final 2024
This commit is contained in:
parent
c146e0a099
commit
fd019bc369
@ -1,8 +1,8 @@
|
|||||||
# Green's Functions in Quantum Chemistry
|
# Green's Functions in Quantum Chemistry
|
||||||
|
|
||||||
|
- Physical interpretation of the one- and two-body self-energy
|
||||||
- Lowdin partitioning technique
|
- Lowdin partitioning technique
|
||||||
- Definition of the Green's function
|
- Definition of the Green's function
|
||||||
- Physical interpretation of the one- and two-body self-energy
|
|
||||||
- Dyson equation
|
- Dyson equation
|
||||||
- Matrix representation of G
|
- Matrix representation of G
|
||||||
- Example for the HF Green's function
|
- Example for the HF Green's function
|
||||||
|
@ -292,6 +292,20 @@ decoration={snake,
|
|||||||
\end{frame}
|
\end{frame}
|
||||||
%-----------------------------------------------------
|
%-----------------------------------------------------
|
||||||
|
|
||||||
|
%-----------------------------------------------------
|
||||||
|
\begin{frame}{Fundamental and optical gaps}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=\textwidth]{fig/gaps}
|
||||||
|
\end{center}
|
||||||
|
\begin{equation}
|
||||||
|
\underbrace{\Eg{\KS}}_{\text{KS gap}} = \eLUMO{\KS} - \eHOMO{\KS} \ll \underbrace{\green{\Eg{GW}}}_{\text{\green{{\GW} gap}}} = \eLUMO{GW} - \eHOMO{GW}
|
||||||
|
\end{equation}
|
||||||
|
\begin{equation}
|
||||||
|
\underbrace{\blue{\Eg{\text{opt}}}}_{\text{\blue{optical gap}}} = E_1^N - E_0^N = \underbrace{\red{\Eg{\text{fund}}}}_{\text{\red{fundamental gap}}} + \underbrace{\purple{E_\text{B}}}_{\text{\purple{excitonic effect}}}
|
||||||
|
\end{equation}
|
||||||
|
\end{frame}
|
||||||
|
%-----------------------------------------------------
|
||||||
|
|
||||||
%-----------------------------------------------------
|
%-----------------------------------------------------
|
||||||
\section{Motivations}
|
\section{Motivations}
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
@ -411,11 +425,11 @@ decoration={snake,
|
|||||||
\qq{$\Rightarrow$}
|
\qq{$\Rightarrow$}
|
||||||
\bG_0^{-1}(\yo) - \bSig(\yo) = \bO
|
\bG_0^{-1}(\yo) - \bSig(\yo) = \bO
|
||||||
\qq{$\Rightarrow$}
|
\qq{$\Rightarrow$}
|
||||||
\yo \bI - \be - \bSig(\yo) = \bO
|
\det[\yo \bI - \be - \bSig(\yo)] = 0
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\begin{block}{Diagonal approximation}
|
\begin{block}{Diagonal approximation}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\yo \bI - \be - \bSig(\yo) = \bO
|
\det[\yo \bI - \be - \bSig(\yo)] = 0
|
||||||
\qq{$\Rightarrow$}
|
\qq{$\Rightarrow$}
|
||||||
\yo - \e{p}{\HF} - \Sig{pp}{}(\yo) = 0
|
\yo - \e{p}{\HF} - \Sig{pp}{}(\yo) = 0
|
||||||
\end{equation}
|
\end{equation}
|
||||||
@ -434,13 +448,18 @@ decoration={snake,
|
|||||||
|
|
||||||
|
|
||||||
\begin{frame}{Spectral Function}
|
\begin{frame}{Spectral Function}
|
||||||
|
The following decomposition of the self-energy
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\bSig(\yo) = \Re \bSig(\yo) + i \Im \bSig(\yo)
|
\bSig(\yo) = \Re \bSig(\yo) + i \Im \bSig(\yo)
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
leads to the following expression for the spectral function (related to photoemission spectra)
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|
\begin{split}
|
||||||
\bA{}{}(\yo)
|
\bA{}{}(\yo)
|
||||||
= - \frac{1}{\pi} \Im \abs{\bG(\yo)}
|
& = - \frac{1}{\pi} \Im \abs{\bG(\yo)}
|
||||||
= - \frac{1}{\pi} \frac{\abs{\Im \bSig(\yo)}}{\qty[\yo \bI - \be - \Re \bSig(\yo)]^2 + \qty[ \Im \bSig(\yo)]^2}
|
\\
|
||||||
|
& = - \frac{1}{\pi} \frac{\abs{\Im \bSig(\yo)}}{\qty[\yo \bI - \be - \Re \bSig(\yo)]^2 + \qty[ \Im \bSig(\yo)]^2}
|
||||||
|
\end{split}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
@ -499,19 +518,6 @@ decoration={snake,
|
|||||||
\end{frame}
|
\end{frame}
|
||||||
%-----------------------------------------------------
|
%-----------------------------------------------------
|
||||||
|
|
||||||
%-----------------------------------------------------
|
|
||||||
\begin{frame}{Fundamental and optical gaps (\copyright~Bruno Senjean)}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[width=\textwidth]{fig/gaps}
|
|
||||||
\end{center}
|
|
||||||
\begin{equation}
|
|
||||||
\underbrace{\Eg{\KS}}_{\text{KS gap}} = \eLUMO{\KS} - \eHOMO{\KS} \ll \underbrace{\green{\Eg{GW}}}_{\text{\green{{\GW} gap}}} = \eLUMO{GW} - \eHOMO{GW}
|
|
||||||
\end{equation}
|
|
||||||
\begin{equation}
|
|
||||||
\underbrace{\blue{\Eg{\text{opt}}}}_{\text{\blue{optical gap}}} = E_1^N - E_0^N = \underbrace{\red{\Eg{\text{fund}}}}_{\text{\red{fundamental gap}}} + \underbrace{\purple{E_\text{B}}}_{\text{\purple{excitonic effect}}}
|
|
||||||
\end{equation}
|
|
||||||
\end{frame}
|
|
||||||
%-----------------------------------------------------
|
|
||||||
|
|
||||||
%-----------------------------------------------------
|
%-----------------------------------------------------
|
||||||
\begin{frame}{Hedin's pentagon}
|
\begin{frame}{Hedin's pentagon}
|
||||||
|
Loading…
Reference in New Issue
Block a user