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(from August 2016)

• Ph.D.: Stefano di Sabatino (Université Toulouse III - Paul Sabatier).
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Chapter 2

Introduction

The work described in this manuscript focuses on theory and method developments

in the framework of ab initio theoretical spectroscopy, i.e., numerical experiments giv-

ing spectroscopic data, e.g., band structures, optical absorption and circular dichroism,

without using empirical or adjustable parameters. These data contain valuable infor-

mation about the system under study and, therefore, a first-principles description of

these spectroscopies is important for the interpretation, analysis and, ultimately, the

prediction of experiments. To obtain the spectroscopic data we will use the current

density and the one-body Green’s function as the fundamental variables. This requires

some explanation.

As is well known, when doing numerical experiments there is a trade-off between

the numerical efficiency and the accuracy of a given theory or method. At the far end of

one side we have full configuration interaction (FCI) which is accurate but numerically

expensive, and at the far end on the other side we have density-functional theory

(DFT), which is numerically efficient but not always very accurate. Both theories

give, in principle, access to all observables. For FCI this is obvious since it yields the

many-body wave function while for DFT this is guaranteed by the Hohenberg-Kohn

theorem [1]. Here we are interested in developing theory and methodology that can

be applied to systems that contain a large number of electrons and, therefore, we have

to focus on the DFT side of the spectrum. So why not use DFT to calculate band

structures, optical absorption and circular dichroism? Besides numerical efficiency and

accuracy there are other aspects that should be taken into consideration:

1. The difficulty to extract the desired information from the theory

Let us consider the band structure of a solid, i.e., the electron removal and ad-

dition energies. This information is in principle contained in the ground-state

density, thanks to the Hohenberg-Kohn theorem, but there is no known pro-

cedure that tells us how to extract the band structure from the ground-state

density. In other words, there is no knonwn functional that takes as input the

ground-state density and yields the band structure. Instead, the band structure

can be easily deduced from the one-body Green’s function since its poles are the

11
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electron removal and addition energies. Therefore, despite the fact that Green’s

function methods are numerically more expensive than DFT, it is the method of

choice for the calculation of band structures.

2. Extended systems described by periodic boundary conditions

For extended systems such as solids it is useful to model them with periodic

boundary conditions in order to avoid the explicit treatment of ∼1023 electrons.

However, as a consequence one has only the knowledge of the density in the bulk

of the material but not of the density at the surface. It turns out that the bulk

density is not sufficient to fully characterize the system. In particular, the in-

duced polarization of such a system due to an electric field is not a functional of

the bulk density alone [2]. However, the induced polarization due to an electric

field is a functional of the current density in the bulk.

3. Magnetic fields

Whenever a transverse vector potential is present in the Hamiltonian, for exam-

ple in the case of a magnetic field, the Hohenberg-Kohn theorem as well as its

extension to time-dependent systems [3] do not apply. However, generalizations

of these theorems can be derived when one switches from the density to the

current density as the fundamental variable [4–7].

For these reasons we choose to work with the one-body Green’s function and the

current density, instead of the density.

The manuscript is organized as follows. In chapter 3 I will give an overview of

my main research activities. In section 3.1 I will describe how one can efficiently

calculate quasi-particle energies. These energies give important information about

the band structure but can also be used to build response functions from which one

can calculate response properties, such as optical absorption spectra. In section 3.2 I

will show how, using a simple polarization functional, one can obtain accurate optical

spectra. While optical absorption can be described as a response to a perturbing

electric field, I will discuss how one can treat response properties of molecules that

have a magnetic component in section 3.3. Finally, in section 3.4 I will discuss the

problem of multiple solutions when solving nonlinear equations in many-body theories.

In chapter 4 we will present an outlook of future projects. The project described in

section 4.1 aims to find a general many-body description of the magnetization that

is compatible with periodic boundary conditions. The goal of the project in section

4.2 is to predict topological phases from the magneto-electric polarizability. Finally,

the project detailed in section 4.3 will provide the theory and a numerical tool to do

resonant inelastic x-ray spectroscopy (RIXS).



Chapter 3

Research activities

In this chapter I will give an overview of my main research activities. In order to

focus on the main ideas and not get lost in details I will not discuss many characteristics

related to implementation and computation. This information can be found in the

original papers which are cited at the beginning of each section. I will also not describe

in much detail the underlying theories that are used, i.e., density-functional theory,

time-dependent current-density-functional theory and many-body perturbation theory,

since explanations of these methods can be found in many excellent books and articles.

In summary, the goal of this chapter is to highlight the improvements brought about

by my research with respect to standard theories and methodologies.
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3.1 An efficient GW calculation of quasi-particle

energies: the effective-energy technique

In this section we will discuss the effective-energy technique, a method we developed

to improve the numerical efficiency of the calculation of GW quasi-particle energies

by reducing or even avoiding completely the summation over empty states in the cal-

culation of the independent-particle polarizability and the GW self-energy. Here we

summarize the main results of the effective-energy technique. In the following we will

mainly focus on standard perturbative GW, also called one-shot GW , or G0W 0. For

the details of the G0W 0 method we refer the reader to excellent review articles such

as the one in Ref. [8]. Here we will focus only on the two aspects that are different in

our approach with respect to the standard G0W 0 approach, i.e., the calculation of the

polarizability and the correlation part of the self-energy.

corresponding publications:

• Ab initio calculations of electronic excitations: Collapsing spectral sums.

J. A. Berger, L. Reining, and F. Sottile

Phys. Rev. B 82, 041103(R) (2010).

• Efficient GW calculations for SnO2, ZnO, and rubrene: The effective-energy

technique

J. A. Berger, L. Reining, and F. Sottile

Phys. Rev. B 85, 085126 (2012)

• Efficient calculation of the polarizability: a simplified effective-energy technique

J. A. Berger, L. Reining, and F. Sottile

Eur. Phys. J. B 85, 326 (2012)

Within many-body perturbation theory, all many-body effects are contained in

the self-energy which, in practice, we approximate. The GW approximation for the

self-energy proposed by Hedin [9] has become the standard tool for the calculation

of quasiparticle energies. In the GW approximation the electrons do not interact via

the Coulomb interaction, as, for example, in Hartree-Fock, but via the dynamically

screened Coulomb interaction W . The physical motivation is that in many-body sys-

tems (solids, clusters, macromolecules) the electron-electron repulsion is, in general,

strong, such that each electron is surrounded by a Coulomb hole of positive charge,

i.e., the positive nuclear charge is not completely canceled. For this reason it is more

physical to consider the interaction between quasi-particles composed of electrons and

their Coulomb holes. Since the interaction between quasi-particles is much weaker

than between electrons, thanks to the Coulomb hole which screens each electron from

the other electrons, an expansion in terms of W converges more rapidly. The first
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order term in such an expansion leads to the GW approximation in which the self-

energy is just a product of the one-body Green’s function G and W . The amount of

screening depends on how polarizable the system is. Therefore, in practice, we cal-

culate the polarizability to construct W . The GW method has been very successful

in the calculation of band gaps and band structures of many systems. However, the

main disadvantage of GW is that it is numerically expensive. This is mainly due to

the large number of empty states that must be taken into account in the standard

spectral representations of the self-energy and the polarizability.

To illustrate how we can overcome this problem we will focus on the polarizability.

Within G0W 0 one calculates the time-ordered independent-particle polarizability. It

is usually calculated as a sum over states (SOS) according to

χ0
~G~G′

(~q, ω) =
∑
s=±1

∑
v,c

ρ̃∗cv(~q + ~G)ρ̃cv(~q + ~G′)

sω − (εc − εv) + iη
, , (3.1)

where ρ̃cv(~q+ ~G) = 〈c|e−i(~q+ ~G)·~r|v〉, |v〉 (|c〉) and εv (εc) are valence (conduction) states

and energies, respectively, ~G and ~G′ are reciprocal lattice vectors, ~q is a vector that

lies within the first Brillouin zone, and η is an infinitesimal. In practice, we obtain the

states and energies within the local-density approximation (LDA) of density-functional

theory (DFT). We note that the summation over s in the above equation is just a

concise way to include both the resonant and anti-resonant contributions. Since here

we focus on extended systems described by periodic boundary condition the indices

v and c in the above expression should be considered multi-indices composed of the

band index, the spin and the Bloch vector.

To eliminate the summation over the empty states we now introduce a dynamical

effective energy δv(ω) that takes into account the contribution of all the empty states to

the polarizability. This idea is illustrated in Fig. 3.1 where, for each valence band, the

ensemble of the empty bands is replaced by a single band δv(ω). The effective energy

δv ~G~G′(~q, ω) takes into account the contributions of all the empty states to χ0(ω). This

change can be done exactly according to

χ0
~G~G′

(~q, ω) =
∑
s=±1

∑
v,c

ρ̃∗cv(~q + ~G)ρ̃cv(~q + ~G′)

sω+ − (δv ~G~G′(~q, sω
+)− εv)

, (3.2)

where sω+ = sω + iη. We can now use the closure relation,
∑

c |c〉〈c| = 1−
∑

v |v〉〈v|
to obtain an expression that contains a summation over occupied states only:

χ0
~G~G′

(~q, ω) =
∑
s=±1

∑
v

fρρ
v ~G~G′

(~q)

sω+ − (δv ~G~G′(~q, sω
+)− εv)

, (3.3)

where we defined, for a general state n,

fρρ
n~G~G′

(~q) = ρ̃nn(~G′ − ~G)−
∑
v

ρ̃∗vn(~q + ~G)ρ̃vn(~q + ~G′). (3.4)
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Figure 3.1: Within the EET applied to the polarizability, for each valence state v, the

ensemble of conductions states c is replaced by single frequency-dependent effective energy

δv(ω). Therefore, instead of an infinite number of transitions contributing to the polarizabil-

ity for each valence state, within the EET only one transition contributes.

It now remains to find accurate approximations to δv(ω). By comparing the summa-

tions over the empty states contained in Eqs. (3.1) and (3.2) we arrive at the following

implicit equation for δv(ω),

∑
c

ρ̃∗cv(~q + ~G)ρ̃cv(~q + ~G′)

sω+ − (εc − εv)
=
∑
c

ρ̃∗cv(~q + ~G)ρ̃cv(~q + ~G′)

sω+ − (δv ~G~G′(~q, sω
+)− εv)

. (3.5)

Subtracting the right-hand side from both sides we obtain∑
c

ρ̃∗cv(~q + ~G)ρ̃cv(~q + ~G′)

[
(εc − δv ~G~G′(~q, sω+))

[sω+ − (εc − εv)][sω+ − (δv ~G~G′(~q, sω
+)− εv)]

]
= 0. (3.6)

Multiplying the above equation by sω+ − (δv ~G~G′(~q, sω
+)− εv) and rearranging we

arrive at∑
c

εcρ̃
∗
cv(~q + ~G)ρ̃cv(~q + ~G′)

[sω+ − (εc − εv)]
− δv ~G~G′(~q, sω

+)
∑
c

ρ̃∗cv(~q + ~G)ρ̃cv(~q + ~G′)

[sω+ − (εc − εv)]
= 0. (3.7)

We can therefore rewrite the effective energy exactly as

δv ~G~G′(~q, sω
+) =

∑
c

εcρ̃
∗
cv(~q + ~G)ρ̃cv(~q + ~G′)

[sω+ − (εc − εv)]

/∑
c

ρ̃∗cv(~q + ~G)ρ̃cv(~q + ~G′)

[sω+ − (εc − εv)]
. (3.8)

This exact expression is not useful in practice because it still has summations over the

empty states. However, by using the fact that εc and |c〉 are the eigenvalue and eigen-

state, respectively, of a corresponding Hamiltonian Ĥ, we can rewrite the numerator

on the right-hand side and obtain

δv ~G~G′(~q, sω
+) = εv

+
1

2

∑
c

ρ̃∗cv(~q + ~G)〈c|[Ĥ(~r), e−i(~q+
~G′)·~r]|v〉+ h.c.

[sω+ − (εc − εv)]

/∑
c

ρ̃∗cv(~q + ~G)ρ̃cv(~q + ~G′)

[sω+ − (εc − εv)]
, (3.9)
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where h.c. denotes the Hermitian conjugate. This symmetrization is done because the

commutator can be taken equally well in ρ̃cv as in ρ̃∗cv. It will ensure that approxi-

mations to δv ~G~G′ derived below will have the correct symmetry, i.e., δv ~G~G′(~q, sω
+) =

δ∗
v ~G′ ~G

(~q, sω+), which holds for the exact effective energy, as can be seen from Eq. (3.8).

Here we will consider a Hamiltonian that contains only a local potential, i.e., Ĥ(~r) =

−∇2
~r/2 + v(~r). The derivation that follows can be easily generalized to include Hamil-

tonians with additional nonlocal potentials. Working out the commutator we obtain

δv ~G~G′(~q, sω
+) = εv +

1

2

[
|~q + ~G|2

2
+
|~q + ~G′|2

2

]

+
1

2

∑
c

ρ̃∗cv(~q + ~G)j̃cv(~q + ~G′) + h.c.

