minor corrections

This commit is contained in:
Pierre-Francois Loos 2020-04-08 13:23:45 +02:00
parent fa3b19c112
commit dd2e672a59
5 changed files with 578 additions and 327 deletions

672
FarDFT.nb
View File

@ -10,10 +10,10 @@
NotebookFileLineBreakTest NotebookFileLineBreakTest
NotebookFileLineBreakTest NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7] NotebookDataPosition[ 158, 7]
NotebookDataLength[ 16152033, 379597] NotebookDataLength[ 16160678, 379795]
NotebookOptionsPosition[ 16100991, 378834] NotebookOptionsPosition[ 16109154, 379024]
NotebookOutlinePosition[ 16101384, 378850] NotebookOutlinePosition[ 16109547, 379040]
CellTagsIndexPosition[ 16101341, 378847] CellTagsIndexPosition[ 16109504, 379037]
WindowFrame->Normal*) WindowFrame->Normal*)
(* Beginning of Notebook Content *) (* Beginning of Notebook Content *)
@ -364182,11 +364182,11 @@ Cell[BoxData[{
RowBox[{"{", "\[IndentingNewLine]", RowBox[{"{", "\[IndentingNewLine]",
RowBox[{ RowBox[{
RowBox[{"MaTeX", "[", RowBox[{"MaTeX", "[",
RowBox[{"\"\<E^w_\\\\text{S51}\>\"", ",", RowBox[{"\"\<E^w_\\\\text{S}\>\"", ",",
RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}], ",", RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}], ",",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"MaTeX", "[", RowBox[{"MaTeX", "[",
RowBox[{"\"\<E^w_\\\\text{GIC}\>\"", ",", RowBox[{"\"\<E^w_\\\\text{GIC-S}\>\"", ",",
RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}], ",", RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}], ",",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"MaTeX", "[", RowBox[{"MaTeX", "[",
@ -364194,11 +364194,11 @@ Cell[BoxData[{
RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}], ",", RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}], ",",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"MaTeX", "[", RowBox[{"MaTeX", "[",
RowBox[{"\"\<E^w_\\\\text{GICVWN5}\>\"", ",", RowBox[{"\"\<E^w_\\\\text{GIC-SVWN5}\>\"", ",",
RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}], ",", RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}], ",",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"MaTeX", "[", RowBox[{"MaTeX", "[",
RowBox[{"\"\<E^w_\\\\text{GICMFL}\>\"", ",", RowBox[{"\"\<E^w_\\\\text{GIC-SeVWN5}\>\"", ",",
RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}]}], RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}]}],
"\[IndentingNewLine]", "}"}]}]}], "\[IndentingNewLine]", "\[IndentingNewLine]", "}"}]}]}], "\[IndentingNewLine]",
"]"}], "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]",
@ -364232,9 +364232,10 @@ Cell[BoxData[{
3.7952553953463383`*^9, 3.795255395811307*^9}, {3.7952554697561197`*^9, 3.7952553953463383`*^9, 3.795255395811307*^9}, {3.7952554697561197`*^9,
3.795255481088748*^9}, {3.795255583992358*^9, 3.795255589634921*^9}, { 3.795255481088748*^9}, {3.795255583992358*^9, 3.795255589634921*^9}, {
3.795256413140295*^9, 3.795256417747985*^9}, {3.795256523506897*^9, 3.795256413140295*^9, 3.795256417747985*^9}, {3.795256523506897*^9,
3.7952565636654053`*^9}, {3.795256672114045*^9, 3.795256687957172*^9}}, 3.7952565636654053`*^9}, {3.795256672114045*^9, 3.795256687957172*^9}, {
3.795333390250894*^9, 3.795333404579505*^9}},
CellLabel-> CellLabel->
"In[196]:=",ExpressionUUID->"abd4eab1-6449-43ab-964f-c00dcb6b555b"], "In[208]:=",ExpressionUUID->"abd4eab1-6449-43ab-964f-c00dcb6b555b"],
Cell[BoxData[ Cell[BoxData[
TemplateBox[{ TemplateBox[{
@ -366500,7 +366501,7 @@ PmbQeTci0z7Ed/OatlK7+zXH9pdHmP/9HM7///v+HzuKo1w=
FormBox[ FormBox[
TemplateBox[{ TemplateBox[{
GraphicsBox[{ GraphicsBox[{
Thickness[0.03232062055591468], Thickness[0.045620437956204386`],
StyleBox[{ StyleBox[{
FilledCurveBox[CompressedData[" FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5 1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
@ -366574,50 +366575,15 @@ Pjj4jolC/PsKmj7jxB38L06M+TfZwIEBBBZIOHwGGj9L3QAS3xZSDm+Kt4r+
jqbsmv+XFeB8cPzeVnJ4ECG+/aKCFjw/gPkOOnA+OD0Z6cL5YPvF9aD5RMXh jqbsmv+XFeB8cPzeVnJ4ECG+/aKCFjw/gPkOOnA+OD0Z6cL5YPvF9aD5RMXh
aZb2t+l79SDuP6DskBASpL6gU99BIDbgvlG4ssNa1SfN887qOzhPaBZK+6UE aZb2t+l79SDuP6DskBASpL6gU99BIDbgvlG4ssNa1SfN887qOzhPaBZK+6UE
Cd/7+g78IHl3JUj4MGHmXxgfAIj8nnE= Cd/7+g78IHl3JUj4MGHmXxgfAIj8nnE=
"]],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJrIGYC4tvSNYlGV40cwjnF2o3PKzn4XZwY8y/ZxCE9
DQi2KTn0eL1iMRE0dWAAgQ1Q+WYzOH/J/X18cyabwfXbVkasMO01c1grpMOX
bqcM54PVF6DxDyD4uoryX3LEVOD8OYuUd/5xV4Gb38BytN9wuwrcfh2Q+msq
DjEKjh+T55g6vMjS/jZ9rwrcvTD1W8x/HErJMoHzC9Z03844YAzn8/ivn5Jq
YQzXD5YPMIKbLz0vTvO0gxFcvT/IfmcjuP8aQeLuUL6eEpz/YdF6hbMZinD+
l30ft6Zvk3OIFN9+kcHOyMHEGAiEpRz0tVYKXzCB8j+LO4hPvcKZUWTkoPFJ
5eWsleIOi0H+ZzZ2kN+1YF/qO0mIeeHGDm/acruNZks5nDzstDbzHYIPlhc3
hfNlQO6/YAoxP1gczgfLSwvB+dGqETLnajgd1J40zzvLZepwg/e2WKoZswO3
m2op0y5jON8Y7G4Ev/a3VcG5Cpj7WSDx52sEkS9jd3iSuPCayX5DhwPd+5pM
kvkh/i0xdFAH+Y+Tz2GjXt5ixj2GDs3itayZbRwO3aD4e2jo0BfR7c9YwOoQ
DYpfHiOHXhDfgNHhcNvy8FNJRg7bvTZYzKn8b38a5P97Rg41L5p+Tdv51x6c
XpKN4XwJUHgamcD5EaDw5zN1eFn7OPv8GkaHlNg7bsw7TB3OgIAPm8OBWlmL
9BIzhxawe7gdvmwIyJ513cyh+v6PW8bcgnA+OL7nicD5sPgE+/+uKcS9H2Qh
5taYwPm8oPT2whjO13jLu8+gEsoPkHWYCQI7jSD5r03aAT1/AgB/P3Ix
"]],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJlIGYCYu8T7LazTS0cZoKBosP+WlmL9BAE38QYCB5b
Oqz89rLiDIOyw5edt7r+PrV0SE0DAjZlB423vPsMXiL4MQqOH5PfIPglW0V/
n/6H4N+Qrkk0YrVyCOcUazc+rwTnO09oFkqzQvD9n3heMhXmgvPPgAAPK9w9
0aoRMuf+MDts1MtbzGhjCRHfzOzwJHHhNZN+CwduRz6vGZkI/pJbyx8bNjM4
TJ/AX2WWDTXvDCbfpjJihWkvgg+2fyuCrw7y708EX2LqFc6MJGsHY7D9DA4f
NgRkz2q3drAtcaw9PYfBYcn9fXxzPiP44iD1RTZw98D4MPf++Vb6YM5Fa7h/
voDMU7eG+7f+t1XBOQ5reHjA+LDwgvF1FOW/5FxTcXiepf1t+l0rh8z8D60n
v6hA4lfEyuHn29cHLJVVIP6xtITEd6ayw38QkLdwuKMpu+b/YiUH9PQBALZO
7Zo=
"]]}, { "]]}, {
Thickness[0.03232062055591468]}, StripOnInput -> False]}, { Thickness[0.045620437956204386`]}, StripOnInput -> False]}, {
ImageSize -> {30.94366127023661, 21.12078704856787}, BaselinePosition -> ImageSize -> {21.916961394769615`, 21.12078704856787},
Scaled[0.31887090512778543`], ImageSize -> {31., 22.}, BaselinePosition -> Scaled[0.31887090512778543`],
PlotRange -> {{0., 30.939999999999998`}, {0., 21.12}}, AspectRatio -> ImageSize -> {22., 22.},
PlotRange -> {{0., 21.919999999999998`}, {0., 21.12}}, AspectRatio ->
Automatic}], Automatic}],
GraphicsBox[{ GraphicsBox[{
Thickness[0.02908667830133799], Thickness[0.022331397945511387`],
StyleBox[{ StyleBox[{
FilledCurveBox[CompressedData[" FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5 1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
@ -366718,12 +366684,41 @@ OJdh5/D3W+mDOYGqDvUsR/sN223hfLD6Khs4f8ZMIKi0djixa0cv2wWoeaus
HMI5xdqN7ytDzbd0WPntZcUZByUH6XlxmqcnWDj0RnT7MxbIw/nV93/cMn4t HMI5xdqN7ytDzbd0WPntZcUZByUH6XlxmqcnWDj0RnT7MxbIw/nV93/cMn4t
Aedv9dpgMecnj4P6W959BpVWDjUvmn5N2/nXHhZ+MP5/EPC3g/PB8Wdh72Bb Aedv9dpgMecnj4P6W959BpVWDjUvmn5N2/nXHhZ+MP5/EPC3g/PB8Wdh72Bb
4lh7eg6Dw3wbnSuz2Bzg8YeePgB1nfgN 4lh7eg6Dw3wbnSuz2Bzg8YeePgB1nfgN
"]],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1,
0}, {0, 1, 0}}}, {{{36.3047, 4.695309999999999}, {36.6672,
5.50469}, {36.6063, 5.56563}, {33.43129999999999, 5.56563}, {
33.1047, 4.7562500000000005`}, {33.165600000000005`,
4.695309999999999}, {36.3047, 4.695309999999999}}}],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI7IGYC4gjx7RcZ1Fwd0tOA4JmCA4y/VkiHL11PyaFt
efgpIx1Xh5XfXlacYVB2cGh6dHyGtasDC2eXfLKfigMDCBxwcRDt8XrFIqLq
IDH1CmdGlYvD32+lD+YEqjoIfXI8n6aK4D9JXHjNxN4Zzje/djTXZIaTwxkQ
4FGG88HuOSYP5+8Itor4ny7rsL9W1iJ9jZNDxf0ft4xXSzt0A601uenkEKMa
IXMuRspB3vFj8hleZ4j770lAzA1xdnBfc3Q5g4SEg/qT5nlnXzk7eID4FeIO
l/Lj2c8lujj0RnT7M34QczihaTXp9HQXqH1icP9VgezzFnWwALnnhYvDTpC8
u4iDKsi8Xy4OwW8vf5zxUAjOrwap5xaE89PAgNOhZKvo79NtLg72JY61p2WY
IeH9zBnOB4dfFoK//IWH3v+PTg4Hu/c1mTxmc7i/j2+O8SsnhzkzgeAmF8S/
d6Hhs1wAHj4wPtj8dU4O/k88L5lO5ofz1T+pvJzFyQfnmxgDQTEvnL/41vLH
hsyckPBahbAfZO3MhU4OGiD9nUwQ/k8nB5mNYvOZFBgg5gQ7O9S8aPo1bedf
e5bFk6wY1yL4F0HhvdMFzp/yjS1+Ro0r3D4YPwQUno3CcD44+I6JOvD6r5+S
mgFNn3HiDjelaxKNbF0h8bRAwmFN9+0MBnZXSHxbSDnoTljww/CYi8N0cHhJ
OYSUqEz/L+ECcedkaYj5Mc4OriD1ETKQ8JVyhqYHWTj/jqbsmv+XFeB8cPze
VnLI4fy5IL3aGZ4fwHxmFzgfnJ7sEXyw/RUuDlPaW6Muy6g4vOHdZzBzkQs0
nSk7+Jxgt5191cVBIDbgvlG4ssM8G50rs565ODhPaBZK+6UEcfdrFwd+kLy7
EsT9X1ww8i+MDwDIvJyZ
"]]}, { "]]}, {
Thickness[0.02908667830133799]}, StripOnInput -> False]}, { Thickness[0.022331397945511387`]}, StripOnInput -> False]}, {
ImageSize -> {34.3839800747198, 21.12078704856787}, BaselinePosition -> ImageSize -> {44.77814196762142, 21.12078704856787}, BaselinePosition ->
Scaled[0.31887090512778543`], ImageSize -> {35., 22.}, Scaled[0.31887090512778543`], ImageSize -> {45., 22.},
PlotRange -> {{0., 34.379999999999995`}, {0., 21.12}}, AspectRatio -> PlotRange -> {{0., 44.78}, {0., 21.12}}, AspectRatio -> Automatic}],
Automatic}],
GraphicsBox[{ GraphicsBox[{
Thickness[0.017917935853789646`], Thickness[0.017917935853789646`],
StyleBox[{ StyleBox[{
@ -366883,7 +366878,7 @@ R/s84XxweitB8Cd/Y4ufYQPlB8hC3HHHA6KvTdoBPX8CAPowf+Q=
PlotRange -> {{0., 55.809999999999995`}, {0., 21.12}}, AspectRatio -> PlotRange -> {{0., 55.809999999999995`}, {0., 21.12}}, AspectRatio ->
Automatic}], Automatic}],
GraphicsBox[{ GraphicsBox[{
Thickness[0.014011489421325489`], Thickness[0.01223091976516634],
