\documentclass[aspectratio=169,9pt]{beamer} % *********** % * PACKAGE * % *********** \usepackage{amsmath,amssymb,amsfonts,pgfpages,graphicx,subfigure,xcolor,bm,multirow,microtype,wasysym,multimedia,hyperref,tabularx,amscd,pgfgantt,mhchem} \usetikzlibrary{shapes.gates.logic.US,trees,positioning,arrows} \usetheme{Pittsburgh} \usecolortheme{seahorse} \usepackage{mathpazo,libertine} \usepackage[normalem]{ulem} \usepackage{algorithmicx,algorithm,algpseudocode} \algnewcommand\algorithmicassert{\texttt{assert}} \algnewcommand\Assert[1]{\State \algorithmicassert(#1)} %\algrenewcommand{\algorithmiccomment}[1]{$\triangleright$ #1} %\usepackage[version=4]{mhchem} \usepackage{amsmath,amsfonts,amssymb,bm,microtype,graphicx,wrapfig,geometry,physics,eurosym,multirow,pgfgantt} \usepackage{hyperref} \hypersetup{ colorlinks=true, linkcolor=cyan, filecolor=magenta, urlcolor=blue, citecolor=purple } % operators \newcommand{\hI}{\Hat{1}} \newcommand{\hH}{\Hat{H}} \newcommand{\hO}{\Hat{\mathcal{O}}} \newcommand{\hT}[2]{\Hat{T}_{#1}^{#2}} \newcommand{\cre}[1]{\Hat{a}_{#1}^{\dag}} \newcommand{\ani}[1]{\Hat{a}_{#1}} \newcommand{\bH}{\mathbold{H}} \newcommand{\br}{\mathbold{r}} \newcommand{\la}{\lambda} \newcommand{\si}{\sigma} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} % wave functions \newcommand{\PsiO}{\Psi_0} \newcommand{\PsiHF}{\Psi_\text{RHF}} \newcommand{\PsiFCI}{\Psi_\text{FCI}} \newcommand{\PsiCC}{\Psi_\text{CC}} \newcommand{\PsiCCD}{\Psi_\text{CCD}} \newcommand{\amp}[2]{t_{#1}^{#2}} \newcommand{\Det}[2]{\Psi_{#1}^{#2}} % energies \newcommand{\EHF}{E_\text{HF}} \newcommand{\EO}{E_\text{0}} \newcommand{\ECC}{E_\text{CC}} \newcommand{\ETCC}{E_\text{TCC}} \newcommand{\EVCC}{E_\text{VCC}} \newcommand{\EUCC}{E_\text{UCC}} \newcommand{\ECCD}{E_\text{CCD}} \newcommand{\nEl}{n} \newcommand{\nBas}{N} \newcommand{\ba}{\bm{a}} \newcommand{\bb}{\bm{b}} \newcommand{\bA}{\bm{A}} \newcommand{\bB}{\bm{B}} \newcommand{\bo}{\bm{0}} \newcommand{\sbra}[1]{[ #1 |} \newcommand{\sket}[1]{| #1 ]} \newcommand{\sexpval}[1]{[ #1 ]} \newcommand{\sbraket}[2]{[ #1 | #2 ]} \newcommand{\smel}[3]{[ #1 | #2 | #3 ]} \definecolor{darkgreen}{RGB}{0, 180, 0} \definecolor{fooblue}{RGB}{0,153,255} \definecolor{fooyellow}{RGB}{234,187,0} \definecolor{lavender}{rgb}{0.71, 0.49, 0.86} \definecolor{inchworm}{rgb}{0.7, 0.93, 0.36} \newcommand{\violet}[1]{\textcolor{lavender}{#1}} \newcommand{\orange}[1]{\textcolor{orange}{#1}} \newcommand{\purple}[1]{\textcolor{purple}{#1}} \newcommand{\blue}[1]{\textcolor{blue}{#1}} \newcommand{\green}[1]{\textcolor{darkgreen}{#1}} \newcommand{\yellow}[1]{\textcolor{fooyellow}{#1}} \newcommand{\red}[1]{\textcolor{red}{#1}} \newcommand{\highlight}[1]{\textcolor{fooblue}{#1}} \newcommand{\pub}[1]{\small \textcolor{purple}{#1}} \newcommand{\mc}{\multicolumn} \newcommand{\mycirc}[1][black]{\Large\textcolor{#1}{\ensuremath\bullet}} \usepackage{tikz} \usetikzlibrary{arrows,positioning,shapes.geometric} \usetikzlibrary{decorations.pathmorphing} \tikzset{snake it/.style={ decoration={snake, amplitude = .4mm, segment length = 2mm},decorate}} % ************* % * HEAD DATA * % ************* \title[HF and post-HF methods]{ \purple{Hartree-Fock and post-Hartree-Fock methods: \\ Computational aspects} } \author[PF Loos]{Pierre-Fran\c{c}ois LOOS} \date{2022 ISTPC --- June 23rd, 2022} \institute[CNRS@LCPQ]{ Laboratoire de Chimie et Physique Quantiques (UMR 5626),\\ Universit\'e de Toulouse, CNRS, UPS, Toulouse, France. } \titlegraphic{ \includegraphics[width=0.3\textwidth]{fig/peppa} \\ \vspace{0.05\textheight} \includegraphics[height=0.05\textwidth]{fig/UPS} \hspace{0.2\textwidth} \includegraphics[height=0.05\textwidth]{fig/ERC} \hspace{0.2\textwidth} \includegraphics[height=0.05\textwidth]{fig/LCPQ} \hspace{0.2\textwidth} \includegraphics[height=0.05\textwidth]{fig/CNRS} } \begin{document} %%% SLIDE 1 %%% \begin{frame} \titlepage \end{frame} % %%% SLIDE 2 %%% \begin{frame}{Today's program} \begin{itemize} \item How to perform a Hartree-Fock (HF) calculation in practice? \begin{itemize} \item Computation of integrals \pub{[Ahlrichs, PCCP 8 (2006) 3072]} \item Orthogonalization matrix \pub{[Szabo \& Ostlund, Modern Quantum Chemistry]} \item Construction of the Coulomb matrix \pub{[White \& Head-Gordon, JCP 104 (1996) 2620]} \item Resolution of the identity \pub{[Weigend et al. JCP 130 (2009) 164106]} \item DFT exchange via quadrature \pub{[Becke, JCP 88 (1988) 2547]} \end{itemize} \bigskip \item Generalities on correlation methods \begin{itemize} \item Configuration Interaction (CI) \pub{[Szabo \& Ostlund, Modern Quantum Chemistry]} \item Perturbation theory \pub{[Szabo \& Ostlund, Modern Quantum Chemistry]} \item Coupled-cluster (CC) theory \pub{[Jensen, Introduction to Computational Chemistry]} \end{itemize} \bigskip \item Computing the 2nd-order M{\o}ller-Plesset (MP2) correlation energy \begin{itemize} \item Atomic orbital (AO) to molecular orbital (MO) transformation \pub{[Frisch et al. CPL 166 (1990) 281]} \item Laplace transform \pub{[Alml{\"o}f, CPL 181 (1991) 319]} \end{itemize} \bigskip \item Coupled cluster with doubles (CCD) \begin{itemize} \item Introduction to CC methods \pub{[Shavitt \& Bartlett, \textit{``Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory''}]} \item Algorithm to compute the CCD energy \pub{[Pople et al. IJQC 14 (1978) 545]} \end{itemize} \end{itemize} \end{frame} %%% SLIDE X %%% \begin{frame}{How to perform a HF calculation in practice?} \begin{columns} \begin{column}{0.7\textwidth} \begin{block}{The SCF algorithm (p.