minor corrections and additions
This commit is contained in:
parent
9b6e724e17
commit
a443a7865b
@ -235,6 +235,11 @@ decoration={snake,
|
|||||||
\end{split}
|
\end{split}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\end{block}
|
\end{block}
|
||||||
|
\end{column}
|
||||||
|
\begin{column}{0.3\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{fig/SBG}
|
||||||
|
\end{column}
|
||||||
|
\end{columns}
|
||||||
%
|
%
|
||||||
\begin{block}{Gaussian-type orbital (GTO)}
|
\begin{block}{Gaussian-type orbital (GTO)}
|
||||||
\small
|
\small
|
||||||
@ -246,17 +251,12 @@ decoration={snake,
|
|||||||
\text{\blue{Primitive} GTO} & = \sket{\ba}
|
\text{\blue{Primitive} GTO} & = \sket{\ba}
|
||||||
= (x-A_x)^{a_x} (y-A_y)^{a_y} (z-A_z)^{a_z} e^{-\alpha \abs{ \br -\bA }^2}
|
= (x-A_x)^{a_x} (y-A_y)^{a_y} (z-A_z)^{a_z} e^{-\alpha \abs{ \br -\bA }^2}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\begin{itemize}
|
|
||||||
\item \textbf{\purple{Exponent:}} $\alpha$
|
|
||||||
\item \textbf{\purple{Center:}} $\bA = (A_x, A_y, A_z)$
|
|
||||||
\item \textbf{\purple{Angular momentum:}} $\ba = (a_x, a_y, a_z)$ and total angular momentum $a=a_x + a_y + a_z$
|
|
||||||
\end{itemize}
|
|
||||||
\end{block}
|
\end{block}
|
||||||
\end{column}
|
\begin{itemize}
|
||||||
\begin{column}{0.3\textwidth}
|
\item \textbf{\purple{Exponent:}} $\alpha$
|
||||||
\includegraphics[width=\textwidth]{fig/SBG}
|
\item \textbf{\purple{Center:}} $\bA = (A_x, A_y, A_z)$
|
||||||
\end{column}
|
\item \textbf{\purple{Angular momentum:}} $\ba = (a_x, a_y, a_z)$ and total angular momentum $a=a_x + a_y + a_z$
|
||||||
\end{columns}
|
\end{itemize}
|
||||||
%
|
%
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
@ -268,7 +268,7 @@ decoration={snake,
|
|||||||
\item Same center $\bA$
|
\item Same center $\bA$
|
||||||
\item Same angular momentum $\ba$
|
\item Same angular momentum $\ba$
|
||||||
\item Different exponent $\violet{\alpha_k}$
|
\item Different exponent $\violet{\alpha_k}$
|
||||||
\item Contraction coefficient $\blue{D_k}$
|
\item Contraction coefficient $\blue{D_k}$ and degree $K$
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\underbrace{\braket{\ba_1\ba_2}{\bb_1\bb_2}}_{\text{\green{contracted ERI}}}
|
\underbrace{\braket{\ba_1\ba_2}{\bb_1\bb_2}}_{\text{\green{contracted ERI}}}
|
||||||
@ -339,12 +339,22 @@ decoration={snake,
|
|||||||
%
|
%
|
||||||
|
|
||||||
\begin{frame}{Upper bounds for ERIs}
|
\begin{frame}{Upper bounds for ERIs}
|
||||||
\begin{block}{A ``good'' upper bound must be}
|
\begin{columns}
|
||||||
\begin{itemize}
|
\begin{column}{0.35\textwidth}
|
||||||
\item tight (i.e., a good estimate)
|
\begin{block}{A ``good'' upper bound must be}
