making progress on the ensemble energies
This commit is contained in:
parent
e10d37db8a
commit
2e25c74b8d
@ -40,7 +40,7 @@
|
||||
\newcommand{\hH}{\Hat{H}}
|
||||
\newcommand{\hHc}{\Hat{h}}
|
||||
\newcommand{\hT}{\Hat{T}}
|
||||
\newcommand{\bH}{\bm{H}}
|
||||
\newcommand{\bH}{\boldsymbol{H}}
|
||||
\newcommand{\hVext}{\Hat{V}_\text{ext}}
|
||||
\newcommand{\vext}{v_\text{ext}}
|
||||
\newcommand{\hWee}{\Hat{W}_\text{ee}}
|
||||
@ -54,6 +54,7 @@
|
||||
\newcommand{\kin}[2]{t_\text{#1}^{#2}}
|
||||
\newcommand{\E}[2]{E_{#1}^{#2}}
|
||||
\newcommand{\bE}[2]{\overline{E}_{#1}^{#2}}
|
||||
\newcommand{\tE}[2]{\widetilde{E}_{#1}^{#2}}
|
||||
\newcommand{\be}[2]{\overline{\epsilon}_{#1}^{#2}}
|
||||
\newcommand{\n}[2]{n_{#1}^{#2}}
|
||||
\newcommand{\Cx}[1]{C_\text{x}^{#1}}
|
||||
@ -61,11 +62,6 @@
|
||||
% energies
|
||||
\newcommand{\EHF}{E_\text{HF}}
|
||||
\newcommand{\Ec}{E_\text{c}}
|
||||
\newcommand{\Ecat}{E_\text{cat}}
|
||||
\newcommand{\Eneu}{E_\text{neu}}
|
||||
\newcommand{\Eani}{E_\text{ani}}
|
||||
\newcommand{\EPT}{E_\text{PT2}}
|
||||
\newcommand{\EFCI}{E_\text{FCI}}
|
||||
\newcommand{\HF}{\text{HF}}
|
||||
\newcommand{\LDA}{\text{LDA}}
|
||||
\newcommand{\eLDA}{\text{eLDA}}
|
||||
@ -77,14 +73,15 @@
|
||||
\newcommand{\xc}{\text{xc}}
|
||||
|
||||
% matrices
|
||||
\newcommand{\br}{\bm{r}}
|
||||
\newcommand{\bw}{\bm{w}}
|
||||
\newcommand{\bG}{\bm{G}}
|
||||
\newcommand{\bS}{\bm{S}}
|
||||
\newcommand{\bGamma}[1]{\bm{\Gamma}^{#1}}
|
||||
\newcommand{\bHc}{\bm{h}}
|
||||
\newcommand{\bF}[1]{\bm{F}^{#1}}
|
||||
\newcommand{\br}{\boldsymbol{r}}
|
||||
\newcommand{\bw}{\boldsymbol{w}}
|
||||
\newcommand{\bG}{\boldsymbol{G}}
|
||||
\newcommand{\bS}{\boldsymbol{S}}
|
||||
\newcommand{\bGamma}[1]{\boldsymbol{\Gamma}^{#1}}
|
||||
\newcommand{\bHc}{\boldsymbol{h}}
|
||||
\newcommand{\bF}[1]{\boldsymbol{F}^{#1}}
|
||||
\newcommand{\Ex}[2]{\Omega_{#1}^{#2}}
|
||||
\newcommand{\tEx}[2]{\widetilde{\Omega}_{#1}^{#2}}
|
||||
|
||||
% elements
|
||||
\newcommand{\ew}[1]{w_{#1}}
|
||||
@ -231,7 +228,8 @@ and
|
||||
\E{\Hxc}{\bw}[\n{}{}]
|
||||
& = \E{\Ha}{}[\n{}{}] + \E{\xc}{\bw}[\n{}{}]
|
||||
\\
|
||||
& = \frac{1}{2} \iint \frac{\n{}{}(\br{}) \n{}{}(\br{}')}{\abs{\br{}-\br{}'}} d\br{} d\br{}'+ \int \e{\xc}{\bw}[\n{}{}(\br{})] \n{}{}(\br{}) d\br{}.
