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Abstract 

An approximate coupled cluster singles and doubles model is presented, denoted CC2. The CC2 total energy is of 
second-order M~ller-Plesset perturbation theory (MP2) quality. The CC2 linear response function is derived. Unlike MP2, 
excitation energies and transition moments can be obtained in CC2. A hierarchy of coupled cluster models, CCS, CC2, 
CCSD, CC3, CCSDT etc., is presented where CC2 and CC3 are approximate coupled duster models defined by similar 
approximations. Higher levels give increased accuracy at increased computational effort. The scaling of CCS, CC2, CCSD, 
CC3 and CCSDT is N 4, N 5, N 6, N 7 and N s, respectively where N is the number of orbitals. Calculations on Be, N 2 and 
c 2 n  4 are performed and results compared with those obtained in the second-order polarization propagator approach 
SOPPA. 

I.  Introduct ion  

Calculation of molecular properties are usually 
more demanding than calculation of the total molec- 
ular energy. The molecular properties we discuss 
may all be obtained from molecular response func- 
tions, i.e. transition moments, excitation energies, 
frequency-dependent polarizabilities and similar 
spectroscopic parameters. The main goal is to con- 
struct models that give results close to the full 
configuration interaction (FCI) results with a compu- 
tational effort that is as small as possible. Accuracy 
of total energies does not assure accuracy of molecu- 
lar properties. We present models constructed with 
emphasis on the calculation of molecular properties 
rather than only on total energies. Furthermore we 

emphasize the importance of developing hierarchies 
of models where properties can be determined at still 
higher levels of electron correlation. The possibility 
to perform series of calculations within a hierarchy 
of models allows an estimate of the accuracy based 
on an analysis of convergence trends. The applica- 
tion range of the models is increased if the accuracy 
and computational effort can be chosen in accor- 
dance with the given problem. 

The most commonly used non-variational meth- 
ods are many-body perturbation theory (MBPT) and 
coupled cluster (CC) theory. They have in many 
respects proven successful in obtaining both correla- 
tion energies and molecular properties. Second-order 
M¢ller-Plesset (MP2) and coupled cluster singles 
and doubles (CCSD) have been widely used and 
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scale as N 5 and N 6 where N is the number of 
orbitals. Perturbational approaches are in general 
slowly convergent towards the FCI limit. Coupled 
cluster methods include all higher-order terms within 
a given excitation manifold due to the exponential 
Ansatz, and as a consequence the convergence to- 
wards FCI is significantly improved compared to the 
perturbational approaches. The non-approximated 
coupled cluster models only provide a feasible hier- 
archy for small systems due to their fast increasing 
computational cost: CCSD(N6), CCSDT(NS), etc., 
where the number in parentheses denotes the scaling 
with the number of orbitals. The CCS model has not 
been used apart from the fact that for excitation 
energies CCS is equivalent to the single excited CI 
(CIS) approach. CCS scales as N 4. Models in be- 
tween CCSD and CCSDT in accuracy and computa- 
tional cost have been designed, and especially the 
perturbative correction in the CCSD(T) model [1] 
has been used succesfully in obtaining static molecu- 
lar properties. CCSD(T) scales as N 7. 

A variety of molecular properties have been cal- 
culated at the CCSD level using coupled cluster 
linear response (CCLR) [2-7] theory and the equa- 
tion of motion [8] (EOMCC) coupled cluster ap- 
proach. Excitation energies within EOMCC are iden- 
tical to CCLR excitation energies whereas transition 
moments and polarizabilities differ, the most impor- 
tant difference being that the EOMCC approach does 
not scale correctly with system size for these proper- 
ties [6,7]. The success of CCSD for calculation of 
molecular properties may be ascribed to several facts. 
The energy is correct to third order, and contains all 
singles and doubles contributions to infinite order. 
Particularly important for properties are the singles 
which give an approximate orbital relaxation. In this 
Letter we present a second-order coupled cluster 
model CC2 as an approximation to CCSD. We ap- 
proximate the doubles equations to the form occur- 
ring in first order but with the singles retained to 
provide an approximate description of orbital relax- 
ation. This gives a N 5 model with an energy compa- 
rable to MP2. 

The CC2 model described in this Letter and the 
CC3 model introduced in Ref. [9] is based on the 
same philosophy in approximating the CCSD and 
CCSDT models respectively. From the CC2 and 
CC3 [10] response functions dynamic molecular 

properties as well as excitation energies and transi- 
tion moments can be obtained. By including these 
two models among the non-approximated coupled 
cluster models we obtain a hierarchy as follows: 
C C S ( N 4 ) ,  CC2(N5),  CCSD(N6) ,  CC3(N7) ,  
CCSDT(NS), etc. where the computational effort 
increase by a factor N in each step. Energies and 
properties increase in accuracy at each level in this 
hierarchy with a convergence towards the FCI limit 
that is unique to the coupled cluster approach. 

