79 lines
2.9 KiB
TeX
79 lines
2.9 KiB
TeX
|
%=====================
|
||
|
\section{
|
||
|
\label{sec:FI}
|
||
|
Fundamental integrals}
|
||
|
%=====================
|
||
|
Following Persson and Taylor \cite{Persson96}, the $\sexpval{\bo}^{\bm{m}}$ are derived starting from the momentumless integral \eqref{eq:def4} using the following Gaussian integral representation for the Coulomb operator
|
||
|
\begin{equation}
|
||
|
C_{12} = \frac{2}{\sqrt{\pi}} \int_0^\infty \exp(-u^2 \ree^2) du.
|
||
|
\end{equation}
|
||
|
After a lengthy derivation which is not presented here for the sake of simplicity, one can show that the closed-form expression of the FIs is
|
||
|
\begin{equation}
|
||
|
\label{eq:Fund0m}
|
||
|
\sexpval{\bo}^{m}
|
||
|
= \frac{2}{\sqrt{\pi}} \sexpval{\bo}_{G} \sqrt{\frac{\delta_0}{\delta_1-\delta_0}} \qty(\frac{\delta_1}{\delta_1-\delta_0} )^{m} F_m \qty[ \frac{ \delta_1 \qty( Y_1-Y_0 )}{\delta_1-\delta_0} ],
|
||
|
\end{equation}
|
||
|
where $m$ is an auxiliary index, $F_m(t)$ is the generalised Boys function, and
|
||
|
\begin{equation}
|
||
|
\label{eq:Fund0GGGG}
|
||
|
\sexpval{\bo}_{G}
|
||
|
= \qty( \prod_{i=1}^4 S_{i} ) \qty( \frac{\pi^4}{\delta_0} )^{3/2} \exp(-Y_0)
|
||
|
\end{equation}
|
||
|
is the FI of the ``pure'' GG operator $G_{13}G_{14}G_{23}G_{34}$ from which one can easily get the FI of the 3-chain operator $G_{13}G_{23}$ by setting $\la_{14} = \la_{34} = 0$.
|
||
|
While the FIs involving a Coulomb operator contain an auxiliary index $m$, the FIs over ``pure'' GG operators (like $G_{13}G_{23}$) do not, thanks to the factorisation properties of GGs \cite{GG16}.
|
||
|
This is a a major computational saving as the computation of these auxiliary integrals can take a significant fraction of the CPU time, even for two-electron integrals.
|
||
|
|
||
|
The various quantities required to compute \eqref{eq:Fund0m} are
|
||
|
\begin{equation}
|
||
|
\bm{\delta}_u
|
||
|
= \bm{\zeta} + \bm{\la}_u = \bm{\zeta} + \bG + u^2 \bC,
|
||
|
\end{equation}
|
||
|
where
|
||
|
\begin{subequations}
|
||
|
\begin{align}
|
||
|
\bm{\zeta} & =
|
||
|
\begin{pmatrix}
|
||
|
\zeta_1 & 0 & 0 & 0 \\
|
||
|
0 & \zeta_2 & 0 & 0 \\
|
||
|
0 & 0 & \zeta_3 & 0 \\
|
||
|
0 & 0 & 0 & \zeta_4 \\
|
||
|
\end{pmatrix},
|
||
|
\quad
|
||
|
\bC =
|
||
|
\begin{pmatrix}
|
||
|
1 & -1 & 0 & 0 \\
|
||
|
-1 & 1 & 0 & 0 \\
|
||
|
0 & 0 & 0 & 0 \\
|
||
|
0 & 0 & 0 & 0 \\
|
||
|
\end{pmatrix},
|
||
|
\\
|
||
|
\bG & =
|
||
|
\begin{pmatrix}
|
||
|
\la_{13}+\la_{14} & 0 & -\la_{13} & -\la_{14} \\
|
||
|
0 & \la_{23} & -\la_{23} & 0 \\
|
||
|
-\la_{13} & -\la_{23} & \la_{13}+\la_{23}+\la_{34} & -\la_{34} \\
|
||
|
-\la_{14} & 0 & -\la_{34} & \la_{14}+\la_{34} \\
|
||
|
\end{pmatrix},
|
||
|
\end{align}
|
||
|
\end{subequations}
|
||
|
and
|
||
|
\begin{subequations}
|
||
|
\begin{align}
|
||
|
\bm{\Delta}_u & = \bm{\zeta} \cdot \bm{\delta}_u^{-1} \cdot \bm{\zeta},
|
||
|
&
|
||
|
\bY^k & =
|
||
|
\begin{pmatrix}
|
||
|
0 & \bY_{12}^k & \bY_{13}^k & \bY_{14}^k \\
|
||
|
0 & 0 & \bY_{23}^k & \bY_{24}^k \\
|
||
|
0 & 0 & 0 & \bY_{34}^k \\
|
||
|
0 & 0 & 0 & 0 \\
|
||
|
\end{pmatrix},
|
||
|
\\
|
||
|
\delta_u & = \det(\bm{\delta}_u),
|
||
|
&
|
||
|
Y_u & = \Tr( \bm{\Delta}_u \cdot \bY^2).
|
||
|
\end{align}
|
||
|
\end{subequations}
|
||
|
The generalised Boys function $F_m(t)$ in Eq.~\eqref{eq:Fund0m} can be computed efficiently using well-established algorithms \cite{Gill91, Ishida96, Weiss15}.
|
||
|
|