|
||||
& = \frac{1}{2} \iint \frac{\n{}{}(\br{}) \n{}{}(\br{}')}{\abs{\br{}-\br{}'}} d\br{} d\br{}'
|
||||
+ \int \e{\xc}{\bw}[\n{}{}(\br{})] \n{}{}(\br{}) d\br{}.
|
||||
\end{split}
|
||||
\end{equation}
|
||||
are the noninteracting ensemble kinetic energy functional and ensemble Hartree-exchange-correlation (Hxc) functional, respectively.
|
||||
@ -242,14 +240,34 @@ From the GOK-DFT ensemble energy expression in Eq.~\eqref{eq:Ew-GOK}, we obtain
|
||||
\label{eq:dEdw}
|
||||
\pdv{\E{}{\bw}}{\ew{I}}
|
||||
= \E{}{(I)} - \E{}{(0)}
|
||||
= \Eps{I}{\bw} - \Eps{0}{\bw} + \left. \pdv{\E{\xc}{\bw}[\n{}{}]}{\ew{I}} \right|_{\n{}{} = \n{}{\bw}},
|
||||
= \Eps{I}{\bw} - \Eps{0}{\bw} + \left. \pdv{\E{\xc}{\bw}[\n{}{}]}{\ew{I}} \right|_{\n{}{} = \n{}{\bw}(\br{})},
|
||||
\end{equation}
|
||||
where $\Eps{I}{\bw} = \sum_{p}^{\Norb} \ON{p}{(I)} \eps{p}{\bw}$, $\eps{p}{\bw}$ is the $p$th KS orbital energy given by the ensemble KS equation
|
||||
where
|
||||
\begin{equation}
|
||||
\n{}{\bw}(\br{}) = \sum_{I=0}^{\Nens-1} \ew{I} \n{}{(I)}(\br{})
|
||||
\end{equation}
|
||||
is the ensemble density,
|
||||
\begin{equation}
|
||||
\label{eq:KS-energy}
|
||||
\Eps{I}{\bw} = \sum_{p}^{\Norb} \ON{p}{(I)} \eps{p}{\bw}
|
||||
\end{equation}
|
||||
is the weight-dependent KS energy, and $\eps{p}{\bw}$ is the KS orbital energy associated with $\MO{p}{\bw}(\br{})$ ($\ON{p}{(I)}$ being its occupancy for the state $I$) given by the ensemble KS equation
|
||||
\begin{equation}
|
||||
\label{eq:eKS}
|
||||
\qty( \hHc(\br{}) + \fdv{\E{\Hxc}{\bw}[\n{}{}]}{\n{}{}(\br{})}) \MO{p}{\bw}(\br{}) = \eps{p}{\bw} \MO{p}{\bw}(\br{}),
|
||||
\end{equation}
|
||||
where $\hHc(\br{}) = -\frac{\nabla^2}{2} + \vext(\br{})$, $\MO{p}{\bw}(\br{})$ is a KS orbital, $\ON{p}{(I)}$ its occupancy for the state $I$, and $\n{}{\bw} = \sum_{I=0}^{\Nens-1} \ew{I} \n{}{(I)}$ is the ensemble density.
|
||||
Equation \eqref{eq:dEdw} is our working equation for computing excitation energies.
|
||||
where $\hHc(\br{}) = -\nabla^2/2 + \vext(\br{})$, and
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
\fdv{\E{\Hxc}{\bw}[\n{}{}]}{\n{}{}(\br{})}
|
||||
& = \fdv{\E{\Ha}{\bw}[\n{}{}]}{\n{}{}(\br{})} + \fdv{\E{\xc}{\bw}[\n{}{}]}{\n{}{}(\br{})}
|
||||
\\
|
||||
& = \frac{1}{2} \int \frac{\n{}{}(\br{}')}{\abs{\br{}-\br{}'}} d\br{}'
|
||||
+ \left. \pdv{\e{\xc}{\bw{}}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{}{}(\br{})} \n{}{}(\br{}) + \e{\xc}{\bw{}}[\n{}{}(\br{})]
|
||||
\end{split}
|
||||
\end{equation}
|
||||
is the Hxc potential.