StyleBox[{ StyleBox[{
FilledCurveBox[CompressedData[" FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5 1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
@ -366985,61 +366980,90 @@ HMI5xdqN7ytDzbd0WPntZcUZByUH6XlxmqcnWDj0RnT7MxbIw/nV93/cMn4t
Aedv9dpgMecnj4P6W959BpVWDjUvmn5N2/nXHhZ+MP5/EPC3g/PB8Wdh72Bb Aedv9dpgMecnj4P6W959BpVWDjUvmn5N2/nXHhZ+MP5/EPC3g/PB8Wdh72Bb
4lh7eg6Dw3wbnSuz2Bzg8YeePgB1nfgN 4lh7eg6Dw3wbnSuz2Bzg8YeePgB1nfgN
"]], "]],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1,
0}, {0, 1, 0}}}, {{{36.3047, 4.695309999999999}, {36.6672,
5.50469}, {36.6063, 5.56563}, {33.43129999999999, 5.56563}, {
33.1047, 4.7562500000000005`}, {33.165600000000005`,
4.695309999999999}, {36.3047, 4.695309999999999}}}],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI7IGYC4gjx7RcZ1Fwd0tOA4JmCA4y/VkiHL11PyaFt
efgpIx1Xh5XfXlacYVB2cGh6dHyGtasDC2eXfLKfigMDCBxwcRDt8XrFIqLq
IDH1CmdGlYvD32+lD+YEqjoIfXI8n6aK4D9JXHjNxN4Zzje/djTXZIaTwxkQ
4FGG88HuOSYP5+8Itor4ny7rsL9W1iJ9jZNDxf0ft4xXSzt0A601uenkEKMa
IXMuRspB3vFj8hleZ4j770lAzA1xdnBfc3Q5g4SEg/qT5nlnXzk7eID4FeIO
l/Lj2c8lujj0RnT7M34QczihaTXp9HQXqH1icP9VgezzFnWwALnnhYvDTpC8
u4iDKsi8Xy4OwW8vf5zxUAjOrwap5xaE89PAgNOhZKvo79NtLg72JY61p2WY
IeH9zBnOB4dfFoK//IWH3v+PTg4Hu/c1mTxmc7i/j2+O8SsnhzkzgeAmF8S/
d6Hhs1wAHj4wPtj8dU4O/k88L5lO5ofz1T+pvJzFyQfnmxgDQTEvnL/41vLH
hsyckPBahbAfZO3MhU4OGiD9nUwQ/k8nB5mNYvOZFBgg5gQ7O9S8aPo1bedf
e5bFk6wY1yL4F0HhvdMFzp/yjS1+Ro0r3D4YPwQUno3CcD44+I6JOvD6r5+S
mgFNn3HiDjelaxKNbF0h8bRAwmFN9+0MBnZXSHxbSDnoTljww/CYi8N0cHhJ
OYSUqEz/L+ECcedkaYj5Mc4OriD1ETKQ8JVyhqYHWTj/jqbsmv+XFeB8cPze
VnLI4fy5IL3aGZ4fwHxmFzgfnJ7sEXyw/RUuDlPaW6Muy6g4vOHdZzBzkQs0
nSk7+Jxgt5191cVBIDbgvlG4ssM8G50rs565ODhPaBZK+6UEcfdrFwd+kLy7
EsT9X1ww8i+MDwDIvJyZ
"]],
FilledCurveBox[CompressedData[" FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIpIAaxQYAJSjNCxZjR2DA5BjQ2LjXUEifGXlLdSS31 1:eJxTTMoPymNmYGBgBGIpIAaxQYAJSjNCxZjR2DA5BjQ2LjXUEifGXlLdSS31
AJgXAjc= AJgXAjc=
"], CompressedData[" "], CompressedData["
1:eJxTTMoPSmVmYGBgBGJjIGYC4je8+wxmSjk5PElceM1EX8UBxm/4bVVw7oWK 1:eJxTTMoPSmVmYGBgBGJjIGYCYgXHj8lnfN0dniQuvGair+IA4zf8tio490LF
g6tqKdOsAkcHHUX5LznXMPksiydZMfoi+DNBQBM3//OGgOxZ9Q5w82F8mP1g oSJihenZxW4OOoryX3KuYfItrh3NNWlA8M+AQAxuvuqT5nlnN7nCzYfxYfZL
eruDw5T21qjLMlD56w4OUvPiNE8LQOWfOzh8WLRe4ewNZQdjEPjt4BDOKdZu TL3CmfHK1WFKe2vUZRkVBzWQPJebg9S8OM3TAlB5KTeHD4vWK5y9oeyQBgJ6
LK/sIO/4MfmMrJODfYlj7ek7/A7eJ9htZ/s6OTSL17JmtnE4mF87mmuS4OSQ bg7hnGLtxvLKDiElKtP/B7g72Jc41p6+w+9QB7Knwd2hWbyWNbONwyGH8+eC
BgJqrA47b3X9TS13crjw+9j1eTf/20/5xhY/4wiCv/yFh97/h04OL2ofZ59/ 9MnuEH1qrA5vePcZzFzl7nDh97Hr827+tz+haTXp9HcE/5Z0TaKRqIfDi9rH
w+oAlv/i5GAHMl+GE+I+dWeH6vs/bhlnCzgcqJW1SDdxcfgPAvFKDgwgEOHi 2effsDocB8mrezjYgcyX4YS4P8rDofr+j1vG2QIOnzYEZM9K93T4DwLxSg7G
UH54m+vMtcoOISUq0/9nuDhsMf9xKIVLxeGEptWk0+0ucP/qTljww3CbCzw8 INDt6VB+eJvrzLXKDu3Lw08ZzfF02GL+41AKl4rDn5jco/92ecL9m3D4snbq
YHxYeIHdy+8CD0+HpkfHZ3x2hvPB9l1whph3R8XBBBQ+i50dJKZe4cx4pOKQ S094eMD4sPACu9fJEx6exVtFf59WQ/DB9jFDzbujAvHnNQ9IuD1ScZhvo3Nl
w/lzQfpsBL/H6xWLSSOCz+u/fkpqhjPcPhgf5p5akPgOZ7h7VZ80zzt7y9lB 1jkEf3+trEX6FgTfoenR8RmzPeD2wfgw92zQy1vM+MYD7t4I8e0XGfg8HXRB
F2S/mIpDyVbR36ffOcPjB8ZXufYomKEGwV8rpMOXbqfs8GAf3xzjV84O7muO 9oupOCx/4aH3X9ETHj8wvsq1R8EMNQj+WiEdvnQ7ZQehT47n02Q9HdzXHF3O
Lmd4oQQJnwfQ8OxWgvj/mJNDjGqEzLkaHkj8TnV0OAMCMcoO7cvDTxlNcXTY 8ELJoQ0UPiKekPDsVoL4/6e7Q4xqhMy5Gh5I/J5wg6YrZYedt7r+ph53c9ib
m1/zdmapMiT9TnKE2N+B4K/89rLizAIEH2z+a2WHm9I1iUZLHeHu36iXt5jx X/N2ZqkyJP0ehaaPDgR/5beXFWcWIPhg818rO/D4r5+SesMN7n6wP7+7wf2H
iCPcf+j5AwBno2mN nj8A4jZwwg==
"]], "]],
FilledCurveBox[CompressedData[" FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4BHHxSZGPbIaUtXT2i5KzKeF 1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4BHHxSZGPbIaUtXT2i5KzKeF
m5HFAbkaAl0= m5HFAbkaAl0=
"], CompressedData[" "], CompressedData["
1:eJx1lGtIVFEQx+/qqqy2Ullr+MjceyUktdQ1xYxm0ftEcK3IxUIzXR9Y2Qcr 1:eJxTTMoPSmVmYGBgBGJnIGYC4tQ0IMjzc7jw+9j1eTf/2++vlbVIL/FzkNko
LQUhTUmhkpVSw0gh/SColJqQGoUW+U7xDQlJuKaUYiKYbHv2es9C0MD58Oec Np8pgdGhx+sVi0mln0O0aoTMuT1MDm959xnMrPJzuMF7WyzVjNlhx62uv6n1
M3NmfjPH90rOWYM9QRAyy4q2LDvLCkV2iofR7f6puhnzmXJhWa7R8uDVpnpu fg4vax9nn9dhcbBvenR8RrefQ8ATz0umwuwO/0Fgup9Df0S3P+MGToe9IPNb
d1kGevfOMYLh4aKf3mv4rR10zT7YMbA8TCvnVIaT9nC/MeFzSCwPpsJv2SMB /B1mgkCmsoOC48fkM73+Dh8WrVc4e0PZ4Y50TaLRXH8HqXlxmqcFVByeJC68
ctgT12I06HnQLfJfwtycYBBZGg8P9eVxslYFVCD/8QJUI8si4aey50R1ogC/ ZrLf32FKe2vUZRkVB1fVUqZZH/wh4voIfsNvq4JzL1QcwP7x83fQUZT/knNN
6luODE2T0LjEBZmzBPCoS/If2EtBa9D1BlmFAMbSksRxLwoOrGtH0rsFWEx5 xWFN9+0MBnvc/Nbl4aeM1vjB9cP4MPOXv/DQ+//SD24/2D/y/g5bzH8cSuFS
Mak5btNF25E3hpco0KB8PAUI8PXZuDpJwW19U9iQy//1uVzqiTmPx/clLfnP cQgpUZn+38Dfofr+j1vGr5Ud3oDCxwjqnw4Ef29+zduZpQi+iTEQJCvD9a/4
bT+4PdDB4/jWfFZ4eB2+9T7NmQIf7Vrq4A4Pd79uzYb+IOENqo+ZF/Mps+nu 9rLiTICyA8viSVaMqX4O6p9UXs7i5HP4siEge1a6r8MdTdk1/xcrOficYLed
nILV6ps2bX1nKonvN22a8gZ1JIzlJDsNB/NwdJ0y1ShcobfQOyJDw8G8v3ez 7erroAtyvxjUfgdfhzmLlHf+cVdxmPKNLX6Gia9DzSegRilViD3MCD44/h75
uUEN7lUTisz9HASi96t24ys5eFZPdv1hKUj5MH7MIOOgYL1Vl+3hBwSyURZr QNw7W9mBx3/9lNQTPg7ClZNKzrYoQfxX7uPwwDXecdZEOYj8Dm+H66D43sbn
K78WVnxvLQmzngUpIVUsuOVX5g4Vq8X8YlhYoJO1NY8PwwzaL2FgCvHucIUV IA+KL1lvuHpw+pD0dgjnFGs3Pq/kcFzTatJpcW8HkLXGwspwPsx/MD4svsHh
xGuZxuet/fGdhgSFqjR0RA3GTcfkp4s0WPvKjcRayk/SEu82xHeDxrxjPzmd rO4Nj+96UDwEeMPD+0J+PPu5id7w+IDxYfEFjs/zXvD4bAfF3xEEP4fz54L0
rvVmcL3rogImapIYzEPSEq98xLOWxjzPI36PbDpisu+aRkeL/uYpsf9mYvB9 Zi+IeXdUHMDpm8cLrh/Gh5n/ARTe5l5w+8HyKV7w+AbbV+4FSWfHoPHV6uXg
SUv+36F6y2kc37ofTGPeeSheNA2GdIv17/KKp4Ft7mskltRiXysYcX4WFDgf vubocoYXSg5nQMDGG5J/HnDC/QPJTyxwfot4LWumGwskfBO84fkPHL9rEXxw
cZ7kWBe7FzpkMXKxvoEMnr9DiO8dm1aieSpj4B4672gv1s/IwO+etfaMCw7w ftrt7dAMUs/GDAm/494OX/d93JoexupwA5RfniLsu7uPb47xJ2h8qihC/L/Z
Es1Lmy1ec/lcJtG7y5PyhXCUfxEn9pNpn8jlFQeX0DxHucBH/8jKgU5OnOdb F5KeXgpC3P3M1yEGlJ9tuB1+xOQe/ffKF5Kfy7gg6UkBUR6glw8AasDYEQ==
zmI/rXI4/r//w1+zntBd
"]], "]],
FilledCurveBox[CompressedData[" FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGI5IIaxWaBsBiifAY3NCJVHV4NLHJcaUtXjUkOq+YPB 1:eJxTTMoPymNmYGBgBGI5IIaxWaBsBiifAY3NCJVHV4NLHJcaUtXjUkOq+YPB
nQAGXgI/ nQAGXgI/
"], CompressedData[" "], CompressedData["
1:eJxTTMoPSmVmYGBgBGJzIGYC4vv7+OYY7/J20FGU/5JzTcXBoenR8RnJ3g5T 1:eJxTTMoPSmVmYGBgBGJzIGYC4sWTrBh9CwIcdBTlv+RcU3EILlGZ/t8lwGFK
2lujLt9RcfA5wW47OxTBd1EtZZrF4O3Q8Nuq4NwLBP9J4sJrJvoqDlO+scXP e2vU5TsqDpHi2y8y2CH4V4/mmjQIBzg0/LYqOPcCwX+SuPCaib6KQ826bUn1
cIGql1FxKI9YYXq229thi/mPQylcKg45nD8XpE/2dui08dyVdkkZzl/57WXF plD1MioO+fHs5yQjAxy2mP84lMKl4vBi+3rm5zEBDp02nrvSLinD+Su/vaw4
mQ+KcP7+7n1NJsk8cL5diWPt6TsscPOiVSNkzv1hhttnYgwEm5nh7uF25POa 80ERzt/fva/JJJkHzrcrcaw9fYcFbl60aoTMuT/McPtMjIFgMzPcPdyOfF4z
kYngL7m1/LFhM4PDjJkg4O1wBgww+Rv08hYzbkHwweaexs0X+OR4Pi3XB24+ MhH8JbeWPzZsZnD4DwLxAQ5nwACT3+31isUkF8EHUxW4+dY6V2Y9O4kwH8aH
jA+zP+HwZe1UTR+4+8Dh/Qjh/ve8+wxm3kL4D8aH+R/G548NuG/krgSJj61+ 2f9YRPbk0+UI94HDuwXhfm2rSafrGxD+g/Fh/ofx+WMD7hu5K0Hi410g1HwG
UPMZIP5z8HeoedH0a9rOv/Yw/t//QFD/D86H2P/Pfk337QwGe3+HZvFa1kw2 iP+MgxxqXjT9mrbzrz2M/xfkr/p/cD7E/n/2HD8XpG82CnJoFq9lzWRjcIgA
Boh5tv4OX/Z93JouxuiwBeR/G38He7B7EPz+iG5/xgImOB8WXzA+LD4rQPHj mQfkf9n3cWu6GKNDD8j/hkEO9mD3IPj9Ed3+jAVMcD4svmB8WHyC48c0CB7f
7A+Pb5UnzfPOdvnD00PJVtHfp8/5w9MLjA9LT+D41PGHp0d0vggofEUR/D8x rqqlTLMiguDp4Q3vPoOZVUHw9ALjw9JTLSg+NYPg6RGdbwMKX1kEf8PDl1M3
uUf//fLDyV/6wkPvf6If3HwYH2Z/uPj2iwzL/ODuuyFdk2j01g/ufnA0f/GD CeDmty8PP2V0JBBuPowPs//+Pr45xs8C4e6Td/yYfIYT4f6ZIMCL8B+MD/M/
+w/Gh/kfxl8Oin9nLkh48vrA7UPPXwDp0oSi jL8cFP/OXJDwnIXIH+j5CwBdEop4
"]], "]],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
@ -367047,28 +367071,28 @@ uUf//fLDyV/6wkPvf6If3HwYH2Z/uPj2iwzL/ODuuyFdk2j01g/ufnA0f/GD
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}}}, CompressedData[" 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJrIGYC4u9s8TN8QgMcwjnF2o3PKzkEl6hM/78jwCE9 1:eJxTTMoPSmVmYGBgBGJrIGYC4v4FPwyfvQtyCOcUazc+r+TwhnefwcygYIf0
DQi2KTksnmTF6PskwIEBBDZA5R0C4fwX29czP3cJhOv3lxPL8nUOdFgrpMOX NCDYpuRgo3Nl1rPaYAcGENgAlb+F4DcHes5tuBcM1/9i+3rm53eCHdYK6fCl
bqcM54PVF6DxDyD4uoryX3LEVOD8OYuUd/5xV4Gb38BytN9wuwrcfh2Q+msq 2ynD+WD1BWj8Awi+rqL8lxwxFTh/ziLlnX/cVeDmN7Ac7TfcrgK3Xwek/pqK
DuIeAX8k2AMdXmRpf5u+VwXuXpj6N7z7DGbuQvClXz8yk5qA4B++rJ0qmRcA w4aHL6duWhDs8CJL+9v0vSpw98LUty8PP2UUguBvbam5sFkTwY/NPfpvEztC
1w+WNwmAm9++PPyUkUEAqv1APsx/Co4fk88YQvl6SnD+h0XrFc5mKML5X/Z9 P1j+bBDcfHnHj8lnTgah2n8qCO6/3be6/qaehvL1lOD8D4vWK5zNUITzv+z7
3Jq+Tc7h6tFckwb9AAcTYyAQlnLo9nrFYqIL5X8Wd3BVLWWaZRPgoPFJ5eWs uDV9m5xDfjz7OUmgeSbGQCAs5aD6pHne2WNQ/mdxh/v7+OYYXwty0Pik8nLW
leIQ/ycEOMjvWrAv9Z2kgzzIvNIAhzdtud1Gs6UcPm8IyJ41G8EHyz9F8MHu SnGI/38FOcjvWrAv9Z2kw06QefzBDm/acruNZks59Hi9YjExRfDB8vUIvgLI
FwmEmB8sDueD5aWF4Pxo1QiZczWcDhw/F6RvfhTgcIP3tliqGbNDc6Dn3IY+ /WuDIeYHi8P5YHlpITg/WjVC5lwNp8PiSVaMvjXBDjd4b4ulmjE7SL9+ZCal
BP8MCKQg+Pf38c0xtoO5nwUSf8ZQ+TJ2h4qIFaZn+QMcDnTvazJJ5ncQn3qF geCD08W/IDi/MmKF6dnrMPezQOLvDFS+jN1B+JPj+bSVQQ4Huvc1mSTzQ/w7
M+OXv4M6yH+cfA6ru29nMADlm8VrWTPbOCDxJxHg0BfR7c9YwAqJX+UAh14Q LchBHeQ/Tj4HV9VSplkrghyaxWtZM9s4IPG3McihL6Lbn7GAFRK/e4IcekF8
34DRYf3Dl1M3WQQ4bPfaYDGn8r892P/hAQ41L5p+Tdv51x4cXhUIPjg81yD4 A0YHz+pmfZ9LQQ7bvTZYzKn8bw/2/8cgh5oXTb+m7fxrDw4voWA4/wEoPN0Q
4PB/HODwsvZx9vk1jA6R4tsvMvAFQvzlw+aQH89+TtI20KEF7B5uB2udK7Oe /AJQ+APTx8vax9nn1zA6fNkQkD1rebDDGRDwYXPg+LkgffO1YIcWsHu4Ha4e
hQY6VN//ccuYWxDOB8f3PBE4HxafYP+LB0Lc+0HWASRsvD8Azgent1kIvnd1 zTVpeB/sUH3/xy1jbkE4Hxzf80TgfFh8gv2/IRji3g+yEHMjEHxwejNG8B+L