[sω+ − (εc − εv)]

/∑
c

ρ̃∗cv(~q + ~G)ρ̃cv(~q + ~G′)

[sω+ − (εc − εv)]
,

(3.10)

where we defined

j̃cn(~q + ~G) = 〈c|e−i(~q+ ~G)·~r[i∇~r]|n〉 · (~q + ~G). (3.11)

The above expression is exact but still contains summations over empty states. How-

ever, one can obtain an approximate effective energy that is independent of empty

states by neglecting the last term on the right-hand side. Plugging this simple frequency-

independent approximation into Eq. (3.3) we obtain

χ0
~G~G′

(~q, ω) ≈
∑
s=±1

∑
v

fρρ
v ~G~G′

(~q)

sω+ − 1
2

[
|~q+ ~G|2

2
+ |~q+ ~G′|2

2

] (3.12)

The above approximation has only a single pole and will therefore not be a good

approximation to the true χ0
~G~G′

(~q, ω) which has a number of poles equal to NvNc where

Nv (Nc) is the number of valence (conduction) states. However, the GW self-energy is a

frequency integral over χ0
~G~G′

(~q, ω) and therefore, the crude approximation in Eq. (3.12)

might still give accurate quasi-particle energies if the position of its unique pole is a

good average of the poles of the exact χ0
~G~G′

(~q, ω). However, this is not guaranteed and

therefore we will now try to improve over this simple approximation.

Comparing the numerator in Eq. (3.10) to the left-hand side of Eq. (3.5) we see

that the two expressions have a very similar structure. This suggests that we can

introduce a second effective energy δ̃v(ω) implicitly defined by

∑
c

ρ̃∗cv(~q + ~G)j̃cv(~q + ~G′)

sω+ − (εc − εv)
=
∑
c

ρ̃∗cv(~q + ~G)j̃cv(~q + ~G′)

sω+ − (δ̃v ~G~G′(~q, sω
+)− εv)

(3.13)
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which allows us to rewrite Eq. (3.10) as

δv ~G~G′(~q, sω
+) = εv +

1

2

[
|~q + ~G|2

2
+
|~q + ~G′|2

2

]

+
1

2

∑
c

ρ̃∗cv(~q + ~G)j̃cv(~q + ~G′) + h.c.

[sω+ − (δ̃v ~G~G′(~q, sω
+)− εv)]

/∑
c

ρ̃∗cv(~q + ~G)ρ̃cv(~q + ~G′)

[sω+ − (εc − εv)]
(3.14)

= εv +
1

2

[
|~q + ~G|2

2
+
|~q + ~G′|2

2

]
+
fρj
v ~G~G′

(~q)

fρρ
v ~G~G′

(~q)

sω+ − (δv ~G~G′(~q, sω
+)− εv)

sω+ − (δ̃v ~G~G′(~q, sω
+)− εv)

(3.15)

where in the last step we used Eq. (3.5) and we defined

fρj
n~G~G′

(~q) =
1

2

[
−
∑
v

ρ̃∗vn(~q+ ~G)j̃vn(~q+ ~G′)+〈n|ei( ~G− ~G′)·~r(i∇)|n〉·(~q+ ~G′)

]
+h.c. (3.16)

The above expression is exact but cannot be used since δ̃v(ω) is unknown. However, it

can be used to obtain an approximation for δv(ω). It can be proved that for a homoge-

neous electron gas δv(ω) = δ̃v(ω) [10], in which case the last division on the right-hand

side of Eq. (3.15) becomes the identity. This suggests the following approximation

δv ~G~G′(~q, sω
+) ≈ εv +

1

2

[
|~q + ~G|2

2
+
|~q + ~G′|2

2

]
+
fρj
v ~G~G′

(~q)

fρρ
v ~G~G′

(~q)
. (3.17)

which again is frequency independent. It leads to the following approximation for the

polarizability

χ0
~G~G′

(~q, ω) ≈
∑
s=±1

∑
v

fρρ
v ~G~G′

(~q)

sω+ − 1
2

[
|~q+ ~G|2

2
+ |~q+ ~G′|2

2

]
−

fρj
v ~G~G′

(~q)

fρρ
v ~G~G′

(~q)

. (3.18)

This approximation has Nv poles, still much less than the NvNc poles of the true

χ0
~G~G′

(~q, ω). But the strategy applied for δv(ω) can be continued. Without going into

details we can follow similar steps as before for δv(ω) to obtain an exact expression for

δ̃v(ω) in terms of a third effective energy ˜̃δv(ω):

δ̃v ~G~G′(~q, sω
+) = εv +

1

2

[
|~q + ~G|2

2
+
|~q + ~G′|2

2

]

+
1

2

∑
c

j̃∗cv(~q + ~G)j̃cv(~q + ~G′)

[sω+ − (εc − εv)]

/∑
c

ρ̃∗cv(~q + ~G)j̃cv(~q + ~G′)

[sω+ − (εc − εv)]
(3.19)

= εv +
1

2

[
|~q + ~G|2

2
+
|~q + ~G′|2

2

]
+
f jj
n~G~G′

(~q)

fρj
n~G~G′

(~q)

sω+ − (δ̃v ~G~G′(~q, sω
+)− εv)

sω+ − (˜̃δv ~G~G′(~q, sω
+)− εv)

,

(3.20)
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where we defined

f jj
n~G~G′

(~q) = −
∑
v

j̃∗vn(~q+ ~G)j̃vn(~q+ ~G′)+(~q+ ~G) ·〈∇~rn|ei(
~G− ~G′)·~r|∇~rn〉·(~q+ ~G′). (3.21)

Inserting this expression into Eq. (3.15) we obtain

δv ~G~G′(~q, sω
+) = εv +

1

2

[
|~q + ~G|2

2
+
|~q + ~G′|2

2

]
(3.22)

+
fρj
v ~G~G′

(~q)

fρρ
v ~G~G′

(~q)

sω+ − 1
2

[
|~q+ ~G|2

2
+ |~q+ ~G′|2

2

]
−

fρj
v ~G~G′

(~q)

fρρ
v ~G~G′

(~q)

sω+−(δ
v ~G~G′ (~q,sω

+)−εv)

sω+−(δ̃
v ~G~G′ (~q,sω

+)−εv)

sω+ − 1
2

[
|~q+ ~G|2

2
+ |~q+ ~G′|2

2

]
−

fjj
v ~G~G′

(~q)

fρj
v ~G~G′

(~q)

sω+−(δ
v ~G~G′ (~q,sω

+)−εv)

sω+−(δ̃
v ~G~G′ (~q,sω

+)−εv)

. (3.23)

Since for a homogeneous electron gas δv(ω) = δ̃v(ω) = ˜̃δv(ω) in which case the last

division on the right-hand side becomes the identity. This suggests the following

approximation,

δv ~G~G′(~q, sω
+) ≈ εv +

1

2

[
|~q + ~G|2

2
+
|~q + ~G′|2

2

]
(3.24)

+
fρj
v ~G~G′

(~q)

fρρ
v ~G~G′

(~q)

sω+ − 1
2

[
|~q+ ~G|2

2
+ |~q+ ~G′|2

2

]
−

fρj
v ~G~G′

(~q)

fρρ
v ~G~G′

(~q)

sω+ − 1
2

[
|~q+ ~G|2

2
+ |~q+ ~G′|2

2

]
−

fjj
v ~G~G′

(~q)

fρj
v ~G~G′

(~q)

, (3.25)

which is frequency dependent. The corresponding approximation for the polarizability

is then

χ0
~G~G′

(~q, ω) ≈
∑
s=±1

∑
v

fρρ
v ~G~G′

(~q)

sω+ − 1
2

[
|~q+ ~G|2

2
+ |~q+ ~G′|2

2

]
−

fρj
v ~G~G′

(~q)

fρρ
v ~G~G′

(~q)

sω+− 1
2

[
|~q+~G|2

2
+
|~q+~G′|2

2

]
−
f
ρj

v ~G~G′
(~q)

f
ρρ

v ~G~G′
(~q)

sω+− 1
2

[
|~q+~G|2

2
+
|~q+~G′|2

2

]
−
f
jj

v ~G~G′
(~q)

f
ρj

v ~G~G′
(~q)

,

(3.26)

which will, in general, have more than Nv poles due to the non-linearity of the denom-

inator on the right-hand side.

The above procedure that led to the approximations in Eqs. (3.18) and (3.26) can

be continued ad infinitum to obtain approximations involving higher order commuta-

tors. However, one would hope that already low-order approximations give sufficiently

accurate results since higher order approximations become rather complicated. We

will show that this is indeed the case. Let us summarize the three approximations we
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have obtained so far,

χ0
~G~G′,0

(~q, ω) =
∑
s=±1

∑
v

fρρ
v ~G~G′

(~q)

sω+ − 1
2

[
|~q+ ~G|2

2
+ |~q+ ~G′|2

2

] (3.27)

χ0
~G~G′,1

(~q, ω) =
∑
s=±1

∑
v

fρρ
v ~G~G′

(~q)

sω+ − 1
2

[
|~q+ ~G|2

2
+ |~q+ ~G′|2

2

]
−

fρj
v ~G~G′

(~q)

fρρ
v ~G~G′

(~q)

(3.28)

χ0
~G~G′,2

(~q, ω) =
∑
s=±1

∑
v

fρρ
v ~G~G′

(~q)

sω+ − 1
2

[
|~q+ ~G|2

2
+ |~q+ ~G′|2

2

]
−

fρj
v ~G~G′

(~q)

fρρ
v ~G~G′

(~q)

sω+− 1
2

[
|~q+~G|2

2
+
|~q+~G′|2

2

]
−
f
ρj

v ~G~G′
(~q)

f
ρρ

v ~G~G′
(~q)

sω+− 1
2

[
|~q+~G|2

2
+
|~q+~G′|2

2

]
−
f
jj

v ~G~G′
(~q)

f
ρj

v ~G~G′
(~q)

.

(3.29)

We note that Eqs. (3.28) and (3.29) satisfies several sum rules and exact constraints

that are satisfied by the exact χ0(ω) such as the high-frequency limit and the f -sum

rule [10].

To obtain GW quasiparticle energies we have to calculate the diagonal matrix

elements of the exchange-correlation part of the self-energy. Only the correlation part

of the self-energy Σcorr(ω) contains a summation over all the empty states and therefore

we will only consider this part of the self-energy in the following. The matrix elements

Σn
corr(ω) ≡ 〈n|Σcorr(ω)|n〉 are given by

Σn
corr(ω) =

∞∑
i=1

∞∑
j 6=0

|〈n|V j|i〉|2

ω + ωj sgn(µ− εi)− εi
. (3.30)

where V j(~r) are fluctuation potentials, ωj are neutral excitation energies of the sys-

tem (minus a purely imaginary infinitesimal), and µ is the chemical potential. The

summation over i in Eqn. (3.30) can be split into a summation over occupied states v

with εv < µ and a summation over empty states c with εc > µ. In the following we

will focus on the latter summation since it is the bottleneck in the calculation of Σn
corr

as it sums over the, in principle infinite, empty states of the system. We can rewrite

this part as

Σn,emp
corr (ω)=

∞∑
j 6=0

∑
~q, ~G, ~G′

V j
~G
(~q)V j∗

~G′
(~q)
∑
c

ρ̃∗cn(~q + ~G)ρ̃cn(~q + ~G′)

ω − ωj − εc
, (3.31)

in which V j
~G
(~q) is the Fourier transform of V j(~r) . We can eliminate the above sum-

mation over empty states in a similar way as we did for the polarizability. The first
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Figure 3.2: The real part of Σcorr(ω) for the highest occupied band at Γ for Si around the

LDA orbital energy (set to 0 eV) obtained within G0W 0. Solid line (black): SOS; dotted

line (green): EET using χ0
2 and Σemp

corr,0; dashed line (red): EET using χ0
2 and Σemp

corr,2; dotted-

dashed line (blue): EET using χ0
4 and Σemp

corr,4; double-dotted-dashed line (violet): COHSEX.

three approximations are

Σn,emp
corr,0 (ω)=

∞∑
j 6=0

∑
~q, ~G, ~G′

V j
~G
(~q)V j∗

~G′
(~q)

fρρ
n~G~G′

(~q)

ω − ωj − 1
2

[
|~q+ ~G|2

2
+ |~q+ ~G′|2

2

] , (3.32)

Σn,emp
corr,1 (ω)=

∞∑
j 6=0

∑
~q, ~G, ~G′

V j
~G
(~q)V j∗

~G′
(~q)

fρρ
n~G~G′

(~q)

ω − ωj − 1
2

[
|~q+ ~G|2

2
+ |~q+ ~G′|2

2

]
−

fρj
n~G~G′
fρρ
n~G~G′

, (3.33)