~146)} \begin{enumerate} \item \orange{Specify molecule} $\{\br_A\}$ and $\{Z_A\}$ and \violet{basis set} $\{\phi_\mu\}$ \item Calculate integrals $S_{\mu \nu}$, $H_{\mu \nu}$ and $\langle \mu \nu | \lambda \sigma \rangle$ \item Diagonalize $\bm{S}$ and compute $\bm{X} = \bm{S}^{-1/2}$ \item Obtain \alert{guess density matrix} for $\bm{P}$ \begin{enumerate} \item[1.] Calculate $\bm{J}$ and $\bm{K}$, then $\bm{F} = \bm{H} + \bm{J} + \bm{K}$ \item[2.] Compute $\bm{F}' = \bm{X}^\dag \cdot \bm{F} \cdot \bm{X}$ \item[3.] Diagonalize $\bm{F}'$ to obtain $\bm{C}'$ and $\bm{E}$ \item[4.] Calculate $\bm{C}= \bm{X} \cdot \bm{C}'$ \item[5.] Form a \blue{new density matrix} $\bm{P} = \bm{C} \cdot \bm{C}^\dag$ \item[6.] \alert{Am I converged?} If not go back to 1. \end{enumerate} \item Calculate stuff that you want, like $E_\text{HF}$ for example \end{enumerate} \end{block} \end{column} \begin{column}{0.3\textwidth} \includegraphics[width=\textwidth]{fig/Szabo} \end{column} \end{columns} \end{frame} % %----------------------------------------------------- \begin{frame}{Assumptions \& Notations} \begin{block}{Let's talk about notations} \begin{itemize} \bigskip \item Number of \green{occupied orbitals} $O$ \item Number of \alert{vacant orbitals} $V$ \item \violet{Total number of orbitals} $N = O + V$ \bigskip \item $i,j,k,l$ are \green{occupied orbitals} \item $a,b,c,d$ are \alert{vacant orbitals} \item $p,q,r,s$ are \violet{arbitrary (occupied or vacant) orbitals} \item $\mu,\nu,\lambda,\sigma$ are \purple{basis function indexes} \bigskip \end{itemize} \end{block} \end{frame} %----------------------------------------------------- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{One- and two-electron integrals} \begin{columns} \begin{column}{0.7\textwidth} \begin{block}{One-electron integrals: overlap \& core Hamiltonian (Appendix A)} \begin{equation} S_{\mu\nu} = \braket{\mu}{\nu} = \int \phi_\mu(\orange{\br}) \phi_\nu(\orange{\br}) d\orange{\br} \end{equation} \begin{equation} H_{\mu\nu} = \mel{\mu}{\hH^\text{c}}{\nu} = \int \phi_\mu(\orange{\br}) \hH^\text{c}(\orange{\br}) \phi_\nu(\orange{\br}) d\orange{\br} \end{equation} \end{block} \end{column} \begin{column}{0.3\textwidth} \includegraphics[width=\textwidth]{fig/SBG} \end{column} \end{columns} \begin{block}{Chemist/Mulliken notation for two-electron integrals (p.~68)} \begin{equation} ( \mu \nu | \lambda \sigma ) = \iint \phi_\mu(\alert{\br_1}) \phi_\nu(\alert{\br_1}) \frac{1}{r_{12}} \phi_\lambda(\blue{\br_2}) \phi_\sigma(\blue{\br_2}) d\red{\br_1} d\blue{\br_2} \end{equation} % \begin{equation} % ( \mu \blue{\nu} \orange{||} \lambda \red{\sigma} ) = ( \mu \blue{\nu} | \lambda \red{\sigma} ) - ( \mu \red{\sigma} | \lambda \blue{\nu} ) % \end{equation} \end{block} \begin{block}{Physicist/Dirac notation for two-electron integrals (p.~68)} \begin{equation} \langle \mu \nu | \lambda \sigma \rangle = \iint \phi_\mu(\alert{\br_1}) \phi_\nu(\blue{\br_2}) \frac{1}{r_{12}} \phi_\lambda(\alert{\br_1}) \phi_\sigma(\blue{\br_2}) d\red{\br_1} d\blue{\br_2} \end{equation} % \begin{equation} % \langle \mu \nu \orange{||} \blue{\lambda} \red{\sigma} \rangle = \langle \mu \nu | \blue{\lambda} \red{\sigma} \rangle - \langle \mu \nu | \red{\sigma} \blue{\lambda} \rangle % \end{equation} \end{block} \end{frame} \begin{frame}{Computing the electron repulsion integrals (ERIs)} \begin{columns} \begin{column}{0.7\textwidth} \begin{block}{Four-center two-electron integrals} \small \begin{equation} \begin{split} \braket{\ba_1\ba_2}{\bb_1\bb_2} & \equiv \mel{\ba_1\ba_2}{\alert{r_{12}^{-1}}}{\bb_1\bb_2} \\ & = \iint \phi_{\ba_1}^{\bA_1}(\br_1) \phi_{\ba_2}^{\bA_2}(\br_2) \,\alert{\frac{1}{r_{12}}} \, \phi_{\bb_1}^{\bB_1}(\br_1) \phi_{\bb_2}^{\bB_2}(\br_2) d\br_1 d\br_2 \end{split} \end{equation} \alert{Formally, one has to compute $\order{N^4}$ ERIs!} \end{block} \end{column} \begin{column}{0.3\textwidth} \includegraphics[width=\textwidth]{fig/STO} \end{column} \end{columns} % \begin{block}{Gaussian-type orbital (GTO)} \small \begin{align*} \text{\violet{Contracted} GTO} & = \ket{\ba} \equiv \phi_{\ba}^{\bA}(\br) = \sum_k^K D_k \sket{\ba}_k \\ \text{\blue{Primitive} GTO} & = \sket{\ba} = (x-A_x)^{a_x} (y-A_y)^{a_y} (z-A_z)^{a_z} e^{-\alpha \abs{ \br -\bA }^2} \end{align*} \end{block} \begin{itemize} \item \textbf{\purple{Exponent:}} $\alpha$ \item \textbf{\purple{Center:}} $\bA = (A_x, A_y, A_z)$ \item \textbf{\purple{Angular momentum:}} $\ba = (a_x, a_y, a_z)$ and total angular momentum $a=a_x + a_y + a_z$ \end{itemize} % \end{frame} \begin{frame}{The contraction problem} \begin{columns} \begin{column}{0.7\textwidth} \begin{block}{Primitive vs Contracted} \begin{itemize} \item Same center $\bA$ \item Same angular momentum $\ba$ \item Different exponent $\violet{\alpha_k}$ \item Contraction coefficient $\blue{D_k}$ and degree $K$ \end{itemize} \begin{equation} \underbrace{\braket{\ba_1\ba_2}{\bb_1\bb_2}}_{\text{\green{contracted ERI}}} = \sum_{k_1}^{K_1} \sum_{k_2}^{K_2} \sum_{k_3}^{K_3} \sum_{k_4}^{K_4} \blue{D_{k_1} D_{k_2} D_{k_3} D_{k_4}} \underbrace{\sbraket{\ba_{1,k_1}\ba_{2,k_2}}{\bb_{1,k_3}\bb_{2,k_4}}}_{\text{\red{primitive ERI}}} \end{equation} \centering \green{One} contracted ERI required \red{$K_1 \times K_2 \times K_3 \times K_4$} primitive ERIs! \end{block} \begin{block}{Dunning's cc-pVTZ basis for the carbon atom} \begin{equation} \green{\braket{1s1s}{1s1s}} = \sum_{k_1}^{10} \sum_{k_2}^{10} \sum_{k_3}^{10} \sum_{k_4}^{10} \blue{D_{k_1} D_{k_2} D_{k_3} D_{k_4}} \red{\sbraket{s_{k_1}^{\violet{\alpha_{k_1}}} s_{k_2}^{\violet{\alpha_{k_2}}}} {s_{k_3}^{\violet{\alpha_{k_3}}} s_{k_4}^{\violet{\alpha_{k_4}}} }} \end{equation} \centering