|
||||||
\item simple (i.e, cheap to compute)
|
\begin{itemize}
|
||||||
\end{itemize}
|
\item tight (i.e., a good estimate)
|
||||||
\end{block}
|
\item simple (i.e, cheap to compute)
|
||||||
|
\end{itemize}
|
||||||
|
\end{block}
|
||||||
|
\end{column}
|
||||||
|
\begin{column}{0.65\textwidth}
|
||||||
|
\begin{equation}
|
||||||
|
\boxed{\abs{(\bm{\red{a}} \bm{\blue{b}}|\bm{\orange{c}} \bm{\green{d}})} \le B}
|
||||||
|
\end{equation}
|
||||||
|
\end{column}
|
||||||
|
\end{columns}
|
||||||
|
\bigskip
|
||||||
\begin{block}{Cauchy-Schwartz bound}
|
\begin{block}{Cauchy-Schwartz bound}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\abs{(\bm{\red{a}} \bm{\blue{b}}|\bm{\orange{c}} \bm{\green{d}})}
|
\abs{(\bm{\red{a}} \bm{\blue{b}}|\bm{\orange{c}} \bm{\green{d}})}
|
||||||
@ -374,12 +384,16 @@ decoration={snake,
|
|||||||
|
|
||||||
|
|
||||||
\begin{frame}{Asymptotic scaling of two-electron integrals}
|
\begin{frame}{Asymptotic scaling of two-electron integrals}
|
||||||
\begin{block}{Number of significant two-electron integrals for polyenes}
|
\begin{block}{Number of significant two-electron integrals}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
(\bm{\red{a}} \bm{\blue{b}}|\bm{\orange{c}} \bm{\green{d}}) = (\bm{\red{a}} \bm{\blue{b}}| \mathcal{O}_2 | \bm{\orange{c}} \bm{\green{d}})
|
(\bm{\red{a}} \bm{\blue{b}}|\bm{\orange{c}} \bm{\green{d}}) \equiv (\bm{\red{a}} \bm{\blue{b}}| \mathcal{O}_2 | \bm{\orange{c}} \bm{\green{d}})
|
||||||
|
\end{equation}
|
||||||
|
\end{block}
|
||||||
|
\bigskip
|
||||||
|
\begin{block}{Long-range vs short-range operators}
|
||||||
|
\begin{equation}
|
||||||
|
N_\text{sig} = c\,N^{\alpha}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\bigskip
|
|
||||||
$$N_\text{sig} = c\,N^{\alpha}$$
|
|
||||||
\center
|
\center
|
||||||
\begin{tabular}{lcrccrc}
|
\begin{tabular}{lcrccrc}
|
||||||
\hline
|
\hline
|
||||||
@ -425,42 +439,48 @@ decoration={snake,
|
|||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{Late-contraction path algorithm (Head-Gordon-Pople \& PRISM inspired)}
|
\begin{frame}{Late-contraction path algorithm (Head-Gordon-Pople \& PRISM inspired)}
|
||||||
\begin{tikzpicture}
|
\begin{tikzpicture}
|
||||||
\begin{scope}[
|
\begin{scope}[
|
||||||
very thick,
|
very thick,
|
||||||
node distance=1.5cm,on grid,>=stealth',
|
node distance=1.5cm,on grid,>=stealth',
|
||||||
boxSP/.style={rectangle,draw,fill=purple!40},
|
boxSP/.style={rectangle,draw,fill=purple!40},
|
||||||
box0m/.style={rectangle,draw,fill=red!40},
|
box0m/.style={rectangle,draw,fill=red!40},
|
||||||
boxCm/.style={rectangle,draw,fill=gray!40},
|
boxCm/.style={rectangle,draw,fill=gray!40},
|
||||||