Σn,emp
corr,2 (ω)=

∞∑
j 6=0

∑
~q, ~G, ~G′

V j
~G
(~q)V j∗

~G′
(~q)

×
fρρ
n~G~G′

(~q)

ω − ωj − 1
2

[
|~q+ ~G|2

2
+ |~q+ ~G′|2

2

]
−

fρj
n~G~G′
fρρ
n~G~G′

ωng−Q(~q, ~G, ~G′)−
f
ρj

n~G~G′
(~q)

f
ρρ

n~G~G′
(~q)

ωng−δng(~q, ~G,~G′,ω)
ωng−δ̃ng(~q, ~G,~G′,ω)

ωng−Q(~q, ~G, ~G′)−
f
jj

v ~G~G′
(~q)

f
ρj

n~G~G′
(~q)

ωng−δ̃ng(~q, ~G,~G′,ω)

ωng−˜̃
δnj(~q,

~G,~G′,ω)


(3.34)

We wil now test the quality of the approximations we have obtained for the self-

energy and the polarizability. In Fig. 3.2, we report the real part of Σcorr(ω) within

G0W 0 for the highest occupied band of bulk silicon at the Γ point as a function of the

frequency around the LDA orbital energy. We compare our EET results using vari-
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Figure 3.3: Band structure of solid argon. Solid line (black): G0W 0 (SOS); dashed line

(red): G0W 0 (EET); dotted line (blue): LDA

ous approximations for the polarizability and the self-energy with the converged SOS

results obtained with 200 empty bands, and those obtained with the static COHSEX

approximation [9], in which empty states are eliminated only in the self-energy but

not in the polarizability. Using χ0
2(ω) and Σemp

corr,2(ω) we already obtain results that are

in excellent agreement with the SOS result over the whole frequency range of interest,

thereby largely improving on the static COHSEX self-energy. With higher-order ap-

proximations such χ0
4(ω) and Σemp

corr,4(ω), we can improve the results slightly further (we

note that explicit expressions for χ0
4(ω) and Σemp

corr,4(ω) have not been given). However,

since, in general, χ0
2(ω) combined with Σemp

corr,2(ω) lead to G0W 0 results that are in good

agreement with the exact SOS results and since the difference with results obtained

using higher-order approximations is small, we will use χ0
2(ω) and Σemp

corr,2(ω) in the

remainder of this section unless stated otherwise.

We now apply the EET to solid argon because it provides a good test case for two

reasons: first, it is a very inhomogeneous systems and therefore very different from

the homogeneous systems for which our expressions become exact and, second, the

G0W 0 quasi-particle energies lie far from the LDA energies. In Fig. 3.3, we report

the G0W 0 band structure of solid argon for the three highest occupied bands and

four lowest empty bands using the standard SOS approach and the EET. The two

band structures are almost indistinguishable. We also report the LDA band structure

to show the large difference between the LDA and G0W 0energies. In Table 3.1, we

summarize our EET results for the fundamental gaps of several materials, ranging from

silicon to bulk rubrene, an organic molecular crystal with 140 atoms in the unit cell.
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LDA G0W 0 G0W 0 COHSEX Experiment

(SOS) (EET)

Silicon (Eg) 0.52 1.20 1.19 1.75 1.17

Silicon (Γv − Γc) 2.56 3.23 3.22 3.76 3.40

Solid Argon (Eg) 7.53 12.4 12.3 14.2

Argon atom (HOMO-LUMO) 9.81 14.6 14.5 15.8 -

SnO2 0.91 2.89 2.94 4.61 3.6

ZnO 0.82 2.56 2.39 - 3.4

Rubrene (crystal) 1.13 2.5 2.7 - -

Table 3.1: Fundamental gaps Eg of silicon, solid argon, SnO2, ZnO, and crystalline rubrene,

the direct band gap at Γ of silicon and the HOMO-LUMO gap of atomic argon. All gaps

are in eV.

We also report the direct band gap at Γ of silicon and the highest occupied molecular

orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap of atomic argon.

We obtain a large improvement with respect to the COHSEX results which largely

overestimate the G0W 0 band gaps and a very good agreement with the SOS approach.

As an example, let us have a closer look at SnO2. The SOS calculations for SnO2

required 1000 and 1600 bands, respectively, to arrive at a convergence of 10 meV for

the gaps, while the EET calculations just required 34 occupied bands. The SnO2

band gap within G0W 0 of 2.9 eV is not in good agreement with the experimental

band gap of 3.6 eV. This is due to the fact that the LDA energies and wave functions

do not provide a good starting point for the G0W 0 calculation. However, within the

GW method, we can recalculate the screening and self-energy using updated energies

and wave functions by including some form of self-consistency. Using the SOS ap-

proach, even the simplest GW method involving self-consistency, the self-consistent

COHSEX+G0W 0 approach [11] is computationally quite demanding because χ0(ω)

has to be recalculated. This means that the energies and wave functions have to be

updated during self-consistency. This bottleneck can now be overcome by applying the

EET to the calculation of both the static polarizability in the self-consistent COHSEX

approach and the G0W 0 self-energy. We can thus include self-consistency effects using

summations over occupied states only. Using the EET, we are now able to determine

the GW band gap of SnO2 to be 3.8 eV which is in good agreement with experiment.

This result is summarized in Table 3.2.

LDA GW+EET Experiment

SnO2 (Eg) 0.91 3.8 3.6

Table 3.2: Fundamental gap Eg in eV of SnO2 obtained with self-consistent COHSEX +

G0W 0 (GW) using the EET.
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Up to this point we have used the EET to obtain approximations to the GW self-

energy and the independent-particle polarizability which do not contain summations

over empty states. Although we have shown that simple approximations, such as χ0
2(ω)

and Σemp
corr,2(ω), are accurate and numerically efficient, one might wish to converge to

the numerically exact GW result. Such numerically exact results can be obtained

efficiently and in a systematic way by combining the EET and the SOS approach.

Let us illustrate how we achieve this goal for the polarizability. We first split the

summation over the empty states in Eqn. (3.1) into two parts according to

χ0
~G~G′

(~q, ω)=
∑
s=±1

∑
v

[
M∑

c=Nv+1

ρ̃∗cv(~q + ~G)ρ̃cv(~q + ~G′)

sω+ − (εc − εv)
+

∞∑
c=M+1

ρ̃∗cv(~q + ~G)ρ̃cv(~q + ~G′)

sω+ − (δv ~G~G′(~q, sω
+)− εv)

]
,

(3.35)

where we used the EET only in the second term on the right-hand side which contains

a summation over all the empty states starting from M + 1. If we choose M = Nv

we retrieve Eqn. (3.2). However, if we choose M > Nv the part that needs to be

approximated with the EET becomes smaller as M − Nv increases. In this way we

have obtained an efficient way to converge χ0(ω) with respect to the number of empty

states.

Since we will now converge the quasi-particle energies and band gaps with respect

to the number of empty states, we can combine the very simple approximation given

in Eq. (3.27) with the SOS approach according to

χ0
~G~G′

(~q, ω) =
∑
s=±1

∑
v

[ M∑
c=Nv+1

ρ̃∗cv(~q + ~G)ρ̃cv(~q + ~G′)

sω+ − (εc − εv)

+
∞∑

c=M+1

ρ̃∗cv(~q + ~G)ρ̃cv(~q + ~G′)

sω+ − 1
2

[
|~q+ ~G|

2
+ |~q+ ~G′|

2

]
− εv)

]
. (3.36)

A similar approach can be used for the self-energy. Here we will use Σemp
corr,0(ω) given in

Eq. (3.32). This above procedure can be seen as a generalization of the one proposed

by Bruneval and Gonze [12], the difference being that our approach is parameter free.

With this SOS+EET approach we can obtain converged quasi-particle energies using

only very few empty states.

To illustrate the SOS+EET approach we report in Fig. 3.4 the convergence be-

havior of the valence-band maximum (VBM), conduction band minimum (CBM) and

band gap of SnO2 with the number of empty states using the standard SOS approach

and the SOS+EET approach. We see that using the SOS+EET approach numerical

convergence of 10 meV is reached with slightly more than 100 empty bands. This is

true, not only for the band gap, but also for the absolute quasi-particle energies at the

VBM and CBM which are much harder to converge since there is no error cancelation.

By contrast, the SOS approach has not reached convergence for any of these quantities

with as much as 800 empty bands
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Figure 3.4: Convergence behavior of the VBM, CBM, and fundamental gap (Eg) of SnO2

in eV with the number of empty states in both the screening and self-energy calculcations.

Black triangles: SOS approach; red open circles: SOS+EET approach using δ′(0) and δ(0);

red filled circles: EET using χ0
2(ω) and Σemp

corr,2(ω) without empty states. The dotted line is

a guide to the eye.

We can now compare the converged SOS+EET results with those obtained with

our approximate EET scheme using no empty states. This comparison is reported in

Table 3.3. We conclude that the values we obtained with our EET using χ0
2(ω) and

Σemp
corr,2(ω) are in excellent agreement with the numerically exact values.

There has been much debate on the numerically exact value of the G0W 0 band

gap of ZnO, and in particular, the number of empty bands required to reach conver-

gence [13–16]. Therefore we applied our SOS+EET approach to obtain a G0W 0 band

gap that is converged with respect to the number of empty states. In Fig. 3.5 we report

the convergence behavior of the VBM, CBM and band gap of ZnO with the number

of empty states using the standard SOS approach and the SOS+EET approach. We

see that the band gap using the SOS+EET approach does not converge as quickly as

LDA G0W 0 (EET) G0W 0 (SOS+EET)

CBM 8.20 8.73 8.74

VBM 7.26 5.87 5.85

Eg 0.94 2.86 2.89

Table 3.3: Calculated energies for the VBM, CBM, and fundamental gap (Eg) in eV of

SnO2. The last column contains numerically converged G0W 0 quasiparticle energies.
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Figure 3.5: Convergence behavior of the VBM, CBM, and fundamental gap (Eg) in eV of

ZnO with the number of empty states in both the screening and self-energy calculcations.

Black triangles: SOS approach; red open circles: SOS+EET approach using δ′(0) and δ(0);

red filled circles: EET using χ0
2(ω) and Σemp

corr,2(ω) without empty states. The dotted line is

a guide to the eye.

was the case for SnO2 but convergence is still reached much faster than with the SOS

approach alone. We conclude that the converged G0W 0 band gap of ZnO is 2.56 eV.

The results for the VBM, CBM and band gap of ZnO are summarized in Table 3.4.

We refer the reader to the work of Stankovski et al. [16] for more details on the issue

of the G0W 0 band gap of ZnO.

In summary, we have given an overview of the effective-energy technique, a sim-

ple method to evaluate spectral representations in an accurate and efficient manner

without summing over empty states as is done in the standard sum-over-states ap-

proach. In particular, we showed how the effective-energy technique can be applied

to reformulate the expressions for the GW self-energy and the independent-particle

polarizability in terms of occupied states only by introducing a single effective energy

LDA G0W 0 (EET) G0W 0 (SOS+EET)

VBM 6.38 5.04 4.97

CBM 7.19 7.43 7.53

Eg 0.82 2.39 2.56

Table 3.4: Calculated energies for the VBM, CBM, and fundamental gap (Eg) in eV of

ZnO. The last column contains numerically converged G0W 0 quasiparticle energies.
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which takes into account all the empty states. We also showed how one can obtain

in an efficient way numerically exact G0W 0 quasi-particle energies by combining the

effective-energy technique with a sum-over-states approach.
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3.2 Fully parameter-free calculation of the opti-

cal spectra for insulators, semiconductors and

metals from a simple polarization functional

In the previous section we showed how one can obtain in a numerically efficient

way quasi-particle energies using the effective-energy technique. The quasi-particle en-

ergies contain important information about the system since they are the removal and

addition energies but, they also provide an accurate starting point for the calculation of

response properties, since they are used to build the response functions. In this section

we will show how starting from these quasi-particle energies one can obtain accurate

optical absorption spectra within time-dependent current-density functional theory us-

ing a simple polarization functional.

corresponding publication

• Fully parameter-free calculation of optical spectra for insulators, semiconductors

and metals from a simple polarization functional

J. A. Berger

Phys. Rev. Lett. 115, 137402 (2015)

The state-of-the-art approach to calculate absorption spectra of solids is the Bethe-

Salpeter equation (BSE) [17–20]. It is related to the particle-hole part of the two-

particle Green’s function and therefore explicitly takes into account the interaction

between the excited electron and the hole it leaves behind in an absorption process.

