred from the highest molecular orbital located on
Spher to the lowest unoccupied orbital located on BChl, un-
doubtedly revealing the CT nature of this state (Figure 7).

5. Analysis of Electronic Transitions

To gain physical insight into photoinitiated processes in biolog-
ical systems, the electronic structure of the relevant excited
states must be known. In principle, it is possible to analyze the
full excited-state wavefunction or its electron density, and for
this objective, the techniques developed for the analysis of the
electronic ground state are simply applied to the excited state
of interest. However, it is often easier and more elegant to ad-
dress differences between the ground and excited state direct-
ly, thus avoiding tedious analysis of the complete excited-state
wavefunction.

Usually, the electronic ground state of a molecular system is
well represented by a single Slater determinant composed of
single-electron wavefunctions describing the movement of the
individual electrons in the molecule [Eq. (1)] . These single-elec-
tron wavefunctions correspond to the familiar molecular orbi-
tals (MOs), which are well known to chemists and often used
to understand molecular processes. It is thus natural to try to
analyze the excited states, that is, their Slater determinants,
with the help of the MOs. Sometimes indeed only one or two
excited determinants contribute significantly to the excited-
state wavefunction of interest, and in such cases its analysis is
straightforward in terms of the occupied and virtual MOs that
have been interchanged in the excited-state determinants
compared to the ground state. Such a case is, for instance, the
lowest charge-transfer excited state of the bacteriochlorophyll–
spheroidene model complex (Figure 7), whose wavefunction is
composed of essentially one Slater determinant in which the
highest occupied MO (HOMO) of the ground state is replaced
by the lowest unoccupied MO (LUMO). Hence, this excited
state corresponds to a single-electron transition from the
HOMO to the LUMO. Although the analysis of an electronic
transition via MOs is computationally easy and thus convenient
and straightforward for states with only one or two significant-
ly contributing Slater determinants, it can become very tedious
for states that are represented by several determinants with
expansion coefficients of similar size.
Another possibility to obtain information about an electronic

transition is to analyze the one-electron transition density. The
transition density T(r) couples the electronic ground state with
the excited state of interest and is in general given as Equa-
tion (29):

TðrÞ ¼ N

Z
Yexðr1; r2; :::rn >< Y0ðr1; r2; :::rnj jdr2:::drn ð29Þ

In principle, one can analyze the transition density directly to
obtain valuable information about the symmetry of the transi-
tion and about the way in which a one-electron operator cou-
ples two different states. It is, however, useful to analyze the
transition density matrix, which is given in the molecular orbi-
tal basis as Equation (30):

ðTÞia ¼ �i T̂ðrÞ
�� ���a

� �
ð30Þ

via so-called “natural transition orbitals” analogous to the well-
known natural orbitals obtained by diagonalization of the
ground-state single-electron density.[191] Since the transition
density matrix is a rectangular noccVnvirt matrix, it cannot
simply be diagonalized. Instead, the “corresponding orbital
transformation” by Amos and Hall[192] can be applied, which is
based on a singular value decomposition of the transition den-
sity matrix that yields pairs of occupied and virtual “natural
transition orbitals”. Usually, an electronic transition can be ex-
pressed by one single occupied–virtual pair of the “natural
transition orbitals”, even if the transition is highly mixed in the
canonical molecular orbital basis, where it is thus difficult to
analyze. Plotting the corresponding natural transition orbitals

Figure 6. Potential energy curves of a putative chlorophyll a–zeaxanthin
complex along an intermolecular separation coordinate calculated with a
hybrid approach of TDDFT/BLYP/3-21G and CIS/3-21G. The structure of the
model is given in the inset.

Figure 7. Highest occupied molecular orbital (HOMO, left) and lowest unoc-
cupied molecular orbital (LUMO, right) of a spheroidene–bacteriochlorophyll
model complex.

2270 www.chemphyschem.org 4 2006 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim ChemPhysChem 2006, 7, 2259 – 2274

A. Dreuw

www.chemphyschem.org


gives detailed insight into the nature of the electronic transi-
tion. An example of the application of this analysis technique
is given in ref. [191].
A complementary approach to the analysis of the transition

density matrix T is the investigation of the difference density
matrix D, which is simply given as the difference between the
single-electron density matrices of the excited state Pex and
that of the electronic ground state P0 [Eq. (31)]:

D ¼ Pex�P0 ð31Þ

Today, the analysis of an electronic transition by means of the
difference density is frequently performed (see, for example,
refs. [193–196]) and, in principle, valence and Rydberg excited
states can be easily distinguished. Also, the nature of the tran-
sition (np* or charge transfer) is often readily apparent for
simple molecular systems. However, the difference density is a
complicated function with often intricate nodal surfaces, which
makes its plotting and analysis very tedious, especially for
larger molecules. This is mostly due to the fact that both the
ground-state electron density that is removed upon excitation
and the “new” electron density of the excited state are shown
with different signs together in one picture. It is also some-
what awkward that a density acquires a negative sign, since it
is originally defined as the square of the wavefunction.