Alga et al. [11] derived frequency-dependent po- 
larizabilities for the MP2 model, where the orbitals 
are allowed to relax to the perturbation. Although 
these polarizabilites and the related ones of Rice and 
Handy [12] may be used to calculate frequency-de- 
pendent polarizabilities, the poles are equal to 
Hartree-Fock poles. As pointed out by Alga et al. 
the function for the polarizability includes second- 
order poles (order refers here to order of poles not 
order in the fluctuation potential) due to products of 
Hartree-Fock poles. This structure is not compatible 
with the structure of the true linear response func- 
tion, and excitation energies and transition moments 
can not be identified in MP2. A second-order model 
which gives a response function compatible with the 
true response function and with a N 5 operation 
count is the second-order polarization propagator 
approximation (SOPPA) [13]. From the SOPPA lin- 
ear response function excitation energies and transi- 
tion moments can be identified which are correct 
through second order in the fluctuation potential. 
Since SOPPA is based on an expansion of an expec- 
tation value it does not include corrections due to the 
non-fulfillment of the Hellmann-Feynman theorem. 
In CC2 we can identify excitation energies and 
transition moments as poles and residues of the CC2 
linear response function. The CC2 response function 
is based on a quasi energy and therefore includes 
corrections due to the non-fullfillment of the Hell- 
mann-Feynman theorem. The CC2 poles are correct 
through second order. 

Head-Gordon et al. [14] presented a doubles cor- 
rection to CIS excitation energies denoted CIS(D). 
This excitation energy model can be described as a 
kind of non-iterative CC2. We shall investigate the 
differences between the iterative and non-iterative 
models in forthcoming publications. The approach of 
Head-Gordon only allows excitation energies to be 
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identified. Another approach closely related to cou- 
pled cluster is the quadratic configuration interaction 
approach QCI of Pople et al. [15]. The QCI singles 
and doubles (QCISD) model involves a N 6 opera- 
tion count and significant computational savings rel- 
ative to CCSD are not obtained. In Ref. [16] a 
comparison of QCISD and CCSD excitation energies 
is presented. A hierarchy of models have been intro- 
duced in the expectation value coupled cluster method 
[17] XCC and in the unitary coupled cluster method 
[18] UCC. The disadvantage of the XCC and UCC 
approaches is that the cluster equation contains in- 
finitely many terms in contrast to usual coupled 
cluster theory. The second-order model in these ap- 
proches XCC(2) gives the MP2 model. Watts and 
Bartlett [19,20] have presented calculations of excita- 
tion energies using coupled cluster methods where 
triple excitations have been taken into account in 
approximate ways. In Refs. [10,21] we presented 
detailed comparisons of excitation energies calcu- 
lated within the CCSDT-la model and our CC3 
model. 

Among the variational methods used in calculat- 
ing correlated properties is the multi-reference con- 
figuration interaction (MRCI) method [22] and sec- 
ond-order perturbation theory with a complete active 
space reference [23] (CASPT2). The strategy in ob- 
taining CASPT2 and MRCI excitation energies is 
different from the one in response function methods 
since explicit calculations of the excited states are 
performed. 

2. The CC2 model  

The CCSD energy is determined from 

E = (HF[nexp(T1 + T2)IHF), (1) 

where the CCSD cluster amplitudes are obtained 
from the CCSD amplitude equations 

(/.~/[exp( - T  1 - T2)nexp(T 1 + T2)IHF) = 0 

i =  1,2, (2) 

where {(/xl], (/x2l} denotes the single and double 
excitation manifold. Introducing /'1 transformed op- 
erators as 

6 = exp( - T1)O exp(Tx), (3) 

we may write the CCSD amplitude equations as 

( / z l [ / I  + [ / I ,  TE]IHF) = 0, (4) 

(5) 

We introduce a partitioning of the Hamiltonian H 
into a Fock operator F and a fluctuation operator U, 
describing the difference between the electron-elec- 
tron repulsion and the Fock potential, 

H = F + U .  (6) 

