Manu: some thoughts illustrated with the Hubbard dimer model.
This commit is contained in:
parent
6b9b4d50f9
commit
3941bb6ae2
@ -459,6 +459,62 @@ is the Hxc potential, with
|
|||||||
%%%%% end stuff removed by Manu %%%%%%
|
%%%%% end stuff removed by Manu %%%%%%
|
||||||
\fi%%%%
|
\fi%%%%
|
||||||
|
|
||||||
|
\section{Some thougths illustrated with the Hubbard dimer model}
|
||||||
|
|
||||||
|
The definition of an ensemble density functional relies on the concavity
|
||||||
|
of the ensemble energy with respect to the external potential. In the
|
||||||
|
case of the Hubbard dimer, the singlet triensemble non-interacting
|
||||||
|
energy (which contains both singly- and doubly-excited states) reads
|
||||||
|
\beq
|
||||||
|
\begin{split}
|
||||||
|
\mathcal{E}_{\rm KS}^{\bw}\left(\Delta
|
||||||
|
v\right)=&(1-\ew{1}-\ew{2})\mathcal{E}_0\left(\Delta
|
||||||
|
v\right)+\ew{1}\mathcal{E}_1\left(\Delta
|
||||||
|
v\right)
|
||||||
|
\\
|
||||||
|
&+\ew{2}\mathcal{E}_2\left(\Delta
|
||||||
|
v\right),
|
||||||
|
\end{split}
|
||||||
|
\eeq
|
||||||
|
where $\mathcal{E}_0\left(\Delta
|
||||||
|
v\right)=2\varepsilon_0\left(\Delta
|
||||||
|
v\right)$, $\mathcal{E}_1\left(\Delta
|
||||||
|
v\right)=0$, $\mathcal{E}_2\left(\Delta
|
||||||
|
v\right)=-2\varepsilon_0\left(\Delta
|
||||||
|
v\right)$, and
|
||||||
|
\beq
|
||||||
|
\varepsilon_0\left(\Delta
|
||||||
|
v\right)=-\sqrt{t^2+\dfrac{\Delta v^2}{4}},
|
||||||
|
\eeq
|
||||||
|
thus leading to
|
||||||
|
\beq
|
||||||
|
\mathcal{E}_{\rm KS}^{\bw}\left(\Delta
|
||||||
|
v\right)=-2\left(1-\ew{1}-2\ew{2}\right)\sqrt{t^2+\dfrac{\Delta
|
||||||
|
v^2}{4}}.
|
||||||
|
\eeq
|
||||||
|
If we ignore the single excitation ($\ew{1}=0$) and denote
|
||||||
|
$\ew{}=\ew{2}$, the ensemble energy becomes
|
||||||
|
\beq
|
||||||
|
\mathcal{E}_{\rm KS}^{\ew{}}\left(\Delta
|
||||||
|
v\right)=-2(1-2\ew{})\sqrt{t^2+\dfrac{\Delta
|
||||||
|
v^2}{4}}.
|
||||||
|
\eeq
|
||||||
|
As readily seen, it is concave only if $\ew{}\leq 1/2$. Outside the
|
||||||
|
usual range of weight values, it is convex, thus preventing any density
|
||||||
|
to be ensemble non-interacting $v$-representable. This statement is
|
||||||
|
based on the Legendre--Fenchel transform expression of the
|
||||||
|
non-interacting ensemble kinetic energy functional:
|
||||||
|
\beq
|
||||||
|
T^{\ew{}}_{\rm s}(n)=\sup_{\Delta
|
||||||
|
v}\left\{\mathcal{E}_{\rm KS}^{\ew{}}\left(\Delta
|
||||||
|
v\right)+\Delta
|
||||||
|
v\times(n-1)\right\}.
|
||||||
|
\eeq
|
||||||
|
In this simple example, ignoring the single excitation is fine. However,
|
||||||
|
considering $1/2\leq \ew{}\leq 1$ is meaningless. Of course, if we
|
||||||
|
employ approximate ground-state-based density-functional potentials and
|
||||||
|
manage to converge the KS wavefunctions, one may obtain something
|
||||||
|
interesting. But I have no idea how meaningful such a solution is.
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
%%% COMPUTATIONAL DETAILS %%%
|
%%% COMPUTATIONAL DETAILS %%%
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
Loading…
Reference in New Issue
Block a user