The physically most appealing and conceptually easiest way
to analyze the nature of a complicated electronic transition is
via so-called attachment/detachment density plots.[197,198] The
basis of this analysis is the diagonalization of the difference
density matrix D given by Equation (31) via [Eq. (32)]:

UyDU ¼ d ð32Þ

where U is a unitary transformation matrix containing the ei-
genvectors of the difference density matrix, which again could
be considered as “natural orbitals of the electronic transition”,
but which are generally different from those obtained from
the diagonalization of the transition density matrix [Eq. (30)] . d
is a diagonal matrix containing the eigenvalues dp of D, which
are interpreted as occupation numbers of the eigenvectors.
The diagonal difference density matrix d is split into two matri-
ces A and D. The matrix D, the so-called detachment density, is
defined as the sum of all eigenvectors of D which possess neg-
ative eigenvalues, while the attachment density matrix A is de-
fined as the sum of all natural orbitals of the difference density
matrix with positive occupation numbers, weighted by the ab-
solute value of their occupation. This density matrix A corre-
sponds to the particle levels occupied in the electronic transi-
tion. The difference between the two new matrices A and D
corresponds to the original difference density matrix D
[Eq. (33)]:

D ¼ A�D ð33Þ

In other words, the detachment density is that part of the
single-electron ground-state density that is removed and rear-
ranged as attachment density. Together these densities charac-

terize an electronic transition as D!A, which permits the visu-
alization and analysis of electronic transitions more or less as if
they correspond to just single-orbital replacements, regardless
of the extent of configuration mixing that occurs in the excit-
ed-state wavefunction and regardless of how inappropriate
the molecular orbitals are for the description of the transition.
The analysis via attachment/detachment density plots can be
applied to any excited-state calculation that yields a one-parti-
cle difference density. As an example, the detachment/attach-
ment density plot of the Qy state of bacteriochlorophyll is
shown in Figure 8, which has been calculated at the theoretical
level of TDDFT/TDA/BLYP/6-31G*. At this level of theory, this
state corresponds to a linear combination of three contributing
Slater determinants, and an analysis at the molecular orbital
level would thus be tedious. The detachment/attachment den-
sity plots are much simpler and straightforward to interpret.

6. Comparison and Perspectives of Theoretical
Methods

In the previous sections, the most widely used theoretical
methods to calculate electronically excited states of large mol-
ecules have been briefly reviewed. Their theoretical concepts
and basic equations have been introduced and the properties
and limitations of the methods have been pointed out. Suc-
cessful applications of these methods to various photoinitiated
processes in biological systems have been described.
We have seen that the cheapest wavefunction-based meth-

ods that are regularly applied to studying photoinitiated pro-
cesses in biological systems are CIS and CASSCF. While the first
is cheap but far too inaccurate to allow more than a rough
and qualitative understanding of the relevant excited states,
CASSCF can be very accurate if large enough basis sets and
active spaces are employed, but this is computationally expen-
sive and furthermore requires a significant amount of a priori
knowledge and technical input. Semiempirical approaches
such as INDO/S or OM2/MRCI offer an alternative to the cum-
bersome ab initio calculation of excited states, but their errors
are essentially not predictable. However, there is hope that
OM2/MRCI is a substantial improvement over previous semi-
empirical approaches, but further evaluation is needed. TDDFT
and its variants represent at present the most widely used ap-
proaches for the investigation of photoinitiated processes in

Figure 8. Detachment density D and attachment density A, which character-
ize the Qy state of bacteriochlorophyll as a pp* excited state.
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biological systems. However, present-day TDDFT exhibits sub-
stantial errors for several classes of states that can be relevant
for large molecules due to the employed exchange-correlation
functionals. As a consequence, TDDFT calculations for large
molecules or molecular aggregates must be performed with
great care and with subsequent tedious analysis of the excit-
ed-state wavefunctions obtained.
A general problem of the calculation of excited states of

large molecules is that even in the low-energy region, the rele-
vant states can exhibit very different electronic structures. As
an unfortunate consequence, any significant approximation in-
troduced during the computation might be a reasonable ap-
proximation for one class of states but at the same time a very
poor one for another equally important class of excited states.
It is one thing to reproduce the spectrum of a molecule where
only optically allowed states are relevant, which are mostly
pp* states and which thus belong to one class of states. It is
much more challenging to also take account of dark states not
visible in the spectrum, which very often have unusual elec-
tronic structures, for example, charge-transfer, np*, ns*, and so
on, but which can determine the dynamics of a photoinitiated
process. This is, for instance, the case for TDDFT, which typical-
ly yields excellent results for pp* excited states and thus repro-
duces electronic spectra quite favorably, but TDDFT fails com-
pletely to describe charge-transfer excited states, which for
large molecular systems can occur at low energy and can be
important for photoprocesses. The same argument holds for
semiempirical models, since a chosen set of parameters for the
one- and two-electron integrals will be appropriate for the de-
scription of some states, but probably be not suitable for
others with a significantly different electronic structure. Even
CASSCF with small active spaces encounters this problem,
since a limited selection of active orbitals inevitably leads to an
unbalanced treatment of excited states with very different
electronic structures.
Another very general problem in the theoretical description

of large molecular systems, and in particular in weakly interact-
ing molecular complexes like the pigments in photosynthetic
proteins, is the influence of van der Waals interactions and po-
larization. In general, these interactions determine the geomet-
rical structure of the complexes, and need to be considered in
QM/MM approaches aiming at the description of excited-state
or ground-state dynamics. Consequently, correlated methods
at the MP2 level or beyond should be used. However, at fixed
geometries their influence on vertical excited states is only
small, since errors in the description of these interactions basi-
cally cancel when excitation energies are calculated.
In summary, at present there exists no theoretical method

for excited states of large molecules that fulfills all the require-
ments listed in the Introduction. Because of the arguments dis-
cussed above, it seems difficult and challenging to develop a
cheap theoretical method that allows the reliable calculation
of all excited states of large molecules with reasonable accura-
cy, which would be a necessary prerequisite for a successful
QM/MM scheme for excited-state dynamics.
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