\documentclass[aspectratio=169,9pt,compress]{beamer} % *********** % * PACKAGE * % *********** \usepackage{amsmath,amssymb,amsfonts,pgfpages,graphicx,subfigure,xcolor,bm,multirow,microtype,wasysym,multimedia,hyperref,tabularx,amscd,pgfgantt,mhchem} \usetikzlibrary{shapes.gates.logic.US,trees,positioning,arrows} \usetheme{Warsaw} %\usecolortheme{seahorse} \usepackage{mathpazo,libertine} \usepackage{algorithmicx,algorithm,algpseudocode} \algnewcommand\algorithmicassert{\texttt{assert}} \algnewcommand\Assert[1]{\State \algorithmicassert(#1)} %\algrenewcommand{\algorithmiccomment}[1]{$\triangleright$ #1} %\usepackage[version=4]{mhchem} \usepackage{amsmath,amsfonts,amssymb,bm,microtype,graphicx,wrapfig,geometry,physics,eurosym,multirow,pgfgantt} \usepackage{hyperref} \hypersetup{ colorlinks=true, linkcolor=cyan, filecolor=magenta, urlcolor=blue, citecolor=purple } \definecolor{darkgreen}{RGB}{0, 180, 0} \newcommand{\red}[1]{\textcolor{red}{#1}} \newcommand{\purple}[1]{\textcolor{purple}{#1}} \newcommand{\orange}[1]{\textcolor{orange}{#1}} \newcommand{\green}[1]{\textcolor{darkgreen}{#1}} \newcommand{\blue}[1]{\textcolor{blue}{#1}} \newcommand{\pub}[1]{\textcolor{purple}{#1}} \newcommand{\violet}[1]{\textcolor{violet}{#1}} \newcommand{\cdash}{\multicolumn{1}{c}{---}} \newcommand{\mc}{\multicolumn} \newcommand{\mcc}[1]{\multicolumn{1}{c}{#1}} \newcommand{\mr}{\multirow} \newcommand{\br}{\bm{r}} \newcommand{\ree}{r_{12}} % methods \newcommand{\evGW}{evGW} \newcommand{\qsGW}{qsGW} \newcommand{\scGW}{scGW} \newcommand{\GOWO}{G$_0$W$_0$} \newcommand{\GOW}{G$_0$W} \newcommand{\GWO}{GW$_0$} \newcommand{\GW}{GW} \newcommand{\GOWOSOSEX}{{\GOWO}+SOSEX} \newcommand{\GWSOSEX}{{\GW}+SOSEX} \newcommand{\GnWn}[1]{G$_{#1}$W$_{#1}$} \newcommand{\GOF}{G$_0$F2} \newcommand{\GF}{GF2} % operators \newcommand{\hH}{\Hat{H}} % energies \newcommand{\Ec}{E_\text{c}} \newcommand{\EHF}{E_\text{HF}} \newcommand{\EcK}{E_\text{c}^\text{Klein}} \newcommand{\EcRPA}{E_\text{c}^\text{RPA}} \newcommand{\EcGM}{E_\text{c}^\text{GM}} \newcommand{\EcGMGW}{E_\text{c}^\text{GM@GW}} \newcommand{\EcGMGF}{E_\text{c}^\text{GM@GF2}} \newcommand{\EcGMGWSOSEX}{E_\text{c}^\text{GM@GW+SOSEX}} \newcommand{\EcMP}{E_c^\text{MP2}} \newcommand{\EcGF}{E_c^\text{\GF}} \newcommand{\EcGOF}{E_c^\text{\GOF}} \newcommand{\Egap}{E_\text{gap}} \newcommand{\IP}{\text{IP}} \newcommand{\EA}{\text{EA}} % orbital energies \newcommand{\nSat}[1]{N_{#1}^\text{sat}} \newcommand{\eSat}[2]{\epsilon_{#1,#2}} \newcommand{\e}[1]{\epsilon_{#1}} \newcommand{\eHF}[1]{\epsilon^\text{HF}_{#1}} \newcommand{\eKS}[1]{\epsilon^\text{KS}_{#1}} \newcommand{\eQP}[1]{\epsilon^\text{QP}_{#1}} \newcommand{\eGOWO}[1]{\epsilon^\text{\GOWO}_{#1}} \newcommand{\eGW}[1]{\epsilon^\text{\GW}_{#1}} \newcommand{\eGnWn}[2]{\epsilon^\text{\GnWn{#2}}_{#1}} \newcommand{\eGF}[1]{\epsilon^\text{\GF}_{#1}} \newcommand{\eGOF}[1]{\epsilon^\text{\GOF}_{#1}} \newcommand{\de}[1]{\Delta\epsilon_{#1}} \newcommand{\deHF}[1]{\Delta\epsilon^\text{HF}_{#1}} \newcommand{\Om}[1]{\Omega_{#1}} \newcommand{\eHOMO}{\epsilon_\text{HOMO}} \newcommand{\eLUMO}{\epsilon_\text{LUMO}} \newcommand{\cHF}[1]{c^\text{HF}_{#1}} \newcommand{\cKS}[1]{c^\text{KS}_{#1}} % Matrix