|
||||
Equation \eqref{eq:dEdw} is our working equation for computing excitation energies from a practical point of view.
|
||||
|
||||
%%%%%%%%%%%%%%%%%%
|
||||
%%% FUNCTIONAL %%%
|
||||
@ -324,12 +342,9 @@ and we then obtain
|
||||
We can now combine these two exchange functionals to create a weight-dependent exchange functional for a two-state ensemble
|
||||
\begin{equation}
|
||||
\label{eq:exw}
|
||||
\begin{split}
|
||||
\e{\ex}{\ew{}}(\n{}{})
|
||||
& = (1-\ew{}) \e{\ex}{(0)}(\n{}{}) + \ew{} \e{\ex}{(1)}(\n{}{})
|
||||
\\
|
||||
& = \Cx{\ew{}} \n{}{1/3}
|
||||
\end{split}
|
||||
= (1-\ew{}) \e{\ex}{(0)}(\n{}{}) + \ew{} \e{\ex}{(1)}(\n{}{})
|
||||
= \Cx{\ew{}} \n{}{1/3}
|
||||
\end{equation}
|
||||
with
|
||||
\begin{equation}
|
||||
@ -487,6 +502,9 @@ In the case of a homogeneous system (or equivalently within the LDA), substituti
|
||||
\label{sec:res}
|
||||
Here, we consider as testing ground the minimal-basis \ce{H2} molecule.
|
||||
We select STO-3G as minimal basis, and study the behaviour of the total energy of \ce{H2} as a function of the internuclear distance $\RHH$ (in bohr).
|
||||
This minimal-basis example is quite pedagogical as the molecular orbitals are fixed by symmetry.
|
||||
Therefore, there is no density-driven error and the only error that we are going to see is the functional-driven error (and this is what we want to study).
|
||||
|
||||
The bonding and antibonding orbitals of the \ce{H2} molecule are given by
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
@ -519,14 +537,14 @@ with
|
||||
\end{subequations}
|
||||
Note that, in the HF case, there is no self-interaction error as $\eJ{pp} = \eK{pp}$.
|
||||
We also define the HF excitation energy as $\Ex{\HF}{(1)} = \E{\HF}{(1)} - \E{\HF}{(0)}$.
|
||||
The HF orbital energies are
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
\eps{1}{\HF} & = \eHc{1} + 2\eJ{11} - \eK{11},
|
||||
\\
|
||||
\eps{2}{\HF} & = \eHc{2} + 2\eJ{12} - \eK{12}.
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
%The HF orbital energies are
|
||||
%\begin{subequations}
|
||||
%\begin{align}
|
||||
% \eps{1}{\HF} & = \eHc{1} + 2\eJ{11} - \eK{11},
|
||||
% \\
|
||||
% \eps{2}{\HF} & = \eHc{2} + 2\eJ{12} - \eK{12}.
|
||||
%\end{align}
|
||||
%\end{subequations}
|
||||
|
||||
As reference results, we consider CID (configuration interaction with doubles) computed in the same (minimal) basis set.
|
||||
The CID energies of the ground state and doubly-excited states are provided by the eigenvalues of the following CID matrix:
|
||||
@ -568,14 +586,17 @@ with
|
||||
\n{}{(1)}(\br{}) & = 2 \MO{2}{2}(\br{}),
|
||||
\end{align}
|
||||
Note that, contrary to the HF case, self-interaction is present in LDA.
|
||||
The KS orbital energies are given by
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
\eps{1}{\LDA} & = \eHc{1} + 2\eJ{11} + \ldots,
|
||||
\\
|
||||
\eps{2}{\LDA} & = \eHc{2} + 2\eJ{12} + \ldots.
