From 4c1a44454639246d8f7b497a543f33994d200e9c Mon Sep 17 00:00:00 2001 From: Pierre-Francois Loos Date: Thu, 28 Nov 2019 12:16:46 +0100 Subject: [PATCH] Clotilde discovered a typo --- Manuscript/FarDFT.tex | 37 ++++++++++++------------------------- 1 file changed, 12 insertions(+), 25 deletions(-) diff --git a/Manuscript/FarDFT.tex b/Manuscript/FarDFT.tex index f62366f..9f18f9b 100644 --- a/Manuscript/FarDFT.tex +++ b/Manuscript/FarDFT.tex @@ -700,17 +700,10 @@ For eLDA, the ensemble energy can be decomposed as \end{equation} which \textit{could} be linear with respect to $\ew{}$ if the weight-dependent xc functional compensates exactly the quadratic terms in the Hartree term. This would be, for example, the case with the exact xc functional. -\end{widetext} Extracting excitation energies from Eqs.~\eqref{eq:bEwHF}, \eqref{eq:bEwLDA} and \eqref{eq:bEweLDA} is more tricky. To do so, we will employ Eq.~\eqref{eq:dEdw}. -The two first terms are simply -\begin{align} - \Eps{0}{\ew{}} & = 2 \eps{1}{\ew{}}, - & - \Eps{1}{\ew{}} & = 2 \eps{2}{\ew{}}, -\end{align} -and the HF, LDA and eLDA weight-dependent orbital energies are +The two first terms are simply $\Eps{0}{\ew{}} = 2 \eps{1}{\ew{}}$, $\Eps{1}{\ew{}} = 2 \eps{2}{\ew{}}$, and the HF, LDA and eLDA weight-dependent orbital energies are \begin{subequations} \begin{align} \eps{1}{\ew{},\HF} @@ -723,42 +716,36 @@ and the HF, LDA and eLDA weight-dependent orbital energies are \begin{subequations} \begin{align} -\begin{split} \eps{1}{\ew{},\LDA} & = \eHc{1} + 2(1-\ew{}) \eJ{11} + 2\ew{} \eJ{12} + + \frac{1}{2} \int \qty{ \left. \pdv{\e{\xc}{\LDA}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{}{\ew{}}(\br{})} \n{}{\ew{}}(\br{}) + + \e{\xc}{\LDA}[\n{}{\ew{}}(\br{})] } \n{}{(0)}(\br{}) d\br{}, \\ - & + \frac{1}{2} \int \qty{ \left. \pdv{\e{\xc}{\LDA}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{}{\ew{}}(\br{})} + \e{\xc}{\LDA}[\n{}{\ew{}}(\br{})] } \n{}{(0)}(\br{}) d\br{}, -\end{split} - \\ -\begin{split} \eps{2}{\ew{},\LDA} & = \eHc{2} + 2(1-\ew{}) \eJ{12} + 2 \ew{} \eJ{22} - \\ - & + \frac{1}{2} \int \qty{ \left. \pdv{\e{\xc}{\LDA}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{}{\ew{}}(\br{})} + \e{\xc}{\LDA}[\n{}{\ew{}}(\br{})] } \n{}{(1)}(\br{}) d\br{}, -\end{split} + + \frac{1}{2} \int \qty{ \left. \pdv{\e{\xc}{\LDA}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{}{\ew{}}(\br{})} \n{}{\ew{}}(\br{}) + + \e{\xc}{\LDA}[\n{}{\ew{}}(\br{})] } \n{}{(1)}(\br{}) d\br{}, \end{align} \end{subequations} \begin{subequations} \begin{align} -\begin{split} \eps{1}{\ew{},\eLDA} & = \eHc{1} + (1-\ew{})(2\eJ{11} - \eK{11}) + \ew{}(2\eJ{12} - \eK{12}) + + \frac{1}{2} \int \qty{ \left. \pdv{\be{\xc}{\ew{}}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{}{\ew{}}(\br{})} \n{}{\ew{}}(\br{}) + + \be{\xc}{\ew{}}[\n{}{\ew{}}(\br{})] } \n{}{(0)}(\br{}) d\br{}, \\ - & + \frac{1}{2} \int \qty{ \left. \pdv{\be{\xc}{\ew{}}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{}{\ew{}}(\br{})} + \be{\xc}{\ew{}}[\n{}{\ew{}}(\br{})] } \n{}{(0)}(\br{}) d\br{}, -\end{split} - \\ -\begin{split} - \eps{2}{\ew{},\eLDA} & = \eHc{2} + (1-\ew{})(2\eJ{12} - \eK{12}) + \ew{}(2\eJ{22} - \eK{22}) - \\ - & + \frac{1}{2} \int \qty{ \left. \pdv{\be{\xc}{\ew{}}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{}{\ew{}}(\br{})} + \be{\xc}{\ew{}}[\n{}{\ew{}}(\br{})] } \n{}{(1)}(\br{}) d\br{}, -\end{split} + \eps{2}{\ew{},\eLDA} + & = \eHc{2} + (1-\ew{})(2\eJ{12} - \eK{12}) + \ew{}(2\eJ{22} - \eK{22}) + + \frac{1}{2} \int \qty{ \left. \pdv{\be{\xc}{\ew{}}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{}{\ew{}}(\br{})} \n{}{\ew{}}(\br{}) + + \be{\xc}{\ew{}}[\n{}{\ew{}}(\br{})] } \n{}{(1)}(\br{}) d\br{}, \end{align} \end{subequations} respectively. The derivative discontinuity is modelled by the last term of the RHS of Eq.~\eqref{eq:dEdw}. Note that this contribution is only non-zero in the case of an explicitly weight-dependent functional [see Eq.~\eqref{eq:dexcdw}]. +\end{widetext}