elements \newcommand{\A}[1]{A_{#1}} \newcommand{\B}[1]{B_{#1}} \renewcommand{\S}[1]{S_{#1}} \newcommand{\ABSE}[1]{A^\text{BSE}_{#1}} \newcommand{\BBSE}[1]{B^\text{BSE}_{#1}} \newcommand{\ARPA}[1]{A^\text{RPA}_{#1}} \newcommand{\BRPA}[1]{B^\text{RPA}_{#1}} \newcommand{\dABSE}[1]{\delta A^\text{BSE}_{#1}} \newcommand{\dBBSE}[1]{\delta B^\text{BSE}_{#1}} \newcommand{\G}[1]{G_{#1}} \newcommand{\Po}[1]{P_{#1}} \newcommand{\W}[1]{W_{#1}} \newcommand{\Wc}[1]{W^\text{c}_{#1}} \newcommand{\vc}[1]{v_{#1}} \newcommand{\SigX}[1]{\Sigma^\text{x}_{#1}} \newcommand{\SigC}[1]{\Sigma^\text{c}_{#1}} \newcommand{\SigGW}[1]{\Sigma^\text{\GW}_{#1}} \newcommand{\SigGWSOSEX}[1]{\Sigma^\text{\GWSOSEX}_{#1}} \newcommand{\SigGF}[1]{\Sigma^\text{\GF}_{#1}} \newcommand{\Z}[1]{Z_{#1}} % excitation energies \newcommand{\OmRPA}[1]{\Omega^\text{RPA}_{#1}} \newcommand{\OmCIS}[1]{\Omega^\text{CIS}_{#1}} \newcommand{\OmTDHF}[1]{\Omega^\text{TDHF}_{#1}} \newcommand{\OmBSE}[1]{\Omega^\text{BSE}_{#1}} \newcommand{\spinup}{\downarrow} \newcommand{\spindw}{\uparrow} \newcommand{\singlet}{\uparrow\downarrow} \newcommand{\triplet}{\uparrow\uparrow} \newcommand{\Oms}[1]{{}^{1}\Omega_{#1}} \newcommand{\OmsRPA}[1]{{}^{1}\Omega^\text{RPA}_{#1}} \newcommand{\OmsCIS}[1]{{}^{1}\Omega^\text{CIS}_{#1}} \newcommand{\OmsTDHF}[1]{{}^{1}\Omega^\text{TDHF}_{#1}} \newcommand{\OmsBSE}[1]{{}^{1}\Omega^\text{BSE}_{#1}} \newcommand{\Omt}[1]{{}^{3}\Omega_{#1}} \newcommand{\OmtRPA}[1]{{}^{3}\Omega^\text{RPA}_{#1}} \newcommand{\OmtCIS}[1]{{}^{3}\Omega^\text{CIS}_{#1}} \newcommand{\OmtTDHF}[1]{{}^{3}\Omega^\text{TDHF}_{#1}} \newcommand{\OmtBSE}[1]{{}^{3}\Omega^\text{BSE}_{#1}} % Wigner symbols \newcommand{\WJ}[3]{ \begin{pmatrix} #1 & #2 & #3 \\ 0 & 0 & 0 \\ \end{pmatrix} } \newcommand{\ERI}[3]{\qty(#1 #2 #3)} \newcommand{\sERI}[3]{\qty[#1 #2 #3]} % Matrices \newcommand{\bF}{\bm{F}} \newcommand{\bFHF}{\bm{F}^\text{HF}} \newcommand{\bH}{\bm{H}} \newcommand{\bvc}{\bm{v}} \newcommand{\bSig}{\bm{\Sigma}} \newcommand{\bSigX}{\bm{\Sigma}^\text{x}} \newcommand{\bSigC}{\bm{\Sigma}^\text{c}} \newcommand{\bSigGW}{\bm{\Sigma}^\text{\GW}} \newcommand{\bSigGWSOSEX}{\bm{\Sigma}^\text{\GWSOSEX}} \newcommand{\bSigGF}{\bm{\Sigma}^\text{\GF}} \newcommand{\be}{\bm{\epsilon}} \newcommand{\bDelta}{\bm{\Delta}} \newcommand{\beHF}{\bm{\epsilon}^\text{HF}} \newcommand{\bcHF}{\bm{c}^\text{HF}} \newcommand{\beGW}{\bm{\epsilon}^\text{\GW}} \newcommand{\beGnWn}[1]{\bm{\epsilon}^\text{\GnWn{#1}}} \newcommand{\bcGnWn}[1]{\bm{c}^\text{\GnWn{#1}}} \newcommand{\beGF}{\bm{\epsilon}^\text{\GF}} \newcommand{\bde}{\bm{\Delta\epsilon}} \newcommand{\bdeHF}{\bm{\Delta\epsilon}^\text{HF}} \newcommand{\bdeGW}{\bm{\Delta\epsilon}^\text{GW}} \newcommand{\bdeGF}{\bm{\Delta\epsilon}^\text{GF2}} \newcommand{\bOm}{\bm{\Omega}} \newcommand{\bA}{\bm{A}} \newcommand{\bB}{\bm{B}} \newcommand{\bX}{\bm{X}} \newcommand{\bY}{\bm{Y}} \newcommand{\bZ}{\bm{Z}} \newcommand{\mycirc}[1][black]{\Large\textcolor{#1}{\ensuremath\bullet}} \usepackage{tikz} \usetikzlibrary{arrows,positioning,shapes.geometric} \usetikzlibrary{decorations.pathmorphing} \tikzset{snake