Manu: checking LIM formulas
This commit is contained in:
parent
d95f024840
commit
bf120b9af6
@ -750,6 +750,16 @@ a pragmatic way of getting weight-independent excitation energies, defined as
|
|||||||
\Ex{\LIM}{(2)} & = 3 \qty[\E{}{\bw{}=(1/3,1/3)} - \E{}{\bw{}=(1/2,0)}] + \frac{1}{2} \Ex{\LIM}{(1)}, \label{eq:LIM2}
|
\Ex{\LIM}{(2)} & = 3 \qty[\E{}{\bw{}=(1/3,1/3)} - \E{}{\bw{}=(1/2,0)}] + \frac{1}{2} \Ex{\LIM}{(1)}, \label{eq:LIM2}
|
||||||
\end{align}
|
\end{align}
|
||||||
\end{subequations}
|
\end{subequations}
|
||||||
|
\manu{
|
||||||
|
$\frac{1}{2}\Ex{\LIM}{(1)}=\frac{1}{2}\left(E_1-E_0\right)$\\
|
||||||
|
$\E{}{\bw{}=(1/3,1/3)}=\frac{1}{3}\left(E_0+E_1+E_2\right)$\\
|
||||||
|
$\E{}{\bw{}=(1/2,0)}=\frac{1}{2}\left(E_0+E_1\right)$\\
|
||||||
|
$3 \qty[\E{}{\bw{}=(1/3,1/3)} -
|
||||||
|
\E{}{\bw{}=(1/2,0)}]=-\frac{1}{2}\left(E_0+E_1\right)+E_2$
|
||||||
|
\\
|
||||||
|
$3 \qty[\E{}{\bw{}=(1/3,1/3)} -
|
||||||
|
\E{}{\bw{}=(1/2,0)}]+\frac{1}{2} \Ex{\LIM}{(1)}=E_2-E_0$
|
||||||
|
}\\
|
||||||
which require three independent calculations, as well as the MOM excitation energies \cite{Gilbert_2008,Barca_2018a,Barca_2018b}
|
which require three independent calculations, as well as the MOM excitation energies \cite{Gilbert_2008,Barca_2018a,Barca_2018b}
|
||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
\begin{align}
|
\begin{align}
|
||||||
|
Loading…
Reference in New Issue
Block a user