H2 res
This commit is contained in:
parent
301161158e
commit
6cef03e9f3
@ -71,7 +71,7 @@
|
|||||||
\newcommand{\VWN}{\text{VWN5}}
|
\newcommand{\VWN}{\text{VWN5}}
|
||||||
\newcommand{\SVWN}{\text{SVWN5}}
|
\newcommand{\SVWN}{\text{SVWN5}}
|
||||||
\newcommand{\LIM}{\text{LIM}}
|
\newcommand{\LIM}{\text{LIM}}
|
||||||
\newcommand{\CID}{\text{CID}}
|
\newcommand{\MOM}{\text{MOM}}
|
||||||
\newcommand{\Hxc}{\text{Hxc}}
|
\newcommand{\Hxc}{\text{Hxc}}
|
||||||
\newcommand{\Ha}{\text{H}}
|
\newcommand{\Ha}{\text{H}}
|
||||||
\newcommand{\ex}{\text{x}}
|
\newcommand{\ex}{\text{x}}
|
||||||
@ -584,9 +584,9 @@ Equation \eqref{eq:becw} can be recast
|
|||||||
\label{eq:eLDA}
|
\label{eq:eLDA}
|
||||||
\begin{split}
|
\begin{split}
|
||||||
\be{\co}{\ew{}}(\n{}{})
|
\be{\co}{\ew{}}(\n{}{})
|
||||||
& = \e{\co}{\LDA}(\n{}{}) + \ew{} \qty[\e{\co}{(1)}(\n{}{}) - \e{\co}{(0)}(\n{}{})]
|
& = \e{\co}{\VWN}(\n{}{}) + \ew{} \qty[\e{\co}{(1)}(\n{}{}) - \e{\co}{(0)}(\n{}{})]
|
||||||
\\
|
\\
|
||||||
& = \e{\co}{\LDA}(\n{}{}) + \ew{} \pdv{\e{\co}{\ew{}}(\n{}{})}{\ew{}},
|
& = \e{\co}{\VWN}(\n{}{}) + \ew{} \pdv{\e{\co}{\ew{}}(\n{}{})}{\ew{}},
|
||||||
\end{split}
|
\end{split}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
which nicely highlights the centrality of the LDA in the present weight-dependent density-functional approximation for ensembles.
|
which nicely highlights the centrality of the LDA in the present weight-dependent density-functional approximation for ensembles.
|
||||||
@ -620,9 +620,14 @@ For comparison purposes, we also report the linear interpolation method (LIM) ex
|
|||||||
\begin{equation}
|
\begin{equation}
|
||||||
\Ex{\LIM}{(1)} = 2 (\E{}{\ew{}=1/2} - \E{}{\ew{}=0}),
|
\Ex{\LIM}{(1)} = 2 (\E{}{\ew{}=1/2} - \E{}{\ew{}=0}),
|
||||||
\end{equation}
|
\end{equation}
|
||||||
as well as the MOM excitation energies.
|
as well as the MOM excitation energies. \cite{Gilbert_2008,Barca_2018a,Barca_2018b}
|
||||||
We point out that the MOM excitation energy is obtained by the difference in energy between the doubly-excited state at $\ew{} = 1$ and the ground-state at $\ew{} = 0$.
|
We point out that the MOM excitation energy is obtained by the difference in energy between the doubly-excited state at $\ew{} = 1$ and the ground state at $\ew{} = 0$.
|
||||||
MOM excitation energies can then be obtained via GOK-DFT ensemble calculations by performing a linear interpolation between $\ew{} = 0$ and $\ew{} = 1$.
|
MOM excitation energies can then be obtained via GOK-DFT ensemble calculations by performing a linear interpolation between $\ew{} = 0$ and $\ew{} = 1$, \ie,
|
||||||
|
\begin{equation}
|
||||||
|
\Ex{\MOM}{(1)} = \E{}{\ew{}=1} - \E{}{\ew{}=0}.
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
The results gathered in Table \ref{tab:BigTab_H2} show that the GOK-DFT excitation energies obtained with the GIC-SeVWN5 functional at zero weight are the most accurate with an improvment of $0.25$ eV as compared to GIC-SVWN5
|
||||||
|
|
||||||
%%% TABLE I %%%
|
%%% TABLE I %%%
|
||||||
\begin{table*}
|
\begin{table*}
|
||||||
|
Loading…
Reference in New Issue
Block a user