s75PHZQfIAvJd37Q/Ncm7YCePwEFrm04 yJ58Kg7lB8g6/AeB50GQcG6TdkDPnwCTmp4T
"]]}, { "]]}, {
Thickness[0.014011489421325489`]}, StripOnInput -> False]}, { Thickness[0.01223091976516634]}, StripOnInput -> False]}, {
ImageSize -> {71.36937484433375, 21.12078704856787}, BaselinePosition -> ImageSize -> {81.76352677459526, 21.12078704856787}, BaselinePosition ->
Scaled[0.31887090512778543`], ImageSize -> {72., 22.}, Scaled[0.31887090512778543`], ImageSize -> {82., 22.},
PlotRange -> {{0., 71.36999999999999}, {0., 21.12}}, AspectRatio -> PlotRange -> {{0., 81.76}, {0., 21.12}}, AspectRatio -> Automatic}],
Automatic}],
GraphicsBox[{ GraphicsBox[{
Thickness[0.016672224074691565`], Thickness[0.011419435879867535`],
StyleBox[{ StyleBox[{
FilledCurveBox[CompressedData[" FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5 1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
@ -367170,70 +367194,141 @@ HMI5xdqN7ytDzbd0WPntZcUZByUH6XlxmqcnWDj0RnT7MxbIw/nV93/cMn4t
Aedv9dpgMecnj4P6W959BpVWDjUvmn5N2/nXHhZ+MP5/EPC3g/PB8Wdh72Bb Aedv9dpgMecnj4P6W959BpVWDjUvmn5N2/nXHhZ+MP5/EPC3g/PB8Wdh72Bb
4lh7eg6Dw3wbnSuz2Bzg8YeePgB1nfgN 4lh7eg6Dw3wbnSuz2Bzg8YeePgB1nfgN
"]], "]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGI1IIaxWaBsBiifAY3NCJVnRmMTo54YcWrZNZjdhksN FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1,
qebjEgcA+c4CbQ== 0}, {0, 1, 0}}}, {{{36.3047, 4.695309999999999}, {36.6672,
"], CompressedData[" 5.50469}, {36.6063, 5.56563}, {33.43129999999999, 5.56563}, {
1:eJxTTMoPSmVmYGBgBGJPIGYC4jQQuOfisL97X5NJMo8DjL/k1vLHhodZHCyu 33.1047, 4.7562500000000005`}, {33.165600000000005`,
Hc01ueHi8GXfx63pYiwOnzYEZM/qd3EwMQaCzcwOf2Jyj/6LcnHgduTzmpGJ 4.695309999999999}, {36.3047, 4.695309999999999}}}],
4IP1NzM4PNjHN8d4kYuDMVg9g4OrainTrAsuDmfAgMGh7rdVwTkFVzh/562u
v6nlCP6a7tsZDOtd4frB5nG5oZoP5MPsZwCBA65w94WUqEz/X+HqEK0aIXPu FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
D7NDj9crFpNCV7j/YHyY/2H8ld9eVpz5oAjnd9p47kq7pAw3b4v5j0MpXCpw 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
+6a0t0ZdllGByDO4OTxJXHjNRB/BbwD584WKg0PTo+Mzul0ddBTlv+Rcw+TD 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
7IPxl73w0PsfiZsPiy+Y+TNBwNPZoTei25/xAy+Ev9ERLh8hvv0ig5kjXD86 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
v3ir6O/Tcgj+Z1B8s+Pmb9DLW8zY4wA3H8aH+f8/CJx3gIfPalB8ijvCww9m 0}}}, CompressedData["
Hyx8YXxY+MP4sPiB8e1KHGtP32GBmweLX5h9sPiHuQeWPmB8WPphWTzJilHV 1:eJxTTMoPSmVmYGBgBGI7IGYC4gjx7RcZ1Fwd0tOA4JmCA4y/VkiHL11PyaFt
EZ7e0PmPQf6wR/DTQeEdhpsPTt8/HOHmw/gw+6d8Y4ufscUR7j7vE+y2s3MR efgpIx1Xh5XfXlacYVB2cGh6dHyGtasDC2eXfLKfigMDCBxwcRDt8XrFIqLq
7pd3/Jh8JhXhPxgf5n8Y333N0eUMGkoOrCD3ijo7zADFs+R/+8qIFaZnjRH8 IDH1CmdGlYvD32+lD+YEqjoIfXI8n6aK4D9JXHjNxN4Zzje/djTXZIaTwxkQ
ElB42TlDzWeApFcPZweNTyovZ3UyQdJboDPc/uWg9JXpDE3X7BD31jg73OC9 4FGG88HuOSYP5+8Itor4ny7rsL9W1iJ9jZNDxf0ft4xXSzt0A601uenkEKMa
LZZaxgXJn+3ODiXLSzb8O8/tIDH1CmfGLBcH4cpJJWdFFCD6NrhA3HdCweEN IXMuRspB3vFj8hleZ4j770lAzA1xdnBfc3Q5g4SEg/qT5nlnXzk7eID4FeIO
7z6DmYdcHPbk17ydGaoIT68w96OXPwAUMu9g l/Lj2c8lujj0RnT7M34QczihaTXp9HQXqH1icP9VgezzFnWwALnnhYvDTpC8
"]], u4iDKsi8Xy4OwW8vf5zxUAjOrwap5xaE89PAgNOhZKvo79NtLg72JY61p2WY
FilledCurveBox[CompressedData[" IeH9zBnOB4dfFoK//IWH3v+PTg4Hu/c1mTxmc7i/j2+O8SsnhzkzgeAmF8S/
1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4GEjqydGLy71uPSSqp5Ut1Fi d6Hhs1wAHj4wPtj8dU4O/k88L5lO5ofz1T+pvJzFyQfnmxgDQTEvnL/41vLH
JjHitLALAM7SAnU= hsyckPBahbAfZO3MhU4OGiD9nUwQ/k8nB5mNYvOZFBgg5gQ7O9S8aPo1bedf
"], CompressedData[" e5bFk6wY1yL4F0HhvdMFzp/yjS1+Ro0r3D4YPwQUno3CcD44+I6JOvD6r5+S
1:eJxTTMoPSmVmYGBgBGJvIGYC4pASlen/G9wd7rvGO84ylHBoWx5+ymiNu4P6 mgFNn3HiDjelaxKNbF0h8bRAwmFN9+0MBnZXSHxbSDnoTljww/CYi8N0cHhJ
J5WXszwlHN7w7jOYecvd4fO+j1vTwyQczK8dzTVR8IDzwfKTEHyw/j0ecPP+ OYSUqEz/L+ECcedkaYj5Mc4OriD1ETKQ8JVyhqYHWTj/jqbsmv+XFeB8cPze
g8B1D4egt5c/zjgo7rC/VtYi/YmHwxkQ6BGDqH/j4WBiDASbhSHmSXnC+fKO VnLI4fy5IL3aGZ4fwHxmFzgfnJ7sEXyw/RUuDlPaW6Muy6g4vOHdZzBzkQs0
H5PPiHrCzcPF74vo9mcUkITzWxTYVc9cweTDzFcF+W+lHNx+GB/mvpQ0IFCT nSk7+Jxgt5191cVBIDbgvlG4ssM8G50rs565ODhPaBZK+6UEcfdrFwd+kLy7
cVB90jzv7CMPB/c1R5cz7JB20Juw4IfhPQ+HHcFWEf/dpeH+E6mcVHL2iRTc EsT9X1ww8i+MDwDIvJyZ
/we69zWZNEs5BIPCd4KHQ4xqhMy5GCmH3zG5R/9pIfjLXnjo/X/pDuf7nGC3
nb0VGv6ZUg6w+IGZB+Pf0ZRd83+zssPOW11/U9e7O4RzirUb31eGhNtpd6h7
lB3SwP7wgPNdVUuZZhUg+Gu6b2cwHPdwYACBA8oOq0H87x4Oa4V0+NL7lB02
6uUtZpTxdJgJApnKDnW/rQrOKXg6uExoFkrzQvDB8blHCc53BslrKToUbxX9
fToMk196eJvrzLlKDvNsdK7MivN0SAW585iyw6cNAdmz8j0ddBTlv+RcU3Go
iFhhelbZ00Fi6hXOjEcqDsKfHM+nffVwaADZ80LF4RcoPDch+N6g8OP1gKtf
AQrfg+6o5nUj+DelaxKNUhF8Hv/1U1ItcPNvgdSHusHtg/GfJC68ZqKvAomP
+W4OU9pboy7LqEDC/5mbwxbzH4dSuFQg6eedm8OHResVzt5QhvNXfntZceaD
Ipy/HxTfyTxw/pJbyx8bHmaBmxcNSi9/mOH2QfILM9w93I58XjMyEXyw/mYG
iH82uDkYg9UzwM0Dx98ZBocSUPyYucP5YH+1u6PK73OH6wenX0kPuPkwPsz+
E5pWk06fd4e7D5w+Otzh7oelZ5j/YHyY/9HLJwBZkwpo
"]], "]],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, {
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}}}, {CompressedData["
1:eJxTTMoPSmViYGDQAGIQfTE/nv2cp4dD4fKSDf/62R28T7Dbzjb1cGgWr2XN
bONwUH3SPO/sJXcHuxLH2tN3WByeJC68ZrLe3SFaNULm3B9mhzMgkIPgW1w7
mmvCgSa/xc1B45PKy1kn2RxmgkCnm0ML2Hxuh7bl4aeMctwcrvPeFkvdxueQ
ePiydmqim0O7ArvqmS0CDmkgEOfmEPL28scZjcIODCDg4A7nv+HdZzBzFYLP
sniSFeNbd4cMkL5lwg6fNwRkzwr3cFDYtWBfqp6IQ7fXKxaTSA+HGJD77ohA
/Bfl4VB1/8ctY29ROB9szwMEH+JPaQde//VTUl+4Q/g88g4mxkBgjeA/2Mc3
x5gJwf8Esn+/m0MNyPxsOUj4NLg57O/e12TiLAsJD0Y3h/VCOnzp/6QcFtjo
XJl1ztXhPxiIw/lgdT+F4Hx7cHzwOyg4fkw+89TVIR3sXy6Hnbe6/qbyu0H8
94fNQeST4/k0XzeoekZ4fNS8aPo1bedf+7rfVgXnNNzh/BUvPPT+JyL4YP/N
dofEl9t/e4mpVzgzbrk7yGwUm8+UwAiJPxYPh/6Ibn/GAiaHKd/Y4meoeEDC
ZTOzgxoo/LQ8oPpZHNDTGwBhQRw7
"], CompressedData["
1:eJxTTMoPSmViYGAQBmIQ3eP1isXkortD1f0ft4y9RR3qflsVnGtwdzAxBgFR
h8qIFaZno90d0kBATdShbXn4KSMVBJ9l8SQrxrtucP4ZENjiBtefePiydmqi
m0NfRLc/YwGC36bArnpmi7jDpw0B2bPS3RyEKyeVnD0i4eDQ9Oj4jGo3h3SQ
eWxSEPvmuDmkgM2XcZhno3Nl1j03h1aQ/hJZiHs13OF8mHth/I16eYsZW6D+
uSzjcELTatLp+e4Q89ukHS7lx7OfO+juIL9rwb7Ud5IOU76xxc844+6wM9gq
4n+7hAN6+AAApXJ6IA==
"]}],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIpIAaxQYAJSjNCxZjR2DA5BjQ2LjXUEifGXlLdSS31
AJgXAjc=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJjIGYC4vbl4aeMTLwcniQuvGair+IA4zf8tio490LF
4f4+vjnGXZ4OOoryX3KuYfLn2ehcmZWG4BuDgDNufrfXKxaTmR5w82F8mP11
IPELHg5T2lujLsuoOPSA5D96OEjNi9M8LQCVZ/B0+LBovcLZG8oOZ0BAxNMh
nFOs3Vhe2WHHra6/qeZeDvYljrWn7/BDzE33cmgWr2XNbONwuJAfz36u0ssh
DQTUWB1CSlSm/5/g5XDh97Hr827+t9eZsOCH4T0E377p0fEZv70cXtQ+zj7/
htVBHyTP5+1gBzJfhhPiPkdvh+r7P24ZZws4RIhvv8jg5+PwHwTilRxmzASC
Qh+H8sPbXGeuVXZ4y7vPYGaTj8MW8x+HUrhUHBIOX9ZOXegD9+9xTatJp8/7
wMMDxoeFF9i9Gj7w8LwhXZNoxIvgg+176Q0x744KJHz2eDtITL3CmfFIxYFl
8SQrxq0IvvqT5nlnZyH4y1946P1v9IbbB+PD3CMOUnfJG+7e/bWyFulfvB10
QfaLqTjw+K+fksrhA48fGF/l2qNghhoEf62QDl+6nbJDRcQK07PMPg7ua44u
Z3ih5PAeFD6/oOHZrQTx/30vhxjVCJlzNTwOe0Dxu94T4q8YZQcFx4/JZ9Z6
OuzNr3k7s1QZkn7XQNNHB4K/8tvLijMLEHyw+a+VHUq2iv4+vc8T7n6fE+y2
s+96wv2Hnj8APBttQA==
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4BHHxSZGPbIaUtXT2i5KzKeF
m5HFAbkaAl0=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJnIGYC4vQ0IFgV4HDh97Hr827+txf+5Hg+bW2Ag8xG
sflMCYwOFRErTM+uD3CIVo2QObeHyUHbatLp+g0BDjd4b4ulmjE79C/4Yfhs
U4DDy9rH2ed1WByCS1Sm/98R4BDwxPOSqTC7gzEI7A9w6I/o9mfcwOkANt80
0GEmCGQqOxy+rJ0qaRXo8GHReoWzN5QdFBw/Jp9xDHSQmheneVpAxUH1SfO8
s0GBDlPaW6Muy6g4XD+aa9KQHejwJHHhNRN9BL/ht1XBuRcqDmD/SAU66CjK
f8m5puLA8XNB+mYh3PzvbPEzfE4GwPXD+DDz25eHnzJ6EQC3H+wf5kCHLeY/
DqVwqTjE5B79t4k70KH6/o9bxq+VHTRB4cMD9U8Hgr83v+btzFIE3wRkTrIy
XP+Kby8rzgQoO2xtqbmweWmAg/onlZezOPkc1nTfzmBQD3C4oym75v9iJYcI
8e0XGcQCHHRB7hdTcYgF6RcOcJizSHnnH3cVh9p125LqeQMcaj5tCMiWUnWY
AQrnl/5wfggofk74Q9w7W9mhZKvo79Pr/B2EKyeVnG1RckgFhV+cv8MD13jH
WRPlIPLz/Byug+J7G59DKyg8WPzg6j8AjZ3139chnFOs3fi8koPOBGCC+OcL
CSdhZTgf5j8YHxbfPifYbWfz+sHjGxzu5n7w8Da/BozgCj94fMD4sPgSAaWn
rb7w+HzDu89g5ioE/0J+PPu5TF+IeXdUHFRA6emTD1w/jA8zPxwUvnK+cPvB
8l6+8PgG2xfrCwmnY8oOOZzABJXt6+C+5uhyhhdKkHhV9oPknweccP9A8hML
nN8iXsua6cYCCV83P3j+26CXt5hxCoK/9IWH3v+Ffg7NIPVszA66oPBb5+fw
dd/HrelhrA72TY+OzziNsM9FtZRp1g1ofKooOrzYvp75uQ80Pb0UhOSPtACH
GFB+tuF2WP/w5dRNGdD8XMYFSU/NiPIAvXwAALn92oM=
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGI5IIaxWaBsBiifAY3NCJVHV4NLHJcaUtXjUkOq+YPB
nQAGXgI/
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJzIGYC4qtHc00aHgc66CjKf8m5puLQvjz8lNGOQIcp
7a1Rl++oOPR4vWIx2Yjgc/xckL65LdCh4bdVwbkXCP6TxIXXTPRVHNY/fDl1
0wqoehkVh8WTrBh9zwQ6bDH/cSiFS8VB+vUjM6kLgQ6dNp670i4pw/krv72s
OPNBEc7f372vySSZB863K3GsPX2HBW5etGqEzLk/zHD7TIyBYDMz3D3cjnxe
MzIR/CW3lj82bGZwACkzvhzocAYMMPn7a2Ut0h8g+P9B4DVufn48+zlJ2yC4
+TA+zH5xj4A/EtJBcPddB4X3d4T7Y3OP/tv0GeE/GB/mfxifPzbgvpG7EiQ+
EoOh5jNA/Lcs2KHmRdOvaTv/2sP4f0HurP8H50Ps/2dvo3Nl1rOlwQ7N4rWs
mWwMEPOA/C/7Pm5NF2N0OADy/5JgB3uwexD8/ohuf8YCJjgfFl8wPiw+l4Di
Z0UwPL4rIlaYnj0dDE8PCo4fk8+8DYanFxgflp42gOJzTjA8PaLzC0DhOxHB
fyIie/JpM27+zltdf1PNEebD+DD7hT85nk+LRLgvpERl+v8ahPvB0dyA8B+M
D/M/jL8cFP/OXA7doPDkDYLbh56/AFO8m38=
"]],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}}}, CompressedData[" 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJTIGYC4ve8+wxm3vJyWPntZcWZD4oOMP6HResVzt5Q 1:eJxTTMoPSmVmYGBgBGJrIGYC4iOXtVMlk0IcwjnF2o3PKzkoOH5MPnM0xCE9
dpCYeoUz45GXwxbzH4dSuFQcEg5f1k7V9HaY0t4adVlGxcG+6dHxGcXeDk8S DQi2KTkUxLOfk/wY4sAAAhug8r6hcP7WlpoLmwND4fplXj8ykwoIdVgrpMOX
F14z0UfwG35bFZx7oeKg/qR53lkmbwcdRfkvOddUHOpB4g+84Hx+//VTUicg bqcM54PVF6DxDyD4uoryX3LEVOD8OYuUd/5xV4Gb38BytN9wuwrcfh2Q+msq
