ready for tomorrow
This commit is contained in:
parent
3d39527441
commit
2fda251630
2021/Lecture_2
@ -284,7 +284,7 @@ decoration={snake,
|
||||
\item Bethe-Salpeter equation (BSE) formalism
|
||||
\end{itemize}
|
||||
\bigskip
|
||||
\item \textbf{Total energies}
|
||||
\item \textbf{Correlation energy}
|
||||
\begin{itemize}
|
||||
\item Plasmon (or trace) formula
|
||||
\item Galitski-Migdal formulation
|
||||
@ -332,17 +332,17 @@ decoration={snake,
|
||||
\bigskip
|
||||
\item \purple{FHI-AIMS:} Caruso et al. PRB 86 (2012) 081102
|
||||
\bigskip
|
||||
\item \orange{Review:}
|
||||
\item \orange{Reviews \& Books:}
|
||||
\begin{itemize}
|
||||
\item Reining, WIREs Comput Mol Sci 2017, e1344. doi: 10.1002/wcms.1344
|
||||
\item Onida et al. Rev. Mod. Phys. 74 (2002) 601
|
||||
\item Blase et al. Chem. Soc. Rev. , 47 (2018) 1022
|
||||
\item Golze et al. Front. Chem. 7 (2019) 377
|
||||
\item Blase et al. JPCL 11 (2020) 7371
|
||||
\item Martin, Reining \& Ceperley \textit{Interacting Electrons} (Cambridge University Press)
|
||||
\end{itemize}
|
||||
\bigskip
|
||||
\item \red{$GW$100:} IPs for a set of 100 molecules. van Setten et al. JCTC 11 (2015) 5665 (\url{http://gw100.wordpress.com})
|
||||
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
%-----------------------------------------------------
|
||||
@ -572,7 +572,7 @@ decoration={snake,
|
||||
|
||||
%-----------------------------------------------------
|
||||
\begin{frame}{Computation of the dynamical screening}
|
||||
\begin{block}{Direct RPA calculation (pseudo-hermitian linear problem)}
|
||||
\begin{block}{Direct (ph-)RPA calculation (pseudo-hermitian linear problem)}
|
||||
\begin{equation}
|
||||
\begin{pmatrix}
|
||||
\bA{}{\RPA} & \bB{}{\RPA} \\
|
||||
@ -899,6 +899,11 @@ decoration={snake,
|
||||
\end{column}
|
||||
\begin{column}{0.35\textwidth}
|
||||
\includegraphics[width=\textwidth]{fig/Sigma}
|
||||
\\
|
||||
\bigskip
|
||||
\includegraphics[width=\textwidth]{fig/Tmatrix}
|
||||
\\
|
||||
\pub{Martin, Reining \& Ceperley, Interacting Electrons (Cambridge University Press)}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
@ -1227,21 +1232,21 @@ decoration={snake,
|
||||
\begin{frame}{Properties}
|
||||
\begin{block}{Oscillator strength (length gauge)}
|
||||
\begin{equation}
|
||||
\boxed{f_m = \frac{2}{3} \Om{m}{} \qty[ (\mu_m^x)^2 + (\mu_m^y)^2 + (\mu_m^z)^2 ]}
|
||||
\boxed{\green{f_m} = \frac{2}{3} \orange{\Om{m}{}} \qty[ (\blue{\mu_m^x})^2 + (\blue{\mu_m^y})^2 + (\blue{\mu_m^z})^2 ]}
|
||||
\end{equation}
|
||||
\end{block}
|
||||
\begin{block}{Transition dipole}
|
||||
\begin{equation}
|
||||
\boxed{\mu_m^x = \sum_{ia} (i|x|a) (\bX{m}{} + \bY{m}{})_{ia}}
|
||||
\boxed{\blue{\mu_m^x} = \sum_{ia} \red{(i|x|a)} \orange{(\bX{m}{} + \bY{m}{})_{ia}}}
|
||||
\qquad
|
||||
(p|x|q) = \int \MO{p}(\br) \,x\, \MO{q}(\br) d\br
|
||||
\red{(p|x|q)} = \int \MO{p}(\br) \,x\, \MO{q}(\br) d\br
|
||||
\end{equation}
|
||||
\end{block}
|
||||
\begin{block}{Monitoring possible spin contamination \pub{[Monino \& Loos, JCTC 17 (2021) 2852]}}
|
||||
\begin{equation}
|
||||
