easy corrections in Results

This commit is contained in:
Pierre-Francois Loos 2020-04-26 13:21:46 +02:00
parent f4f2414d56
commit 93e243a3f9

View File

@ -1085,7 +1085,7 @@ Excitation energies (in hartree) associated with the lowest double excitation of
\label{sec:ccl}
In the present article, we have discussed the construction of first-rung (\ie, local) weight-dependent exchange-correlation density-functional approximations for two-electron systems (\ce{He} and \ce{H2}) specifically designed for the computation of double excitations within GOK-DFT, a time-\textit{independent} formalism thanks to which one can extract excitation energies via the derivative of the ensemble energy with respect to the weight of each excited state.
We have found that the construction of a system-specific, weight-dependent local exchange functional can significantly reduce the curvature of the ensemble energy (by removing most of the ghost-interaction error).
\titou{In the spirit of optimally-tuned range-separated hybrid functionals,} we have found that the construction of a system-specific, weight-dependent local exchange functional can significantly reduce the curvature of the ensemble energy (by removing most of the curvature of the ensemble energy).
Although the weight-dependent correlation functional developed in this paper (eVWN5) performs systematically better than their weight-independent counterpart (VWN5), the improvement remains rather small.
To better understand the reasons behind this, it would be particularly interesting to investigate the influence of the self-consistent procedure,
\ie, the variation in excitation energy when the \textit{exact} ensemble density (built with the exact individual densities) is used instead