+CbGQOCM4IeLb7/IIOcFse+OikPJVtHfp9d5ws2H8WH2h5SoTP//wxPuvv8g Dk9EZE8+FQ51eJGl/W36XhW4e2Hqd97q+pt6HMF/sX098/M5CP6EBT8Mn1WF
YI9w/3FNq0mn3RH+g/Fh/ofxt3ttsJjzkxPOf1H7OPu8DrvDhfx49nOWXg5n wPWD5R1C4OaHlKhM/28Tgmq/bQjcf2959xnMtIPy9ZTg/A+L1iuczVCE87/s
QICH1aHH6xWLiaKXQ4t4LWumGwuE/9HTIVo1QubcHiY4f8mt5Y8Nmxkg7gyH +7g1fZucw6JJVoy+QPNMjIFAWMohQnz7RQYrKP+zuIPQJ8fzaZ4hDhqfVF7O
6j/D4LD8hYfe/0QE//4+vjnGXQi++bWjuSYzEHxw+G1A8FVA4XvJywEUbMab WikO8X9uiIP8rgX7Ut9JOrwBmdcU4vCmLbfbaLaUw4FaWYv0FQg+WP4Tgg92
GRzm2+hcmSXn7WBb4lh7eg6Dw5ru2xkMx73h9ouD4vMTgl8RscL0rLIPTn4E v0IoxPxgcTgfLC8tBOdHq0bInKvhdLh6NNek4X2Iww3e22KpZswOAXJiWb6z
KPy/+cDtqwXZz+ALiafPLBDz2X0dToPDg8MhNQ0IxHwd2hXYVc9sEXBgWTzJ EfyZIFCI4K/pvp3B4A1zPwsk/hyg8mXsDq6qpUyzZEIcDnTvazJJ5of4lyvE
ivGpD5wPtv+Sj8OXfR+3pk/jgZh3AWq+D4/Dnltdf1PP+zjYg93P7aDg+DH5 QR3kP04+h4qIFaZnpUMcmsVrWTPbOCDxpxri0BfR7c9YwAqJX/0Qh14Q34DR
zFkfSPi2cTvsrZW1SD/i47AVFD87ORxmzASCnT4OGp9UXs46yebAC0pPG2Dm oWbdtqR61xCH7V4bLOZU/rcH+z8lxKHmRdOvaTv/2oPDqxXBB4fnTgQfHP4f
sTnsB6mf4+MQA4oPG1aIeaI+DoXLSzb862eBpK84bzg/HeR+NQQfln7B4XGY Qhxe1j7OPr+G0UHtSfO8s1KhDmdAwIfNwUbnyqxnnqEOLWD3cDtw/FyQvjkp
BZ4/voLcH8bqgJ5/AKJQiK0= 1KH6/o9bxtyCcD44vueJwPmw+AT7XyUU4t4PspB0fiYEzgent2UIvoRHwB+J
big/QBZiTjQ0/7VJO6DnTwChq3gl
"]]}, { "]]}, {
Thickness[0.016672224074691565`]}, StripOnInput -> False]}, { Thickness[0.011419435879867535`]}, StripOnInput -> False]}, {
ImageSize -> {59.98173848069739, 21.12078704856787}, BaselinePosition -> ImageSize -> {87.56626650062266, 21.12078704856787}, BaselinePosition ->
Scaled[0.31887090512778543`], ImageSize -> {60., 22.}, Scaled[0.31887090512778543`], ImageSize -> {88., 22.},
PlotRange -> {{0., 59.98}, {0., 21.12}}, AspectRatio -> Automatic}]}, PlotRange -> {{0., 87.57}, {0., 21.12}}, AspectRatio -> Automatic}]},
"PointLegend", DisplayFunction -> (FormBox[ "PointLegend", DisplayFunction -> (FormBox[
StyleBox[ StyleBox[
StyleBox[ StyleBox[
@ -367681,9 +367776,10 @@ BZ4/voLcH8bqgJ5/AKJQiK0=
3.7952553638821507`*^9}, {3.79525539442819*^9, 3.7952553974935417`*^9}, 3.7952553638821507`*^9}, {3.79525539442819*^9, 3.7952553974935417`*^9},
3.795255482473854*^9, 3.795255590673718*^9, 3.795256419535687*^9, 3.795255482473854*^9, 3.795255590673718*^9, 3.795256419535687*^9,
3.7952565365374527`*^9, 3.795256695851474*^9, {3.795320388330069*^9, 3.7952565365374527`*^9, 3.795256695851474*^9, {3.795320388330069*^9,
3.7953204053092737`*^9}, {3.795320438715073*^9, 3.795320460834072*^9}}, 3.7953204053092737`*^9}, {3.795320438715073*^9, 3.795320460834072*^9},
3.795333422042973*^9},
CellLabel-> CellLabel->
"Out[196]=",ExpressionUUID->"f32313db-6739-49bb-97dc-469998c9c5f7"] "Out[208]=",ExpressionUUID->"357e2709-ec15-4a19-9d64-24493586f1ca"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
@ -367717,11 +367813,11 @@ Cell[BoxData[{
RowBox[{"{", "\[IndentingNewLine]", RowBox[{"{", "\[IndentingNewLine]",
RowBox[{ RowBox[{
RowBox[{"MaTeX", "[", RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\Omega_\\\\text{S51}\>\"", ",", RowBox[{"\"\<\\\\Omega_\\\\text{S}\>\"", ",",
RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}], ",", RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}], ",",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"MaTeX", "[", RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\Omega_\\\\text{GIC}\>\"", ",", RowBox[{"\"\<\\\\Omega_\\\\text{GIC-S}\>\"", ",",
RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}], ",", RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}], ",",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"MaTeX", "[", RowBox[{"MaTeX", "[",
@ -367729,11 +367825,11 @@ Cell[BoxData[{
RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}], ",", RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}], ",",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"MaTeX", "[", RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\Omega_\\\\text{GICVWN5}\>\"", ",", RowBox[{"\"\<\\\\Omega_\\\\text{GIC-SVWN5}\>\"", ",",
RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}], ",", RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}], ",",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"MaTeX", "[", RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\Omega_\\\\text{GICMFL}\>\"", ",", RowBox[{"\"\<\\\\Omega_\\\\text{GIC-SeVWN5}\>\"", ",",
RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}]}], RowBox[{"FontSize", "\[Rule]", "SizeLegend"}]}], "]"}]}],
"\[IndentingNewLine]", "}"}]}]}], "\[IndentingNewLine]", "\[IndentingNewLine]", "}"}]}]}], "\[IndentingNewLine]",
"]"}], "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]",
@ -367748,9 +367844,9 @@ Cell[BoxData[{
3.7952565003041477`*^9}, {3.7952566984164953`*^9, 3.795256707881439*^9}, { 3.7952565003041477`*^9}, {3.7952566984164953`*^9, 3.795256707881439*^9}, {
3.79526000483041*^9, 3.795260020084659*^9}, {3.795260575363516*^9, 3.79526000483041*^9, 3.795260020084659*^9}, {3.795260575363516*^9,
3.795260578010003*^9}, {3.795260625961279*^9, 3.795260647550274*^9}, 3.795260578010003*^9}, {3.795260625961279*^9, 3.795260647550274*^9},
3.79526070114189*^9}, 3.79526070114189*^9, {3.795333433634823*^9, 3.795333446029772*^9}},
CellLabel-> CellLabel->
"In[198]:=",ExpressionUUID->"b3f6951d-bf84-466d-8be0-5fa497cd2249"], "In[210]:=",ExpressionUUID->"b3f6951d-bf84-466d-8be0-5fa497cd2249"],
Cell[BoxData[ Cell[BoxData[
TemplateBox[{ TemplateBox[{
@ -371890,6 +371986,100 @@ Cell[BoxData[
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Series", "[",
RowBox[{
RowBox[{"w",
RowBox[{"(",
RowBox[{"w", "-", "1"}], ")"}],
RowBox[{"(",
RowBox[{"a", "+",
RowBox[{"2", "b", " ",
RowBox[{"(",
RowBox[{"w", "-",
RowBox[{"1", "/", "2"}]}], ")"}]}], "+",
RowBox[{"4", "c",
SuperscriptBox[
RowBox[{"(",
RowBox[{"w", "-",
RowBox[{"1", "/", "2"}]}], ")"}], "2"]}]}], ")"}]}], ",",
RowBox[{"{",
RowBox[{"w", ",", "0", ",", "1"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.795320954627851*^9, 3.795320998942526*^9}},
CellLabel->
"In[207]:=",ExpressionUUID->"1a6caf45-2eea-4ee7-9384-eb8ffbd80006"],
Cell[BoxData[
InterpretationBox[
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "a"}], "+", "b", "-", "c"}], ")"}], " ", "w"}], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[", "w", "]"}], "2"],
SeriesData[$CellContext`w, 0, {}, 1, 2, 1],
Editable->False]}],
SeriesData[$CellContext`w,
0, {-$CellContext`a + $CellContext`b - $CellContext`c}, 1, 2, 1],
Editable->False]], "Output",
CellChangeTimes->{{3.795320991291822*^9, 3.795320999371337*^9}},
CellLabel->
"Out[207]=",ExpressionUUID->"2a722cfa-23aa-435e-b09c-483568356fb5"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
InterpretationBox[
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "a"}], "+",
FractionBox["b", "2"], "-",
FractionBox["c", "4"]}], ")"}], " ", "w"}], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[", "w", "]"}], "2"],
SeriesData[$CellContext`w, 0, {}, 1, 2, 1],
Editable->False]}],
SeriesData[$CellContext`w,
0, {-$CellContext`a + Rational[1, 2] $CellContext`b +
Rational[-1, 4] $CellContext`c}, 1, 2, 1],
Editable->False], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"a", "\[Rule]", "0.5751782560799208`"}], ",",
RowBox[{"b", "\[Rule]",
RowBox[{"-", "0.021108186591137282`"}]}], ",",
RowBox[{"c", "\[Rule]",
RowBox[{"-", "0.36718902716347124`"}]}]}], "}"}]}]], "Input",
CellChangeTimes->{{3.795320966165612*^9, 3.795320966401277*^9}},
CellLabel->
"In[205]:=",ExpressionUUID->"c855c04f-d5c2-47c2-ab31-320359277503"],
Cell[BoxData[
InterpretationBox[
RowBox[{
RowBox[{"-",
RowBox[{"0.49393509258462165`", " ", "w"}]}], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[", "w", "]"}], "2"],
SeriesData[$CellContext`w, 0, {}, 1, 2, 1],
Editable->False]}],
SeriesData[$CellContext`w, 0, {-0.49393509258462165`}, 1, 2, 1],
Editable->False]], "Output",
CellChangeTimes->{3.795320966666791*^9},
CellLabel->
"Out[205]=",ExpressionUUID->"7bcf9fb3-7298-44dd-9402-e8ab08f6a4d7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[ Cell[BoxData[
RowBox[{"Show", "[", RowBox[{"Show", "[",
RowBox[{"{", "\[IndentingNewLine]", RowBox[{"{", "\[IndentingNewLine]",
@ -379506,96 +379696,104 @@ Cell[15315893, 363780, 1419, 28, 241, "Input",ExpressionUUID->"0527fb6c-d312-49f
Cell[15317315, 363810, 10838, 310, 535, "Input",ExpressionUUID->"f9315378-c650-4b01-adc0-3a8dfaf073d2"], Cell[15317315, 363810, 10838, 310, 535, "Input",ExpressionUUID->"f9315378-c650-4b01-adc0-3a8dfaf073d2"],
Cell[15328156, 364122, 1300, 31, 30, "Input",ExpressionUUID->"b56bceab-741c-4959-a22e-ad09614a0733"], Cell[15328156, 364122, 1300, 31, 30, "Input",ExpressionUUID->"b56bceab-741c-4959-a22e-ad09614a0733"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15329481, 364157, 4230, 79, 367, "Input",ExpressionUUID->"abd4eab1-6449-43ab-964f-c00dcb6b555b"], Cell[15329481, 364157, 4286, 80, 367, "Input",ExpressionUUID->"abd4eab1-6449-43ab-964f-c00dcb6b555b"],
Cell[15333714, 364238, 194924, 3447, 249, "Output",ExpressionUUID->"f32313db-6739-49bb-97dc-469998c9c5f7"] Cell[15333770, 364239, 200149, 3542, 249, "Output",ExpressionUUID->"357e2709-ec15-4a19-9d64-24493586f1ca"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15528675, 367690, 2827, 62, 367, "Input",ExpressionUUID->"b3f6951d-bf84-466d-8be0-5fa497cd2249"], Cell[15533956, 367786, 2879, 62, 367, "Input",ExpressionUUID->"b3f6951d-bf84-466d-8be0-5fa497cd2249"],