For an optimized Hartree-Fock reference the dou- 
bles enter in first order in the fluctuation potential, 
and singles and triples in second order. The CCSD 
energy is correct through third order. To obtain an 
energy correct through second order it is sufficient to 
include the first order doubles amplitudes as in MP2. 
The fact that the singles appears in second order is 
solely due to the use of Hartree-Fock orbitals. If 
non-optimized orbitals were used, this is not the 
case. The singles respond to external perturbations to 
zeroth order in U. To obtain a balanced description 
of properties other that the total energy, we will use 
a coupled cluster strategy where we assign the sin- 
gles to be zeroth order in U. We therefore approxi- 
mate the CCSD equations as follows. The singles 
equations are retained in their original form, but the 
doubles equations are approximated to be correct 
through first order only, with the singles treated as 
zeroth-order parameters. The doubles equation thus 
becomes 

( /z2I[F,  T2] + HIHF) = 0. (7) 

Eqs. (7) and (4) define the CC2 model in the absence 
of external perturbations. The T 1 transformed opera- 
tors in Eq. (3) provide a convenient tool for retaining 
the singles in the equations. In Ref. [24] equations 
are given for the CCSD amplitude equations in terms 
of t 2 amplitudes and integrals of the T 1 transformed 
Hamiltonian and an integral direct algorithm for 
implementing these equations is described. The CC2 
equations are a subset of the CCSD equations and a 
CC2 integral direct implementation follows immedi- 
ately from the above. The doubles equations in CC2 
give an MP2 like expression, but with transformed 
integrals. Since only N 5 terms occur in the singles 
equations, it is clear that CC2 is an iterative N 5 
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model. The CC2 model is in no sense a complete 
solution in the space of singles and doubles as 
CCSD, and does not include all singles and doubles 
terms to infinite order. The CC2 energy is expected 
to be of the same quality as the MP2 energy. The 
purpose of including the singles in the CC2 model is 
not to improve the energy, but to make it possible to 
derive response functions in a form compatible with 
the structure of the exact response function, such that 
excitation energies and transition moments can be 
defined. 

We therefore immediately proceed to the case 
where the system described by H o = F + U is per- 
turbed by a time-dependent one electron perturbation 

/-t =/-/o + v ' ,  (8) 

for the time evolution of the CC2 parameters in the 
presence of external perturbations are 

( ]./,l[/t'I "b [ / I ,  T2] ]HF) = iOt~JOt, (10) 

( p.2[[F + V, T2] +tI[HF)=i~t~,2/~t. (11) 

The discussion above is restricted to one-electron 
perturbations. The case of two-electron perturbations 
is more involved and the CC2 response function can 
not be expected to describe two-electron perturba- 
tions well. Geometrical derivatives should be calcu- 
lated using energy derivative techniques for CC2 or 
MP2. In Section 3 we derive the CC2 linear response 
function based on Eqs. (10) and (11). 

where we write 

V t = -  ~ ~,VXex(toi)exp(-itoit). (9) 
i = - n  x 

In the time-dependent case we obtain the cluster 
equations from projection of the coupled cluster 
time-dependent Schr/Sdinger equation onto the cho- 
sen excitation manifold. We will derive general fre- 
quency-dependent response functions, and we there- 
fore will not allow the orbitals to relax explicitly. 
This would in addition to the correlated poles in the 
response function give Hartree-Fock poles as well 
as product poles. Features which are inconsistent 
with the structure of the true response function. 
Instead of using explicitly relaxed orbitals we apply 
a double perturbation expansion of the cluster equa- 
tions. That is instead of treating F +  V t as the 
zeroth-order problem as in the orbital relaxed case 
we keep F as the zeroth-order problem perturbed by 
the two distinct perturbations U and V t. The crucial 
importance of the singles for calculating accurate 
properties is clearly exposed in such an analysis 
since the singles are zeroth-order in U, and first 
order in the one-electron perturbation V. Treating the 
singles as zeroth-order parameters give an alternative 
way of describing orbital relaxation and allow the 
determination of molecular properties from fre- 
quency-dependent response functions. 

Approximating the doubles equations to first or- 
der in U and keeping all terms in V t, the equations 

3. Response theory for the CC2 model 

In Ref. [10] we discussed different approaches for 
the derivation of coupled cluster response functions 
and described a strategy applicable for approximate 
coupled cluster models. This strategy was applied to 
derive the linear response function for the CC3 
model. The same strategy can straightforwardly be 
used to obtain response functions for the CC2 model. 
It is based on the quasi energy approach described in 
detail by Sasagane et al. [25] and applied to the 
derivation of expressions for MP2 frequency-depen- 
dent properties in Ref. [11]. We give here only a 
very short and compact exposition of the derivation 
of CC2 response functions and refer to Ref. [10] for 
a more detailed discussion. The CC2 quasi energy 
with the CC2 amplitude equations Eqs. (10) and (11) 
as time-dependent constraints can be written in terms 
of a quasi energy Lagrangian 