boxA/.style={rectangle,draw,fill=red!40},
|
boxA/.style={rectangle,draw,fill=red!40},
|
||||||
boxAA/.style={rectangle,draw,fill=red!40},
|
boxAA/.style={rectangle,draw,fill=red!40},
|
||||||
boxAAA/.style={rectangle,draw,fill=red!40},
|
boxAAA/.style={rectangle,draw,fill=red!40},
|
||||||
boxC/.style={rectangle,draw,fill=gray!40},
|
boxC/.style={rectangle,draw,fill=gray!40},
|
||||||
boxCC/.style={rectangle,draw,fill=gray!40},
|
boxCC/.style={rectangle,draw,fill=gray!40},
|
||||||
boxCCC/.style={rectangle,draw,fill=orange!40},
|
boxCCC/.style={rectangle,draw,fill=orange!40},
|
||||||
boxCCCCCC/.style={rectangle,draw,fill=green!40},
|
boxCCCCCC/.style={rectangle,draw,fill=green!40},
|
||||||
],
|
],
|
||||||
\node [boxSP, align=center] (SP) {Shell-pair \\ data};
|
\node [boxSP, align=center] (SP) {Shell-pair \\ data};
|
||||||
\node [box0m, align=center] (0m) [right=of 1,xshift=1.25cm] {$\sbraket{00}{00}^{\bm{m}}$};
|
\node [box0m, align=center] (0m) [right=of 1,xshift=1.25cm] {$\sbraket{00}{00}^{\bm{m}}$};
|
||||||
\node [boxCm, align=center] (Cm) [right=of 0m,xshift=1.75cm] {$\braket{00}{00}^{\bm{m}}$};
|
\node [boxCm, align=center] (Cm) [right=of 0m,xshift=1.75cm] {$\braket{00}{00}^{\bm{m}}$};
|
||||||
\node [boxA, align=center] (A) [below=of 0m] {$\sbraket{0 a_2}{00}^{\bm{m}}$};
|
\node [boxA, align=center] (A) [below=of 0m] {$\sbraket{0 a_2}{00}^{\bm{m}}$};
|
||||||
\node [boxC, align=center] (C) [right=of A,xshift=1.75cm] {$\braket{0 a_2}{00}^{\bm{m}}$};
|
\node [boxC, align=center] (C) [right=of A,xshift=1.75cm] {$\braket{0 a_2}{00}^{\bm{m}}$};
|
||||||
\node [boxAA, align=center] (AA) [below=of A] {$\sbraket{a_1 a_2}{00}$};
|
\node [boxAA, align=center] (AA) [below=of A] {$\sbraket{a_1 a_2}{00}$};
|
||||||
\node [boxCC, align=center] (CC) [right=of AA,xshift=1.75cm] {$\braket{a_1 a_2}{00}$};
|
\node [boxCC, align=center] (CC) [right=of AA,xshift=1.75cm] {$\braket{a_1 a_2}{00}$};
|
||||||
\node [boxCCCCCC, align=center] (CCCC) [right=of CC,xshift=2cm] {$\braket{a_1 a_2}{b_1 b_2}$};
|
\node [boxCCCCCC, align=center] (CCCC) [right=of CC,xshift=2cm] {$\braket{a_1 a_2}{b_1 b_2}$};
|
||||||
\path
|
\path
|
||||||
(SP) edge[->] node[below,blue]{T$_0$} (0m)
|
(SP) edge[->] node[below,blue]{T$_0$} (0m)
|
||||||
(0m) edge[->] node[left,orange]{T$_1$} node [right,red]{VRR$_1$} (A)
|
(0m) edge[->] node[left,orange]{T$_1$} node [right,red]{VRR$_1$} (A)
|
||||||
(0m) edge[->,gray!70] (Cm)
|
(0m) edge[->,gray!70] (Cm)
|
||||||
(A) edge[->] node[left,orange]{T$_2$} node [right,red]{VRR$_2$} (AA)
|
(A) edge[->] node[left,orange]{T$_2$} node [right,red]{VRR$_2$} (AA)
|
||||||
(A) edge[->,gray!70] (C)
|
(A) edge[->,gray!70] (C)
|
||||||