Cell[15531505, 367754, 193023, 3411, 270, "Output",ExpressionUUID->"33f9e8f0-146c-4af3-81a8-38dc2a8c43ad"] Cell[15536838, 367850, 193023, 3411, 270, "Output",ExpressionUUID->"33f9e8f0-146c-4af3-81a8-38dc2a8c43ad"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15724565, 371170, 2361, 59, 249, "Input",ExpressionUUID->"480efb8a-9a05-41e0-9e2f-f1efa4801aa1"], Cell[15729898, 371266, 2361, 59, 249, "Input",ExpressionUUID->"480efb8a-9a05-41e0-9e2f-f1efa4801aa1"],
Cell[15726929, 371231, 18375, 343, 246, "Output",ExpressionUUID->"04fe6bb8-2432-44e9-94ef-c4d032d36970"] Cell[15732262, 371327, 18375, 343, 246, "Output",ExpressionUUID->"04fe6bb8-2432-44e9-94ef-c4d032d36970"]
}, Open ]], }, Open ]],
Cell[15745319, 371577, 893, 24, 30, "Input",ExpressionUUID->"eba743cb-9b99-4968-9e03-ca45aab743f7"], Cell[15750652, 371673, 893, 24, 30, "Input",ExpressionUUID->"eba743cb-9b99-4968-9e03-ca45aab743f7"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15746237, 371605, 2043, 56, 131, "Input",ExpressionUUID->"8977b581-2fdd-4e80-865e-b9ee82c025b3"], Cell[15751570, 371701, 2043, 56, 131, "Input",ExpressionUUID->"8977b581-2fdd-4e80-865e-b9ee82c025b3"],
Cell[15748283, 371663, 1627, 28, 77, "Output",ExpressionUUID->"ff1ee934-574a-488f-845a-38d339f17597"], Cell[15753616, 371759, 1627, 28, 77, "Output",ExpressionUUID->"ff1ee934-574a-488f-845a-38d339f17597"],
Cell[15749913, 371693, 461, 8, 34, "Output",ExpressionUUID->"fcbd15f7-7044-4024-a773-e3ba58909c91"], Cell[15755246, 371789, 461, 8, 34, "Output",ExpressionUUID->"fcbd15f7-7044-4024-a773-e3ba58909c91"],
Cell[15750377, 371703, 1640, 29, 77, "Output",ExpressionUUID->"4ff3411b-c53a-4f8d-9aa5-3f2f2171818f"] Cell[15755710, 371799, 1640, 29, 77, "Output",ExpressionUUID->"4ff3411b-c53a-4f8d-9aa5-3f2f2171818f"]
}, Open ]], }, Open ]],
Cell[15752032, 371735, 969, 25, 30, "Input",ExpressionUUID->"d178bbe2-f7e2-46a5-a39a-6ea5c791c5b0"], Cell[15757365, 371831, 969, 25, 30, "Input",ExpressionUUID->"d178bbe2-f7e2-46a5-a39a-6ea5c791c5b0"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15753026, 371764, 4048, 104, 103, "Input",ExpressionUUID->"555f9003-f225-466f-9574-844402a303fe"], Cell[15758359, 371860, 4048, 104, 103, "Input",ExpressionUUID->"555f9003-f225-466f-9574-844402a303fe"],
Cell[15757077, 371870, 835, 17, 34, "Output",ExpressionUUID->"234fa73c-d858-4963-892d-305064f5ea60"] Cell[15762410, 371966, 835, 17, 34, "Output",ExpressionUUID->"234fa73c-d858-4963-892d-305064f5ea60"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15757949, 371892, 3998, 90, 501, "Input",ExpressionUUID->"3e1d531d-968b-4347-a125-72660d1219b5"], Cell[15763282, 371988, 691, 21, 33, "Input",ExpressionUUID->"1a6caf45-2eea-4ee7-9384-eb8ffbd80006"],
Cell[15761950, 371984, 43518, 786, 376, "Output",ExpressionUUID->"a4b3733d-fc2c-45d7-b906-27c8fb6182bd"] Cell[15763976, 372011, 595, 17, 34, "Output",ExpressionUUID->"2a722cfa-23aa-435e-b09c-483568356fb5"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15805505, 372775, 986, 29, 56, "Input",ExpressionUUID->"827a1054-eda5-4739-83bf-0386aaca1ac7"], Cell[15764608, 372033, 969, 28, 48, InheritFromParent,ExpressionUUID->"c855c04f-d5c2-47c2-ab31-320359277503"],
Cell[15806494, 372806, 496, 14, 34, "Output",ExpressionUUID->"383d63a4-d030-4692-878e-3d6817645c5d"] Cell[15765580, 372063, 495, 14, 34, "Output",ExpressionUUID->"7bcf9fb3-7298-44dd-9402-e8ab08f6a4d7"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15807027, 372825, 1436, 45, 33, "Input",ExpressionUUID->"52ecb6d7-628e-48c3-8fdf-04e32fa73ba3"], Cell[15766112, 372082, 3998, 90, 501, "Input",ExpressionUUID->"3e1d531d-968b-4347-a125-72660d1219b5"],
Cell[15808466, 372872, 275, 5, 34, "Output",ExpressionUUID->"01188a81-253a-4fef-851b-1f1c8014ba9a"] Cell[15770113, 372174, 43518, 786, 376, "Output",ExpressionUUID->"a4b3733d-fc2c-45d7-b906-27c8fb6182bd"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15808778, 372882, 1307, 44, 33, "Input",ExpressionUUID->"1b5f1cb0-3fd7-435b-8c04-9aeb03cf006c"], Cell[15813668, 372965, 986, 29, 56, "Input",ExpressionUUID->"827a1054-eda5-4739-83bf-0386aaca1ac7"],
Cell[15810088, 372928, 156, 3, 34, "Output",ExpressionUUID->"8bdb68f5-1fd2-448b-a479-95a1c8963c85"] Cell[15814657, 372996, 496, 14, 34, "Output",ExpressionUUID->"383d63a4-d030-4692-878e-3d6817645c5d"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15810281, 372936, 12100, 237, 1018, "Input",ExpressionUUID->"0a7923af-71ee-45df-8b56-0e8b12a0a6d1"], Cell[15815190, 373015, 1436, 45, 33, "Input",ExpressionUUID->"52ecb6d7-628e-48c3-8fdf-04e32fa73ba3"],
Cell[15822384, 373175, 8842, 152, 790, "Output",ExpressionUUID->"5db96a25-79a9-4efe-8b1f-76b5aa8f7756"] Cell[15816629, 373062, 275, 5, 34, "Output",ExpressionUUID->"01188a81-253a-4fef-851b-1f1c8014ba9a"]
}, Open ]],
Cell[CellGroupData[{
Cell[15816941, 373072, 1307, 44, 33, "Input",ExpressionUUID->"1b5f1cb0-3fd7-435b-8c04-9aeb03cf006c"],
Cell[15818251, 373118, 156, 3, 34, "Output",ExpressionUUID->"8bdb68f5-1fd2-448b-a479-95a1c8963c85"]
}, Open ]],
Cell[CellGroupData[{
Cell[15818444, 373126, 12100, 237, 1018, "Input",ExpressionUUID->"0a7923af-71ee-45df-8b56-0e8b12a0a6d1"],
Cell[15830547, 373365, 8842, 152, 790, "Output",ExpressionUUID->"5db96a25-79a9-4efe-8b1f-76b5aa8f7756"]
}, Open ]] }, Open ]]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15831275, 373333, 156, 3, 67, "Section",ExpressionUUID->"7e57ea5d-eda6-4859-be05-fbdab0057af8"], Cell[15839438, 373523, 156, 3, 67, "Section",ExpressionUUID->"7e57ea5d-eda6-4859-be05-fbdab0057af8"],
Cell[15831434, 373338, 1046, 21, 199, "Input",ExpressionUUID->"9b0a9925-7ea3-472a-8b52-c47b533609b7"], Cell[15839597, 373528, 1046, 21, 199, "Input",ExpressionUUID->"9b0a9925-7ea3-472a-8b52-c47b533609b7"],
Cell[15832483, 373361, 11736, 316, 535, "Input",ExpressionUUID->"e2303c87-a8e1-4df1-944f-cd2b088263a9"], Cell[15840646, 373551, 11736, 316, 535, "Input",ExpressionUUID->"e2303c87-a8e1-4df1-944f-cd2b088263a9"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15844244, 373681, 2544, 43, 220, "Input",ExpressionUUID->"c25cd409-06ed-474f-bd83-a59b0babaccb"], Cell[15852407, 373871, 2544, 43, 220, "Input",ExpressionUUID->"c25cd409-06ed-474f-bd83-a59b0babaccb"],
Cell[15846791, 373726, 74041, 1485, 391, "Output",ExpressionUUID->"ef35eb6f-e664-48a1-adf8-f3ed74eebdce"] Cell[15854954, 373916, 74041, 1485, 391, "Output",ExpressionUUID->"ef35eb6f-e664-48a1-adf8-f3ed74eebdce"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15920869, 375216, 1442, 29, 220, "Input",ExpressionUUID->"b6366ba0-47af-4fdb-8ffb-513b455421e0"], Cell[15929032, 375406, 1442, 29, 220, "Input",ExpressionUUID->"b6366ba0-47af-4fdb-8ffb-513b455421e0"],
Cell[15922314, 375247, 74203, 1485, 385, "Output",ExpressionUUID->"aee73340-d188-4c02-9c0b-bc1febe9fc98"] Cell[15930477, 375437, 74203, 1485, 385, "Output",ExpressionUUID->"aee73340-d188-4c02-9c0b-bc1febe9fc98"]
}, Open ]], }, Open ]],
Cell[15996532, 376735, 893, 24, 30, "Input",ExpressionUUID->"5add9728-32e3-4599-868d-3a1b2239db00"], Cell[16004695, 376925, 893, 24, 30, "Input",ExpressionUUID->"5add9728-32e3-4599-868d-3a1b2239db00"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15997450, 376763, 1514, 40, 90, "Input",ExpressionUUID->"2a0688ee-74ad-46db-ba7b-224b2b808675"], Cell[16005613, 376953, 1514, 40, 90, "Input",ExpressionUUID->"2a0688ee-74ad-46db-ba7b-224b2b808675"],
Cell[15998967, 376805, 1692, 27, 77, "Output",ExpressionUUID->"883dd515-3ae6-41b5-8367-626b24f3c665"], Cell[16007130, 376995, 1692, 27, 77, "Output",ExpressionUUID->"883dd515-3ae6-41b5-8367-626b24f3c665"],
Cell[16000662, 376834, 1682, 26, 77, "Output",ExpressionUUID->"2ffa3de5-1cd0-4d04-8ace-5bda4e8413ac"] Cell[16008825, 377024, 1682, 26, 77, "Output",ExpressionUUID->"2ffa3de5-1cd0-4d04-8ace-5bda4e8413ac"]
}, Open ]], }, Open ]],
Cell[16002359, 376863, 969, 25, 30, "Input",ExpressionUUID->"68f3e2d3-26c7-43c5-b8e3-f4ed45d25ed9"], Cell[16010522, 377053, 969, 25, 30, "Input",ExpressionUUID->"68f3e2d3-26c7-43c5-b8e3-f4ed45d25ed9"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[16003353, 376892, 1898, 45, 80, "Input",ExpressionUUID->"5e80185d-9c89-4378-a52b-f7ae39447f4c"], Cell[16011516, 377082, 1898, 45, 80, "Input",ExpressionUUID->"5e80185d-9c89-4378-a52b-f7ae39447f4c"],
Cell[16005254, 376939, 889, 16, 34, "Output",ExpressionUUID->"1623f7b4-b625-468f-95f3-f9cb422fab7a"] Cell[16013417, 377129, 889, 16, 34, "Output",ExpressionUUID->"1623f7b4-b625-468f-95f3-f9cb422fab7a"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[16006180, 376960, 3937, 88, 501, "Input",ExpressionUUID->"9b865922-379a-437f-9465-86ea61099c7c"], Cell[16014343, 377150, 3937, 88, 501, "Input",ExpressionUUID->"9b865922-379a-437f-9465-86ea61099c7c"],
Cell[16010120, 377050, 43640, 786, 383, "Output",ExpressionUUID->"758bdb93-96f6-41cf-bb21-1d7d3ec2623e"] Cell[16018283, 377240, 43640, 786, 383, "Output",ExpressionUUID->"758bdb93-96f6-41cf-bb21-1d7d3ec2623e"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[16053797, 377841, 1875, 56, 79, "Input",ExpressionUUID->"c985275f-ef22-4f69-b6cc-ef3826053597"], Cell[16061960, 378031, 1875, 56, 79, "Input",ExpressionUUID->"c985275f-ef22-4f69-b6cc-ef3826053597"],