From the two-particle nature of absorption processes it is clear that to obtain a sim-

ilar quality of spectra as the BSE within time-dependent density-functional theory

(TDDFT) [3] or time-dependent current-density-functional theory (TDCDFT) [5–7] is

a formidable challenge since two-particle processes should be described through an ef-

fective potential of the noninteracting Kohn-Sham system. Nevertheless, the search for

such an effective potential is worthwhile since the numerical advantage to be gained is

significant. A straightforward implementation of the BSE scales as N6 where N is the

number of atoms or electrons in the unit cell while a straightforward implementation

of the TD(C)DFT equations scales as N4 or N3.

Considering the above it is no surprise that standard approximations, i.e., the

random-phase approximation (RPA) and the adiabatic local-density approximation

(ALDA) [21] are incapable of accurately describing optical spectra. Their failures

are numerous: 1) they underestimate the absorption onset; 2) they cannot describe

Drude tails in the spectra of metals; 3) they underestimate the intensity of contin-

uum excitons; 4) they cannot describe bound excitons. While the first problem has

not yet found a solution within TD(C)DFT it can be circumvented by replacing the

Kohn-Sham eigenvalues by GW quasiparticle energies [8, 9], which can be efficiently
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calculated with the effective-energy technique. As we will show the other three prob-

lems we can solve within TDCDFT.

The first approximations specifically designed for the calculation of optical spectra

in TD(C)DFT were mainly interested in the correct description of continuum exci-

tons. This can be achieved by applying a long-range exchange-correlation (xc) kernel

[22–24]. However, a material-dependent parameter is needed to get results that are

quantitatively correct. Instead, the nanoquanta kernel [25–29] is parameter free and

can correctly describe continuum as well as bound excitons. However, the nanoquanta

kernel is derived from the BSE and, therefore, it is basically as expensive to evaluate as

the BSE. Instead, the Vignale-Kohn current functional [30] is simple to evaluate [31]

and describes well the optical spectra of metals [32]. However, it does not describe

correctly excitons in semiconductors and insulators [33].

Recently there is a renewed interest to go beyond these approximations and try

to obtain BSE-like spectra with a parameter-free and numerically efficient density-

functional approach. This is mainly thanks to the bootstrap method proposed in

Ref. [34] in which optical spectra of good quality were reported. Although some

problems were found with the bootstrap method [35–38] it gave a strong impetus to

the search for new approximations [35, 39–43].

With respect to other approaches the advantages of our method [43] can be sum-

marized as follows: 1) Our xc kernel is parameter free, not even a material-dependent

broadening parameter is needed; 2) Our xc kernel is dynamical and can therefore take

into account memory effects and describe Drude tails and the finite width of bound ex-

citons; 3) The cost of a calculation is equal to that of a calculation within the RPA; 4)

Our approach avoids the explicit calculation of Kohn-Sham response functions leading

to numerical efficiency.

Absorption spectra are related to the imaginary part of the macroscopic dielectric

tensor ←→ε M . Let us briefly explain how it can be obtained from knowledge of the

induced current density of the bulk only. The macroscopic polarization can be defined

as a bulk property according to

~Pmac(ω) =
−i
ωV

∫
V

d~rδ~j(~r, ω). (3.37)

where δ~j(~r, ω) is the induced current density in the bulk and V is the volume of the unit

cell. The macroscopic polarization is induced by a macroscopic electric field ~Emac(ω)

which comprises both the externally applied field and the macroscopic induced electric

field [44]. The constant of proportionality is the electric susceptibility tensor ←→χ e(ω)

which is defined as
~Pmac(ω) =←→χ e(ω) · ~Emac(ω). (3.38)

The macroscopic dielectric tensor ←→ε M(ω) can be obtained from the electric suscepti-

bility according to
←→ε M(ω) = 1 + 4π←→χ e(ω). (3.39)
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Therefore, for a given Emac(ω), from the knowledge of the induced bulk current only,

one can calculate ←→ε M(ω) using Eqs. (3.37)-(3.39). This procedure is general, i.e., it

can be combined with any theory that allows for the calculation of the induced bulk

current density. A very efficient approach to calculate the current density is time-

dependent current-density functional theory (TDCDFT) [5–7]. In this theory the

problem of finding the true bulk current density of the interacting system is mapped

onto a noninteracting system governed by a set of effective Kohn-Sham potentials

{vKS, ~AKS} that reproduce the bulk current density of the interacting system. Here

vKS and ~AKS are the Kohn-Sham scalar and vector potential, respectively. They are

defined up to a gauge choice.

Within the linear-response regime the current density is given by

δ~j(~r, ω) =

∫
d~r′←→χ KS,~j~j(~r, ~r′, ω)·[ ~Amac(ω)+ ~Axc(~r′, ω)]+

∫
d~r′~χKS,

~jρ(~r, ~r′, ω)δvHxcmic (~r′, ω).

(3.40)

Here we used the microscopic Coulomb gauge in which the microscopic potential

δvHxcmic (~r, ω) is lattice periodic and contains the periodic part of the Hartree and longi-

tudinal xc contributions [44]. All remaining xc contributions are included in the vector

potential ~Axc(~r, ω). In this work we focus on finding an accurate approximation for
~Axcmac(ω), the macroscopic part of ~Axc(~r, ω). Therefore, in the following we will neglect

microscopic transverse xc contributions to ~Axc(~r, ω).

Let us now define the Kohn-Sham electric field according to

~EKS
mac(ω) = ~Emac(ω) + ~Exc

mac(ω). (3.41)

We note that the electric field and the vector potential are interchangeable since they

are related by the simple expression: ~E(ω) = iω ~A(ω). The substitution of Eq. (3.40)

into Eq. (3.37) shows that ~Pmac(ω) is linear in ~EKS
mac(ω):

~Pmac(ω) =
−1

ω2V

[∫
V

d~r

∫
d~r′←→χ KS,~j~j(~r, ~r′, ω)

]
· ~EKS

mac(ω)

+
−i
ωV

∫
V

d~r

∫
d~r′~χKS,

~jρ(~r, ~r′, ω)δvHxcmic (~r′, ω). (3.42)

It is useful to define the Kohn-Sham susceptibility ←→χ KS
e according to [22]

~Pmac(ω) =←→χ KS
e (ω) · ~EKS

mac(ω). (3.43)

A comparison of Eqs. (3.38) and (3.43) reveals that(
[←→χ KS

e ]−1(ω)− [←→χ e]
−1(ω)

)
· ~Pmac(ω) = ~Exc

mac(ω). (3.44)

where we used Eqn. (3.41). When using approximations such as RPA and ALDA,

which have no macroscopic component, one implicitly sets ~Exc
mac(ω) = 0 and, as a con-

sequence, Eqn. (3.44) tells us that the true susceptibility is approximated by that of the
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Kohn-Sham system, i.e., ←→χ e(ω) =←→χ KS
e (ω). Here we go beyond this simple approxi-

mation. We note that, nevertheless, even in the RPA and ALDA, the contributions of

δvHxcmic (~r, ω) to ←→χ e are fully taken into account as can be seen from Eqn. (3.42). Since

δvHxcmic (~r, ω) is itself a functional of δ~j(~r, ω) this is done within a self-consistent field

(SCF) calculation. We will now show that macroscopic xc effects can be accounted for

through ~Exc
mac(ω) post-SCF.

The macroscopic xc electric field is related to the induced current through the

TDCDFT tensor xc kernel
←→
f xc(~r, ~r

′, ω) according to

~Exc
mac(ω) =

iω

V

∫
V

d~r

∫
d~r′
←→
f xc(~r, ~r

′, ω) · δ~j(~r′, ω). (3.45)

By neglecting microscopic current components in Eq. (3.45), i.e., substituting δ~j(~r, ω)

by its unit-cell average, we obtain a polarization functional for ~Exc
mac(ω):

~Exc
mac(ω) =←→α (ω) · ~Pmac(ω), (3.46)

where we used Eq. (3.37) and in which we defined

←→α (ω) = −ω
2

V

∫
V

d~r

∫
d~r′
←→
f xc(~r, ~r

′, ω). (3.47)

The substitution of Eq. (3.46) into Eq. (3.44) leads to

[←→χ e]
−1(ω) = [←→χ KS

e ]−1(ω)−←→α (ω). (3.48)

Therefore, for a given ←→α (ω), we can readily calculate ←→χ e(ω) from ←→χ KS
e (ω). Here

we will use the RPA (δvHxcmic = δvHmic) to calculate ←→χ KS
e (ω), i.e., ←→χ KS

e = ←→χ RPA
e .

Since continuum excitons are underestimated and bound excitons and Drude tails are

absent in RPA optical spectra, we will include these effects through α(ω). Whether

the macroscopic dielectric function corresponding to ←→χ e will be an improvement to

that corresponding to ←→χ RPA
e depends of course on the choice for α(ω). We will now

briefly describe how an approximation can be obtained. For simplicity, we assume

that ←→χ e(ω), ←→χ RPA
e (ω) and ←→α (ω) are isotropic, i.e., αij(ω) = α(ω)δij, etc.. Let us

first restrict ourselves to a static α. In this case a bound exciton can only obtained if

for the frequency at which the bound exciton occurs, ωbe, with ωbe smaller than the

band gap, we have [25]

Re[α(ωbe)] =
1

χRPAe (ωbe)
, (3.49)

and Im[α(ωbe)] vanishes or is small.

Although the constaint given in Eq. (3.49) is important, it does not tell us how to

apply it in practice because ωbe is unknown. In fact, we would like to deduce ωbe from

the calculation. Bound excitons are visible in the absorption spectra only of systems

in which screening effects are small, i.e., systems with a small dielectric constant,
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1 < εM(ω = 0) . 2, e.g., LiF and solid argon, Since the RPA dielectric constant

is, in general, close to the exact one, we can also write 1 < εRPAM (ω = 0) . 2. For

these systems and for frequencies below the quasi-particle gap, χRPAe (ω) is a function

that is purely real and increases slowly and monotonically. Since by definition ωbe is

smaller than the band gap, we therefore have that 1 < χRPAe (ωbe)
χRPAe (ω=0)

. 2. The above

considerations suggest the following approximation

εRPAM (ω = 0) ≈ χRPAe (ωbe)

χRPAe (ω = 0)
. (3.50)

Substitution of this approximation into Eq. (3.49) then leads to

α ≡ Re[α(ωbe)] =
1

χRPAe (0)εRPAM (0)
. (3.51)

which can now be calculated from the knowledge of χRPAe (0) alone. The derivation

of Eq. (3.51) can be made more rigorous by studying a model insulator for which the

optical spectrum is dominated by a bound exciton and perform a Taylor expansion

of χRPAe (ω) around ω = 0 for this simple model and evaluate the expansion at ω =

ωbe [43].

We note that an expression similar to Eq. (3.51) was found in Ref. [35] within the

context of TDDFT. What is particularly interesting is that, contrary to the derivation

given above, which assumes a small dielectric constant, the derivation given in Ref. [35]

assumes a large dielectric constant. The fact that, despite this important difference,

the final results are similar is encouraging and hints at a wide applicability of the α

given in Eq. (3.51). Another argument points to the same conclusion. Numerically it

has been shown that an α that is proportional to [εRPAM (0)]−1 can lead to good optical

spectra for semiconductors since εRPAM (0) is a measure of the screening of the interaction

between the electron and the hole it leaves behind in an absorption process [24, 45] .

The main problem with the kernel given in Eq. (3.51) is that it is static. As

a consequence it cannot take into account Drude tails nor the finite width of bound

excitons. A functional that could account for these features is the frequency-dependent

Vignale-Kohn functional [30]. This functional is exact for a slightly inhomogeneous

electron gas [30] and it can describe Drude tails in the optical spectra of metals [32].

However, as mentioned before, this functional is not able to describe excitons. From the

above discussion we conclude that the kernel in Eq. (3.51) and the VK functional are,

to a large extent, complementary. While Eq. (3.51) accounts for continuum excitons

and the position of bound excitons, the VK functional accounts for Drude tails and the

finite width of the bound excitons. Moreover, the static kernel in Eq. (3.51) tends to

zero for metals since screening is complete and as a consequence [εRPAM (ω = 0)]−1 → 0.

It therefore seems natural to combine the two functionals.

Since in this work we focus on the macroscopic part of the xc vector potential we

will consider only the macroscopic average of the VK xc vector potential. Moreover,
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Figure 3.6: The optical absorption spectra of solid Argon and LiF. Solid line (black):

polarization functional (PF); Dashed line (red): RPA; Dotted line (blue): experiment from

Ref. [46] (Ar) and Ref. [47] (LiF).

to arrive at a polarization functional we replace the current density by its unit-cell

average. The resulting kernel is given by [22]

←→
Y V K(ω) =

1

V

∫
V

d~r

(
∇ρ0(~r) · ∇ρ0(~r)

ρ2
0(~r)

fxcT (ρ̄, ω)
←→
I

+
∇ρ0(~r)⊗∇ρ0(~r)

ρ2
0(~r)

[
fxcL(ρ̄, ω)− fxcT (ρ̄, ω)− d2exc

dρ̄2

])
. (3.52)

Here fxcL(T )(ω) is the longitudinal (transverse) xc kernel of the homogeneous electron

gas, exc is the xc energy per volume of the homogeneous electron gas, ρ0(~r) is the

ground-state density and ρ̄ is its average in a unit cell.