L = ( H F I H e x p ( T  1 + Tz)IHF) 

+ ~ t m ( ( / z l l H  + [It, Te]lHF)-iOt~JOt 

+ )-".t~,2((/z2I[F + V',  T2] + l)[HF)-iOtuJat. 
/z2 

(12) 

This Lagrangian includes all the information neces- 
sary to derive CC2 response functions. A derivation 
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similar to the one in Ref. [10] determines the CC2 
linear response function as 

( (  A, B)),o = P (  A( - o9), B ( m ) )  

× {(HFI[ A, T~( o9)] 

+ ½[[ Ho, rA(-- o9)], r ((  o9)] IHF> 

+ E  (27< o9)] 
/~1 

"3!- 1[[  ~omTA(- og)l, r.(o9)l,HF > 
+ E r:'( o9)1 

/z2 

o,1 

(13) 
where we have used the abbreviation V A =A. The 
operator P(A(-O9), B(o9)) symmetrizes with re- 
spect to A and B and related frequency indices. The 
t amplitude responses are obtained from 

( o91 - A) ta(to) = gA (14) 

and the zeroth-order multipliers are determined from 

~(°)A = n (°), (15) 

where we have introduced the CC2 Jacobian 

/ < tz,}[/t, % ] exp(T2(°))IHF> < ~,1[/~, %]{HF> / 
A v ~ 

(16) 

The right hand sides are defined as 

4 0) = - (HF{[ Ho, %, ]IHF> (17) 

and 

( .21[ A, T2 {°)] IHF) 

Excitation energies and transition moments may 
be determined as poles and residues of the linear 
response function. The poles are according to Eq. 
(14) at plus and minus the eigenvalues of the Jaco- 

bian. That is CC2 excitation energies are determined 
a s  

ASk = o9kS~. (19) 

In Ref. [10] we analyzed excitation energies in 
orders of the fluctuation potential in coupled cluster 
theory from considerations of the orders of the vari- 
ous blocks in the coupled cluster Jacobian. A similar 
analysis can be performed for the CC2 model. In 
CC2 the doubles amplitudes are correct to first order 
and the singles to second order. The single-single 
block is thus correct to second order in CC2. The 
doubles affect the singles spectrum in second order 
whereas triples enter in third order. In CC2 the 
double-single and single-double blocks are correct 
to first order due to the fact that the lowest-order 
coupling to the singles spectrum is retained in CC2. 
This ensures that the CC2 single replacement domi- 
nated excitation energies are correct through second 
order. 

In coupled cluster theory the deexctiation mani- 
fold occurs in an indirect form from the left hand 
projection manifold. As a consequence we do not 
have direct coupling of the excitation and deexcita- 
tion spectrum in the response function. This rather 
technical point is important, since for other non-vari- 
ational models as MP2 [11] and Brueckner coupled 
cluster theory [26] this coupling causes second-order 
poles in the expressions for the frequency-dependent 
polarizabilities. Due to the special coupled cluster 
structure we do not have second-order poles even 
though we have products of first-order responses. 
Restricting ourselves to considering only excitation 
operators we thus avoid this type of problems. In 
contrast to MP2 we can identify excitation energies 
and transition moments. 

4. A hierarchy of coupled cluster models 

In Ref. [10] an alternative derivation of many-body 
perturbation theory was presented using a coupled 
cluster parametrization of the exact wavefunction. 
Based on this we have in this Letter introduced the 
CC2 model and in Ref. [10] the CC3 model. The 
same type of approximations were used to define the 
CC2 and CC3 models. The CC2 model is intermedi- 
ate between the truncated coupled cluster models 
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Table 1 
Coupled cluster models given in terms of defining equations. H is 
the total Hamiltonian H = H o + V '  where V t is a one-electron 
general time-dependent perturbation. H 0 is further divided into 
H 0 = F + U where F is the Fock operator and U is the fluctua- 
tion potential. The equations are for the non-orbital relaxed per- 
turbed case. For the unperturbed or explicit orbital relaxed case V t 
is put to zero. The T 1 transformed operators of Eq. (3) is used 

CCS 

CC2 

CCSD 

CC3 

CCSDT 

( ~ l l / q l H F )  = lot.,/at 
( jlJ,11/~ d-[/~, T2 IlHF) = iSt~q/at 

( p.21/~ + [F  + 1~', TE]IHF) = iota2/at  

(/Xll/ t  + [H, TE]IHF) = io ta , /a t  

( p-21/q +I/q, TEl+ ½[[/q, T2], T2]IHF) = iat.2/at 
(/Xll/~ + [H, T2][HF) = iOt~ /a t  