\boxed{\expval{\hat{S}^2}_m = \expval{\hat{S}^2}_0 + \underbrace{\Delta \expval{\hat{S}^2}_m}_{\text{\pub{JCP 134101 (2011) 134}}}}
|
||||
\boxed{\purple{\expval{\hat{S}^2}_m} = \violet{\expval{\hat{S}^2}_0} + \underbrace{\Delta \expval{\hat{S}^2}_m}_{\text{\pub{JCP 134101 (2011) 134}}}}
|
||||
\qquad
|
||||
\expval{\hat{S}^2}_0 = \frac{n_\alpha - n_\beta}{2} \qty( \frac{n_\alpha - n_\beta}{2} + 1 ) + n_\beta + \sum_p (p_\alpha|p_\beta)
|
||||
\violet{\expval{\hat{S}^2}_0} = \frac{n_\alpha - n_\beta}{2} \qty( \frac{n_\alpha - n_\beta}{2} + 1 ) + n_\beta + \sum_p (p_\alpha|p_\beta)
|
||||
\end{equation}
|
||||
\end{block}
|
||||
\end{frame}
|
||||
@ -1262,10 +1267,12 @@ decoration={snake,
|
||||
%-----------------------------------------------------
|
||||
|
||||
%-----------------------------------------------------
|
||||
\begin{frame}{Open-shell systems}
|
||||
\begin{block}{Spin-flip formalism}
|
||||
\begin{frame}{Open-shell systems and double excitations}
|
||||
\begin{block}{Spin-flip formalism (H2/cc-pVQZ)}
|
||||
\begin{center}
|
||||
\includegraphics[width=0.5\textwidth]{fig/SFBSE}
|
||||
\includegraphics[width=0.28\textwidth]{fig/SFBSE}
|
||||
\includegraphics[width=0.4\textwidth]{fig/H2}
|
||||
\includegraphics[width=0.3\textwidth]{fig/H2_QuAcK}
|
||||
\\
|
||||
\bigskip
|
||||
\pub{Monino \& Loos, JCTC 17 (2021) 2852}
|
||||
@ -1275,7 +1282,7 @@ decoration={snake,
|
||||
%-----------------------------------------------------
|
||||
|
||||
%-----------------------------------------------------
|
||||
\section{Total energies}
|
||||
\section{Correlation energy}
|
||||
\begin{frame}
|
||||
\tableofcontents[currentsection]
|
||||
\end{frame}
|
||||
@ -1294,12 +1301,12 @@ decoration={snake,
|
||||
\label{eq:GM}
|
||||
\green{\EcGM}
|
||||
= \frac{-i}{2}\sum_{pq}^{\infty}\int \frac{d\omega}{2\pi} \red{\SigC{pq}}(\omega) \blue{\G{pq}}(\omega) e^{i\omega\eta}
|
||||
= 4 \sum_{ia} \sum_{m} \frac{\violet{\ERI{ai}{m}}^2}{\eGW{a} - \eGW{i} + \orange{\Om{m}{\RPA}}}
|
||||
= 4 \sum_{ia} \sum_{m} \frac{\violet{\ERI{ai}{m}}^2}{\blue{\eGW{a}} - \blue{\eGW{i}} + \orange{\Om{m}{\RPA}}}
|
||||
\end{equation*}
|
||||
\end{block}
|
||||
\begin{block}{ACFDT@BSE@$GW$ correlation energy from the adiabatic connection}
|
||||
\begin{equation}
|
||||
\green{\Ec^\text{ACFDT}} = \frac{1}{2} \int_0^1 \Tr( \bK{}{} \bP{}{\la}) d\la
|
||||
\green{\Ec^\text{ACFDT}} = \frac{1}{2} \int_{\red{0}}^{\red{1}} \Tr( \bK{}{} \bP{}{\la}) d\la
|
||||
\end{equation}
|
||||
\end{block}
|
||||
|
||||
@ -1312,7 +1319,7 @@ decoration={snake,
|
||||
\begin{equation}
|
||||
\boxed{
|
||||
\green{\Ec^\text{ACFDT}}
|
||||
= \frac{1}{2} \int_0^1 \Tr( \bK{}{} \bP{}{\la}) d\la
|
||||
= \frac{1}{2} \int_{\red{0}}^{\red{1}} \Tr( \bK{}{} \bP{}{\la}) d\la
|
||||
\stackrel{\blue{\text{quad}}}{\approx} \frac{1}{2} \sum_{k=1}^{K} \purple{w_k} \Tr( \bK{}{} \bP{}{\violet{\lambda_k}})
|
||||
}
|
||||
\end{equation}
|
||||
@ -1397,7 +1404,7 @@ decoration={snake,
|
||||
\begin{equation}
|
||||
\boxed{
|
||||
\green{\Ec^\RPA}
|
||||
= \frac{1}{2} \int_0^1 \Tr( \bK{}{} \bP{}{\la}) d\la
|
||||
= \frac{1}{2} \int_{\red{0}}^{\red{1}} \Tr( \bK{}{} \bP{}{\la}) d\la
|
||||