We finally obtain the following approximation for ←→α (ω),

←→α (ω) = [←→ε RPA
M (0)]−1[←→χ RPA

e (0)]−1 +
←→
Y V K(ω) (3.53)

where we generalized Eq. (3.51) to a tensor form. Since [←→ε RPA
M (0)]−1 and [←→χ RPA

e (0)]−1

commute, the order of the multiplication is irrelevant.

In Fig. 3.6 we show the optical absorption spectra of solid argon and LiF obtained

with our polarization functional and compare it to the RPA spectra and to experi-

mental results. Solid argon and LiF are typical materials that exhibit strongly bound
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Figure 3.7: The optical absorption spectra of bulk silicon and GaP. Solid line (black):

polarization functional (PF); Dashed line (red): RPA; Dotted line (blue): experiment from

Ref. [48] (Si) and Ref. [49] (GaP).

excitons. We see that these excitons which appear in the experimental spectra around

12 eV (Ar) and 12.5 eV (LiF) are completely absent in the RPA spectra. Our po-

larization functional describes these bound excitons and also accurately reproduces

their position. However, the magnitude of the peaks is overestimated with respect

to experiment. Also other density-functional approaches tend to overestimate these

peaks [34, 40]. Finally, we verify a posteriori whether the approximation in Eq. (3.50)

for systems with a small dielectric constants was justified. For LiF the left-hand side

(LHS) and right-hand side (RHS) of Eq. (3.50) are, respectively, 1.77 and 1.78. For

solid Ar the LHS and RHS of Eq. (3.50) are, respectively, 1.64 and 1.60. We therefore

conclude that Eq. (3.50) was justified.

In Fig. 3.7 we report the optical absorption spectra of bulk silicon and bulk GaP

obtained with our polarization functional and compare it to the RPA spectra and to

experimental results. Silicon and GaP are typical examples of materials for which

the RPA strongly underestimates the first peak which appears in the experimental

spectra around 3.4 eV (Si) and 3.8 eV (GaP). Our polarization functional solves this

problem by including the necessary excitonic effects and the first peak compares well

with experiment both in position and magnitude. Overall, the spectra are very close

to experiment with the exception of the peak around 5.2 eV in the spectrum of GaP

which is overestimated.
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Figure 3.8: The optical absorption spectra of diamond and copper. Solid line (black):

polarization functional (PF); Dashed line (red): RPA; Dotted line (blue): experiment from

Ref. [50] (Diamond) and Refs. [51] and [52] (Cu).

In Fig. 3.8 we report the optical absorption spectra of diamond and copper ob-

tained with the polarization functional and compare it to the RPA spectra and to

experimental results. Diamond is another typical test case since the RPA spectrum

is quite different from the experimental spectrum. Due to the absence of excitonic

effects the RPA spectrum has too much weight at high energy. With our polarization

functional the spectral weight is shifted to lower energy and we obtain a very good

agreement with experiment. While the RPA spectrum of copper accurately reproduces

the part of the spectrum which is due to interband transitions, the Drude tail at low

energy, which is due to intraband transitions, is completely absent. Our polarization

functional accurately describes the Drude tail while maintaining the good agreement

for the interband part.

In conclusion, we presented a fully parameter-free density-functional approach that

gives accurate optical spectra for insulators, semiconductors and metals alike. Our

approach is therefore truly predictive.



36 Research activities

3.3 Gauge-Invariant Calculation of Static and Dy-

namical Magnetic Properties from the Current

Density

In the previous section we limited ourselves to perturbations due to electric fields

and we discussed a purely electric response property, namely the optical absorption

spectra of solids. We will now turn our attention towards response properties that also

have a magnetic component. In this section we will focus on molecules and show that

already for these finite systems interesting problems occur and, in particular, the prob-

lem of obtaining gauge-invariant results. We leave the discussion of the challenges

related to the description of the magnetic response of extended systems to the next

chapter.

corresponding publications

• Gauge-Invariant Calculation of Static and Dynamical Magnetic Properties from

the Current Density

N. Raimbault, P. L. de Boeij, P. Romaniello, and J. A. Berger

Phys. Rev. Lett. 114, 066404 (2015)

• Gauge-invariant Formulation of Circular Dichroism

N. Raimbault, P. L. de Boeij, P. Romaniello, and J. A. Berger

J. Chem. Theory Comput. 12, 3278 (2016)

The definitions of (electro-)magnetic properties, such as the magnetizability and

the optical rotation tensor, are usually obtained from multipole theory. A fundamental

characteristic of these definitions is that they depend on the particular choice of the

point of reference in the multipolar expansion. This point of reference can be easily

confused with the origin of the system of coordinates leading to results that depend on

the choice of this origin. Although the above problem does not affect static properties,

both static and dynamic properties suffer from an artificial dependence on the point of

reference in the vector potential, which represents the external electromagnetic fields,

when a finite basis set is used. Moreover, this artificial dependence corresponds to

a very slow convergence with the size of the basis. As we will show this problem is

related to the fact that the paramagnetic and diamagnetic contributions to magnetic

properties are not treated on an equal footing.

To illustrate this problem we will study the magnetizability and the optical rotation

tensor. The magnetizability tensor
←→
ξ is defined as the constant of proportionality

of the induced magnetic dipole moment δ ~m(ω) and an externally applied uniform

magnetic field ~B(ω):

δmi(ω) =
∑
j

ξij(ω)Bj(ω). (3.54)



3.3. Gauge-Invariant Calculation of Static and Dynamical Magnetic Properties from
the Current Density 37

The optical rotation tensor can be defined in two ways,
←→
G is defined as the constant of

proportionality of the induced electric dipole moment δ~p(ω) and an externally applied

uniform magnetic field ~B(ω) while
←→̃
G is defined as the constant of proportionality of

the induced magnetic dipole moment δ~p(ω) and an externally applied uniform electric

field ~E(ω):

δpi(ω) =
∑
j

Gij(ω)Bj(ω), (3.55)

δmi(ω) =
∑
j

G̃ij(ω)Ej(ω). (3.56)

Performing a multipole expansion around a fixed reference point in the molecular

frame ~rC , leads to the following definitions for δ~p(ω) and δ ~m(ω),

δ~p(ω) =

∫
d~r(~r − ~rC)δρ(~r, ω) =

i

ω

∫
d~rδ~j(~r, ω) (3.57)

δ ~m(~rC , ω) =
1

2

∫
d~r(~r − ~rC)× δ~j(~r, ω), (3.58)

where δ~j(~r, ω) is the induced current density and δρ(~r, ω) is the induced density. In

Eq. (3.57) we used the continuity equation, ∇·δ~j(~r, ω) = iωδρ(~r, ω), and we restricted

ourselves to systems in which charge is conserved. Therefore, while δ ~m(ω) depends

on the choice for ~rC , δ~p(ω) does not. The choice of ~rC determines to what extent

δ~p influences δ ~m(ω). Since ~rC lies in the molecular frame, it ensures that δ ~m(ω) is

independent of the choice of the origin of the coordinate system ~rO.

Due to Faraday’s law, a homogeneous ~B(ω) field is accompanied by a transverse

electric field ~EB(~r, ω) according to∇× ~EB(~r, ω) = iω ~B(ω). It can be written explicitly

as
~EB(~r, ω) =

iω

2
~B(ω)× (~r − ~rG), (3.59)

where ~rG is a fixed reference point in the molecular frame that guarantees that ~EB(~r, ω)

is independent of the choice of the origin of the coordinate system. It points to a

position in the molecule where the electric field vanishes. The electromagnetic fields,
~B(ω) and ~EB(~r, ω), can be represented by the following transverse vector potential,

~A(~r, ω) =
1

2
~B(ω)× (~r − ~rG). (3.60)

Since several ~EB(~r, ω) correspond to the same ~B(ω), both
←→
ξ , and

←→
G depend on

the particular choice for ~EB(~r, ω). This dependence is physical since ~EB(~r, ω) is fixed

by the experimental setup. Instead, the uniform ~E(ω) field in Eq. (3.56) can only

be combined with a static ~B field already present in the ground state. Therefore
←→̃
G

is independent of ~EB(~r, ω). Without loss of generality, we consider a time-reversal

symmetric ground state and we consider an external field for which only the j-th
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component is nonzero. The magnetizability and optical rotation tensors then take the

form:

ξij(~rC , [ ~E
B], ω) =

1

2Bj(ω)

∫
d~r
[
(~r − ~rC)× δ~j(~r, ω)

]
i
, (3.61)

Gij([ ~E
B], ω) =

i

ω

1

Bj(ω)

∫
d~rδ~ji(~r, ω), (3.62)

G̃ij(~rC , ω) =
1

2Ej(ω)

∫
d~r
[
(~r − ~rC)× δ~j(~r, ω)

]
i
. (3.63)

where the dependence on ~rC and ~EB have been made explicit. The above expression

are independent of the choice of the origin of the coordinate system. Equations (3.61),

(3.62) and (3.63) show that the induced current density is the fundamental quantity

from which we can calculate
←→
ξ ,
←→
G and

←→̃
G . Within the linear-response regime it is

given by

δ~j(~r, ω)=

∫
d~r′χ

~jp~jp(~r, ~r′, ω) · ~A(~r′, ω) + ρ0(~r) ~A(~r, ω), (3.64)

where the first term on the right-hand side is the induced paramagnetic current (δ~jp)

and the second term the induced diamagnetic current (δ~jd). Furthermore, ρ0(~r) is the

ground-state density and χ
~jp~jp(ω) is the paramagnetic current-response function given

by

χ
~jp,~jp(~r, ~r′, ω) = lim

η→0+

∑
n

〈Ψ0|~̂jp(~r)|Ψn〉〈Ψn|~̂jp(~r′)|Ψ0〉

×
[

1

ω − (En − E0) + iη
− 1

ω + (En − E0) + iη

]
, (3.65)

where Ψn are the exact eigenstates and En the exact eigenvalues of the unperturbed

Hamiltonian, η is an infinitesimal that ensures causality, and the paramagnetic current

operator ~̂jp(~r) is defined as ~̂jp(~r) = − i
2

∑
i(∇~riδ(~r − ~ri) + δ(~r − ~ri)∇~ri).

From Eq. (3.64) we see that the paramagnetic and diamagnetic currents are not

treated on an equal footing. While the diamagnetic current only depends on the

ground state, the paramagnetic current depends on all (ground and excited) states.

The size of the basis set used determines not just the quality of the eigenstates but

indirectly also the dimension of the excited-state space included in the sum-over-states

expansion in Eq. (3.65). Therefore δ~jp(~r, ω) will converge much slower with the size

of the basis set than δ~jd(~r, ω). The result is an incomplete cancelation of the gauge

dependence of δ~jp(~r, ω) and δ~jd(~r, ω). Therefore an artificial dependence on ~rG will

arise in the calculation of the current density using a finite basis set. Let us illustrate

this problem by looking at the limit ω → 0. In this limit the current density can be
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written as

δ~j(~r, 0) =
1

2

{∫
d~r←→χ jpjp(~r, ~r ′, 0) · ~B(0)× ~r ′ + ρ0(~r) ~B(0)× ~r

−
[∫

d~r ′←→χ jpjp(~r, ~r ′, 0)− ρ0(~r)
←→
I

]
︸ ︷︷ ︸

6=0 for finite basis set

·[ ~B(0)× ~rG]

}
(3.66)

where we used Eqs. (3.60) and (3.64). For a finite basis there is a linear dependence

on ~rG because the quantity within the square bracket does not vanish for a finite basis

set.

The problem shown in Eq. (3.66) also suggests a solution. Since the exact current

density is gauge invariant, i.e., independent of ~rG, the quantity within the square

brackets should be zero when a complete basis set is used. We obtain the following

sum rule from this observation,

ρ0(~r)δij =

∫
d~r ′χ

jpjp
ij (~r, ~r ′, 0). (3.67)

In other words, integrating out one of the spatial variables of the paramagnetic current-

density response function at ω = 0 leads to a tensor with the ground-state density on

its diagonal while its off-diagonal elements vanish. We can now use this sum rule to

put δ~jp(~r, ω) and δ~jd(~r, ω) on equal footing by rewriting δ~jd(~r, ω) as

δ~jd(~r, ω) = −
[∫

d~r′χ
~jp~jp(~r, ~r′, 0)

]
· ~A(~r, ω). (3.68)

We will call this relation the diamagnetic-current sum rule. We note that Eq. (3.67)

can also be derived explicitly [53, 54]. We conclude that the diamagnetic current

density can be exactly rewritten in terms of the static paramagnetic-current response

function. The current density in Eq. (3.64) can therefore be rewritten according to

δ~j(~r, ω) =

∫
d~r′χ

~jp~jp(~r, ~r′, ω) · ~A(~r′, ω)−
[∫

d~r′χ
~jp~jp(~r, ~r′, 0)

]
· ~A(~r, ω). (3.69)

Using the diamagnetic-current sum rule in Eq. (3.68) for the diamagnetic current the

total current in the limit ω → 0 is written as

δ~j(~r, 0) =
1

2

∫
d~r′χ

~jp~jp(~r, ~r′, 0) · ~B(0)× (~r′ − ~r), (3.70)

which is independent of the gauge origin ~rG as it should.