(~211~+[I~,TE]+½[[I~,T2],TE]LHF) = iat.2/at 

(/~3[F + 12', T3] + [/t, T2] + ½[['¢', T2], TE]IHF) 
= iota, 3 / a t  

(/~11H + [/t , / '2 + T3 ]If-IF) = iat m / O t  

( ~21H +[H, T2 + T3]+ ½[[~, T2], T2]IHF> 
= i0t~2/at 

(/z31[/t, T2 + T3]+ ½[[tq, T2],T2]+[[tq, T2],Ta]IHF) 
= iota3/at 

CCS and CCSD, and the CC3 is intermediate be- 
tween CCSD and CCSDT in accuracy and in compu- 
tational cost. The approach for defining these ap- 
proximate coupled cluster models may be expressed 
as follows. Consider a coupled cluster model trun- 
cated at excitation level n, n > 1. The CCn model is 
defined from introducing approximations in the n-tu- 
pie coupled cluster equations: the cluster equations 
for the n-tuple excitation manifold are approximated 
to the form entering in lowest non-vanishing order, 
with the singles treated as zeroth-order parameters. 
We thus restrict ourselves to the form entering in 
order n - 1 in perturbation theory. The singles are 
included to provide approximate orbital relaxation in 
two senses: relaxation to the correlation, and relax- 
ation to external perturbations. The cluster equations 
up to level n are left unaltered. The hierarchy of 
coupled cluster methods becomes 

CCS, CC2, CCSD, CC3, CCSDT, etc. 

The equations defining these models are given in 
Table 1. The equations are given in the time-depen- 

Table 2 
Features of coupled cluster models and related models 

Model Energy Single excitations Double excitations Dynamic Scaling Amplitudes c Iterative 
correct to correct to order a correct to order a response 

order Energy T.M. Energy T.M. function 
correct to 
order b 

CCS 1 1 0 0 4 t 1 yes 
CC2 2 2 1 1 5 q, t 2 yes 
CCSD 3 2 2 1 1 2 6 q,  t 2 yes 
CC3 4 3 3 2 2 3 7 tl, t2, (t3) yes 
CCSDT 4 4 3 2 2 3 8 tl, t2, t 3 yes 

RPA 1 1 1 1 4 tl d yes 
MP2 2 2 5 q,  t2 d no 
SOPPA e 2 2 2 5 tl ' t2 d no 
CCSDT-la f 4 2 2 2 2 2 7 tl, t2, (t 3) yes 
CCSD(T) 4 g 7 tl, t2, (t 3) no 

a Non-iterative models do not have corresponding excitation energies. For a discussion of the orders of excitation energies in CCSD, CC3 
and CCSDT-la, see Ref. [10] 
b Non-robital relaxed. If orbital relaxation is included, the static response function will formally be correct to the same order as the total 
energy, but will in this case contain spurious Hartree-Fock poles. 
c The amplitudes in parentheses do not need to be stored in optimization of the reference and in solving eigenvalue equations and linear 
response equations. 
d In RPA, MP2 and SOPPA the t 1 vector actually refers to orbital rotation vectors. 
e SOPPA does not have a corresponding energy. The correlation coefficients are MP2 correlation coefficients. 
f In Ref. [19] CCSDT-la excitation energies were presented. In Ref. [10] a detailed comparison was made with CC3. 
g A dynamic response function for CCSD(T) is not well defined. 
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dent case with an external perturbation V t present. 
The unperturbed equations for optimizing the refer- 
ence energy are easily obtained neglecting the time- 
differentiation terms and all V t terms. The most 
important features of  the various coupled cluster 
models  are summarized in Table 2. We comment 
only briefly on the characteristics of  the various 
models. Some are well  known, and other will  be 
commented on in more detail in later papers. In Refs. 
[9,10] many of  the characteristics of  the CC3 model  
are described in more detail. 

CCS is the coupled cluster singles model. For an 
opt imized Ha r t r ee -Fock  state the wave function is 
already optimal due to the Brillouin theorem. Excita- 
tion energies in the CCS model are equivalent to 
those obtained in single configuration interaction 
(CIS) or the Tamm Dancoff  approximation (TDA). 
The linear response function and transition moments  
differ however due to the non-variational nature of  
the coupled cluster approach. We have described 
CC2 in the previous sections. CCSD is the most 
commonly used coupled cluster model. CCSD is a 
complete solution in the singles and doubles space 
and as such the energy in CCSD is correct through 
third order and includes all higher-order singles and 
doubles terms. CC3 is an approximate CCSDT model 
constructed using the same type of  criteria used in 
the construction of  the CC2 model.  In CC3 the 
singles and doubles equations of  CCSDT are unal- 
tered and the triple equation is approximated to the 
form occuring in second order, but with the singles 
treated as zeroth-order parameters.  The next step is 
CCSDT which is the complete solution in the space 