The $\green{\braket{1s1s}{1s1s}}$ integral requires $10^4$ \red{$s$-type integrals}! \end{block} \end{column} \begin{column}{0.3\textwidth} \begin{equation} \boxed{\green{\ket{\ba}} = \sum_k^K \blue{D_k} \red{\sket{\ba_k}}} \end{equation} \\ \bigskip \begin{block}{https://www.basissetexchange.org} \bigskip \centering \includegraphics[width=\textwidth]{fig/C} \end{block} \end{column} \end{columns} \end{frame} %%% SLIDE X %%% \begin{frame}{Properties of Gaussian functions} \begin{block}{Gaussian product rule: \textit{``The product of two gaussians is a gaussian''}} \begin{equation} G_{\red{\alpha},\red{\bm{A}}}(\br) = \exp(-\red{\alpha} \abs{\br - \red{\bA}}^2) \qqtext{and} G_{\blue{\beta},\blue{\bm{B}}}(\br) = \exp(-\blue{\beta} \abs{\br - \blue{\bB}}^2) \qqtext{then} \end{equation} \begin{equation} \boxed{G_{\red{\alpha},\red{\bm{A}}}(\br) G_{\blue{\beta},\blue{\bm{B}}}(\br) = \violet{K} \, G_{\violet{\zeta},\violet{\bm{P}}}(\br)} \qqtext{with} \violet{\zeta} = \red{\alpha} + \blue{\beta} \qqtext{and} \violet{\bm{P}} = \frac{\red{\alpha \bA} + \blue{\beta \bB}}{\red{\alpha} + \blue{\beta} } \end{equation} \begin{equation} \violet{K} = \exp( -\frac{\red{\alpha} \blue{\beta}}{\red{\alpha} + \blue{\beta} } \abs{\red{\bA} - \blue{\bB}}^2) \end{equation} \end{block} \begin{block}{Gaussian product rule for ERIs} \begin{equation} \begin{split} (\bm{\red{a}} \bm{\blue{b}}|\bm{\orange{c}} \bm{\green{d}}) & = \iint G_{\red{\alpha},\red{\bm{A}}}(\br_1) G_{\blue{\beta},\blue{\bm{B}}}(\br_1) \frac{1}{r_{12}} G_{\orange{\gamma},\orange{\bm{C}}}(\br_2) G_{\green{\delta},\green{\bm{D}}}(\br_2) d\br_1 d\br_2 \\ & = \violet{K} \purple{K} \iint G_{\violet{\zeta},\violet{\bm{P}}}(\br_1) \frac{1}{r_{12}} G_{\purple{\eta},\purple{\bm{Q}}}(\br_2) d\br_1 d\br_2 \end{split} \end{equation} \alert{The number of ``significant'' ERIs in a large system is $\order{N^2}$!} \end{block} \end{frame} % \begin{frame}{Upper bounds for ERIs} \begin{columns} \begin{column}{0.35\textwidth} \begin{block}{A ``good'' upper bound must be} \begin{itemize} \item tight (i.e., a good estimate) \item simple (i.e, cheap to compute) \end{itemize} \end{block} \end{column} \begin{column}{0.65\textwidth} \begin{equation} \boxed{\abs{(\bm{\red{a}} \bm{\blue{b}}|\bm{\orange{c}} \bm{\green{d}})} \le B} \end{equation} \end{column} \end{columns} \bigskip \begin{block}{Cauchy-Schwartz bound} \begin{equation} \abs{(\bm{\red{a}} \bm{\blue{b}}|\bm{\orange{c}} \bm{\green{d}})} \le \sqrt{(\bm{\red{a}} \bm{\blue{b}}|\bm{\red{a}} \bm{\blue{b}})} \sqrt{(\bm{\orange{c}} \bm{\green{d}}|\bm{\orange{c}} \bm{\green{d}})} \qqtext{or} \abs{(\bm{\violet{P}}|\bm{\purple{Q}})} \le \sqrt{(\bm{\violet{P}}|\bm{\violet{P}})} \sqrt{(\bm{\purple{Q}}|\bm{\purple{Q}})} \end{equation} \end{block} \begin{block}{The family of generalized H\"older bounds} \begin{equation} \abs{(\bm{\red{a}} \bm{\blue{b}}|\bm{\orange{c}} \bm{\green{d}})} \le \qty[ (\bm{\red{a}} \bm{\blue{b}}|\bm{\red{a}} \bm{\blue{b}}) ]^{1/\purple{m}} \qty[ (\bm{\orange{c}} \bm{\green{d}}|\bm{\orange{c}} \bm{\green{d}}) ]^{1/\violet{n}} \qqtext{with} \frac{1}{\purple{m}} + \frac{1}{\violet{n}} = 1 \qqtext{and} \purple{m},\violet{n} > 1 \end{equation} \end{block} \end{frame} \begin{frame}{Asymptotic scaling of two-electron integrals} \begin{block}{Number of significant two-electron integrals} \begin{equation} (\bm{\red{a}} \bm{\blue{b}}|\bm{\orange{c}} \bm{\green{d}}) \equiv (\bm{\red{a}} \bm{\blue{b}}| \mathcal{O}_2 | \bm{\orange{c}} \bm{\green{d}}) \end{equation} \end{block} \bigskip \begin{block}{Long-range vs short-range operators} \begin{equation} N_\text{sig} = c\,N^{\alpha} \end{equation} \center \begin{tabular}{lcrccrc} \hline \hline Molecule & $N$ & \mc{2}{c}{\red{$\hO = r_{12}^{-1}$}} && \mc{2}{c}{\orange{$\hO = e^{-r_{12}^2}$}} \\ \cline{3-4} \cline{6-7} & & \mc{1}{c}{$N_\text{sig}$} & $\alpha$ && \mc{1}{c}{$N_\text{sig}$} & $\alpha$ \\ \hline propene & 12 & 1\,625 & --- && 1\,650 & --- \\ butadiene & 16 & 5\,020 & 3.9 && 5\,020 & 3.9 \\ hexatriene & 24 & 24\,034 & 3.9 && 23\,670 & 3.8 \\ octatetraene & 32 & 63\,818 & 3.4 && 52\,808 & 2.8 \\ decapentaene & 40 & 119\,948 & 2.8 && 81\,404 & 1.9 \\ dodecaexaene & 48 & 192\,059 & 2.6 && 109\,965 & 1.6 \\ \hline \hline \end{tabular} \bigskip \end{block} \end{frame} \begin{frame}{Recipe for computing two-electron integrals} \center \begin{tikzpicture} \begin{scope}[very thick, node distance=4cm,on grid,>=stealth', boxRR/.style={rectangle,draw,fill=green!40}, boxUB/.style={rectangle,draw,fill=orange!40}, boxFI/.style={rectangle,draw,fill=red!40}, integral/.style={rectangle,draw,fill=violet!40}], \node [integral, align=center] (1) {\textbf{The cake:} \\ Two-electron integrals \\ $\braket{\ba_1 \ba_2}{ \bb_1 \bb_2}$}; \node [boxUB, align=center] (2A) [below=of 1] {\textbf{Ingredient number 2:} \\ Recurrence relations \\ $\expval*{\ba_1^+} = \expval*{\ba_1} + \expval*{\ba_1^-}$}; \node [boxRR, align=center] (2B) [right=of 2A] {\textbf{Ingredient number 3:} \\ Upper bounds \\ $\abs{\braket{\ba_1 \ba_2}{ \bb_1 \bb_2}} \le B$}; \node [boxFI, align=center] (2C) [left=of 2A] {\textbf{Ingredient number 1:} \\ Fundamental integrals \\ $\braket{\bo\bo}{\bo\bo}^{\bm{m}}$}; \path (1) edge [<-] (2A) (1) edge [<-,bend right] (2B) (1) edge [<-,bend left] (2C) ; \end{scope} \end{tikzpicture} \end{frame} \begin{frame}{Late-contraction path algorithm (Head-Gordon-Pople \& PRISM inspired)} \begin{tikzpicture} \begin{scope}[ very thick, node distance=1.5cm,on