it/.style={ decoration={snake, amplitude = .4mm, segment length = 2mm},decorate}} % ************* % * HEAD DATA * % ************* \title[$GW$/BSE methods in chemistry]{ $GW$/BSE methods in chemistry: Computational aspects } \author[PF Loos]{Pierre-Fran\c{c}ois LOOS} \date{Online ISTPC 2021 school --- April 27th, 2021} \institute[CNRS@LCPQ]{ Laboratoire de Chimie et Physique Quantiques (UMR 5626),\\ Universit\'e de Toulouse, CNRS, UPS, Toulouse, France. } \titlegraphic{ \includegraphics[width=0.3\textwidth]{fig/jarvis} \\ \vspace{0.05\textheight} \includegraphics[height=0.05\textwidth]{fig/UPS} \hspace{0.2\textwidth} \includegraphics[height=0.05\textwidth]{fig/ERC} \hspace{0.2\textwidth} \includegraphics[height=0.05\textwidth]{fig/LCPQ} \hspace{0.2\textwidth} \includegraphics[height=0.05\textwidth]{fig/CNRS} } \begin{document} %%% SLIDE 1 %%% \begin{frame} \titlepage \end{frame} % %%% SLIDE 2 %%% \begin{frame}{Today's program} \begin{itemize} \item \end{itemize} \end{frame} % %----------------------------------------------------- \section{Theory} %----------------------------------------------------- \subsection{Hedin's pentagon} %----------------------------------------------------- \begin{frame}{Hedin's pentagon} \begin{columns} \begin{column}{0.4\textwidth} \centering \includegraphics[width=0.8\linewidth]{fig/pentagon} \\ \pub{Hedin, Phys Rev 139 (1965) A796} \end{column} \begin{column}{0.6\textwidth} \begin{block}{What can you calculate with GW?} \begin{itemize} \item Ionization potentials (IP) given by occupied MO energies \bigskip \item Electron affinities (EA) given by virtual MO energies \bigskip \item HOMO-LUMO gap (or band gap in solids) \bigskip \item Singlet and triplet neutral excitations (vertical absorption energies) \bigskip \item Correlation and total energies \end{itemize} \end{block} \end{column} \end{columns} \end{frame} %----------------------------------------------------- \subsection{GW flavours} %----------------------------------------------------- \begin{frame}{GW flavours} \begin{block}{Acronyms} \begin{itemize} \bigskip \item perturbative GW one-shot GW, or \green{\GOWO} \bigskip \item \orange{\evGW} or eigenvalue-only (partially) self-consistent GW \bigskip \item \red{\qsGW} or quasiparticle (partially) self-consistent GW \bigskip \item \violet{\scGW} or (fully) self-consistent GW \bigskip \item \purple{BSE} or Bethe-Salpeter equation for neutral excitations \bigskip \end{itemize} \end{block} \end{frame} %----------------------------------------------------- \subsection{Literature} %----------------------------------------------------- \begin{frame}{useful papers for chemists} \begin{itemize} \item \red{molGW:} Bruneval et al. Comp. Phys. Comm. 208 (2016) 149 \bigskip \item \green{Turbomole:} van Setten et al. JCTC 9 (2013) 232; Kaplan et al. JCTC 12 (2016) 2528 \bigskip \item \violet{Fiesta:} Blase et al. Chem. Soc. Rev. 47 (2018) 1022 \bigskip \item \purple{FHI-AIMS:} Caruso et al. 86 (2012) 081102 \bigskip \item \orange{Review:} Reining, WIREs Comput Mol Sci 2017, e1344. doi: 10.1002/wcms.1344; Onida et al. Rev. Mod. Phys. 74 (2002) 601. \bigskip \item \red{GW100:} Data set of 100 molecules. van Setten et al. JCTC 11 (2015) 5665 \end{itemize} \end{frame} %----------------------------------------------------- \section{Implementation} %----------------------------------------------------- \subsection{\GOWO} %----------------------------------------------------- \begin{frame}{\GOWO} \begin{block}{{\GOWO}~subroutine} \begin{algorithmic} \Procedure{Perturbative {\GW}}{} \State Perform HF calculation to get $\beHF$ and $\bcHF$ \For{$p=1,\ldots,N$} \State Compute \red{$\SigC{pp}(\omega)$} and \green{$\Z{p}(\omega)$} \State $\eGOWO{p} = \eHF{p} + \green{\Z{p}(\eHF{p})} \Re[\red{\SigC{pp}(\eHF{p})}]$ \State \Comment{This is the linearized version of the} \State \Comment{quasiparticle (QP) equation $\omega = \eHF{p} + \Re[\red{\SigC{pp}(\omega)}]$} \EndFor \If{BSE} \State Compute BSE excitations energies \EndIf \EndProcedure \end{algorithmic} \end{block} \end{frame} \begin{frame}{\GOWO} \begin{block}{\red{Correlation part of the self-energy:}} \begin{equation*} \red{\SigC{pq}(\omega)} = 2 \sum_{ix}\frac{\violet{[pi|x] [qi|x]}}{\omega - \eHF{i} + \orange{\Om{x}} - i \eta} + 2 \sum_{ax}\frac{\violet{[pa|x] [qa|x]}}{\omega - \eHF{a} - \orange{\Om{x}} + i \eta} \end{equation*} \end{block} \begin{block}{\green{Renormalization factor}} \begin{equation*} \green{\Z{p}(\omega)} = \qty[ 1 - \pdv{\Re[\red{\SigGW{pp}(\omega)}]}{\omega} ]^{-1} \end{equation*} \end{block} \begin{block}{\violet{Screened two-electron MO integrals}} \begin{equation*} \violet{[pq|x]} = \sum_{ia} (pq|ia) \orange{(\bX+\bY)_{ia}^{x}} \end{equation*} \end{block} \begin{block}{\orange{RPA excitation energies}} \small \begin{equation*} \begin{pmatrix} \bA & \bB \\ \bB & \bA \\ \end{pmatrix} \orange{\begin{pmatrix} \bX \\ \bY \\ \end{pmatrix}} = \orange{\bOm} \begin{pmatrix} \bm{1} & 0 \\ 0 & \bm{-1} \\ \end{pmatrix} \orange{\begin{pmatrix} \bX \\ \bY \\ \end{pmatrix}} \end{equation*} \begin{align*} A^\text{RPA}_{ia,jb} & = \delta_{ij} \delta_{ab} (\epsilon_a - \epsilon_i) + 2 (ia|jb) & B^\text{RPA}_{ia,jb} & = 2 (ia|bj) \end{align*} \end{block} \end{frame} %----------------------------------------------------- \subsection{\evGW} %----------------------------------------------------- \begin{frame}{\evGW} \begin{block}{{\evGW} subroutine} \begin{algorithmic} \Procedure{Partially