Table 3 

of  singles, doubles and triples. The hierarchy is 
extendable to yet higher levels, but the applicabil i ty 
for practical purposes is significantly reduced at each 
step. In this hierarchy the accuracy of  energies and 
properties are increased at each level. In Table 2 this 
is indicated in terms of  order in the fluctuation 
potential. It should be recalled that a unique feature 
of  coupled cluster theory is the summation to infinite 
order of  certain types of  terms. For example as seen 
in Table 2 single replacement dominated excitations 
in CCS are correct to first order, in CC2 to second 
order, in CCSD to second order but with complete 
inclusion of  all singles and doubles terms, in CC3 to 
third order with all singles and doubles terms com- 
pletely included, and in CCSDT to third order with 
complete treatment of  all singles, doubles and triples 
terms. The features of  the coupled cluster properties 
in Table 2 refers to the case where orbital relaxation 
is not introduced. Introducing orbital relaxation gives 
polarizabili t ies at the order of  the corresponding 
energy. However  it is not possible to identify excita- 
tion energies and transition moments  in any rigorous 
sense from such an approach as discussed before. In 
the non-orbital  relaxed form CC2 formally lacks one 
second-order term, that is included in the orbital 
relaxed form. Features of  some related models  are 
also given in Table 2. 

5. Calculations 

We present calculations of  excitation energies for 
Be, N 2 and C2H4 and compare our results with the 

Singlet excitation energies for Be in eV from various coupled cluster and polarization propagator calculations a 

Excitation RPA CCS CC2 CCSD CC3 SOPPA b C C D -  CCSD- FCI c % tl 
(CIS-TDA) PPA b PPA b (CCSD) 

I p 4.80 5.049 5.206 5.318 5.3144 4.90 5.28 5.30 5.3140 94 
IS 6.12 6.131 6.519 6.772 6.7653 6.47 6.87 6.89 6.7645 95 
ID 7.153 7.0969 7.0863 45 
1p 6.72 6.770 7.187 7.464 7.4601 7.10 7.51 7.53 7.4597 95 
1D 6.94 6.939 7.427 8 . 0 5 8  8.0359 7.39 7.79 7.81 8.0323 82 
1S 7.26 7.265 7.733 8.078 8.0733 7.72 8.16 8.18 8.0728 97 
1 p 7.48 7.496 7.964 8.306 8.3009 7.95 8.38 8.40 8.3004 96 
1D 7.59 7.586 8.080 8.547 8.5365 8.08 8.53 8.55 8.5350 93 

a Calculated using the [9s9p5d] basis set of Ref. [28] with the x 2 + y2 + Z 2 components 
propagator calculations. 
b Polarization propagator excitation energies from Ref. [27]. 
c FCI results from Ref. [28]. 

of the d-functions included as in the polarization 
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Table 4 
N 2 exciation energies in eV and ground state energies in au a 

RPA CCS CC2 CCSD CC3 SOPPA b Exp. c 

111 u 15.37 15.63 14.11 13.74 13.48 13.83 
x ~+ 16.45 16.67 14.39 14.63 14.39 14.30 
1A u 8.86 9.14 11.08 10.68 10.53 10.54 
1 ~ 8.02 8.58 10.54 10.27 10.16 10.05 
11~ ~ 9.85 10.10 9.65 9.62 9.55 

14.49 15.31 15.65 15.70 15.14 
G.s.E. - 108.985177 - 108.985177 - 109.402101 - 109.394480 - 109.413431 - 109.394689 

13.4 
14.4 
10.3 
9.9 

a Basis set and geometry as in Ref. [29]. Basis set is [11s7p2d/6s5p2d] and RNr ~ = 2.067 au. 
b SOPPA results from Ref. [29] The ground state energy given is the MP2 energy. 
c Experimental results taken from Ref, [29]. 

o n e s  o b t a i n e d  w i t h  o the r  mode l s .  In Ref.  [21] and  in 

a f o r t h c o m i n g  p u b l i c a t i o n  exc i t a t ion  ene rg i e s  are 

p r e sen t ed  for  the  h i e r a r c h y  o f  CCS ,  CC2,  C C S D ,  

C C 3  and  c o m p a r i s o n  m a d e  w i t h  FC I  resul ts .  