grid,>=stealth', boxSP/.style={rectangle,draw,fill=purple!40}, box0m/.style={rectangle,draw,fill=red!40}, boxCm/.style={rectangle,draw,fill=gray!40}, boxA/.style={rectangle,draw,fill=red!40}, boxAA/.style={rectangle,draw,fill=red!40}, boxAAA/.style={rectangle,draw,fill=red!40}, boxC/.style={rectangle,draw,fill=gray!40}, boxCC/.style={rectangle,draw,fill=gray!40}, boxCCC/.style={rectangle,draw,fill=orange!40}, boxCCCCCC/.style={rectangle,draw,fill=green!40}, ], \node [boxSP, align=center] (SP) {Shell-pair \\ data}; \node [box0m, align=center] (0m) [right=of 1,xshift=1.25cm] {$\sbraket{00}{00}^{\bm{m}}$}; \node [boxCm, align=center] (Cm) [right=of 0m,xshift=1.75cm] {$\braket{00}{00}^{\bm{m}}$}; \node [boxA, align=center] (A) [below=of 0m] {$\sbraket{0 a_2}{00}^{\bm{m}}$}; \node [boxC, align=center] (C) [right=of A,xshift=1.75cm] {$\braket{0 a_2}{00}^{\bm{m}}$}; \node [boxAA, align=center] (AA) [below=of A] {$\sbraket{a_1 a_2}{00}$}; \node [boxCC, align=center] (CC) [right=of AA,xshift=1.75cm] {$\braket{a_1 a_2}{00}$}; \node [boxCCCCCC, align=center] (CCCC) [right=of CC,xshift=2cm] {$\braket{a_1 a_2}{b_1 b_2}$}; \path (SP) edge[->] node[below,blue]{T$_0$} (0m) (0m) edge[->] node[left,orange]{T$_1$} node [right,red]{VRR$_1$} (A) (0m) edge[->,gray!70] (Cm) (A) edge[->] node[left,orange]{T$_2$} node [right,red]{VRR$_2$} (AA) (A) edge[->,gray!70] (C) (AA) edge[->] node [below,blue]{CC} (CC) (Cm) edge[->,gray!70] (C) (C) edge[->,gray!70] (CC) (CC) edge[->] node [above,orange]{T$_3$} node [below,red]{HRR} (CCCC) ; \end{scope} \end{tikzpicture} \bigskip \begin{itemize} \item \red{HRR} = horizontal recurrence relation [Obara-Saika] \item \red{VRR} = vertical recurrence relation \item \blue{CC} = bra contraction \end{itemize} \end{frame} %\begin{frame}{Screening algorithm for two-electron integrals} % %\resizebox{\textwidth}{!}{ %\begin{tikzpicture} % \begin{scope}[very thick, % node distance=2.5cm,on grid,>=stealth', % bound2/.style={diamond,draw,fill=blue!40}, % bound4/.style={diamond,draw,fill=blue!40}, % bound6/.style={diamond,draw,fill=blue!40}, % shell/.style={circle,draw,fill=green!40}, % shellpair/.style={circle,draw,fill=green!40}, % shellquartet/.style={circle,draw,fill=green!40}, % shell1/.style={rectangle,draw,fill=yellow!40}, % shell2/.style={rectangle,draw,fill=orange!40}, % shell3/.style={rectangle,draw,fill=red!40}, % integral/.style={rectangle,draw,fill=violet!40}], % \node [shell1, align=center] (1) {Primitive\\shells\\$\sket{a}$}; % \node [bound2, align=center] (B2) [right=of 1] {$\sexpval{B_2}$}; % \node [shell, align=center] (S1T) [above=of B2, yshift=-0.5cm] {$\sket{a}$}; % \node [shell, align=center] (S1B) [below=of B2, yshift=0.5cm] {$\sket{b}$}; % \node [shell2, align=center] (2) [right=of B2,xshift=0.75cm] {Contracted\\shell-pairs\\$\ket{ab}$}; % \node [bound4, align=center] (B4) [right=of 2] {$\expval{B_4}$} ; % \node [shellpair, align=center] (S2T) [above=of B4, yshift=-0.5cm] {$\ket{a_1b_1}$}; % \node [shellpair, align=center] (S2B) [below=of B4, yshift=0.5cm] {$\ket{a_2b_2}$}; % \node [shell3, align=center] (3) [right=of B4] {Two-Electron\\integrals\\$\braket{a_1b_1}{a_2b_2}$}; % \path % (1) edge [->,bend left] (S1T) % (1) edge [->,bend right] (S1B) % (S1T) edge [snake it] (B2) % (S1B) edge [snake it] (B2) % (B2) edge [->,color=red] node [below] {\small Contraction} (2) % (2) edge [->,bend left] (S2T) % (2) edge [->,bend right] (S2B) % (S2T) edge [snake it] (B4) % (S2B) edge [snake it] (B4) % (B4) edge [->] (3) % ; % \end{scope} %\end{tikzpicture} %} %\end{frame} \begin{frame}{Orthogonalization matrix} \red{\bf We are looking for a matrix in order to orthogonalize the AO basis, i.e.~$\bm{X}^\dag \cdot \bm{S} \cdot \bm{X} = \bm{1}$} \\ \bigskip \begin{block}{Symmetric (or L\"owdin) orthogonalization} \begin{equation} \text{$\bm{X} =\bm{S}^{-1/2} = \bm{U} \cdot \bm{s}^{-1/2} \cdot \bm{U}^\dag$ is one solution...} \end{equation} \purple{\bf Is it working?} \begin{equation} \bm{X}^\dag \cdot \bm{S} \cdot \bm{X} = \bm{S}^{-1/2} \cdot \bm{S} \cdot \bm{S}^{-1/2} = \bm{S}^{-1/2} \cdot \bm{S} \cdot \bm{S}^{-1/2} = \bm{I} \quad \green{\checkmark} \end{equation} \end{block} \begin{block}{Canonical orthogonalization} \begin{equation} \text{$\bm{X} =\bm{U} \cdot \bm{s}^{-1/2}$ is another solution (when you have linear dependencies)...} \end{equation} \purple{\bf Is it working?} \begin{equation} \bm{X}^\dag \cdot \bm{S} \cdot \bm{X} = \bm{s}^{-1/2} \cdot \underbrace{\bm{U}^{\dag} \cdot \bm{S} \cdot \bm{U}}_{\bm{s}} \cdot \bm{s}^{-1/2} = \bm{I} \quad \green{\checkmark} \end{equation} \end{block} \end{frame} \begin{frame}{Computation of the Fock matrix and energy} \begin{block}{Density matrix (closed-shell system)} \begin{equation} P_{\red{\mu \nu}} = 2 \sum_{i}^\text{occ} C_{\red{\mu} i} C_{\red{\nu} i} \qqtext{or} \boxed{\bm{P} = \bm{C} \cdot \bm{C}^{\dag}} \end{equation} \end{block} \begin{block}{Fock matrix in the AO basis (closed-shell system)} \begin{equation} F_{\red{\mu\nu}} = H_{\red{\mu\nu}} + \underbrace{\sum_{\blue{\la \si}} P_{\blue{\la\si}} (\red{\mu\nu}|\blue{\la\si})}_{J_{\red{\mu \nu}} = \text{ Coulomb}} \underbrace{ - \frac{1}{2} \sum_{\blue{\la \si}} P_{\blue{\la\si}} (\red{\mu}\blue{\si}|\blue{\la}\red{\nu})}_{K_{\red{\mu \nu}} = \text{ exchange}} \end{equation} \end{block} \begin{block}{HF energy in the AO basis (closed-shell system)} \begin{equation} E_\text{HF} = \sum_{\red{\mu \nu}} P_{\red{\mu \nu}} H_{\red{\mu \nu}} + \frac{1}{2} \sum_{\red{\mu \nu} \blue{\la\si}} P_{\red{\mu \nu}} \qty[ (\red{\mu \nu} | \blue{\lambda \sigma}) - \frac{1}{2} (\red{\mu} \blue{\sigma} | \red{\lambda} \blue{\nu}) ] P_{\blue{\lambda\sigma}} \qqtext{or} \boxed{E_\text{HF} = \frac{1}{2} \text{Tr}{\qty[\bm{P} \cdot (\bm{H} + \bm{F})]}} \end{equation} \end{block} \end{frame} \begin{frame}{Computation of the Fock matrix and energy} \begin{algorithmic} \Procedure{Computing the Coulomb matrix}{} \For{$\red{\mu}=1,N$} \For{$\blue{\nu}=1,N$} \State $J_{\red{\mu}\blue{\nu}} = 0$ \Comment{Initialization of the array} \For{$\orange{\la}=1,N$} \For{$\violet{\si}=1,N$} \State $J_{\red{\mu}\blue{\nu}} = J_{\red{\mu}\blue{\nu}} + P_{\orange{\la}\violet{\si}} (\red{\mu}\blue{\nu}|\orange{\la}\violet{\si})$ \Comment{Accumulation step} \EndFor \EndFor \EndFor \EndFor \EndProcedure \Comment{\bf \red{This is a $\order{N^4}$ algorithm as it involves four loops}} \end{algorithmic} \end{frame} %%% SLIDE X %%% \begin{frame}{Resolution of the identity} \begin{block}{Resolution of the identity (RI)} \begin{equation} \sum_{\green{A}=1}^{\red{\infty}} \dyad{\green{A}} = \hI \qq{with} \braket{\green{A}}{\green{B}} = \delta_{AB} \qq{$\Leftrightarrow$} \sum_{\green{A}=1}^{\red{\infty}} \green{A}(\br_1) \green{A}(\br_2) = \delta(\br_1 - \br_2) \end{equation} \end{block} \begin{block}{Generalization to a two-body operator $\hO$} \begin{equation} \sum_{\green{\Tilde{A}}=1}^{\red{\infty}} \dyad{\green{\Tilde{A}}} = \hO \qq{with} \mel{\green{A}}{\hO}{\green{B}} = \delta_{AB} \qq{and} \hO \ket{\green{A}} = \ket{\green{\Tilde{A}}} \qq{$\Leftrightarrow$} \sum_{\green{\Tilde{A}}=1}^{\red{\infty}} \green{\Tilde{A}}(\br_1) \green{\Tilde{A}}(\br_2) = \hO(\br_1,\br_2) \end{equation} \end{block} \end{frame} % %%% SLIDE X %%% \begin{frame}{Resolution of the Coulomb operator} \begin{block}{RI in practice = RI \alert{approximation}} \begin{equation} \boxed{\sum_{\green{A}=1}^{\red{\infty}} \dyad{\green{A}} = \hI \qqtext{and, in practice, } \sum_{\green{A}=1}^{\red{K}} \dyad{\green{A}} \approx \hI} \end{equation} \end{block} \begin{block}{Computing the Coulomb matrix within the RI approximation} \begin{equation} \begin{split} J_{\red{\mu\nu}} & = \sum_{\blue{\la \si}} P_{\blue{\la\si}} (\red{\mu\nu}|\blue{\la\si}) \\ & \stackrel{\text{\green{RI}}}{=} \sum_{\blue{\la \si}} P_{\blue{\la\si}} \sum_{\green{A}} (\red{\mu\nu}|\green{A}) (\green{A}|\blue{\la\si}) \\ & = \sum_{\green{A}} (\red{\mu\nu}|\green{A}) \underbrace{\sum_{\blue{\la \si}} P_{\blue{\la\si}} (\green{A}|\blue{\la\si})}_{\order{KN^2} \text{ and $K$ storage}} = \underbrace{\sum_{\green{A}} (\red{\mu\nu}|\green{A}) \rho_{\green{A}}}_{\order{KN^2}} \end{split} \end{equation} \\ Similar (more effective) approaches are named Cholesky decomposition, low-rank approximation, etc. \end{block} \end{frame} % \begin{frame}{Computation of exact exchange} \begin{algorithmic} \Procedure{Computing the exchange matrix}{} \For{$\red{\mu}=1,N$} \For{$\blue{\nu}=1,N$} \State $K_{\red{\mu}\blue{\nu}} = 0$ \Comment{Initialization of the array} \For{$\orange{\la}=1,N$} \For{$\violet{\si}=1,N$} \State $K_{\red{\mu}\blue{\nu}} = K_{\red{\mu}\blue{\nu}} + P_{\orange{\la}\violet{\si}} (\red{\mu}\violet{\si}|\orange{\la}\blue{\nu})$ \Comment{Accumulation step} \EndFor \EndFor \EndFor \EndFor \EndProcedure \Comment{\bf \red{This is a $\order{N^4}$ algorithm and it's hard to play games...}} \end{algorithmic} \end{frame} \begin{frame}{Computation of DFT exchange} \begin{block}{LDA exchange (in theory) = cf \sout{Julien's} Manu's lectures} \begin{gather} K_{\mu\nu}^\text{LDA} = \int \phi_{\mu}(\br) \violet{v_\text{x}^\text{LDA}}(\br) \phi_{\nu}(\br) d\br = \frac{4}{3} C_\text{x} \overbrace{\int \phi_{\mu}(\br) \blue{\rho^{1/3}}(\br) \phi_{\nu}(\br) d\br}^{\text{\alert{no closed-form expression in general}}} \\ \blue{\rho}(\br) = \sum_{\mu \nu} \phi_{\mu}(\br) \blue{P_{\mu \nu}} \phi_{\nu}(\br) \end{gather} \end{block} \begin{block}{LDA exchange (in practice) = \alert{numerical integration via quadrature} = $\int f(x) dx \approx \sum_k w_k f(x_k)$} \begin{gather} \underbrace{K_{\mu\nu}^\text{LDA}}_{\green{\order{N_\text{grid} N^2}}} \approx \sum_{k=1}^{\purple{N_\text{grid}}} \underbrace{\orange{w_k}}_{\orange{\text{weights}}} \phi_{\mu}(\red{\br_k}) \violet{v_\text{x}^\text{LDA}}(\underbrace{\red{\br_k}}_{\text{\red{roots}}}) \phi_{\nu}(\red{\br_k}) = \frac{4}{3} C_\text{x} \sum_{k=1}^{\purple{N_\text{grid}}} \orange{w_k} \phi_{\mu}(\red{\br_k}) \blue{\rho^{1/3}}(\red{\br_k}) \phi_{\nu}(\red{\br_k}) \\ \underbrace{\blue{\rho}(\red{\br_k})}_{\green{\order{N_\text{grid} N^2}}} = \sum_{\mu \nu} \phi_{\mu}(\red{\br_k}) \blue{P_{\mu \nu}} \phi_{\nu}(\red{\br_k}) \end{gather} \end{block} \end{frame} \begin{frame}{The correlation energy} \begin{itemize} \item HF replaces the e-e interaction by an \green{averaged interaction} \bigskip \item The error in the HF method is called the \purple{correlation energy} $$\boxed{E_c = E - E_\text{HF}} $$ \item The correlation energy is small \orange{but cannot but neglected!} \bigskip \item HF energy \blue{roughly 99\%} of total but \blue{chemistry very sensitive to remaining 1\%} \bigskip \item The correlation energy is \alert{always negative} \bigskip \item Computing $E_c$ is one of the \violet{central problem of quantum chemistry} \bigskip \item In quantum chemistry, we usually \alert{``freeze'' the core electrons} for correlated calculations \end{itemize} \end{frame} \begin{frame}{Most common correlation methods in quantum chemistry} \begin{enumerate} \item \alert{Configuration Interaction}: CID, CIS, CISD, CISDTQ, etc. \bigskip \item \alert{Coupled Cluster}: CCD, CCSD, CCSD(T), CCSDT, CCSDTQ, etc. \bigskip \item \alert{M{\o}ller-Plesset perturbation theory}: MP2, MP3, MP4, MP5, etc. \bigskip \item \alert{Multireference methods}: MCSCF, CASSCF, RASSCF, MRCI, MRCC, CASPT2, NEVPT2, etc. (C.