Cell[16055675, 377899, 672, 19, 34, "Output",ExpressionUUID->"898aac3e-1016-4685-a14a-61fdedacf977"], Cell[16063838, 378089, 672, 19, 34, "Output",ExpressionUUID->"898aac3e-1016-4685-a14a-61fdedacf977"],
Cell[16056350, 377920, 674, 19, 34, "Output",ExpressionUUID->"132f03f3-ad06-4c9d-aac7-3f9d9f66b481"] Cell[16064513, 378110, 674, 19, 34, "Output",ExpressionUUID->"132f03f3-ad06-4c9d-aac7-3f9d9f66b481"]
}, Open ]], }, Open ]],
Cell[16057039, 377942, 2114, 69, 174, "Input",ExpressionUUID->"627c8f0b-bf5d-4930-b7f0-4db83f0ff9e6"] Cell[16065202, 378132, 2114, 69, 174, "Input",ExpressionUUID->"627c8f0b-bf5d-4930-b7f0-4db83f0ff9e6"]
}, Closed]], }, Closed]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[16059190, 378016, 161, 3, 53, "Section",ExpressionUUID->"aa4e43b6-16bb-48ec-b510-dd62918a249d"], Cell[16067353, 378206, 161, 3, 53, "Section",ExpressionUUID->"aa4e43b6-16bb-48ec-b510-dd62918a249d"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[16059376, 378023, 11273, 236, 1060, "Input",ExpressionUUID->"74a386fd-d786-4f8e-ac35-d0ff9ba081f6"], Cell[16067539, 378213, 11273, 236, 1060, "Input",ExpressionUUID->"74a386fd-d786-4f8e-ac35-d0ff9ba081f6"],
Cell[16070652, 378261, 9389, 154, 824, "Output",ExpressionUUID->"d7d06b61-0933-4088-93bd-8e0fba5dd977"] Cell[16078815, 378451, 9389, 154, 824, "Output",ExpressionUUID->"d7d06b61-0933-4088-93bd-8e0fba5dd977"]
}, Open ]] }, Open ]]
}, Closed]], }, Closed]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[16080090, 378421, 150, 3, 53, "Section",ExpressionUUID->"c824cb5c-4a52-46d1-a35a-851caf0c9277"], Cell[16088253, 378611, 150, 3, 53, "Section",ExpressionUUID->"c824cb5c-4a52-46d1-a35a-851caf0c9277"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[16080265, 378428, 11846, 251, 1102, "Input",ExpressionUUID->"90c1c688-5be7-41e3-9c39-705d685f5e99"], Cell[16088428, 378618, 11846, 251, 1102, "Input",ExpressionUUID->"90c1c688-5be7-41e3-9c39-705d685f5e99"],
Cell[16092114, 378681, 8837, 148, 860, "Output",ExpressionUUID->"8dd3c70a-b7fc-44f3-8f55-b16fedb42516"] Cell[16100277, 378871, 8837, 148, 860, "Output",ExpressionUUID->"8dd3c70a-b7fc-44f3-8f55-b16fedb42516"]
}, Open ]] }, Open ]]
}, Closed]] }, Closed]]
}, Open ]] }, Open ]]

Binary file not shown.

View File

@ -1,13 +1,48 @@
%% This BibTeX bibliography file was created using BibDesk. %% This BibTeX bibliography file was created using BibDesk.
%% http://bibdesk.sourceforge.net/ %% http://bibdesk.sourceforge.net/
%% Created for Pierre-Francois Loos at 2020-04-07 20:33:37 +0200 %% Created for Pierre-Francois Loos at 2020-04-08 13:05:55 +0200
%% Saved with string encoding Unicode (UTF-8) %% Saved with string encoding Unicode (UTF-8)
@article{Bottcher_1974,
Author = {C. Bottcher and K. Docken},
Date-Added = {2020-04-08 13:03:40 +0200},
Date-Modified = {2020-04-08 13:05:55 +0200},
Doi = {10.1088/0022-3700/7/1/002},
Journal = {J. Phys. B: At. Mol. Phys.},
Pages = {L5},
Title = {Autoionizing States of the Hydrogen Molecule.},
Volume = {7},
Year = {1974}}
@article{Mielke_2005,
Author = {S. L. Mielke and D. W. Schwenke and K. A. Peterson},
Date-Added = {2020-04-08 12:47:49 +0200},
Date-Modified = {2020-04-08 12:49:45 +0200},
Doi = {10.1063/1.1917838},
Journal = {J. Chem. Phys.},
Pages = {224313},
Title = {Benchmark calculations of the complete configuration-interaction limit of Born-Oppenheimer diagonal corrections to the saddle points of isotopomers of the {{H+H2}} reaction.},
Volume = {122},
Year = {2005},
Bdsk-Url-1 = {https://doi.org/10.1063/1.1917838}}
@article{Sun_2016,
Author = {J. Sun and J. P. Perdew and Z. Yang and H. Peng},
Date-Added = {2020-04-08 10:56:23 +0200},
Date-Modified = {2020-04-08 10:56:47 +0200},
Doi = {10.1063/1.4950845},
Journal = {J. Chem. Phys.},
Pages = {191101},
Title = {Near-locality of exchange and correlation density functionals for 1- and 2-electron systems},
Volume = {144},
Year = {2016},
Bdsk-Url-1 = {https://doi.org/10.1063/1.4950845}}
@article{Slater_1951, @article{Slater_1951,
Author = {J. C. Slater}, Author = {J. C. Slater},
Date-Added = {2020-04-07 19:53:52 +0200}, Date-Added = {2020-04-07 19:53:52 +0200},
@ -17,7 +52,8 @@
Pages = {385}, Pages = {385},
Title = {A Simplification of the Hartree-Fock Method}, Title = {A Simplification of the Hartree-Fock Method},
Volume = {81}, Volume = {81},
Year = {1981}} Year = {1981},
Bdsk-Url-1 = {https://doi.org/10.1103/PhysRev.81.385}}
@book{Slater_1974, @book{Slater_1974,
Date-Added = {2020-04-07 19:48:23 +0200}, Date-Added = {2020-04-07 19:48:23 +0200},

View File

@ -3,7 +3,7 @@
\usepackage[utf8]{inputenc} \usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc} \usepackage[T1]{fontenc}
\usepackage{txfonts} %\usepackage{txfonts}
\usepackage{grffile} \usepackage{grffile}
\usepackage[ \usepackage[
@ -67,7 +67,10 @@
\newcommand{\Ec}{E_\text{c}} \newcommand{\Ec}{E_\text{c}}
\newcommand{\HF}{\text{HF}} \newcommand{\HF}{\text{HF}}
\newcommand{\LDA}{\text{LDA}} \newcommand{\LDA}{\text{LDA}}
\newcommand{\eLDA}{\text{eLDA}} \newcommand{\SD}{\text{S}}
\newcommand{\VWN}{\text{VWN5}}
\newcommand{\SVWN}{\text{SVWN5}}
\newcommand{\MSFL}{\text{MSFL}}
\newcommand{\CID}{\text{CID}} \newcommand{\CID}{\text{CID}}
\newcommand{\Hxc}{\text{Hxc}} \newcommand{\Hxc}{\text{Hxc}}
\newcommand{\Ha}{\text{H}} \newcommand{\Ha}{\text{H}}
@ -173,13 +176,12 @@ We believe that it is partly due to the lack of accurate approximations for GOK-
In particular, to the best of our knowledge, an explicitly weight-dependent density-functional approximation for ensemble (eDFA) has never been developed for atoms and molecules. In particular, to the best of our knowledge, an explicitly weight-dependent density-functional approximation for ensemble (eDFA) has never been developed for atoms and molecules.
The present contribution is a small step towards this goal. The present contribution is a small step towards this goal.
\titou{When one talks about constructing functionals, the local-density approximation (LDA) is never far away. When one talks about constructing functionals, the local-density approximation (LDA) is never far away.
The LDA, as we know it, is based on the uniform electron gas (UEG) also known as jellium, an hypothetical infinite substance where an infinite number of electrons ``bathe'' in a (uniform) positively-charged jelly. \cite{Loos_2016} The LDA, as we know it, is based on the uniform electron gas (UEG) also known as jellium, an hypothetical infinite substance where an infinite number of electrons ``bathe'' in a (uniform) positively-charged jelly. \cite{Loos_2016}
Although the Hohenberg--Kohn theorems \cite{Hohenberg_1964} are here to provide firm theoretical grounds to DFT, modern KS-DFT rests largely on the presumed similarity between this hypothetical UEG and the electronic behaviour in a real system. \cite{Kohn_1965} Although the Hohenberg--Kohn theorems \cite{Hohenberg_1964} are here to provide firm theoretical grounds to DFT, modern KS-DFT rests largely on the presumed similarity between this hypothetical UEG and the electronic behaviour in a real system. \cite{Kohn_1965}
However, Loos and Gill have recently shown that there exists other UEGs which contain finite numbers of electrons (more like in a molecule), \cite{Loos_2011b,Gill_2012} and that they can be exploited to construct LDA functionals. \cite{Loos_2014a,Loos_2014b,Loos_2017a} However, Loos and Gill have recently shown that there exists other UEGs which contain finite numbers of electrons (more like in a molecule), \cite{Loos_2011b,Gill_2012} and that they can be exploited to construct LDA functionals. \cite{Loos_2014a,Loos_2014b,Loos_2017a}
Electrons restricted to remain on the surface of a $\cD$-sphere (where $\cD$ is the dimensionality of the surface of the sphere) are an example of finite UEGs (FUEGs). \cite{Loos_2011b} Electrons restricted to remain on the surface of a $\cD$-sphere (where $\cD$ is the dimensionality of the surface of the sphere) are an example of finite UEGs (FUEGs). \cite{Loos_2011b}
Here, we combine these FUEGs with the usual infinite UEG (IUEG) to construct a weigh-dependent LDA functional for ensembles (eLDA). In particular, we combine these FUEGs with the usual infinite UEG (IUEG) to construct a weigh-dependent LDA correlation functional for ensembles, which is specifically designed to compute double excitations within GOK-DFT, and automatically incorporates the infamous derivative discontinuity contribution to the excitation energies through its explicit ensemble weight dependence. \cite{Levy_1995, Perdew_1983}
The present eLDA functional is specifically designed to compute double excitations within GOK-DFT, and it automatically incorporates the infamous derivative discontinuity contribution to the excitation energies through its explicit ensemble weight dependence. \cite{Levy_1995, Perdew_1983}}
%The paper is organised as follows. %The paper is organised as follows.
%In Sec.~\ref{sec:theo}, the theory behind GOK-DFT is presented. %In Sec.~\ref{sec:theo}, the theory behind GOK-DFT is presented.