In  Ref.  [27] seve ra l  s ing le t  exc i t a t ion  ene rg i e s  

w e r e  ca l cu la t ed  for  B e  u s i n g  S O P P A  and  w i t h  the  

s a m e  bas i s  set  as in  the  FCI  ca l cu la t ions  in Ref.  [28]. 

W e  h a v e  p e r f o r m e d  the  c o r r e s p o n d i n g  CCS,  CC2,  

C C S D  and  C C 3  exc i t a t ion  ene rgy  ca lcu la t ions .  T h e  

resu l t s  are g i v e n  in T a b l e  3. T h e  C C 2  and  S O P P A  

exc i t a t ion  ene rg i e s  are o f  s imi la r  qual i ty  for  all 

exc i t a t ions  excep t  the  lowest .  S O P P A  exc i t a t ion  en-  

e rg ies  h a v e  a m e a n  ( m a x )  er ror  o f  0.41 (0 .64)  e V  

w h e r e a s  the  c o r r e s p o n d i n g  C C 2  resul t s  are 0 .34  

(0 .58) .  S O P P A  uses  f i r s t -o rder  co r re l a t ion  coeff i -  

c i en t s  f r o m  a M P 2  ca lcu la t ion .  U s i n g  ins t ead  cou-  

p led  c lus te r  doub l e s  ( C C D )  a m p l i t u d e s  or  C C S D  

a m p l i t u d e s  the  so ca l led  C C D P P A  and  C C S D P P A  

p r o p a g a t o r s  are ob ta ined .  It s h o u l d  be  e m p h a s i z e d  

that  m o l e c u l a r  p roper t i e s  are sti l l  on ly  cor rec t  to 

s e c o n d  order ,  bu t  the  ca l cu la t ion  o f  the  co r re l a t ion  

coe f f i c i en t s  sca les  as N 6. T h e  er rors  o f  the  C C S -  

D P P A  resu l t s  are 0 .1 (0 .22)  eV,  the  C C D P P A  are o f  

s a m e  m a g n i t u d e .  C C S D  g ives  a m e a n  ( m a x )  er ror  o f  

0 .009  (0 .02)  e V  e x c l u d i n g  the  l owes t  1D exc i t a t ion  

that  is d o u b l e  e l ec t ron  r e p l a c e m e n t  domina t ed .  CC3  

has  a m e a n  er ror  o f  0 .001 e V  for  the  s a m e  exci ta-  

t ions .  T h e  d i f f e rences  b e t w e e n  S O P P A  and  C C 2  

exc i t a t ion  ene rg i e s  are less  than  0.05 e V  excep t  for  

the  l owes t  state. T h e s e  d i f f e rences  are sma l l  com-  

Table 5 
C 2 H  4 singlet excitation energies in eV. Ground state energies in au a 

RPA CCS CC2 CCSD CC3 b CASPT2 c Exp. d 

1B3u 7.07 7.09 7.14 7.29 7.23 7.17 7.11 
1 Big 7.66 7.67 7.78 7.95 7.90 7.85 7.80 
1B I 28 7.82 7.83 7.82 7.99 7.94 7.95 7.90 
Blu 7.33 7.67 7.86 7.98 7.87 8.40 8.01 

1A 8.14 8.16 8.23 8.46 8.42 8.40 8.29 
1 g 

B3u 8.54 8.55 8.58 8.79 8.75 8.66 8.62 
1A u 8.74 8.74 8.77 9.02 8.99 8.94 
1 B3 u 8.79 8.79 8.84 9.08 • 9.04 9.03 8.90 
~B2u 8.96 8.97 9.07 9.27 9.22 9.18 9.05 
1 B1 u 8.94 8.97 9.03 9.31 9.27 9.31 9.33 
Eto t - 78.064796 - 78.064796 - 78.388064 - 78.411268 - 78.425041 

a Basis set and geometry as in Ref. [30] Basis set is an atomic natural orbital type (ANO) where (14s9p4d,/8s4p) is contracted to 
[4s3p2d/3s2p] and where a set of diffuse (2s2pld) is added on carbon. The geometry is rcc = 1.339 A, rcH = 1.086 ,~ and 
Z_HCH = 117.6. 
b CC3 results from Ref. [10]. 
c CASPT2 results from Ref. [30]. 
d Experimental data from the compilation in Ref. [30]. 
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pared to the overall error relative to FCI. Concerning 
the lowest state it should be noticed that a similar 
difference is observed between CCS and RPA re- 
suits. This difference is due to an overestimation of 
the coupling between the excitation and the deexcita- 
tion manifolds for RPA and SOPPA. It is well 
known that RPA and SOPPA can be unstable for 
small excitation energies. All excitation energies are 
increased from CCS to CC2 and again to CCSD. 
CCSD overshoots FCI for all excitations whereas 
CC2 undershoots. The excitation energies are de- 
creased slightly going from CCSD to CC3 and are 
correct to three decimals in CC3 for single replace- 
ment dominated excitations. 