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
%The KS orbital energies are given by
|
||||
%\begin{subequations}
|
||||
%\begin{align}
|
||||
% \eps{1}{\LDA}
|
||||
% & = \eHc{1} + 2\eJ{11}
|
||||
% + \frac{1}{2} \int \left. \fdv{\E{\xc}{\LDA}[\n{}{}]}{\n{}{}} \right|_{\n{}{} = \n{}{(0)}(\br{})} \n{}{(0)}(\br{}) d\br{},
|
||||
% \\
|
||||
% \eps{2}{\LDA} & = \eHc{2} + 2\eJ{12}
|
||||
% + \frac{1}{2} \int \left. \fdv{\E{\xc}{\LDA}[\n{}{}]}{\n{}{}} \right|_{\n{}{} = \n{}{(0)}(\br{})} \n{}{(1)}(\br{}) d\br{}.
|
||||
%\end{align}
|
||||
%\end{subequations}
|
||||
|
||||
At the eLDA, we have
|
||||
\begin{subequations}
|
||||
@ -599,13 +620,13 @@ Interestingly here, there is a strong connection between the LDA and eLDA excita
|
||||
\end{split}
|
||||
\end{equation}
|
||||
The KS orbital energies are given by
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
\eps{1}{\eLDA} & = \eHc{1} + 2\eJ{11} + \ldots,
|
||||
\\
|
||||
\eps{2}{\eLDA} & = \eHc{2} + 2\eJ{12} + \ldots.
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
%\begin{subequations}
|
||||
%\begin{align}
|
||||
% \eps{1}{\eLDA} & = \eHc{1} + 2\eJ{11} + \ldots,
|
||||
% \\
|
||||
% \eps{2}{\eLDA} & = \eHc{2} + 2\eJ{12} + \ldots.
|
||||
%\end{align}
|
||||
%\end{subequations}
|
||||
|
||||
|
||||
These equations can be combined to define three ensemble energies
|
||||
@ -629,13 +650,13 @@ Similar energies than the ones given in Eqs.~\eqref{eq:EwHF}, \eqref{eq:EwLDA} a
|
||||
\n{}{\ew{}} = (1-\ew{}) \n{}{(0)} + \ew{} \n{}{(1)}.
|
||||
\end{equation}
|
||||
(This is what one would do in practice, \ie, by performing a KS ensemble calculation.)
|
||||
We will label these energies as $\bE{}{\ew{}}$ to avoid confusion.
|
||||
We will label these energies as $\tE{}{\ew{}}$ to avoid confusion.
|
||||
\begin{widetext}
|
||||
For HF, we have
|
||||
\begin{equation}
|
||||
\label{eq:bEwHF}
|
||||
\begin{split}
|
||||
\bE{\HF}{\ew{}}
|
||||
\tE{\HF}{\ew{}}
|
||||
& = \titou{\int \hHc(\br{}) \n{}{\ew{}}(\br{}) d\br{}}
|
||||
+ \frac{1}{2} \iint \frac{\n{}{\ew{}}(\br{})\n{}{\ew{}}(\br{}')}{\abs{\br{} - \br{}'}} d\br{} d\br{}'
|
||||
\\
|
||||
@ -648,7 +669,7 @@ In the case of the LDA, it reads
|
||||
\begin{equation}
|
||||
\label{eq:bEwLDA}
|
||||
\begin{split}
|
||||
\bE{\LDA}{\ew{}}
|
||||
\tE{\LDA}{\ew{}}
|
||||
& = \titou{\int \hHc(\br{}) \n{}{\ew{}}(\br{}) d\br{}}
|
||||
+ \iint \frac{\n{}{\ew{}}(\br{})\n{}{\ew{}}(\br{}')}{\abs{\br{} - \br{}'}} d\br{} d\br{}'
|
||||
+ \int \e{\xc}{\LDA}[\n{}{\ew{}}(\br{})] \n{}{\ew{}}(\br{}) d\br{}
|
||||
@ -665,7 +686,7 @@ For eLDA, the ensemble energy can be decomposed as
|
||||
\begin{equation}
|
||||
\label{eq:bEweLDA}
|
||||
\begin{split}
|
||||
\bE{\eLDA}{\ew{}}
|
||||
\tE{\eLDA}{\ew{}}
|
||||
& = \titou{\int \hHc(\br{}) \n{}{\ew{}}(\br{}) d\br{}}
|
||||
+ \iint \frac{\n{}{\ew{}}(\br{})\n{}{\ew{}}(\br{}')}{\abs{\br{} - \br{}'}} d\br{} d\br{}'
|
||||
+ \int \be{\xc}{\ew{}}[\n{}{\ew{}}(\br{})] \n{}{\ew{}}(\br{}) d\br{}
|
||||
@ -694,13 +715,64 @@ This would be, for example, the case with the exact xc functional.