= \frac{1}{2} \qty[ \sum_{m} \orange{\Om{m}{\RPA}} - \Tr(\orange{\bA{}{\RPA}}) ]
|
||||
}
|
||||
\end{equation}
|
||||
@ -1412,14 +1419,14 @@ decoration={snake,
|
||||
\begin{equation}
|
||||
\boxed{
|
||||
\green{\Ec^\RPAx}
|
||||
= \frac{1}{2} \int_0^1 \Tr( \bK{}{} \bP{}{\la}) d\la
|
||||
= \frac{1}{2} \int_{\red{0}}^{\red{1}} \Tr( \bK{}{} \bP{}{\la}) d\la
|
||||
\alert{\neq} \frac{1}{2} \qty[ \sum_{m} \orange{\Om{m}{\RPAx}} - \Tr(\orange{\bA{}{\RPAx}}) ]
|
||||
}
|
||||
\end{equation}
|
||||
If exchange added to kernel, i.e., $\bK{}{} = \bK{}{\x}$, then \pub{[Angyan et al. JCTC 7 (2011) 3116]}
|
||||
\begin{equation}
|
||||
\green{\Ec^\RPAx}
|
||||
= \frac{1}{4} \int_0^1 \Tr( \bK{}{\x} \bP{}{\la}) d\la
|
||||
= \frac{1}{4} \int_{\red{0}}^{\red{1}} \Tr( \bK{}{\x} \bP{}{\la}) d\la
|
||||
\alert{=} \frac{1}{4} \qty[ \sum_{m} \orange{\Om{m}{\RPAx}} - \Tr(\orange{\bA{}{\RPAx}}) ]
|
||||
\end{equation}
|
||||
\end{block}
|
||||
@ -1438,7 +1445,7 @@ decoration={snake,
|
||||
\begin{equation}
|
||||
\boxed{
|
||||
\green{\Ec^\BSE}
|
||||
= \frac{1}{2} \int_0^1 \Tr( \bK{}{} \bP{}{\la}) d\la
|
||||
= \frac{1}{2} \int_{\red{0}}^{\red{1}} \Tr( \bK{}{} \bP{}{\la}) d\la
|
||||
\alert{\neq} \frac{1}{2} \qty[ \sum_{m} \orange{\Om{m}{\BSE}} - \Tr(\orange{\bA{}{\BSE}}) ]
|
||||
}
|
||||
\end{equation}
|
||||
@ -1469,6 +1476,7 @@ decoration={snake,
|
||||
\For{$k=1,\ldots,K$}
|
||||
\State Compute static screening elements $\highlight{W}_{pq,rs}^{\violet{\lambda_k}}(\omega = 0)$
|
||||
\State Perform BSE calculation at $\la = \violet{\lambda_k}$ to get $\bX{}{\violet{\lambda_k}}$ and $\bY{}{\violet{\lambda_k}}$
|
||||
\Comment{\alert{This is a $\order*{N^6}$ step done many times!}}
|
||||
\State Form two-particle density matrix $\bP{}{\violet{\lambda_k}}$
|
||||
\State $\green{\Ec} \gets \green{\Ec} + \purple{w_k} \Tr( \bK{}{} \bP{}{\violet{\lambda_k}})$
|
||||
\EndFor
|
||||
@ -1499,13 +1507,14 @@ decoration={snake,
|
||||
\bigskip
|
||||
\item \purple{FHI-AIMS:} Caruso et al. PRB 86 (2012) 081102
|
||||
\bigskip
|
||||
\item \orange{Review:}
|
||||
\item \orange{Reviews \& Books:}
|
||||
\begin{itemize}
|
||||
\item Reining, WIREs Comput Mol Sci 2017, e1344. doi: 10.1002/wcms.1344
|
||||
\item Onida et al. Rev. Mod. Phys. 74 (2002) 601
|
||||
\item Blase et al. Chem. Soc. Rev. , 47 (2018) 1022
|
||||
\item Golze et al. Front. Chem. 7 (2019) 377
|
||||
\item Blase et al. JPCL 11 (2020) 7371
|
||||
\item Martin, Reining \& Ceperley \textit{Interacting Electrons} (Cambridge University Press)
|
||||
\end{itemize}
|
||||
\bigskip
|
||||
\item \red{$GW$100:} IPs for a set of 100 molecules. van Setten et al. JCTC 11 (2015) 5665 (\url{http://gw100.wordpress.com})
|
||||
|
BIN
2021/Lecture_2/fig/H2.pdf
Normal file
BIN
2021/Lecture_2/fig/H2.pdf
Normal file
Binary file not shown.
BIN
2021/Lecture_2/fig/H2_QuAcK.png
Normal file
BIN
2021/Lecture_2/fig/H2_QuAcK.png
Normal file
Binary file not shown.
After (image error) Size: 269 KiB |
BIN
2021/Lecture_2/fig/Tmatrix.png
Normal file
BIN
2021/Lecture_2/fig/Tmatrix.png
Normal file
Binary file not shown.
After (image error) Size: 378 KiB |
Loading…
Reference in New Issue
Block a user