(AA) edge[->] node [below,blue]{CC} (CC)
|
(AA) edge[->] node [below,blue]{CC} (CC)
|
||||||
(Cm) edge[->,gray!70] (C)
|
(Cm) edge[->,gray!70] (C)
|
||||||
(C) edge[->,gray!70] (CC)
|
(C) edge[->,gray!70] (CC)
|
||||||
(CC) edge[->] node [above,orange]{T$_3$} node [below,red]{HRR} (CCCC)
|
(CC) edge[->] node [above,orange]{T$_3$} node [below,red]{HRR} (CCCC)
|
||||||
;
|
;
|
||||||
\end{scope}
|
\end{scope}
|
||||||
\end{tikzpicture}
|
\end{tikzpicture}
|
||||||
|
\bigskip
|
||||||
|
\begin{itemize}
|
||||||
|
\item \red{HRR} = horizontal recurrence relation [Obara-Saika]
|
||||||
|
\item \red{VRR} = vertical recurrence relation
|
||||||
|
\item \blue{CC} = bra contraction
|
||||||
|
\end{itemize}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
%\begin{frame}{Screening algorithm for two-electron integrals}
|
%\begin{frame}{Screening algorithm for two-electron integrals}
|
||||||
@ -538,6 +558,8 @@ decoration={snake,
|
|||||||
\begin{block}{Density matrix (closed-shell system)}
|
\begin{block}{Density matrix (closed-shell system)}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
P_{\red{\mu \nu}} = 2 \sum_{i}^\text{occ} C_{\red{\mu} i} C_{\red{\nu} i}
|
P_{\red{\mu \nu}} = 2 \sum_{i}^\text{occ} C_{\red{\mu} i} C_{\red{\nu} i}
|
||||||
|
\qqtext{or}
|
||||||
|
\boxed{\bm{P} = \bm{C} \cdot \bm{C}^{\dag}}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\end{block}
|
\end{block}
|
||||||
\begin{block}{Fock matrix in the AO basis (closed-shell system)}
|
\begin{block}{Fock matrix in the AO basis (closed-shell system)}
|
||||||
@ -632,17 +654,17 @@ decoration={snake,
|
|||||||
\begin{block}{LDA exchange (in theory) = cf Julien's lectures}
|
\begin{block}{LDA exchange (in theory) = cf Julien's lectures}
|
||||||
\begin{gather}
|
\begin{gather}
|
||||||
K_{\mu\nu}^\text{LDA}
|
K_{\mu\nu}^\text{LDA}
|
||||||
= \int \phi_{\mu}(\br) \violet{v_\text{xc}}(\br) \phi_{\nu}(\br) d\br
|
= \int \phi_{\mu}(\br) \violet{v_\text{x}^\text{LDA}}(\br) \phi_{\nu}(\br) d\br
|
||||||
= \frac{4}{3} C_\text{x} \overbrace{\int \phi_{\mu}(\br) \blue{\rho^{1/3}}(\br) \phi_{\nu}(\br) d\br}^{\text{\alert{no closed-form expression in general}}}
|
= \frac{4}{3} C_\text{x} \overbrace{\int \phi_{\mu}(\br) \blue{\rho^{1/3}}(\br) \phi_{\nu}(\br) d\br}^{\text{\alert{no closed-form expression in general}}}
|
||||||
\\
|
\\
|
||||||
\blue{\rho}(\br) = \sum_{\mu \nu} \phi_{\mu}(\br) \blue{P_{\mu \nu}} \phi_{\nu}(\br)
|
\blue{\rho}(\br) = \sum_{\mu \nu} \phi_{\mu}(\br) \blue{P_{\mu \nu}} \phi_{\nu}(\br)
|
||||||
\end{gather}
|
\end{gather}
|
||||||
\end{block}
|
\end{block}
|
||||||
\begin{block}{LDA exchange (in practice) = \alert{numerical integration via quadrature}}
|