|
||||
|
||||
Extracting excitation energies from Eqs.~\eqref{eq:bEwHF}, \eqref{eq:bEwLDA} and \eqref{eq:bEweLDA} is more tricky.
|
||||
To do so, we will employ Eq.~\eqref{eq:dEdw}.
|
||||
The derivative discontinuity, modelled by the last term of the RHS of Eq.~\eqref{eq:dEdw} and only non-zero in the case of an explicitly weight-dependent functional, is straightforward to compute in our case [see Eq.~\eqref{eq:dexcdw}].
|
||||
|
||||
The two first terms are
|
||||
\begin{align}
|
||||
\Eps{0}{\ew{}} & = 2 \eHc{1} + \ldots,
|
||||
\\
|
||||
\Eps{1}{\ew{}} & = 2 \eHc{2} + \ldots.
|
||||
\Eps{0}{\ew{}} & = 2(1-\ew{}) \eps{1}{\ew{}},
|
||||
&
|
||||
\Eps{1}{\ew{}} & = 2 \ew{} \eps{2}{\ew{}},
|
||||
\end{align}
|
||||
where the HF, LDA and eLDA weight-dependent orbital energies are
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
\eps{1}{\ew{},\HF}
|
||||
& = \eHc{1} + (1-\ew{})(2\eJ{11} - \eK{11}) + \ew{}(2\eJ{12} - \eK{12}),
|
||||
\\
|
||||
\eps{2}{\ew{},\HF}
|
||||
& = \eHc{2} + (1-\ew{})(2\eJ{12} - \eK{12}) + \ew{}(2\eJ{22} - \eK{22}),
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
\begin{split}
|
||||
\eps{1}{\ew{},\LDA}
|
||||
& = \eHc{1} + 2(1-\ew{}) \eJ{11} + 2\ew{} \eJ{12}
|
||||
\\
|
||||
& + \frac{1}{2} \int \left. \fdv{\E{\xc}{\LDA}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{}{\ew{}}(\br{})} \n{}{(0)}(\br{}) d\br{},
|
||||
\end{split}
|
||||
\\
|
||||
\begin{split}
|
||||
\eps{2}{\ew{},\LDA}
|
||||
& = \eHc{2} + 2(1-\ew{}) \eJ{12} + 2 \ew{} \eJ{22}
|
||||
\\
|
||||
& + \frac{1}{2} \int \left. \fdv{\E{\xc}{\LDA}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{}{\ew{}}(\br{})} \n{}{(1)}(\br{}) d\br{},
|
||||
\end{split}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
\begin{split}
|
||||
\eps{1}{\ew{},\eLDA}
|
||||
& = \eHc{1} + (1-\ew{})(2\eJ{11} - \eK{11}) + \ew{}(2\eJ{12} - \eK{12})
|
||||
\\
|
||||
& + \frac{1}{2} \int \left. \fdv{\bE{\xc}{\ew{}}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{}{\ew{}}(\br{})} \n{}{(0)}(\br{}) d\br{},
|
||||
\end{split}
|
||||
\\
|
||||
\begin{split}
|
||||
\eps{2}{\ew{},\eLDA} & = \eHc{2} + (1-\ew{})(2\eJ{12} - \eK{12}) + \ew{}(2\eJ{22} - \eK{22})
|
||||
\\
|
||||
& + \frac{1}{2} \int \left. \fdv{\bE{\xc}{\ew{}}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{}{\ew{}}(\br{})} \n{}{(1)}(\br{}) d\br{},
|
||||
\end{split}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
respectively.
|
||||
|
||||
The derivative discontinuity is modelled by the last term of the RHS of Eq.~\eqref{eq:dEdw}.
|
||||
Note that this contribution is only non-zero in the case of an explicitly weight-dependent functional [see Eq.~\eqref{eq:dexcdw}].
|
||||
|
||||
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%
|
||||
%%% CONCLUSION %%%
|
||||
|
Loading…
Reference in New Issue
Block a user