We applied this approach within time-dependent current-density-functional theory

(TDCDFT) which is a numerically efficient approach to calculate the current density.

We used the local-density approximation (LDA) in the ground-state calculation and

the adiabatic local-density approximation (ALDA) for the response calculation. In Ta-
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Table 3.5: Convergence behavior of the isotropic magnetizability (in a.u.) of C2H4 with

the size of the basis set using the sum rule (ξ(ω)) and without using the sum rule (ξ̃(ω)).

ξp(= ξ̃p) is obtained from the paramagnetic current while ξd and ξ̃d are obtained from the

diamagnetic current.

Basis set ω = 0 ω = 0.07732 a.u.

ξ̃ ξ ξp = ξ̃p ξ̃d ξd ξ̃ ξ

ASZ -6.57 -3.22 7.41 -13.98 -10.63 -6.29 -2.91

ADZ -6.39 -3.47 7.63 -14.02 -11.11 -6.10 -3.16

ADZP -5.37 -4.14 8.58 -13.95 -12.72 -5.07 -3.80

ATZP -5.29 -4.16 8.66 -13.95 -12.82 -4.98 -3.82

ATZ2P -5.23 -4.12 8.65 -13.89 -12.77 -4.93 -3.79

QZ4P -4.20 -4.16 9.66 -13.86 -13.82 -3.90 -3.83

ble 3.5 we report the convergence behavior of the isotropic magnetizability (ξ(ω)) of

C2H4 with the size of the basis set, using simple augmented basis sets[55] and the large

QZ4P basis, for ω = 0 and ω = 0.07732 a.u. which is the sodium D-line frequency. We

compare the results obtained using the current of Eq. (3.69) (labeled ξ) with those ob-

tained using Eq. (3.64) (labeled ξ̃). We see that without using the diamagnetic-current

sum rule convergence is extremely slow. Even for the ATZ2P basis [55] the values for

ξ̃ are far from converged when we compare with the values obtained with the large

QZ4P basis. Instead, the values for ξ are already converged to within 1% using an

ADZP basis. This is true for both the static and the frequency-dependent magnetiz-

ability. Therefore, the reported values for the magnetizabilities in the remainder of this

work are obtained with an ADZP basis set unless stated otherwise. We also report

the paramagnetic and diamagnetic contributions to the magnetizability separately.

They were obtained with the paramagnetic and diamagnetic current, respectively. We

observe that the paramagnetic contribution converges slowly while the diamagnetic

contribution obtained without sum rule converges rapidly. As a consequence, the to-

Table 3.6: Static isotropic magnetizabilities of various molecules (in a.u.). Comparison of

the values obtained with our approach and LDA magnetizabilities reported in the literature.

We also compare to experimental values.

Molecule ξ(ω = 0)

this work other works experiment

H2O -3.01 -3.05[56] -2.76 ± 0.38[57]

NH3 -3.73 -3.78[56] -3.68 ± 0.38[58]

C2H4 -4.14 -4.20[56] -4.23± 0.16[58]

Benzene -11.70 -11.56[59] -11.53 ± 0.13 [60]

Pentacene -41.85 - -40.56[61]
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Figure 3.9: The real part of ξ(ω) for benzene.

tal magnetizability converges as slowly as the paramagnetic part. Instead, when we

calculate the diamagnetic part using the sum rule both contributions converge equally

slowly but with opposite sign. Therefore, thanks to a systematic error cancelation,

the total magnetizability converges rapidly. Our converged value for the static mag-

netizability of C2H4 also compares well with a recently published value, i.e., −4.20

a.u..[56]

In table 3.6 we show the static isotropic magnetizabilities of various molecules

obtained with our approach and compare them to LDA magnetizabilities reported in

the literature as well as to experimental values. We observe that our values are in

good agreement with the magnetizabilities reported in the literature. As a proof of

principle that with our approach we can calculate magnetizabilities over a wide range

of frequencies, we plot in Fig. 3.9 the real part of ξ(ω) for benzene. To ensure that

enough unoccupied orbitals are included to describe the high-frequency range we used

a QZ4P basis set. We used a damping factor of 0.007 a.u.. Unfortunately, there is no

experimental data is available to compare with.

Using the same approach we can calculate the optical rotation tensor from which

circular dichroism (CD) spectra can be deduced. The CD spectrum for non-oriented

systems can be obtained from the molar circular dichroism ∆ε (in l mol−1cm−1) which

is defined by

∆ε(ω) = 4.0712× 10−10ν̄2Im[β(ω)] , (3.71)

in which ν̄ = ω/(2πc) is the wavenumber (in cm−1). The optical rotation parameter

β(ω) (in a.u.) is given by

β(ω) =
1

3iω
Tr[G] = − 1

3iω
Tr[G̃]. (3.72)
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Figure 3.10: The circular dichroism spectra for R-methyloxirane. Solid line: ALDA; dashed

line: experiment from Ref. [62]

We note that β does not depend on ~rG nor ~rC if Eq. (3.64) is used, even for a finite

basis set, because it is proportional to the trace of G (or G̃). However, it suffers from

the same slow convergence with basis-set size as the current density. The diamagnetic-

current sum rule solves this problem.

In Figs. 3.10, 3.11, and 3.12 we compare our gauge-invariant CD spectra of R-

methyloxirane, trans-2,3-dimethyloxirane (DMO), and α-pinene, respectively, with

those obtained in experiment [62–64]. Since these experiments were done in the gas

phase, the comparison is not hampered by effects due to the solvent. To facilitate

comparison with experiment the theoretical results were blueshifted by 1.3 eV (R-

methyloxirane), 1.25 eV (DMO) and 0.85 eV (α-pinene) and a damping of 0.1 eV

(R-methyloxirane and DMO) and 0.2 eV (α-pinene) was used to simulate broadening

effects in the experiment. We see that, in general, the ALDA circular dichroism spec-

tra are in good agreement with those obtained in experiment. For R-methyloxirane

the differences with experiment are mainly due to vibrational excitations which were

not taken into account in the calculations. In the case of DMO the qualitative agree-

ment with experiment is also good, but the quantitative discrepancy is not only due

to the omission of vibrations. The spectrum could probably be improved by using a

more accurate exchange-correlation functional, either in the response calculation or

in the ground state (or both). In the case of α-pinene the agreement of the ALDA

spectrum with experiment is excellent up to 7 eV and differences are mainly due to

vibrations. For higher frequencies the quantitative agreement could also be improved

by using a better functional. In Table 3.7 we report the specific rotations at the

sodium D-line frequency ([α]D) for several molecules. We note that specific rotations

are also implicitly contained in the CD spectra since the specific rotation is related
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Figure 3.11: The circular dichroism spectra for DMO. Solid line: ALDA; dashed line:

experiment from Ref. [63]

to the Kramers-Kronig transform of the CD spectra evaluated at a given frequency.

We compare our results to the ALDA results reported in Ref. [65]. We see that, in

general, our results are in good agreement with the values of Ref. [65]. Discrepan-

cies may be due to the use of different geometries. We also compare to experimental

values. There is a reasonable to good agreement with experiment with the exception

of R-methyloxirane for which the ALDA gives a specific rotation that is much too

small. It is important to note that, nevertheless, the CD spectrum of R-methyloxirane

in Fig. 3.10 compares very well with experiment. Therefore we argue that the calcu-

lation of specific rotations should always be supplemented by CD spectra since the

latter contain much more information. Finally, in Table 3.8 we demonstrate the fast

Table 3.7: Specific rotations at the sodium D-line frequency ([α]D) of several molecules

calculated within the ALDA.

Molecule [α]D
this work other work [65] experiment

R-methyloxirane 0.4 0.8 18.7 [66]

DMO -65.9 -65.5 -58.8 [67]

trans-2,3-dimethylthiirane 141.8 125 129.0 [68]

3-methyl-cyclobutene -189.8 -193.4 -176.0 [69]

trans-1,2-dimethylcyclopropane -55.7 -56.8 -42.0 [70]

α-pinene 32.7 46.1 51.6 [71]

pentahelicene -3246.2 -3007.5 -2160.0 [72]
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Figure 3.12: The circular dichroism spectra for α-pinene. Solid line: ALDA; dashed line:

experiment from Ref. [64]

convergence of our method with the size of the basis set for a specific rotation of DMO

and α-pinene. We compare results obtained with simple augmented basis sets[55] to

a large even-tempered basis set (ET-QZ3P-3DIFFUSE).

In conclusion, we derived a simple framework to efficiently calculate gauge-invariant

static and dynamical magnetic properties. Our method can be used in combination

with any ab initio theory from which the current density can be obtained. We illus-

trated our approach by applying it to TD-current-DFT for the calculation of magne-

tizabilities and circular dichroism.

Table 3.8: Convergence with basis-set size of the specific rotation at the sodium D-line

frequency ([α]D) for DMO and α-pinene.

Basis set [α]D
DMO α-pinene

ADZ -58.4 16.1

ADZP -68.3 27.0

ATZP -61.3 30.9

ATZ2P -61.0 32.3

ET-QZ3P-3DIFFUSE -65.9 32.7
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3.4 Unphysical and Physical Solutions in Many-

Body Theories: from Weak to Strong Corre-

lation

Many of the results obtained in the previous sections are the result of self-consistent-

field (SCF) calculations in which the potentials depend on the quantity of interest and

vice versa. However, in general, this constitutes a non-linear problem with more than

one solution. These solutions might be physical but also unphysical. As a consequence,

the result of an SCF approach will depend on the chosen iterative scheme. This raises

the question which iterative scheme leads to a physical and which scheme to an unphys-

ical solution. In this section we will address the general problem of multiple solutions

for the one-body Green’s function using a very simple model.

corresponding publications

• Solution to the many-body problem in one point

J. A. Berger, P. Romaniello, F. Tandetzky, B. Mendoza, C. Brouder, and L.

Reining

New J. Phys. 16, 113025 (2014)

• Unphysical and Physical Solutions in Many-Body Theories: from Weak to Strong

Correlation A. Stan, P. Romaniello, S. Rigamonti, L. Reining, and J. A. Berger

New J. Phys. 17, 093045 (2015)

Many-body theories rely heavily on self-consistent equations that are constructed

in terms of the physical quantities of interest themselves, such as the density or the

Green’s function. Consequently, the calculation of important properties such as total

energies or photo-emission spectra requires the solution of nonlinear equations which

have physical solutions but also unphysical solutions. Let us take the example of

many-body perturbation theory (MBPT) [73], where the interacting Green’s function

G is given as a functional of the non-interacting Green’s function G0 and the bare

Coulomb interaction vc. An important idea of MBPT is to avoid a possibly ill-behaved

perturbation expansion of G in terms of vc and G0 using Dyson equations. These are

integral equations that describe the propagation of particles in terms of an effective

potential or interaction. For the one-body Green’s function, for example, this effective

potential, which is the kernel of the Dyson equation, is the self-energy Σ. The power

of this approach resides in the fact that even a low-order approximation for Σ yields

contributions to all orders in vc. Following Luttinger and Ward [74], Σ is usually

expressed as a functional of G instead of G0. However, this makes the Dyson equation

non-linear, which leads to multiple solutions [75, 76]. This is a very fundamental and

general problem. It is different from usual problems of convergence or local minima [77–

80]. For example, convergence problems can be readily detected from the oscillatory
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behavior of the results. The appearance of fully converged, but unphysical results,

instead, is much more subtle and dangerous, and it has important consequences. It is

the topic of this section.

To analyze the problem we use the so-called one-point model (OPM) [81–83]. This

model is not system specific and can be solved exactly, such that the physical solution

is well defined. It represents important structural aspects of the many-body problem,

while collapsing all arguments of the Green’s functions, self-energy, and the interaction

to one point, making the equations scalar. In Ref. [75], an approximate version of

the OPM was used to discuss multiple solutions within the framework of the GW

approximation [9] to the self-energy.

In the present work we use the OPM without approximations, which simulates the

full many-body problem. The exact OPM Green’s function was derived in Ref. [84]

from the one-point equivalent of the equation of motion of G, expressed as a functional

differential equation [85]. The exact solution reads

y[y0, u] =
y0

1 + 1
2
uy2

0

and s̃[y0, u] = −1

2
uy0, (3.73)

where y, y0, and u represent G, G0, and vc, respectively. The self-energy s̃ is deter-

mined from the Dyson equation s̃[y0, u] = y−1
0 − y−1[y0, u]. In Eq. (3.73) s̃ is given

as a functional of the bare interaction u and the noninteracting Green’s function y0.