In Ref. [29] SOPPA calculations were presented 
for several excitation energies of N 2. We have per- 
formed RPA, CCS, CC2 and CCSD calculations us- 
ing the same basis set and geometry, see Table 4. 
The CC3 results are from Ref. [10]. The differences 
between CC2 and SOPPA are more pronounced than 
for Be. A similar trend can be observed for CCS 
relative to RPA. The large change in the excitation 
energies going from CCSD to CC3 indicates the 
large correlation contributions for this molecule. 
SOPPA is closer to CC3 and experiment than CC2 
for three out of four excitations. With the large 
correlation effects in mind this may be fortuitous. In 
absolute values the differences between CC2 and 
CC3 are of order 0.3-0.5 eV. Relative to CCSD 
differences of 0.3-0.4 eV occurs. The CC3 results 
are within 0.1-0.3 eV of the experimental values. 
The effect of extending the basis set needs to be 
further investigated to be more conclusive concern- 
ing comparision with experiment. With respect to the 
total energies we notice that for N 2 MP2 and CC2 
differ by more than 8 mhartree, whereas the differ- 
ence between MP2 and CCSD is less than 1 mhartree. 
CC3 is again almost 20 mhartree lower than CCSD. 

In Ref. [30] CASPT2 calculations were reported 
for several excitation energies in ethylen. We have 
performed the CCS, CC2 and CCSD calculations 
using the same basis set and geometry. In Table 5 we 
give the results together with the CC3 results from 
Ref. [10]. From the convergence in the hierarchy 
CCS, CC2, CCSD and CC3 and the small difference 
between CCSD and CC3 for all excitations, it is 
evident that the CC3 results are close to the exact 
results within this basis. The CC2 results are within 

0.25 eV of CC3 for all excitations. CASPT2 results 
are within 0.1 eV of CC3 for all excitations except 
for the lowest 1Blu state. CC2 is close to CC3 for 
this state. It should be noticed that all excitation 
energies are increased from CCS to CC2 and again 
to CCSD, whereas the CC3 results are decreased 
relative to CCSD. 

6. Conclusion 

Several models exist which in some sense can be 
denoted second-order. We have introduced a 
second-order approach denoted CC2 based on an 
approximation to CCSD. The CC2 model is similar 
to MP2 in the sense that CC2 has a corresponding 
total energy correct through second order and CC2 
properties are obtained as quasi energy derivatives 
and include Hellmann-Feynman corrections. In con- 
trast SOPPA is not obtained as a quasi energy 
derivative and does not include Hellmann-Feynman 
correction terms. CC2 is similar to SOPPA in the 
sense that single replacement dominated excitation 
energies can be identified and are correct through 
second order. The poles in MP2 are only of first-order 
quality and product poles are present. The poles 
inherent in CC2 are correct to second order and the 
pole structure is compatible with the pole structure 
of the exact response function. In this sense CC2 
combines the attractive features of MP2 and SOPPA. 
The CC2 model can in a loose sense be considered 
as an approximate orbital relaxed MP2 approach. 
However, the CC2 model is founded in coupled 
cluster theory and comes about as an approximation 
to CCSD. 

A hierarchy of coupled cluster models is intro- 
duced, and in Table 2 and in Section 4 we described 
how properties are obtained with increasing accuracy 
at each step in this hiearchy. Benchmark calculations 
may provide the error bounds of the models within 
this hierarchy, and error estimates may be obtained 
from analyzing converging trends. The role of CC2 
in a hierarchy of coupled cluster based methods is an 
important aspect of this model. A computationally 
tractable hierarchy like the CC described in this 
Letter will in many cases enhance the possibility to 
perform predictive calculations and provide error 
bounds on the calculated properties. The range of 
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coupled duster methods for property calculations is 
significantly extended by introducing a N 5 model as 
CC2 and a N 7 model like CC3. We thereby obtain a 
unique possibility for extending our calculations to- 
ward the exact results. In benchmark calculation on 
excitation energies of BH, CH 2 and Ne we have 
observed significant reductions of the error relative 
to FCI in each step in the hierarchy. Similar quality 
is obtained in CC2 and SOPPA excitation energies. 
A more thorough comparative analysis with SOPPA 
will be presented in future applications. The wide 
applicability of the coupled cluster models will be 
demonstrated in forthcoming calculations on larger 
molecules using integral direct techniques. 
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