@ -250,10 +252,13 @@ Note that the weight-independent Hartree functional $\E{\Ha}{}[\n{}{}]$ causes t
From the GOK-DFT ensemble energy expression in Eq.~\eqref{eq:Ew-GOK}, we obtain \cite{Gross_1988b,Deur_2019} From the GOK-DFT ensemble energy expression in Eq.~\eqref{eq:Ew-GOK}, we obtain \cite{Gross_1988b,Deur_2019}
\begin{equation} \begin{equation}
\begin{split}
\label{eq:dEdw} \label{eq:dEdw}
\pdv{\E{}{\bw}}{\ew{I}} \pdv{\E{}{\bw}}{\ew{I}}
= \E{}{(I)} - \E{}{(0)} & = \E{}{(I)} - \E{}{(0)}
= \Eps{I}{\bw} - \Eps{0}{\bw} + \left. \pdv{\E{\xc}{\bw}[\n{}{}]}{\ew{I}} \right|_{\n{}{} = \n{}{\bw}(\br{})}, \\
& = \Eps{I}{\bw} - \Eps{0}{\bw} + \left. \pdv{\E{\xc}{\bw}[\n{}{}]}{\ew{I}} \right|_{\n{}{} = \n{}{\bw}(\br{})},
\end{split}
\end{equation} \end{equation}
where where
\begin{align} \begin{align}
@ -276,15 +281,19 @@ The latters are determined by solving the ensemble KS equation
\end{equation} \end{equation}
where $\hHc(\br{}) = -\nabla^2/2 + \vne(\br{})$, and where $\hHc(\br{}) = -\nabla^2/2 + \vne(\br{})$, and
\begin{equation} \begin{equation}
\begin{split}
\fdv{\E{\Hxc}{\bw}[\n{}{}]}{\n{}{}(\br{})} \fdv{\E{\Hxc}{\bw}[\n{}{}]}{\n{}{}(\br{})}
& = \fdv{\E{\Ha}{\bw}[\n{}{}]}{\n{}{}(\br{})} + \fdv{\E{\xc}{\bw}[\n{}{}]}{\n{}{}(\br{})} = \fdv{\E{\Ha}{\bw}[\n{}{}]}{\n{}{}(\br{})} + \fdv{\E{\xc}{\bw}[\n{}{}]}{\n{}{}(\br{})}
\\
& = \frac{1}{2} \int \frac{\n{}{}(\br{}')}{\abs{\br{}-\br{}'}} d\br{}'
+ \left. \pdv{\e{\xc}{\bw{}}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{}{}(\br{})} \n{}{}(\br{}) + \e{\xc}{\bw{}}(\n{}{}(\br{}))
\end{split}
\end{equation} \end{equation}
is the Hxc potential. is the Hxc potential, with
\begin{subequations}
\begin{align}
\fdv{\E{\Ha}{}[\n{}{}]}{\n{}{}(\br{})}
& = \frac{1}{2} \int \frac{\n{}{}(\br{}')}{\abs{\br{}-\br{}'}} d\br{}',
\\
\fdv{\E{\xc}{\bw}[\n{}{}]}{\n{}{}(\br{})}
& = \left. \pdv{\e{\xc}{\bw{}}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{}{}(\br{})} \n{}{}(\br{}) + \e{\xc}{\bw{}}(\n{}{}(\br{})).
\end{align}
\end{subequations}
Equation \eqref{eq:dEdw} is our working equation for computing excitation energies from a practical point of view. Equation \eqref{eq:dEdw} is our working equation for computing excitation energies from a practical point of view.
Note that the individual densities $\n{\Det{I}{\bw}}{}(\br{})$ defined in Eq.~\eqref{eq:nI} do not match the \textit{exact} individual-state densities as the non-interacting KS ensemble is expected to reproduce the true interacting ensemble density $\n{}{\bw}(\br{})$ defined in Eq.~\eqref{eq:nw}, and not each individual density. Note that the individual densities $\n{\Det{I}{\bw}}{}(\br{})$ defined in Eq.~\eqref{eq:nI} do not match the \textit{exact} individual-state densities as the non-interacting KS ensemble is expected to reproduce the true interacting ensemble density $\n{}{\bw}(\br{})$ defined in Eq.~\eqref{eq:nw}, and not each individual density.
Nevertheless, Nevertheless,
@ -314,20 +323,26 @@ Indeed, the limit $\ew{} = 1$ is of particular interest as it corresponds to a g
Moreover, the limits $\ew{} = 0$ and $\ew{} = 1$ are the only two weights for which there is no ghost-interaction error. Moreover, the limits $\ew{} = 0$ and $\ew{} = 1$ are the only two weights for which there is no ghost-interaction error.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Results} \section{Hydrogen molecule}
\label{sec:res} \label{sec:H2}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
First, we compute the ensemble energy of the \ce{H2} molecule using the aug-cc-pVTZ basis set and the weight-independent Slater local exchange functional, \cite{Dirac_1930, Slater_1951} \bruno{notée S51 sur les figures?} which is explicitly given by %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Weight-independent exchange functional}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
First, we compute the ensemble energy of the \ce{H2} molecule using the aug-cc-pVTZ basis set and the weight-independent Slater-Dirac local exchange functional, \cite{Dirac_1930, Slater_1951} which is explicitly given by
\begin{align} \begin{align}
\e{\ex}{\text{S}}(\n{}{}) & = \Cx{} \n{}{1/3}, \e{\ex}{\text{S}}(\n{}{}) & = \Cx{} \n{}{1/3},
& &
\Cx{} & = -\frac{3}{4} \qty(\frac{3}{\pi})^{1/3}. \Cx{} & = -\frac{3}{4} \qty(\frac{3}{\pi})^{1/3}.
\end{align} \end{align}
The ensemble energy $\E{}{w}$ is depicted in Fig.~\ref{fig:Ew_H2} as a function of the weight $0 \le \ew{} \le 1$. In the case of \ce{H2}, the ensemble is composed by the $1\sigma_g^2$ ground state and the lowest doubly-excited state of configuration $1\sigma_u^2$, which has an autoionising resonance nature. \cite{Bottcher_1974}
The ensemble energy $\E{}{\ew{}}$ is depicted in Fig.~\ref{fig:Ew_H2} as a function of the weight $0 \le \ew{} \le 1$.
Because this exchange functional does not depend on the ensemble weight, there is no contribution from the ensemble derivative term [last term in Eq.~\eqref{eq:dEdw}]. Because this exchange functional does not depend on the ensemble weight, there is no contribution from the ensemble derivative term [last term in Eq.~\eqref{eq:dEdw}].
As anticipated, $\E{}{w}$ is far from being linear, which means that the excitation energy obtained via the derivative of the local energy varies significantly with the weight of the double excitation (see Fig.~\ref{fig:Om_H2}). As anticipated, $\E{}{\ew{}}$ is far from being linear, which means that the excitation energy obtained via the derivative of the local energy varies significantly with the weight of the double excitation (see Fig.~\ref{fig:Om_H2}).
Note that the exact xc correlation ensemble functional would yield a perfectly linear energy and the same value of the excitation energy independently of $\ew{}$. Taking as a reference the full configuration interaction (FCI) value of $28.75$ eV obtained with the aug-mcc-pV8Z basis set, \cite{Barca_2018a} one can see that the excitation energy varies by more than $8$ eV from $\ew{} = 0$ to $1/2$.
Note that the exact xc correlation ensemble functional would yield a perfectly linear energy and, hence, the same value of the excitation energy independently of $\ew{}$.
\begin{figure} \begin{figure}
\includegraphics[width=\linewidth]{Ew_H2} \includegraphics[width=\linewidth]{Ew_H2}
@ -345,10 +360,15 @@ Note that the exact xc correlation ensemble functional would yield a perfectly l
} }
\end{figure} \end{figure}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Weight-dependent exchange functional}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Second, in order to remove this spurious curvature of the ensemble energy (which is partly due to the ghost-interaction error, but not only), one can easily reverse-engineer (for this particular system and basis set) a local exchange functional to make $\E{}{\ew{}}$ as linear as possible for $0 \le \ew{} \le 1$. Second, in order to remove this spurious curvature of the ensemble energy (which is partly due to the ghost-interaction error, but not only), one can easily reverse-engineer (for this particular system and basis set) a local exchange functional to make $\E{}{\ew{}}$ as linear as possible for $0 \le \ew{} \le 1$.
Doing so, we have found that the present weight-dependent exchange functional (denoted as MSFL in the following), represented in Fig.~\ref{fig:Cx_H2}, Doing so, we have found that the present weight-dependent exchange functional (denoted as GIC-S in the following as its main purpose is to correct for the ghost-interaction error), represented in Fig.~\ref{fig:Cx_H2},
\begin{equation} \begin{equation}
\e{\ex}{\ew{},\text{MSFL}}(\n{}{}) = \Cx{\ew{}} \n{}{1/3}, \e{\ex}{\ew{},\text{GIC-S}}(\n{}{}) = \Cx{\ew{}} \n{}{1/3},
\end{equation} \end{equation}
with with
\begin{equation} \begin{equation}
@ -363,11 +383,11 @@ and
& &
\gamma & = - 0.367\,189, \gamma & = - 0.367\,189,
\end{align} \end{align}
makes the ensemble much more linear (see Fig.~\ref{fig:Ew_H2})\bruno{C'est celle notée ``GIC'' sur la figure ? Pourquoi pas MSFL ? A clarifier pour le lecteur}, and the excitation energy much more stable and closer to the full configuration interaction (FCI) reference of $28.75$ eV \cite{Barca_2018a} (see Fig.~\ref{fig:Om_H2}) makes the ensemble almost perfectly linear (see Fig.~\ref{fig:Ew_H2}), and the excitation energy much more stable and closer to the full configuration interaction (FCI) reference of $28.75$ eV \cite{Barca_2018a} (see Fig.~\ref{fig:Om_H2})
As readily seen from Eq.~\eqref{eq:Cxw}, $\Cx{\ew{}}$ reduces to $\Cx{}$ for $\ew{} = 0$. As readily seen from Eq.~\eqref{eq:Cxw}, $\Cx{\ew{}}$ reduces to $\Cx{}$ for $\ew{} = 0$.
Note that we are not only using data from $\ew{} = 0$ to $\ew{} = 1/2$, but we also consider $1/2 < \ew{} \le 1$. Note that we are not only using data from $\ew{} = 0$ to $\ew{} = 1/2$, but we also consider $1/2 < \ew{} \le 1$.
We ensure that the weight-dependent functional does not affect the two ghost-interaction-free limit at $\ew{} = 0$ and $1$. We ensure that the weight-dependent functional does not affect the two ghost-interaction-free limits at $\ew{} = 0$ and $1$.
It is interesting to note that, around $\ew{} = 0$, the behavior of Eq.~\eqref{eq:Cxw} is linear It is interesting to note that, around $\ew{} = 0$, the behavior of Eq.~\eqref{eq:Cxw} is linear.
\begin{figure} \begin{figure}
\includegraphics[width=0.8\linewidth]{Cx_H2} \includegraphics[width=0.8\linewidth]{Cx_H2}
\caption{ \caption{
@ -376,9 +396,14 @@ It is interesting to note that, around $\ew{} = 0$, the behavior of Eq.~\eqref{e
} }
\end{figure} \end{figure}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Weight-independent correlation functional}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Third, we add up correlation via the VWN5 local correlation functional. \cite{Vosko_1980} Third, we add up correlation via the VWN5 local correlation functional. \cite{Vosko_1980}
For the sake of clarity, the explicit expression of the VWN5 functional is not reported here but it can be found in Ref.~\onlinecite{Vosko_1980}. For the sake of clarity, the explicit expression of the VWN5 functional is not reported here but it can be found in Ref.~\onlinecite{Vosko_1980}.
The combination of the Slater and VWN5 functionals (SVWN5) yield a highly non-linear ensemble energy (as shown in Fig.~\ref{fig:Ew_H2}), while the combination of the MSFL and VWN5 functionals exhibit a small curvature and improved excitation energies, especially at small weights. The combination of the Slater and VWN5 functionals (SVWN5) yield a highly convex ensemble energy (as shown in Fig.~\ref{fig:Ew_H2}), while the combination of the GIC-S and VWN5 functionals (GIC-SVWN5) exhibit a small curvature (the ensemble energy is now slightly concave) and improved excitation energies, especially at small weights.
%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%
%%% FUNCTIONAL %%% %%% FUNCTIONAL %%%
@ -391,12 +416,17 @@ The combination of the Slater and VWN5 functionals (SVWN5) yield a highly non-li
%The construction of these two functionals is described below. %The construction of these two functionals is described below.
%Extension to spin-polarised systems will be reported in future work. %Extension to spin-polarised systems will be reported in future work.
Fourth, in the spirit of our recent work \cite{Loos_2020}, we have designed a weight-dependent correlation functional.
To build this weight-dependent correlation functional, we consider the singlet ground state and the first singlet doubly-excited state of a two-electron finite UEGs which consists of two electrons confined to the surface of a 3-sphere (also known as a glome).\cite{Loos_2009a,Loos_2009c,Loos_2010e} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Weight-dependent correlation functional}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Fourth, in the spirit of our recent work, \cite{Loos_2020} we have designed a weight-dependent correlation functional.
To build this weight-dependent correlation functional, we consider the singlet ground state and the first singlet doubly-excited state of a two-electron FUEGs which consists of two electrons confined to the surface of a 3-sphere (also known as a glome).\cite{Loos_2009a,Loos_2009c,Loos_2010e}
Notably, these two states have the same (uniform) density $\n{}{} = 2/(2\pi^2 R^3)$, where $R$ is the radius of the 3-sphere onto which the electrons are confined. Notably, these two states have the same (uniform) density $\n{}{} = 2/(2\pi^2 R^3)$, where $R$ is the radius of the 3-sphere onto which the electrons are confined.
Indeed, the orbitals for an electron on a 3-sphere of unit radius are the normalised hyperspherical harmonics $Y_{\ell\mu}$, where $\ell$ is the principal quantum number and $\mu$ is a composite index of the remaining two quantum numbers. \cite{AveryBook, Avery_1993} Indeed, the orbitals for an electron on a 3-sphere of unit radius are the normalised hyperspherical harmonics $Y_{\ell\mu}$, where $\ell$ is the principal quantum number and $\mu$ is a composite index of the remaining two quantum numbers. \cite{AveryBook, Avery_1993}
As mentioned above, we confine our attention to paramagnetic (or unpolarised) systems, and in particular to the simple two-electron system in which the orbital with $\ell = 0$ is doubly-occupied by one spin-up and one spin-down electron, thus yielding an electron density that is uniform on the 3-sphere. As mentioned above, we confine our attention to paramagnetic (or unpolarised) systems, and in particular to the simple two-electron system in which the orbital with $\ell = 0$ is doubly-occupied by one spin-up and one spin-down electron, thus yielding an electron density that is uniform on the 3-sphere.
Note that the present paradigm is equivalent to the IUEG model in the thermodynamic limit. \cite{Loos_2011b} Note that the present paradigm is equivalent to the conventional IUEG model in the thermodynamic limit. \cite{Loos_2011b}
We refer the interested reader to Refs.~\onlinecite{Loos_2011b,Loos_2017a} for more details about this paradigm. We refer the interested reader to Refs.~\onlinecite{Loos_2011b,Loos_2017a} for more details about this paradigm.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -408,8 +438,10 @@ The reduced (\ie, per electron) Hartree-Fock (HF) energies for these two states
\begin{subequations} \begin{subequations}
\begin{align} \begin{align}
\e{\HF}{(0)}(\n{}{}) & = \frac{4}{3} \qty(\frac{\n{}{}}{\pi})^{1/3}, \e{\HF}{(0)}(\n{}{}) & = \frac{4}{3} \qty(\frac{\n{}{}}{\pi})^{1/3},
\label{eq:eHF_0}
\\ \\
\e{\HF}{(1)}(\n{}{}) & = \frac{3\pi^{2}}{2} \qty(\frac{\n{}{}}{\pi})^{2/3} + \frac{176}{105} \qty(\frac{\n{}{}}{\pi})^{1/3}. \e{\HF}{(1)}(\n{}{}) & = \frac{3\pi^{2}}{2} \qty(\frac{\n{}{}}{\pi})^{2/3} + \frac{176}{105} \qty(\frac{\n{}{}}{\pi})^{1/3}.