\begin{block}{LDA exchange (in practice) = \alert{numerical integration via quadrature} = $\int f(x) dx \approx \sum_k w_k f(x_k)$}
|
||||||
\begin{gather}
|
\begin{gather}
|
||||||
\underbrace{K_{\mu\nu}^\text{LDA}}_{\green{\order{N_\text{grid} N^2}}}
|
\underbrace{K_{\mu\nu}^\text{LDA}}_{\green{\order{N_\text{grid} N^2}}}
|
||||||
\approx \sum_{k=1}^{\purple{N_\text{grid}}}
|
\approx \sum_{k=1}^{\purple{N_\text{grid}}}
|
||||||
\underbrace{\orange{w_k}}_{\orange{\text{weights}}} \phi_{\mu}(\red{\br_k}) \violet{v_\text{xc}}(\underbrace{\red{\br_k}}_{\text{\red{roots}}}) \phi_{\nu}(\red{\br_k})
|
\underbrace{\orange{w_k}}_{\orange{\text{weights}}} \phi_{\mu}(\red{\br_k}) \violet{v_\text{x}^\text{LDA}}(\underbrace{\red{\br_k}}_{\text{\red{roots}}}) \phi_{\nu}(\red{\br_k})
|
||||||
= \frac{4}{3} C_\text{x} \sum_{k=1}^{\purple{N_\text{grid}}} \orange{w_k} \phi_{\mu}(\red{\br_k}) \blue{\rho^{1/3}}(\red{\br_k}) \phi_{\nu}(\red{\br_k})
|
= \frac{4}{3} C_\text{x} \sum_{k=1}^{\purple{N_\text{grid}}} \orange{w_k} \phi_{\mu}(\red{\br_k}) \blue{\rho^{1/3}}(\red{\br_k}) \phi_{\nu}(\red{\br_k})
|
||||||
\\
|
\\
|
||||||
\underbrace{\blue{\rho}(\red{\br_k})}_{\green{\order{N_\text{grid} N^2}}} = \sum_{\mu \nu} \phi_{\mu}(\red{\br_k}) \blue{P_{\mu \nu}} \phi_{\nu}(\red{\br_k})
|
\underbrace{\blue{\rho}(\red{\br_k})}_{\green{\order{N_\text{grid} N^2}}} = \sum_{\mu \nu} \phi_{\mu}(\red{\br_k}) \blue{P_{\mu \nu}} \phi_{\nu}(\red{\br_k})
|
||||||
@ -880,6 +902,7 @@ decoration={snake,
|
|||||||
\mel{ij}{}{ab}^2 \exp[-(\purple{\epsilon_{i} + \epsilon_{j} - \epsilon_{a} - \epsilon_{b}}) \blue{t}] d\blue{t}
|
\mel{ij}{}{ab}^2 \exp[-(\purple{\epsilon_{i} + \epsilon_{j} - \epsilon_{a} - \epsilon_{b}}) \blue{t}] d\blue{t}
|
||||||
\\
|
\\
|
||||||
& = \frac{1}{4} \blue{\int_0^{\infty}} \sum_{ij}\sum_{ab} \mel{i(\blue{t})j(\blue{t})}{}{a(\blue{t})b(\blue{t})}^2
|
& = \frac{1}{4} \blue{\int_0^{\infty}} \sum_{ij}\sum_{ab} \mel{i(\blue{t})j(\blue{t})}{}{a(\blue{t})b(\blue{t})}^2
|
||||||
|
\stackrel{\text{\blue{quad.}}}{\approx} \frac{1}{4} \blue{\sum_{k=1}^{N_\text{grid}}} \blue{w_k} \sum_{ij}\sum_{ab} \mel{i(\blue{t_k})j(\blue{t_k})}{}{a(\blue{t_k})b(\blue{t_k})}^2
|
||||||
\end{split}
|
\end{split}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
@ -895,7 +918,7 @@ decoration={snake,
|
|||||||
|
|
||||||
|
|
||||||
%%% SLIDE 2 %%%
|
%%% SLIDE 2 %%%
|
||||||
\begin{frame}{Theory}
|
\begin{frame}{Coupled-Cluster Theory}
|
||||||
\begin{block}{A few random thoughts about coupled cluster (CC)}
|
\begin{block}{A few random thoughts about coupled cluster (CC)}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\bigskip
|
\bigskip
|
||||||
|
Loading…
Reference in New Issue
Block a user