This commit is contained in:
Pierre-Francois Loos 2019-11-24 21:25:15 +01:00
parent 91dd518ea7
commit e6e4f2edee

View File

@ -164,6 +164,7 @@ In this approach the xc kernel is made frequency dependent \cite{Romaniello_2009
Maybe surprisingly, another possible way of accessing double excitations is to resort to a time-\textit{independent} formalism. \cite{Yang_2017,Sagredo_2018,Deur_2019}
DFT for ensembles (eDFT) \cite{Theophilou_1979,Gross_1988a,Gross_1988b,Oliveira_1988} is a viable alternative following such a strategy currently under active development. \cite{Gidopoulos_2002,Franck_2014,Borgoo_2015,Kazaryan_2008,Gould_2013,Gould_2014,Filatov_2015,Filatov_2015b,Filatov_2015c,Gould_2017,Deur_2017,Gould_2018,Gould_2019,Sagredo_2018,Ayers_2018,Deur_2018,Deur_2019,Kraisler_2013,Kraisler_2014,Alam_2016,Alam_2017,Nagy_1998,Nagy_2001,Nagy_2005,Pastorczak_2013,Pastorczak_2014,Pribram-Jones_2014,Yang_2013a,Yang_2014,Yang_2017,Senjean_2015,Senjean_2016,Smith_2016,Senjean_2018}
In short, eDFT is the density-based analog of state-averaged wave function methods.
In the assumption of monotonically decreasing weights, eDFT has the undeniable advantage to be based on a rigorous variational principle for ground and excited states, \cite{Gross_1988a} and excitation energies can be easily extracted from the total ensemble energy. \cite{Deur_2019}
Although the formal foundation of eDFT has been set three decades ago, \cite{Gross_1988a,Gross_1988b,Oliveira_1988} the practical developments of eDFT have been rather slow.
We believe that it is due to the lack of accurate approximations for eDFT.