\label{eq:eHF_1}
\end{align} \end{align}
\end{subequations} \end{subequations}
%These two energies can be conveniently decomposed as %These two energies can be conveniently decomposed as
@ -456,13 +488,7 @@ The reduced (\ie, per electron) Hartree-Fock (HF) energies for these two states
%\end{equation} %\end{equation}
%Conveniently, the weight dependence of the exchange functional can be transferred to the $\Cx{}$ coefficient; an expected feature from a theoretical point of view, yet a nice property from a more practical aspect. %Conveniently, the weight dependence of the exchange functional can be transferred to the $\Cx{}$ coefficient; an expected feature from a theoretical point of view, yet a nice property from a more practical aspect.
Thanks to highly-accurate calculations and the expressions of the HF energies provided by Eqs.~\eqref{eq:eHF_0} and \eqref{eq:eHF_1}, \cite{Loos_2009a,Loos_2009c,Loos_2010e} one can write down, for each state, an accurate analytical expression of the reduced correlation energy \cite{Loos_2013a, Loos_2014a} via the following Pad\'e approximant \cite{Sun_2016,Loos_2020}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\subsection{Weight-dependent correlation functional}
%\label{sec:Ec}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Based on highly-accurate calculations, \cite{Loos_2009a,Loos_2009c,Loos_2010e} one can write down, for each state, an accurate analytical expression of the reduced correlation energy \cite{Loos_2013a, Loos_2014a} via the following Pad\'e approximant
\begin{equation} \begin{equation}
\label{eq:ec} \label{eq:ec}
\e{\co}{(I)}(\n{}{}) = \frac{a_1^{(I)}}{1 + a_2^{(I)} \n{}{-1/6} + a_3^{(I)} \n{}{-1/3}}, \e{\co}{(I)}(\n{}{}) = \frac{a_1^{(I)}}{1 + a_2^{(I)} \n{}{-1/6} + a_3^{(I)} \n{}{-1/3}},
@ -538,69 +564,59 @@ Combining these, we build a two-state weight-dependent correlation functional:
%\subsection{LDA-centered functional} %\subsection{LDA-centered functional}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Our intent is to incorporate into standard functionals (which are ``universal'' in the sense that they do not depend on the number of electrons) information about excited states that will be extracted from finite systems (whose properties may depend on the number of electrons). Because our intent is to incorporate into standard functionals (which are ``universal'' in the sense that they do not depend on the number of electrons) information about excited states that will be extracted from finite systems (whose properties may depend on the number of electrons), we employ a simple embedding scheme where the two-electron FUEG (the impurity) is embedded in the IUEG (the bath).
Hence, we employ a simple embedding scheme where the two-electron FUEG (the impurity) is embedded in the IUEG (the bath). As explained further in Ref.~\onlinecite{Loos_2020}, this embedding procedure can be theoretically justified by the generalised adiabatic connection formalism for ensembles originally derived by Franck and Fromager. \cite{Franck_2014}
The weight-dependence of the xc functional is then carried exclusively by the impurity [\ie, the functionals defined in Eqs.~\eqref{eq:exw} and \eqref{eq:ecw}], while the remaining effects are produced by the bath (\ie, the usual LDA xc functional). The weight-dependence of the correlation functional is then carried exclusively by the impurity [\ie, the functional defined in \eqref{eq:ecw}], while the remaining effects are produced by the bath (\ie, the usual LDA correlation functional).
Consistently with such a strategy, Eqs.~\eqref{eq:exw} and \eqref{eq:ecw} are ``centred'' on their corresponding jellium reference Consistently with such a strategy, Eq.~\eqref{eq:ecw} is ``centred'' on its corresponding weight-independent LDA reference
\bruno{you commented the exchange part, why ?}
\begin{equation} \begin{equation}
\label{eq:becw} \label{eq:becw}
\be{\xc}{\ew{}}(\n{}{}) = (1-\ew{}) \be{\xc}{(0)}(\n{}{}) + \ew{} \be{\xc}{(1)}(\n{}{}) \be{\co}{\ew{}}(\n{}{}) = (1-\ew{}) \be{\co}{(0)}(\n{}{}) + \ew{} \be{\co}{(1)}(\n{}{})
\end{equation} \end{equation}
via the following shift: via the following shift:
\begin{equation} \begin{equation}
\be{\xc}{(I)}(\n{}{}) = \e{\xc}{(I)}(\n{}{}) + \e{\xc}{\LDA}(\n{}{}) - \e{\xc}{(0)}(\n{}{}). \be{\co}{(I)}(\n{}{}) = \e{\co}{(I)}(\n{}{}) + \e{\co}{\VWN}(\n{}{}) - \e{\co}{(0)}(\n{}{}).
\end{equation} \end{equation}
The LDA xc functional is similarly decomposed as
\begin{equation}
\e{\xc}{\LDA}(\n{}{}) = \e{\ex}{\LDA}(\n{}{}) + \e{\co}{\LDA}(\n{}{}),
\end{equation}
where we consider here the Dirac exchange functional \cite{Dirac_1930}
\begin{equation}
\e{\ex}{\LDA}(\n{}{}) = \Cx{\LDA} \n{}{1/3},
\end{equation}
with
\begin{equation}
\Cx{\LDA} = -\frac{3}{4} \qty(\frac{3}{\pi})^{1/3},
\end{equation}
and the VWN5 correlation functional \cite{Vosko_1980}
\begin{equation}
\e{\co}{\LDA}(\n{}{}) \equiv \e{\co}{\text{VWN5}}(\n{}{}).
\end{equation}
For the sake of clarity, the explicit expression of the VWN5 functional is not reported here but it can be found in Ref.~\onlinecite{Vosko_1980}.
Equation \eqref{eq:becw} can be recast Equation \eqref{eq:becw} can be recast
\begin{equation} \begin{equation}
\label{eq:eLDA} \label{eq:eLDA}
\begin{split} \begin{split}
\be{\xc}{\ew{}}(\n{}{}) \be{\co}{\ew{}}(\n{}{})
& = \e{\xc}{\LDA}(\n{}{}) + \ew{} \qty[\e{\xc}{(1)}(\n{}{}) - \e{\xc}{(0)}(\n{}{})] & = \e{\co}{\LDA}(\n{}{}) + \ew{} \qty[\e{\co}{(1)}(\n{}{}) - \e{\co}{(0)}(\n{}{})]
\\ \\
& = \e{\xc}{\LDA}(\n{}{}) + \ew{} \pdv{\e{\xc}{\ew{}}(\n{}{})}{\ew{}}, & = \e{\co}{\LDA}(\n{}{}) + \ew{} \pdv{\e{\co}{\ew{}}(\n{}{})}{\ew{}},
\end{split} \end{split}
\end{equation} \end{equation}
which nicely highlights the centrality of the LDA in the present eDFA. which nicely highlights the centrality of the LDA in the present weight-dependent density-functional approximation for ensembles.
In particular, $\be{\xc}{(0)}(\n{}{}) = \e{\xc}{\LDA}(\n{}{})$. In particular, $\be{\co}{(0)}(\n{}{}) = \e{\co}{\VWN}(\n{}{})$.
Consequently, in the following, we name this weight-dependent xc functional ``eLDA'' as it is a natural extension of the LDA for ensembles. Consequently, in the following, we name this weight-dependent correlation functional ``eVWN5'' as it is a natural extension of the LDA for ensembles.
Also, we note that, by construction, Also, we note that, by construction,
\begin{equation} \begin{equation}
\label{eq:dexcdw} \label{eq:dexcdw}
\pdv{\be{\xc}{\ew{}}(\n{}{})}{\ew{}} \pdv{\be{\co}{\ew{}}(\n{}{})}{\ew{}}
= \be{\xc}{(1)}(n(\br)) - \be{\xc}{(0)}(n(\br)). = \be{\co}{(1)}(n) - \be{\co}{(0)}(n),
\end{equation} \end{equation}
which shows that the weight correction is purely linear.
%This embedding procedure can be theoretically justified by the generalised adiabatic connection formalism for ensembles (GACE)
%\begin{equation}
%\label{eq:GACE}
% \E{\xc}{\bw}[\n{}{}]
% = \E{\xc}{}[\n{}{}]
% + \sum_{I=1}^{\nEns-1} \int_0^{\ew{I}} \pdv{\E{\xc}{(0,\ldots,0,\xi,\ew{I},\ldots,\ew{\nEns-1})}[\n{}{}]}{\xi} d\xi,
%\end{equation}
%(where $\E{\xc}{}[\n{}{}]$ is the usual ground-state xc functional) originally derived by Franck and Fromager. \cite{Franck_2014}
%Within this in-principle-exact formalism, the (weight-dependent) xc energy of the ensemble is constructed from the (weight-independent) ground-state functional.
%In the case of a homogeneous system (or equivalently within the LDA), substituting Eq.~\eqref{eq:dexcdw} into \eqref{eq:GACE} yields, in the case of a bi-ensemble, Eq.~\eqref{eq:eLDA}. \bruno{La formule me semble pas juste. Les exposants sont pas bons d'après moi. Pour le bi-ensemble, on devrait avoir
%$\pdv{\E{\xc}{(1-\xi,\xi)}[\n{}{}]}{\xi}$ dans l'intégrale, non ?}
%%%%%%%%%%%%%%%%%%
%%% DISCUSSION %%%
%%%%%%%%%%%%%%%%%%
\section{Discussion}
\label{sec:dis}
This embedding procedure can be theoretically justified by the generalised adiabatic connection formalism for ensembles (GACE)
\begin{equation}
\label{eq:GACE}
\E{\xc}{\bw}[\n{}{}]
= \E{\xc}{}[\n{}{}]
+ \sum_{I=1}^{\nEns-1} \int_0^{\ew{I}} \pdv{\E{\xc}{(0,\ldots,0,\xi,\ew{I},\ldots,\ew{\nEns-1})}[\n{}{}]}{\xi} d\xi,
\end{equation}
(where $\E{\xc}{}[\n{}{}]$ is the usual ground-state xc functional) originally derived by Franck and Fromager. \cite{Franck_2014}
Within this in-principle-exact formalism, the (weight-dependent) xc energy of the ensemble is constructed from the (weight-independent) ground-state functional.
In the case of a homogeneous system (or equivalently within the LDA), substituting Eq.~\eqref{eq:dexcdw} into \eqref{eq:GACE} yields, in the case of a bi-ensemble, Eq.~\eqref{eq:eLDA}. \bruno{La formule me semble pas juste. Les exposants sont pas bons d'après moi. Pour le bi-ensemble, on devrait avoir
$\pdv{\E{\xc}{(1-\xi,\xi)}[\n{}{}]}{\xi}$ dans l'intégrale, non ?}
%%% TABLE I %%% %%% TABLE I %%%
\begin{table*} \begin{table*}
@ -626,26 +642,27 @@ Excitation energies (in eV) associated with the lowest double excitation of \ce{
& & aug-cc-pVTZ & 38.54 & 27.81 & 24.46 & 27.17 \\ & & aug-cc-pVTZ & 38.54 & 27.81 & 24.46 & 27.17 \\
& & aug-cc-pVQZ & 38.81 & 27.81 & 24.46 & 27.17 \\ & & aug-cc-pVQZ & 38.81 & 27.81 & 24.46 & 27.17 \\
\\ \\
MSFL & & aug-cc-pVDZ & 26.83 & 26.51 & 26.53 & 26.60 \\ GIC-S & & aug-cc-pVDZ & 26.83 & 26.51 & 26.53 & 26.60 \\
& & aug-cc-pVTZ & 26.88 & 26.59 & 26.61 & 26.67 \\ & & aug-cc-pVTZ & 26.88 & 26.59 & 26.61 & 26.67 \\
& & aug-cc-pVQZ & 26.82 & 26.60 & 26.62 & 26.67 \\ & & aug-cc-pVQZ & 26.82 & 26.60 & 26.62 & 26.67 \\
\\ \\
MSFL & VWN5 & aug-cc-pVDZ & 28.54 & 26.94 & 27.48 & 27.10 \\ GIC-S & VWN5 & aug-cc-pVDZ & 28.54 & 26.94 & 27.48 & 27.10 \\
& & aug-cc-pVTZ & 28.66 & 27.00 & 27.56 & 27.17 \\ & & aug-cc-pVTZ & 28.66 & 27.00 & 27.56 & 27.17 \\
& & aug-cc-pVQZ & 28.64 & 27.00 & 27.56 & 27.17 \\ & & aug-cc-pVQZ & 28.64 & 27.00 & 27.56 & 27.17 \\
\\ \\
MSFL & MSFL & aug-cc-pVDZ & 28.78 & 27.10 & 27.56 & 27.27 \\ GIC-S & eVWN5 & aug-cc-pVDZ & 28.78 & 27.10 & 27.56 & 27.27 \\
& & aug-cc-pVTZ & 28.90 & 27.16 & 27.64 & 27.34 \\ & & aug-cc-pVTZ & 28.90 & 27.16 & 27.64 & 27.34 \\
& & aug-cc-pVQZ & 28.89 & 27.16 & 27.65 & 27.34 \\ & & aug-cc-pVQZ & 28.89 & 27.16 & 27.65 & 27.34 \\
\\ \\
B88 & LYP & aug-mcc-pV8Z & & & & 28.42\fnm[1] \\ B88 & LYP & aug-mcc-pV8Z\fnm[1] & & & & 28.42\fnm[2] \\
B3 & LYP & aug-mcc-pV8Z & & & & 27.77\fnm[1] \\ B3 & LYP & aug-mcc-pV8Z\fnm[1] & & & & 27.77\fnm[2] \\
HF & LYP & aug-mcc-pV8Z & & & & 29.18\fnm[1] \\ HF & LYP & aug-mcc-pV8Z\fnm[1] & & & & 29.18\fnm[2] \\
HF & & aug-mcc-pV8Z & & & & 28.65\fnm[1] \\ HF & & aug-mcc-pV8Z\fnm[1] & & & & 28.65\fnm[2] \\
HF & FCI & aug-mcc-pV8Z & & & & 28.75\fnm[1] \\ HF & FCI & aug-mcc-pV8Z\fnm[1] & & & & 28.75\fnm[2] \\
\end{tabular} \end{tabular}
\end{ruledtabular} \end{ruledtabular}
\fnt[1]{Reference \onlinecite{Barca_2018a}.} \fnt[1]{Reference \onlinecite{Mielke_2005}.}
\fnt[2]{Reference \onlinecite{Barca_2018a}.}
\end{table*} \end{table*}
%%% %%% %%% %%% %%% %%% %%% %%%

Binary file not shown.