Manu: checking LIM formulas

This commit is contained in:
Emmanuel Fromager 2020-05-05 23:15:05 +02:00
parent d95f024840
commit bf120b9af6

View File

@ -750,6 +750,16 @@ a pragmatic way of getting weight-independent excitation energies, defined as
\Ex{\LIM}{(2)} & = 3 \qty[\E{}{\bw{}=(1/3,1/3)} - \E{}{\bw{}=(1/2,0)}] + \frac{1}{2} \Ex{\LIM}{(1)}, \label{eq:LIM2} \Ex{\LIM}{(2)} & = 3 \qty[\E{}{\bw{}=(1/3,1/3)} - \E{}{\bw{}=(1/2,0)}] + \frac{1}{2} \Ex{\LIM}{(1)}, \label{eq:LIM2}
\end{align} \end{align}
\end{subequations} \end{subequations}
\manu{
$\frac{1}{2}\Ex{\LIM}{(1)}=\frac{1}{2}\left(E_1-E_0\right)$\\
$\E{}{\bw{}=(1/3,1/3)}=\frac{1}{3}\left(E_0+E_1+E_2\right)$\\
$\E{}{\bw{}=(1/2,0)}=\frac{1}{2}\left(E_0+E_1\right)$\\
$3 \qty[\E{}{\bw{}=(1/3,1/3)} -
\E{}{\bw{}=(1/2,0)}]=-\frac{1}{2}\left(E_0+E_1\right)+E_2$
\\
$3 \qty[\E{}{\bw{}=(1/3,1/3)} -
\E{}{\bw{}=(1/2,0)}]+\frac{1}{2} \Ex{\LIM}{(1)}=E_2-E_0$
}\\
which require three independent calculations, as well as the MOM excitation energies \cite{Gilbert_2008,Barca_2018a,Barca_2018b} which require three independent calculations, as well as the MOM excitation energies \cite{Gilbert_2008,Barca_2018a,Barca_2018b}
\begin{subequations} \begin{subequations}
\begin{align} \begin{align}