~Angeli \& S. Knecht) \bigskip \item \alert{Density-functional theory}: DFT, TDDFT, etc. (J. Toulouse/E. Fromager, F. Sottile) \bigskip \item \alert{Quantum Monte Carlo}: VMC, DMC, FCIQMC, etc. (M.~Caffarel) \end{enumerate} \end{frame} \begin{frame}{Configuration Interaction (CI)} \begin{itemize} \item This is the \blue{oldest} and perhaps the \blue{easiest method to understand} \bigskip \item CI is based on the \orange{variational principle} (like HF) \bigskip \item The CI wave function is a \blue{linear combination of determinants} \bigskip \item CI methods use \violet{excited determinants} to ``improve'' the reference (usually HF) wave function \begin{equation} \ket{\Phi_0} = \underbrace{c_0 \ket*{\Psi_0}}_{\text{reference}} + \underbrace{\violet{\sum_{\substack{i \\ a}} c_i^a \ket*{\Psi_i^a}}}_{\text{singles}} + \underbrace{\purple{\sum_{\substack{i < j \\ a < b}} c_{ij}^{ab} \ket*{\Psi_{ij}^{ab}}}}_{\text{doubles}} + \underbrace{\orange{\sum_{\substack{i < j < k \\ a < b < c}} c_{ijk}^{abc} \ket*{\Psi_{ijk}^{abc}}}}_{\text{triples}} + \underbrace{\blue{\sum_{\substack{i < j < k < l \\ a < b < c < d}} c_{ijkl}^{abcd} \ket*{\Psi_{ijkl}^{abcd}}}}_{\text{quadruples}} + \ldots \end{equation} \end{itemize} \end{frame} \begin{frame}{CI method and Excited determinants} \begin{block}{Excited determinants} \center \includegraphics[width=0.7\textwidth]{fig/det} \end{block} \begin{block}{CI wave function} \begin{equation} \boxed{ \ket{\Phi_0} = c_0 \ket{\text{0}} + \violet{c_\text{S} \ket{\text{S}}} + \purple{c_\text{D} \ket{\text{D}}} + \orange{c_\text{T} \ket{\text{T}}} + \blue{c_\text{Q} \ket{\text{Q}}} + \ldots } \end{equation} \end{block} \end{frame} \begin{frame}{Truncated CI} \begin{itemize} \item When $\ket{\text{S}}$ (\violet{singles}) are taken into account: \textbf{CIS} \begin{equation} \violet{\ket{\Phi_\text{CIS}} = c_0 \ket{\text{0}} + c_\text{S} \ket{\text{S}}} \end{equation} \textbf{NB:} CIS is an \violet{excited state method} \item When $\ket{\text{D}}$ (\alert{doubles}) are taken into account: \textbf{CID} \begin{equation} \alert{\ket{\Phi_\text{CID}} = c_0 \ket{\text{0}} + c_\text{D} \ket{\text{D}}} \end{equation} \textbf{NB:} CID is the \alert{cheapest CI method} \item When $\ket{\text{S}}$ and $\ket{\text{D}}$ are taken into account: \textbf{CISD} \begin{equation} \purple{\ket{\Phi_\text{CISD}} = c_0 \ket{\text{0}} + c_\text{S} \ket{\text{S}} + c_\text{D} \ket{\text{D}} } \end{equation} \textbf{NB:} CISD is the \purple{most commonly-used} CI method \item When $\ket{\text{S}}$, $\ket{\text{D}}$ and $\ket{\text{T}}$ (\orange{triples}) are taken into account: \textbf{CISDT} \begin{equation} \orange{\ket{\Phi_\text{CISDT}} = c_0 \ket{\text{0}} + c_\text{S} \ket{\text{S}} + c_\text{D} \ket{\text{D}} + c_\text{T} \ket{\text{T}}} \end{equation} \item \textbf{CISDTQ}, etc. \end{itemize} \end{frame} \begin{frame}{Full CI} \begin{itemize} \item When all possible excitations are taken into account, \alert{this is called a Full CI calculation} (\textbf{FCI}) \begin{equation} \alert{\ket{\Phi_\text{FCI}} = c_0 \ket{\text{0}} + c_\text{S} \ket{\text{S}} + c_\text{D} \ket{\text{D}} + c_\text{T} \ket{\text{T}} + c_\text{Q} \ket{\text{Q}} + \ldots} \end{equation} \item FCI gives the \violet{exact solution of the Schr\"odinger equation within a given basis} \bigskip \item FCI is becoming more and more fashionable these days (e.g. \orange{FCIQMC and SCI methods}) \bigskip \item \blue{So, why do we care about other methods?} \bigskip \item \alert{Because FCI is super computationally expensive!} \bigskip \end{itemize} \end{frame} \begin{frame}{Size of CI Matrix} \violet{\textit{``Assume we have 10 electrons in 38 spin MOs: 10 are occupied and 28 are empty''}} \bigskip \begin{columns} \begin{column}{0.65\textwidth} \begin{itemize} \item There is $C_{10}^k$ possible ways of selecting $k$ electrons out of the 10 occupied orbitals $$ C_{n}^k = \frac{n!}{k!(n-k)!} $$ \item There is $C_{28}^k$ ways of distributing them out in the 28 virtual orbitals \item For a given excitation level $k$, \alert{there is $C_{10}^k C_{28}^k$ excited determinants} \item \violet{The total number of possible excited determinant} is $$ \sum_{k=0}^{10}C_{10}^k C_{28}^k = C_{38}^{10} = 472,733,756$$ \item \alert{This is a lot...} \end{itemize} \end{column} \begin{column}{0.35\textwidth} \small \orange{For $n = 10$ and $N = 38$:} \\ \bigskip \begin{tabular}{cr} \hline \hline $k$ & Num. of excitations \\ \hline 0 & 1 \\ 1 & 280 \\ 2 & 17,010 \\ 3 & 393,120 \\ 4 & 4,299,750 \\ 5 & 24,766,560 \\ 6 & 79,115,400 \\ 7 & 142,084,800 \\ 8 & 139,864,725 \\ 9 & 69,069,000 \\ 10 & 13,123,110 \\ \hline Tot. & 472,733,756 \\ \hline \hline \end{tabular} \end{column} \end{columns} \end{frame} \begin{frame}{The FCI matrix: \alert{before pruning}} \begin{equation} \boxed{ \ket{\Phi_0} = c_0 \ket{\text{HF}} + c_\text{S} \ket{\text{S}} + c_\text{D} \ket{\text{D}} + c_\text{T} \ket{\text{T}} + c_\text{Q} \ket{\text{Q}} + \ldots } \end{equation} \bigskip \begin{equation} \bH = \begin{array}{ccccccc} & | \text{HF} \rangle & | \text{S} \rangle & | \text{D} \rangle & | \text{T} \rangle & | \text{Q} \rangle & \cdots \\ \langle \text{HF} | & \langle \text{HF} | \hH | \text{HF} \rangle & \langle \text{HF} | \hH | \text{S} \rangle & \langle \text{HF} | \hH | \text{D} \rangle & \langle \text{HF} | \hH | \text{T} \rangle & \langle \text{HF} | \hH | \text{Q} \rangle & \cdots \\ \langle \text{S} | & \langle \text{S} | \hH | \text{HF} \rangle & \langle \text{S} | \hH | \text{S} \rangle & \langle \text{S} | \hH | \text{D} \rangle & \langle \text{S} | \hH | \text{T} \rangle & \langle \text{S} | \hH | \text{Q} \rangle & \cdots \\ \langle \text{D} | & \langle \text{D} | \hH |\text{HF} \rangle & \langle \text{D} | \hH | \text{S} \rangle & \langle \text{D} | \hH | \text{D} \rangle & \langle \text{D} | \hH| \text{T} \rangle & \langle \text{D} | \hH | \text{Q} \rangle & \cdots \\ \langle \text{T} | & \langle \text{T} | \hH |\text{HF} \rangle & \langle \text{T} | \hH | \text{S} \rangle & \langle \text{T} | \hH | \text{D} \rangle & \langle \text{T} |\hH | \text{T} \rangle & \langle \text{T} | \hH | \text{Q} \rangle & \cdots \\ \langle \text{Q} | & \langle \text{Q} | \hH | \text{HF} \rangle & \langle \text{Q} | \hH | \text{S} \rangle & \langle \text{Q} | \hH | \text{D} \rangle & \langle \text{Q} | \hH | \text{T} \rangle & \langle \text{Q} | \hH | \text{Q} \rangle & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \end{array} \end{equation} \end{frame} \begin{frame}{The FCI matrix: \green{after pruning}} \begin{equation} \boxed{ \ket{\Phi_0} = c_0 \ket{\text{HF}} + c_\text{S} \ket{\text{S}} + c_\text{D} \ket{\text{D}} + c_\text{T} \ket{\text{T}} + c_\text{Q} \ket{\text{Q}} + \ldots } \end{equation} \bigskip \begin{equation} \bH = \begin{array}{ccccccc} & | \text{HF} \rangle & | \text{S} \rangle & | \text{D} \rangle & | \text{T} \rangle & | \text{Q} \rangle & \cdots \\ \langle \text{HF} | & \langle \text{HF} | \hH | \text{HF} \rangle & 0 & \langle \text{HF} | \hH | \text{D} \rangle & 0 & 0 & \cdots \\ \langle \text{S} | & 0 & \langle \text{S} | \hH | \text{S} \rangle & \langle \text{S} | \hH | \text{D} \rangle & \langle \text{S} | \hH | \text{T} \rangle & 0 & \cdots \\ \langle \text{D} | & \langle \text{D} | \hH | \text{HF} \rangle & \langle \text{D} | \hH | \text{S} \rangle & \langle \text{D} | \hH | \text{D} \rangle & \langle \text{D} | \hH | \text{T} \rangle & \langle \text{D} | \hH | \text{Q} \rangle & \cdots \\ \langle \text{T} | & 0 & \langle \text{T} | \hH | \text{S} \rangle & \langle \text{T} | \hH | \text{D} \rangle & \langle \text{T} | \hH | \text{T} \rangle & \langle \text{T} | \hH | \text{Q} \rangle & \cdots \\ \langle \text{Q} | & 0 & 0 & \langle \text{Q} | \hH | \text{D} \rangle & \langle \text{Q} | \hH | \text{T} \rangle & \langle \text{Q} | \hH | \text{Q} \rangle & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \end{array} \end{equation} \end{frame} \begin{frame}{Rules \& Observations} \begin{enumerate} \item No coupling between HF ground state $\ket{ \text{HF} }$ and single excitations $ \ket{ \text{S} }$\\ \violet{$\Rightarrow$ Brillouin's theorem} \begin{equation} \violet{\mel{ \text{HF} }{ \hH }{ \text{S} } = 0} \end{equation} \item No coupling between $\ket{ \text{HF} }$ and triples $\ket{ \text{T} }$ , quadruples $ \ket{ \text{Q} }$ , etc. \\ \alert{$\Rightarrow$ Slater-Condon rules} \begin{gather} \alert{\mel{ \text{HF} }{ \hH }{ \text{T} } = \mel{ \text{HF} }{ \hH }{ \text{Q} } = \ldots = 0} \\ \alert{\mel{ \text{S} }{ \hH }{ \text{Q} } = \ldots = 0} \end{gather} \item $ \ket{ \text{S} }$ have small effect but mix indirectly with $\ket{ \text{D} }$\\ \orange{$\Rightarrow$ CID $\neq$ CISD} \begin{equation} \orange{\mel{ \text{HF} }{ \hH }{ \text{S} } = 0 \qq{but} \mel{ \text{S} }{ \hH }{ \text{D} } \neq 0} \end{equation} \item $ \ket{ \text{D} }$ have large effect and $ \ket{ \text{Q} }$ more important than $ \ket{ \text{T} }$\\ \blue{$\Rightarrow$ CID gives most of the correlation energy} \begin{equation} \blue{\mel{ \text{HF} }{ \hH }{ \text{D} } \gg \mel{ \text{HF} }{ \hH }{ \text{Q} } \gg \mel{ \text{HF} }{ \hH }{ \text{T} }} \end{equation} \item \purple{Of course, this matrix is never explicitly built in practice (Davidson algorithm)...} \end{enumerate} \end{frame} \begin{frame}{Example} \begin{columns} \begin{column}{0.5\textwidth} \begin{block}{Weights of excited configurations for \ce{Ne}} \center \begin{tabular}{cc} \hline \hline Excit. level & Weight \\ \hline 0 & $9.6 \times 10^{-1}$ \\ 1 & $9.8 \times 10^{-4}$ \\ 2 & $3.4 \times 10^{-2}$ \\ 3 & $3.7 \times 10^{-4}$ \\ 4 & $4.5 \times 10^{-4}$ \\ 5 & $1.9 \times 10^{-5}$ \\ 6 & $1.7 \times 10^{-6}$ \\ 7 & $1.4 \times 10^{-7}$ \\ 8 & $1.1 \times 10^{-9}$ \\ \hline \hline \end{tabular} \end{block} \end{column} \begin{column}{0.5\textwidth} \begin{block}{Correlation energy of \ce{Be} and Method scaling} \center \begin{table} \begin{tabular}{lccc} \hline \hline Method & $\Delta E_c$ & \% & Scaling \\ \hline HF & 0 & 0 & $N^4$ \\ CIS & 0 & 0 & $N^5$ \\ CISD & 0.075277 & 96.05 & $N^6$ \\ CISDT & 0.075465 & 96.29 & $N^8$ \\ CISDTQ & 0.078372 & 100 & $N^{10}$ \\ FCI & 0.078372 & 100 & $e^N$ \\ \hline \hline \end{tabular} \end{table} \end{block} \end{column} \end{columns} \end{frame} \begin{frame}{Size consistency and size extensivity} \begin{itemize} \item Truncated CI methods are \alert{size inconsistent} i.e. $$2E_c (\ce{H2}) \neq E_c (\ce{H2\bond{....