self-consistent {\evGW}}{} \State Perform HF calculation to get $\beHF$ and $\bcHF$ \State Set $\beGnWn{-1} = \beHF$ and $n = 0$ \While{$\max{\abs{\bDelta}} < \tau$} \For{$p=1,\ldots,N$} \State Compute \red{$\SigC{pp}(\omega)$} \State Solve $\omega = \eHF{p} + \Re[\red{\SigC{pp}(\omega)}]$ to obtain $\eGnWn{p}{n}$ \EndFor \State $\bDelta = \beGnWn{n} - \beGnWn{n-1}$ \State $n \leftarrow n + 1$ \EndWhile \If{BSE} \State Compute BSE excitations energies \EndIf \EndProcedure \end{algorithmic} \end{block} \end{frame} %----------------------------------------------------- \subsection{\qsGW} %----------------------------------------------------- \begin{frame}{\qsGW} \begin{block}{{\qsGW} subroutine} \begin{algorithmic} \Procedure{Partially self-consistent {\qsGW}}{} \State Perform HF calculation to get $\beHF$ and $\bcHF$ \State Set $\beGnWn{-1} = \beHF$, $\bcGnWn{-1} = \bcHF$ and $n = 0$ \While{$\max{\abs{\bDelta}} < \tau$} \State Form \red{$\bSigC(\omega)$} and symmetrize it: $\red{\bSigC(\omega)} \leftarrow (\red{\bSigC(\omega)}^\dag + \red{\bSigC(\omega)})/2$ \State Form $\green{\bF(\omega)} = \bFHF + \red{\bSigC(\omega)}$ \State Diagonalize $\green{\bF(\beGnWn{n-1})}$ to get $\beGnWn{n}$ and $\bcGnWn{n}$ \State $\bDelta = \beGnWn{n} - \beGnWn{n-1}$ \State $n \leftarrow n + 1$ \EndWhile \If{BSE} \State Compute BSE excitations energies \EndIf \EndProcedure \end{algorithmic} \end{block} \end{frame} %----------------------------------------------------- \subsection{BSE} %----------------------------------------------------- \begin{frame}{BSE} \begin{block}{Bethe-Salpeter equation} \begin{equation*} \begin{pmatrix} \bA & \bB \\ \bB & \bA \\ \end{pmatrix} \purple{\begin{pmatrix} \bX \\ \bY \\ \end{pmatrix}} = \purple{\bOm} \begin{pmatrix} \bm{1} & 0 \\ 0 & \bm{-1} \\ \end{pmatrix} \purple{\begin{pmatrix} \bX \\ \bY \\ \end{pmatrix}} \end{equation*} \begin{equation*} (\bA - \bB)^{1/2} (\bA + \bB) (\bA - \bB)^{1/2} \bZ = \bOm^2 \bZ, \end{equation*} \begin{equation*} \bX + \bY = \bOm^{-1/2} (\bA - \bB)^{1/2} \bZ. \end{equation*} \begin{align*} A^\text{BSE}_{ia,jb} & = A^\text{RPA}_{ia,jb} - (ij|ab) + 4 \sum_{x} \frac{[ij|x][ab|x]}{\Om{x}} \\ B^\text{BSE}_{ia,jb} & = B^\text{RPA}_{ia,jb} - (ib|aj) + 4 \sum_{x} \frac{[ib|x][aj|x]}{\Om{x}} \end{align*} \end{block} \end{frame} %----------------------------------------------------- \subsection{$\Ec$} %----------------------------------------------------- \begin{frame}{Correlation energy} \begin{block}{RPA correlation energy or Klein functional} \begin{equation*} \label{eq:Ec-RPA} \EcRPA = -\sum_{p} \qty(\ARPA{pp} - \Om{p}) \end{equation*} \end{block} \begin{block}{Galitskii-Migdal functional} \begin{equation*} \label{eq:GM} \EcGM = \frac{-i}{2}\sum_{pq}^{\infty}\int \frac{d\omega}{2\pi} \SigC{pq}(\omega) \G{pq}(\omega) e^{i\omega\eta} \end{equation*} \end{block} \end{frame} \end{document}