Usually, however, one works with the self-energy given as a functional of the dressed

Green’s function, s[y, u]. Then the Dyson equation reads

y = y0 + y0s[y, u]y. (3.74)

This is, in general, a non-linear equation. We first consider the HF self-energy, which

in the OPM is sHF[y, u] = −1
2
uy. Let us look at the map G0 → G, i.e., the usual

case, where y0 is set by the system, and one searches y. The Dyson equation has two

solutions,

Y ±HF =
1

V

[
−1±

√
1 + 2V

]
, (3.75)

with the rescaled quantities Y = y/y0 and V = uy2
0. Here Y +

HF is the physical solution,

since it connects smoothly to Y0 = 1 at V = 0, and Y −HF is an unphysical solution, that

diverges for vanishing interaction. Both are shown in the inset of Fig. 3.13. In real

problems Dyson equations are solved iteratively. Two possible iteration schemes are:

Y (n+1) =
2

2 + V Y (n)
(I); Y (n+1) =

2

V Y (n)
− 2

V
(II). (3.76)

While neither of the two schemes has convergence problems when iterating, only

scheme (I) converges to the physical solution, whereas scheme (II) converges to the

unphysical solution. This happens because the iteration leads to the continued fraction

representation of the square root [75] in Eq. (3.75),

√
1 + x = 1 +

x/2

1 + x/4

1+
x/4
1+···

, (3.77)
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Figure 3.13: One-point model (OPM): Z±0 as a function of the interaction V . Squares (red):

Z−0 and solution of scheme (A); circles (blue): Z+
0 and solution of scheme (B); continuous

line (orange): the exact solution Y0. Inset: Y ±HF as a function of the interaction V .

for x = 2V . The sign of the square root is determined by the continued fraction in

the iterative procedure.

So far we have looked at the map G0 → G. We now focus on the inverse map

G0 ← G. This map is needed in problems of embedding, where one optimizes an

auxiliary quantity G0 in order to produce certain properties of a real system (contained

in G). The inverse map is also crucial when one wants to express a functional in terms

of dressed instead of bare quantities. The most prominent example is the Luttinger-

Ward (LW) functional, where the self-energy is given in terms of G instead of G0

[74, 86–88]. For the LW functional to be properly defined, the map G0 ← G should

be unique.

Within the OPM, consider a system with the bare Green’s function y0, and with the

exact, interacting Green’s function y given by Eq. (3.73). We now fix y and examine

whether the inverse map z0 ← y unambiguously leads to z0 = y0. With the exact

self-energy s̃[z0] = −1
2
uz0 of Eq. (3.73), the exact Dyson equation of this problem

reads

z0 = y +
1

2
uyz2

0 , (3.78)

in which y is known and z0 is to be determined. This equation has again two solutions:

z±0 =
1

uy

(
1±

√
1− 2uy2

)
⇒ Z±0 =

2 + V ±
√

(2− V )2

2V
, (3.79)

where Z0 = z0/y0 and we used Eq. (3.73). The square root in Eq. (3.79) equals the
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absolute value |2 − V |. Because 2 − V changes sign at V = 2, the physical solution

Y0 = 1 is obtained by Z−0 for V < 2 and by Z+
0 for V > 2 (see Fig. 3.13). In other

words neither of the two solutions gives Z0 = Y0 for all V . As a consequence one has

to change sign in front of the square root in Eq. (3.79) at V = 2. This has important

consequences for the iterative solution of Eq. (3.78): because scheme (I) yields the

square root with positive sign, to obtain the map G0 ← G we need two different

iteration schemes : one for 0 < V < 2 and the other for V > 2. This is different from

the map G0 → G, where one solution gives the physical solution for all V , and hence

a single iteration scheme suffices.

The need to change iteration scheme is a serious problem. Indeed, Kozik et al. [89]

pointed out that different iteration schemes, applied to Hubbard and Anderson models,

lead to different solutions which cross at a certain interaction. Our OPM results

provide the missing explanation: keeping the labels (A) and (B) of [89], the two

iteration schemes correspond to

1

Z
(n+1)
0

=1 +
1

2
V (1− Z(n)

0 ) (A), (3.80)

1

Z
(n+1)
0

=− 1− 1

2
V (1− Z(n)

0 ) +
2

Z
(n)
0

(B). (3.81)

We report the results in Fig. 3.13. Scheme (A) converges to the physical solution for

V < 2 and to the unphysical solution for V > 2. Instead, scheme (B) converges to

the unphysical solution for 2/3 < V < 2 and to the physical solution for 2 < V < 6.

These results are strictly analogous to those obtained by Kozik et al. for Hubbard and

Anderson models. They can be understood from the fact that scheme (A) creates a

continued fraction with positive square root, whereas in scheme (B) the sign of the

continued fraction is changed.

This sign problem is a priori a disaster because there is no unique prescription

of how to avoid unphysical solutions. The OPM highlights the reducible polarizabil-

ity [84]
χ

χ0

= 2
2− V

(2 + V )2
, (3.82)

as critical quantity that changes sign at the crossing V = 2. At the same time, for

V > 2 the perturbation expansion of y, in Eq. (3.73), diverges. Our result indicates

that one should in principle inspect the exact two-particle correlation function as a

function of the interaction to detect problems of perturbation theory. This is in line

with Ref. [90] in which a breakdown of perturbation theory is linked to an eigenvalue

of the two-particle correlation function that crosses zero, becoming negative.

Inverting a map between functionals requires a careful definition of their do-

main [91, 92]. The multiple solutions are the price to pay for the fact that we have not

considered this definition in the above discussion. For a system with a non-degenerate

ground state this can be understood as follows: if there were two solutions for G0 ← G,



3.4. Unphysical and Physical Solutions in Many-Body Theories: from Weak to
Strong Correlation 49

10 20 30 40 50 60 70 80 90 100

V

0

0.1

0.2

0.3

0.4

0.5

Y

0 1 2 3 4
0

0.5

1

1.5

2

2.5
Exact

HF

SIN-HF

Figure 3.14: One-point model (OPM): Y as a function of the interaction V for 4 < V < 100.

Solid line (black): exact solution; dotted line (blue): Hartree-Fock (HF); dashed line (red):

strong-interaction HF (SIN-HF). Inset: Y as a function of V for 0 < V < 5.

one could obtain the same dressed Green’s function from two different G0 and, hence,

from two different external potentials. Since the diagonal of G is the density, the

Hohenberg-Kohn theorem [1] states that there can only be one external potential,

and hence one G0, corresponding to each G. This means that any additional solution

G0 is unphysical, in the sense that it cannot be constructed from the solution of a

one-body Schrödinger equation. Equivalently, it cannot be written as a sum of simple

poles, each with a strength normalized to one. By imposing this condition, one can

therefore eliminate unphysical solutions. In the OPM this trivially corresponds to the

requirement Z0 = 1, which already implies the solution. A more general discussion on

the definition of the domain can be found in Ref. [92]. It should be noted that when

G0 is an embedding Green’s function the discussion is more complicated, because one

searches for a fictitious G0 with a frequency dependence that can differ from that of a

G0 resulting from a static potential.

With the map G0 ← G one can construct the exact self-energy as a functional of

G. Using Eq. (3.79) in the exact self-energy given in Eq. (3.73) we obtain

s±[y, u] = − 1

2y

(
1±

√
1− 2uy2

)
(3.83)

= − 1

2y
∓ 1

2y
± 1

2
u

[
y +

uy3

2
+
u2y5

2
+ ...

]
. (3.84)

We note that the Luttinger-Ward functional in Eq. (3.83) is unique, but in order to

calculate it one has to change the sign. The Dyson equation with the two self-energies
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of Eq. (3.83) leads to two different Green’s functions: the physical solution given in

Eq. (3.73) is obtained from s− for V < 2 and from s+ for V > 2, and y = 0 from

s+ for any V . Therefore, for weak interaction using the exact self-energy one obtains

only one solution, the physical one, contrary to, e.g., the HF approximation. We note

that at the point where s+ and s− meet (at V = 2) the derivative ds±/dy diverges.

This could explain the divergence of δΣ/δG observed in Ref. [90] in the paramagnetic

DMFT solution of a Hubbard model. Note that this divergence occurs at the point

where one of the eigenvalues of the polarizability crosses zero.

In Eq. (3.84) we Taylor expanded the square root. The convergence radius is

infinite, since 0 ≤ 2uy2 ≤ 1, as can be shown using Eq. (3.73). Interestingly, the sum

of the first two terms in (3.84) (upper sign) is the first term of an expansion of the

self-energy for strong interaction [75]. The remaining terms constitute an expansion

in terms of a quantity that is proportional to u and converges for all physical y. This

means that one can use perturbation theory over the whole interaction range, but in

two different ways for the two different regimes. To lowest order, this corresponds to

HF, sHF = −1
2
uy, for weak interaction, and sSIN−HF = − 1

y
−sHF, for strong interaction.

We call this functional strong-interaction HF (SIN-HF). Both self-energies yield two

solutions. We report the physical solution for these two approximations in Fig. 3.14.

While HF clearly fails for strong interaction, SIN-HF is exact in the strong interaction

limit and performs well for V > 4, while it is worse than HF for V < 4. It is important

to note that the physical SIN-HF solution is obtained for V > 1 with the iteration

scheme 1/Y (n+1) = 1/Y (n) + 1
2
V Y (n) − 1. Indeed, the appropriate iteration scheme

depends on the formulation of the problem. We suggest the OPM as a powerful tool

to examine which scheme one should use for a given problem and interaction range.

To summarize, we have demonstrated that with a simple but general one-point

model one can understand and solve structural problems of many-body perturbation

theory. In particular, one can use it sort out the multiple solutions of the non-linear

Dyson equation by choosing the appropriate iteration scheme. We have shown that for

the map G0 → G a single iteration scheme suffices to obtain the physical solution for all

interaction strengths. Instead, for the inverse map G0 ← G one has to change iteration

scheme at the interaction strength at which the reducible polarizability changes sign

and perturbation theory of G in terms of G0 starts to diverge. Nonetheless, we have

proved that even for strong interaction one can use a perturbative expression for the

self-energy in terms of G, which differs from the usual LW functional.



Chapter 4

Projects

In this last chapter I will present some of the projects planned for the coming years.

I will focus on the projects for which funding has been received (section 1), confirmed

(section 2) or requested (section 3), since these projects will have the priority. In

section 4.1 I will discuss a natural continuation of the research described in section

3.3 where we proposed an efficient way to calculate magnetic response properties of

molecules. We would like to extend this approach to extended systems described by

periodic boundary conditions. The project in section 4.2 is a continuation of the

developments described in section 4.1. Its goal will be to predict topological insulators

from the magnetic response of a solid due to an electric field. Finally, in section 4.3

we will outline a project to describe resonant inelastic x-ray scattering (RIXS).

51
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4.1 The magnetization of a periodic solid

In section 3.3 we developed a general approach to describe magnetic properties of

finite systems. The aim of this project will be to extend the theory developed for finite

systems to extended systems.

For the description of extended systems it is convenient to apply periodic boundary

conditions (PBC). However, when using PBC, the polarization and the magnetization

can no longer be defined as dipole moments per unit volume because the position

operator that appears in the standard definitions of the electric and magnetic dipole

moments, i.e.,

~p(t) =

∫
d~r~rρ(~r, t) (4.1)

~m(t) =
1

2

∫
d~r~r ×~j(~r, t), (4.2)

is not well defined in the thermodynamic limit. Moreover, using PBC, the surface of

the system is artificially removed, which complicates the description of induced fields

due to a surface density (polarization) or a surface current (magnetization) . These

surface densities are themselves due to the reaction of the system to the external field

(see Figs. 4.1 and 4.2). The description of the induced fields is still possible, but

only if the surface effects can be described in terms of quantities related to the bulk

material. For example, we can show that in the case of polarization the effects of

charges accumulated on the surface can be expressed in terms of the current density

in the bulk material using the continuity equation for the density ρ(~r, t),

∂

∂t
ρ(~r, t) +∇ ·~j(~r, t) = 0. (4.3)

With this equation we can transform the expression for the electric dipole moment in

Figure 4.1: An external electric field ~Eext is applied to a sample. As a result, the electrons

will move and create a charge defect (−σ) on one side of the sample, and a charge excess

(+σ) on the opposite side. This difference in potential induces an electric field ~Eind which

is opposite to the external field.