}H2})$$ \item Size consistent defines for \purple{non-interacting fragment} \bigskip \item \violet{Size extensivity} refers to the scaling of $E_c$ with the number of electrons \bigskip \item \blue{NB:} FCI is size consistent and size extensive \end{itemize} \end{frame} \begin{frame}{Rayleigh-Schr\"odinger perturbation theory} Let's assume we want to find $\Psi_0$ and $E_0$, such as \begin{equation} (\hH^{(0)} + \alert{\la} \hH^{(1)}) \Psi_0 = E_0\,\Psi_0 \end{equation} and that \blue{we know} \begin{equation} \boxed{ \hH^{(0)} \Psi^{(0)}_n = E^{(0)}_n \Psi_n^{(0)}, \quad n = 0,1,2,\ldots,\infty} \end{equation} Let's expand $\Psi_0$ and $E_0$ in term of $\la$: \begin{equation} E_0 = \orange{\la^0}\,E_0^{(0)} + \red{\la^1}\,E_0^{(1)} + \purple{\la^2}\,E_0^{(2)} + \violet{\la^3}\,E_0^{(3)} + \ldots \end{equation} \begin{equation} \Psi_0 = \orange{\la^0}\,\Psi_0^{(0)} + \red{\la^1}\,\Psi_0^{(1)} + \purple{\la^2}\,\Psi_0^{(2)} + \violet{\la^3}\,\Psi_0^{(3)} + \ldots \end{equation} such as (\alert{intermediate normalization}) \begin{equation} \braket{ \Psi_0^{(0)} }{ \Psi_0^{(0)} } = 1 \qquad \braket{ \Psi_0^{(0)} }{ \Psi_0^{(k)} } = 0, \quad k = 1,2,\ldots,\infty \end{equation} \end{frame} \begin{frame}{Rayleigh-Schr\"odinger perturbation theory (Part 1)} Gathering terms with respect to the power of $\la$: \begin{align} & \orange{\la^0:} \qquad \hH^{(0)}\Psi_0^{(0)} = E_0^{(0)} \Psi_0^{(0)} \\ & \red{\la^1:} \qquad \hH^{(0)}\Psi_0^{(1)} + \hH^{(1)}\Psi_0^{(0)} = E_0^{(0)} \Psi_0^{(1)} + E_0^{(1)} \Psi_0^{(0)} \\ & \purple{\la^2:} \qquad \hH^{(0)}\Psi_0^{(2)} + \hH^{(1)}\Psi_0^{(1)} = E_0^{(0)} \Psi_0^{(2)} + E_0^{(1)} \Psi_0^{(1)} + E_0^{(2)} \\ & \violet{\la^3:} \qquad \hH^{(0)}\Psi_0^{(3)} + \hH^{(1)}\Psi_0^{(2)} = E_0^{(0)} \Psi_0^{(3)} + E_0^{(1)} \Psi_0^{(2)} + E_0^{(2)} \Psi_0^{(1)} + E_0^{(3)} \end{align} Using the intermediate normalization, we have \begin{align} & \orange{\la^0:} \qquad E_0^{(0)} = \mel{ \Psi_0^{(0)} }{ \hH^{(0)} }{ \Psi_0^{(0)} } \\ & \red{\la^1:} \qquad E_0^{(1)} = \mel{ \Psi_0^{(0)} }{ \hH^{(1)} }{ \Psi_0^{(0)} } \\ & \purple{\la^2:} \qquad E_0^{(2)} = \mel{ \Psi_0^{(0)} }{ \hH^{(1)} }{ \Psi_0^{(1)} } \qquad \blue{\text{Wigner's (2n+1) rule!}} \\ & \violet{\la^3:} \qquad E_0^{(3)} = \mel{ \Psi_0^{(0)} }{ \hH^{(1)} }{ \Psi_0^{(2)} } = \mel{ \Psi_0^{(1)} }{ \hH^{(1)} - E_0^{(1)} }{ \Psi_0^{(1)} } \end{align} \end{frame} \begin{frame}{Rayleigh-Schr\"odinger perturbation theory (Part 2)} Expanding $\Psi_0^{(1)}$ in the basis $\Psi_n^{(0)}$ with $n = 0,1,2,\ldots,\infty$ \begin{equation} \ket{ \Psi_0^{(1)} } = \sum_n c_n^{(1)} \ket{ \Psi_n^{(0)} } \qq{$\Rightarrow$} c_n^{(1)} = \braket{ \Psi_n^{(0)} }{ \Psi_0^{(1)} } \end{equation} Therefore, \begin{equation} \ket{ \Psi_0^{(1)} } = \sum_{n \neq 0} \ket{ \Psi_n^{(0)} } \braket{ \Psi_n^{(0)} }{ \Psi_0^{(1)} } \end{equation} Using results from the previous slide, one can show that \begin{equation} \purple{\boxed{ E_0^{(2)} = \sum_{n \neq 0} \frac{\mel{ \Psi_0^{(0)} }{ \hH^{(1)} }{ \Psi_n^{(0)} }^2}{E_0^{(0)} - E_n^{(0)} } }} \end{equation} \small \begin{equation} \violet{ \boxed{ E_0^{(3)} = \sum_{n,m \neq 0} \frac{\mel{ \Psi_0^{(0)} }{ \hH^{(1)} }{ \Psi_n^{(0)} } \mel{ \Psi_n^{(0)} }{ \hH^{(1)} }{ \Psi_m^{(0)} } \mel{ \Psi_m^{(0)} }{ \hH^{(1)} }{ \Psi_0^{(0)} }}{(E_0^{(0)} - E_n^{(0)})(E_0^{(0)} - E_m^{(0)})} - E_0^{(1)} \sum_{n \neq 0} \frac{\mel{ \Psi_0^{(0)} }{ \hH^{(1)} }{ \Psi_n^{(0)} }^2}{(E_0^{(0)} - E_n^{(0)})^2} }} \end{equation} \end{frame} \begin{frame}{M{\o}ller-Plesset (MP) perturbation theory} In \alert{M{\o}ller-Plesset perturbation theory}, the partition is \begin{equation} \blue{\hH^{(0)} = \sum_{i=1}^N f(i) = \sum_{i=1}^N [h(i) + v^\text{HF}(i)]}, \qquad \green{\hH^{(1)} = \sum_{i \tau$} \State Form linear array $\green{u_{ij}^{ab}}$ \State Compute intermediate arrays $\mel*{kl}{X_1}{ij}$, $\mel*{b}{X_2}{c}$, $\mel*{k}{X_3}{j}$, and $\mel*{il}{X_4}{ad}$. \State Form quadratic array $\orange{v_{ij}^{ab}}$ \State Compute residues: $\blue{r_{ij}^{ab}} = \mel*{ij}{}{ab} + \Delta_{ij}^{ab} \amp{ij}{ab} + \green{u_{ij}^{ab}} + \orange{v_{ij}^{ab}}$ \State Update amplitudes: $\red{t_{ij}^{ab}} \leftarrow \red{t_{ij}^{ab}} - \blue{r_{ij}^{ab}}/\Delta_{ij}^{ab}$ \EndWhile \State Compute CCD energy: $\ECCD = \EHF + \frac{1}{4} \sum_{ij} \sum_{ab} \red{t_{ij}^{ab}} \mel*{ij}{}{ab}$ \EndProcedure \end{algorithmic} \end{block} \end{column} \begin{column}{0.3\textwidth} \centering \includegraphics[width=\textwidth]{fig/Diagrams-CCD} \end{column} \end{columns} \end{frame} \begin{frame}{Illustration for the \ce{Be} atom} \begin{block}{Correlation energy of \ce{Be} in a 4s2p basis set} \bigskip \begin{table} \small \begin{tabular}{llcclcclcc} \hline \hline Scaling & Level & $\Delta E_c$ & \% & Level & $\Delta E_c$ & \% & Level & $\Delta E_c$ & \% \\ \hline $N^5$ &MP2 & 0.053174 & 67.85 & & & & & & \\ $N^6$ &MP3 & 0.067949 & 86.70 & CISD & 0.075277 & 96.05 & CCSD & 0.078176 & 99.75 \\ $N^7$ &MP4 & 0.074121 & 94.58 & & & & CCSD(T) & 0.078361 & 99.99 \\ $N^8$ &MP5 & 0.076918 & 98.15 & CISDT & 0.075465 & 96.29 & CCSDT & 0.078364 & 99.99 \\ $N^9$ &MP6 & 0.078090 & 99.64 & & & & & & \\ $N^{10}$ &MP7 & 0.078493 & 100.15 & CISDTQ & 0.078372 & 100 & CCSDTQ & 0.078372 & 100 \\ \hline \hline \end{tabular} \end{table} \bigskip \alert{As a rule of thumb:}\\ HF $\ll$ MP2 $<$ CISD $<$ MP4(SDQ) $\sim$ CCSD $<$ MP4 $<$ CCSD(T) \end{block} \end{frame} %%% FINAL SLIDE %%% %----------------------------------------------------- \begin{frame}{Good books} \begin{columns} \begin{column}{0.7\textwidth} \begin{itemize} \item Introduction to Computational Chemistry (Jensen) \\ \vspace{1cm} \item Essentials of Computational Chemistry (Cramer) \\ \vspace{1cm} \item Modern Quantum Chemistry (Szabo \& Ostlund) \\ \vspace{1cm} \item Molecular Electronic Structure Theory (Helgaker, Jorgensen \& Olsen) \\ \vspace{1cm} \end{itemize} \end{column} \begin{column}{0.3\textwidth} \centering \includegraphics[height=0.3\textwidth]{fig/Jensen} \\ \bigskip \includegraphics[height=0.3\textwidth]{fig/Cramer} \\ \bigskip \includegraphics[height=0.3\textwidth]{fig/Szabo} \\ \bigskip \includegraphics[height=0.3\textwidth]{fig/Helgaker} \end{column} \end{columns} \end{frame} \end{document}