4.1. The magnetization of a periodic solid 53

Figure 4.2: An external magnetic field ~Bext is applied to a sample. As a result, the

electrons will move and create a current density ~jsurf on the surface. The latter then induces

a magnetic field ~Bind which is opposite to the external field.

terms of the current of the bulk material:

~p(t) =

∫
d~r~rρ(~r, t) =

∫ t

t0

dt′
∫
d~r~j(~r, t′), (4.4)

where for simplicity we assumed that ~p(t0) = 0. This allows us to define the polariza-

tion ~P (t) in extended systems as

~P (t) =
1

V

∫ t

t0

dt′
∫
V

d~r~j(~r, t′), (4.5)

with V the volume of a unit cell. Therefore, knowledge of the current density in a

unit cell is sufficient to calculate the polarization. The current can be obtained from

many approaches, an efficient method to obtain the current density is time-dependent

current-density-functional theory (TDCDFT). This is the approach we used in section

3.2 to evaluate the macroscopic polarization of solids from which we obtained optical

absorption spectra.

The problem is more complicated in the case of the magnetization where there

is a surface current (see Fig. 4.2). Several solutions have been proposed, but these

approaches only deal with systems that are described by a one-body Hamiltonian [93–

97]. We want to have a general description that is also valid for many-body systems.

Moreover, we would like to determine the bulk quantity that is sufficient to calculate

the magnetization, i.e.,, the equivalent of the bulk current density in the case of the

polarization. With this local bulk quantity we can formulate an efficient density-

functional type of approach.

The strategy we will use in this project is similar to that used for the polarization

because we will start from the general definition given in Eq. (4.2) for the magnetic
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dipole moment. However, instead of using a continuity equation we will evaluate the

current density as the expectation value of the the many-body current operator which

is defined as
~̂j(~r) =

1

2

∑
i

[~v(~ri)δ(~r − ~ri) + δ(~r − ~ri)~v(~ri)], (4.6)

where ~v(~ri) = −i[~ri, Ĥ] is the velocity operator with Ĥ the many-body Hamiltonian

of the system. We can arrive at an expression for the magnetic dipole moment that is

independent of the position operator by inserting a complete set of states in Eq. (4.2)

and using the following identity

〈Ψ0|~ri|Ψn〉 = i
〈Ψ0|~v(~ri)|Ψn〉
En − E0

En 6= E0, (4.7)

in which |Ψn〉 are many-body states and En their corresponding energies, i.e., the

eigenstates and eigenvalues of Ĥ. The resulting expression will be general and can be

applied to both open and periodic boundary conditions.

Preliminary investigations seem to indicate that to obtain a correct expression for

the magnetization at zero temperature T we have to take the expectation value of the

current operator at finite temperature within the grand canonical ensemble and then

take the limit T → 0, instead of working from the start at T = 0.
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4.2 Topological phase prediction from the magneto-

electric effect

The project described in this section aims to provide a theory and a numerical tool

for the prediction of topological insulators from first principles. The phase of an insula-

tor (ordinary or topological) can be determined from the orbital magnetic polarizability

which is the response function related to the polarization induced by a magnetic field.

Experimentally topological phases have already been determined in this way, but there

is no first-principles theory available to predict these phases. The goal of this project is

to fill this gap by using linear-response theory to formulate a general expression for the

calculation of the orbital magnetic polarizability in bulk systems described by periodic

boundary conditions.

A topological insulator (TI) is a material that is insulating in its interior but has

exotic conducting states on its surface. As a consequence electrons can only circu-

late along the surface of a TI. More importantly, the conducting surface states are

topologically protected, which means that they are insensitive to the scattering by

(nonmagnetic) impurities on the surface. This feature makes TI’s a promising can-

didate for the discovery of novel phases with possible applications in spintronics and

quantum computing. Topological insulators have recently attracted much attention,

in particular thanks to the Nobel Prize which was awarded last year to Thouless,

Haldane and Kosterlitz for theoretical discoveries of topological phase transitions and

topological phases of matter [1]. There have already been several experimental real-

izations of TI’s, see, for example, Refs. [98, 99]. A schematic representation of the

band structure of a TI is given in Fig. 4.3. Although there are some features which

are thought to be important for a material to have a topological phase, in particular

strong spin-orbit coupling, there is no recipe that tells us whether a material has a

topological phase or not. Therefore, it is important to search for possible indicators

Figure 4.3: (source: wikipedia): Schematic representation of the band structure of a

topological insulator. The band gap of the bulk states is crossed by surface states which are

topologically protected



56 Projects

of topological phases.

A phase of matter can be defined as the response of a system with respect to an

external perturbation. For example, a metal has a non-zero conductivity in response

to an applied external field at low temperature. The pertinent response quantity to

distinguish an ordinary insulator from a topological insulator can be obtained using

so-called axion electrodynamics in which the usual Maxwellian Lagrangian is supple-

mented by the scalar product of the electric and the magnetic field, i.e., ~E · ~B [100].

The coefficient that corresponds to this additional term is called the axion angle and

has only two values that are compatible with time-reversal symmetry; it is either zero,

which corresponds to an ordinary insulator, or it is equal to π, which indicates a

(strong) topological insulator.

How can the axion angle be measured or calculated?

The axion angle can be linked to the magneto-electric polarizability which is the

response function of the magneto-electric effect in which an applied electric field gener-

ates a magnetic field or vice versa. In the case of a TI one also speaks of the topological

magneto-electric effect (TME). The axion angle is therefore also referred to as the or-

bital magnetic polarizability angle. Thus, from the measurement or calculation of the

magneto-electric polarizability one can deduce the axion angle and therefore deter-

mine the topological phase. Experimentally this has already been realized; optical

measurements can be used to identify topological insulators [101, 102]. Our goal is to

provide the missing first-principles theory and computational tool.

Current first-principle tools focus solely on the calculation of the band structure

to identify possible topological insulators. While a normal insulator has an s-like

conduction band above the p,d-like valence bands, a topological insulator has an s-like

conduction band below the p,d-like valence bands [103]. For this reason one says that

TI’s exhibit band inversion since the usual band order of normal insulators is inverted

in TI’s. However, the band inversion only establishes that there is a gapless state at the

surface but it does not guarantee that the surface conduction states are topologically

protected, and therefore insensitive to impurities. It is therefore a necessary condition

but it is not a sufficient condition for the determination of a TI.

Besides this fundamental problem there are also several other disadvantages re-

lated to the determination of TI’s through band structure calculations. Thanks to

its numerical efficiency theoreticians mainly use Kohn-Sham density-functional theory

(KS-DFT) to calculate the band structure of a material. However, the Kohn-Sham

band structure is not equal to the true band structure, not even in principle. KS-DFT

has led to many false positives when applied to the prediction of TI’s [103]. The false

positives were discovered by performing accurate many-body calculations to obtain

the band structure. Unfortunately, these calculations are only possible for systems

with few electrons due to the their large numerical cost.

In this project, we therefore propose to calculate directly the appropriate response
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function, i.e., the (topological) magneto-electric polarizability, from which the axion

angle can be obtained. To achieve this goal we we will

1. Formulate a general theory for its calculation. Currently an explicit expression

has only been derived for systems of noninteracting electrons [104, 105]. Such a

general expression can be obtained from linear-response theory since the axion

angle is related to the orbital magnetic polarizability which is a linear-response

quantity. We will take particular care to ensure that this expression only con-

tains bulk quantities, i.e., quantities that are consistent with periodic bound-

ary conditions (PBC). This is crucial since solids are most efficiently described

within PBC. This problem is related to the one described in the previous section.

2. Validate this new expression by first applying it to the Fu-Kane-Mele model [106]

which models a topological insulator on a diamond lattice and compare our re-

sults to those in the literature.

3. Implement our theory in a first-principles computer code that is already capable

of calculating linear-response quantities. We will test our this numerical tool on

materials which have experimentally been shown to be TI’s. The numerical tool

thus obtained can then be used for the prediction of new TI’s.



58 Projects

4.3 Theoretical description of resonant inelastic x-

ray scattering

The aim of this project is to develop the theory and software for the predictive de-

scription of Resonant Inelastic X-ray Spectroscopy (RIXS), an important experimental

tool to probe elementary excitations in solids.

The elementary excitations contain the signature of many physical and chemical

properties of materials and hence are key quantities for the comprehension of a system.

Understanding an excitation spectrum of a material means understanding the material.

The great technological advances of the ultimate-generation synchrotron radiation

facility, giving high brilliance light in the ultraviolet, soft- and hard-x-rays regions,

coupled with extremely tunable beams, makes it nowadays possible to measure directly

the excitation spectrum of solids by means of Resonant Inelastic X-ray Scattering

(RIXS). RIXS is an emerging technique that has encountered remarkable progress

in the last decade thanks to its unique capability of probing the energy spectrum of

elementary excitations and their dispersion in the reciprocal space [107]. The physical

picture of RIXS can be summarized as follows (see Fig. 4.4): i) an incoming photon

promotes a core electron to an empty conduction state; ii) a different electron from

the valence region decays and annihilates the core hole. The net result is a final state

with an electron-hole excitation, whose energy and momentum are defined by the

conservation laws.

Figure 4.4: The RIXS process. Left and middle panel: an incoming photon promotes a

core electron to an empty conduction state; right panel: a different electron from the valence

region decays and annihilates the core hole.
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Compared to other spectroscopic techniques, RIXS has numerous advantages, namely:

huge scattering phase-space, bulk sensitivity, chemical specificity, polarization sensi-

tivity and small sample volumes. Moreover, thanks to the technological improvement

in the fabrication of high quality optics as well as the strong interest of the scientific

community, RIXS experiments have recently reached high energy and momentum res-

olution. This is a great advantage, but also implies huge interpretation problems, as

many elementary excitations participate and compete in the RIXS process. There-

fore, without a powerful analysis tool, capable of disentangling different contributions

present in one RIXS spectrum, the interpretation, analysis and, ultimately, the pre-

diction of experiments remain strongly limited.

In this project we will develop a numerical tool for the theoretical description of

RIXS. This will give an essential contribution to the analysis of the complex spectra of

this emerging technique for probing elementary excitations in solids. Moreover, since

the method is ab initio, it will be possible to apply it to any material and do predictive

calculations. In particular, the theory will be able to describe the so-called strongly

correlated materials, for which a wealth of RIXS data have been collected due to the

variety of remarkable phenomena that these materials exhibit, e.g., phase transitions

with resistivity changes of many order of magnitude [108], e.g., in vanadates, huge

volume variations [109], e.g., in cerium or plutonium, high Tc superconductivity [110],

e.g., in cuprates, or colossal magnetoresistence [111, 112], e.g., in manganites, etc.

Moreover, by assembling different strongly correlated electronic systems one can create

new materials with novel properties. RIXS gives vital information about the (strong)

electron correlation. However, the interpretation is very indirect and an accurate

theory is needed in order to unravel the complex physics.

Unfortunately, the currently available methods are not sufficiently accurate to cor-

rectly describe RIXS. To arrive at a method that gives a saTI’sfactory description of

RIXS spectra, some of the challenges we face are:

1. The accurate description of the resonant scattering amplitudes.

2. The coupling of different energy ranges. Contrary to, for example, ARPES (An-

gle Resolved Photo-Emission Spectroscopy), in a RIXS experiment the coupling

between the high-energy range (in the photon-in and photon-out processes) and

the low-energy range (final electron-hole state, intermediate screening effects due

to the core-hole) is inextricable. It is crucial to be able to treat this coupling

correctly.

3. The ab initio description of electron correlation. The challenge is to describe

both weak-correlation phenomena such as screening as well as strong correlation

which is present in many materials of technological interest.

In order to simulate the RIXS spectra we have to describe the electron-hole inter-

actions of the intermediate and final states. We will use the Bethe-Salpeter equation
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(BSE) [20], an ab initio theory that describes electron-hole interactions in absorption

spectra. The project can thus be divided in the following two parts:

1. The generalization of the Bethe-Salpeter equation to RIXS.

The starting point will be the Bethe-Salpeter equation (BSE) that describes the

interaction between an electron promoted to a conduction band and the hole

it leaves behind. It can hence be used to describe the interaction between the

core hole and the excited electron in the intermediate state as well as the inter-

action between the valence hole and the excited electron in the final state of a

resonant inelastic x-ray process (see Fig. 4.4). Up to now the BSE is almost ex-

clusively used to describe optical absorption processes, which involves low-energy

photons and zero momentum transfer. Recently, it has been extended to finite

momentum transfer [? ]. The first step is, therefore, to extend both the theory

and the implementation of the BSE to the calculation of RIXS spectra, which

require the description of high-energy photons and non-zero momentum transfer.

2. The accurate description of electron correlation.

Correlation is the key for understanding the properties of many materials that

exhibit a complex and technological interesting physics. The current approxima-

tions to correlation in BSE take into account screening effects but not the strong

correlation between localized electrons. In order to accurately describe RIXS ex-

periments for strongly correlated systems we will benefit from a recent method

based on density matrices developed by us that gives qualitatively correct band

structures of strongly correlated materials [113]. This will allow us to study

materials, such as NiO [113] and V2O3 [114], for which standard approximations

are not sufficient.
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