making progress on the ensemble energies

This commit is contained in:
Pierre-Francois Loos 2019-11-27 17:02:22 +01:00
parent e10d37db8a
commit 2e25c74b8d

View File

@ -40,7 +40,7 @@
\newcommand{\hH}{\Hat{H}} \newcommand{\hH}{\Hat{H}}
\newcommand{\hHc}{\Hat{h}} \newcommand{\hHc}{\Hat{h}}
\newcommand{\hT}{\Hat{T}} \newcommand{\hT}{\Hat{T}}
\newcommand{\bH}{\bm{H}} \newcommand{\bH}{\boldsymbol{H}}
\newcommand{\hVext}{\Hat{V}_\text{ext}} \newcommand{\hVext}{\Hat{V}_\text{ext}}
\newcommand{\vext}{v_\text{ext}} \newcommand{\vext}{v_\text{ext}}
\newcommand{\hWee}{\Hat{W}_\text{ee}} \newcommand{\hWee}{\Hat{W}_\text{ee}}
@ -54,6 +54,7 @@
\newcommand{\kin}[2]{t_\text{#1}^{#2}} \newcommand{\kin}[2]{t_\text{#1}^{#2}}
\newcommand{\E}[2]{E_{#1}^{#2}} \newcommand{\E}[2]{E_{#1}^{#2}}
\newcommand{\bE}[2]{\overline{E}_{#1}^{#2}} \newcommand{\bE}[2]{\overline{E}_{#1}^{#2}}
\newcommand{\tE}[2]{\widetilde{E}_{#1}^{#2}}
\newcommand{\be}[2]{\overline{\epsilon}_{#1}^{#2}} \newcommand{\be}[2]{\overline{\epsilon}_{#1}^{#2}}
\newcommand{\n}[2]{n_{#1}^{#2}} \newcommand{\n}[2]{n_{#1}^{#2}}
\newcommand{\Cx}[1]{C_\text{x}^{#1}} \newcommand{\Cx}[1]{C_\text{x}^{#1}}
@ -61,11 +62,6 @@
% energies % energies
\newcommand{\EHF}{E_\text{HF}} \newcommand{\EHF}{E_\text{HF}}
\newcommand{\Ec}{E_\text{c}} \newcommand{\Ec}{E_\text{c}}
\newcommand{\Ecat}{E_\text{cat}}
\newcommand{\Eneu}{E_\text{neu}}
\newcommand{\Eani}{E_\text{ani}}
\newcommand{\EPT}{E_\text{PT2}}
\newcommand{\EFCI}{E_\text{FCI}}
\newcommand{\HF}{\text{HF}} \newcommand{\HF}{\text{HF}}
\newcommand{\LDA}{\text{LDA}} \newcommand{\LDA}{\text{LDA}}
\newcommand{\eLDA}{\text{eLDA}} \newcommand{\eLDA}{\text{eLDA}}
@ -77,14 +73,15 @@
\newcommand{\xc}{\text{xc}} \newcommand{\xc}{\text{xc}}
% matrices % matrices
\newcommand{\br}{\bm{r}} \newcommand{\br}{\boldsymbol{r}}
\newcommand{\bw}{\bm{w}} \newcommand{\bw}{\boldsymbol{w}}
\newcommand{\bG}{\bm{G}} \newcommand{\bG}{\boldsymbol{G}}
\newcommand{\bS}{\bm{S}} \newcommand{\bS}{\boldsymbol{S}}
\newcommand{\bGamma}[1]{\bm{\Gamma}^{#1}} \newcommand{\bGamma}[1]{\boldsymbol{\Gamma}^{#1}}
\newcommand{\bHc}{\bm{h}} \newcommand{\bHc}{\boldsymbol{h}}
\newcommand{\bF}[1]{\bm{F}^{#1}} \newcommand{\bF}[1]{\boldsymbol{F}^{#1}}
\newcommand{\Ex}[2]{\Omega_{#1}^{#2}} \newcommand{\Ex}[2]{\Omega_{#1}^{#2}}
\newcommand{\tEx}[2]{\widetilde{\Omega}_{#1}^{#2}}
% elements % elements
\newcommand{\ew}[1]{w_{#1}} \newcommand{\ew}[1]{w_{#1}}
@ -231,7 +228,8 @@ and
\E{\Hxc}{\bw}[\n{}{}] \E{\Hxc}{\bw}[\n{}{}]
& = \E{\Ha}{}[\n{}{}] + \E{\xc}{\bw}[\n{}{}] & = \E{\Ha}{}[\n{}{}] + \E{\xc}{\bw}[\n{}{}]
\\ \\
& = \frac{1}{2} \iint \frac{\n{}{}(\br{}) \n{}{}(\br{}')}{\abs{\br{}-\br{}'}} d\br{} d\br{}'+ \int \e{\xc}{\bw}[\n{}{}(\br{})] \n{}{}(\br{}) d\br{}. & = \frac{1}{2} \iint \frac{\n{}{}(\br{}) \n{}{}(\br{}')}{\abs{\br{}-\br{}'}} d\br{} d\br{}'
+ \int \e{\xc}{\bw}[\n{}{}(\br{})] \n{}{}(\br{}) d\br{}.
\end{split} \end{split}
\end{equation} \end{equation}
are the noninteracting ensemble kinetic energy functional and ensemble Hartree-exchange-correlation (Hxc) functional, respectively. are the noninteracting ensemble kinetic energy functional and ensemble Hartree-exchange-correlation (Hxc) functional, respectively.
@ -242,15 +240,35 @@ From the GOK-DFT ensemble energy expression in Eq.~\eqref{eq:Ew-GOK}, we obtain
\label{eq:dEdw} \label{eq:dEdw}
\pdv{\E{}{\bw}}{\ew{I}} \pdv{\E{}{\bw}}{\ew{I}}
= \E{}{(I)} - \E{}{(0)} = \E{}{(I)} - \E{}{(0)}
= \Eps{I}{\bw} - \Eps{0}{\bw} + \left. \pdv{\E{\xc}{\bw}[\n{}{}]}{\ew{I}} \right|_{\n{}{} = \n{}{\bw}}, = \Eps{I}{\bw} - \Eps{0}{\bw} + \left. \pdv{\E{\xc}{\bw}[\n{}{}]}{\ew{I}} \right|_{\n{}{} = \n{}{\bw}(\br{})},
\end{equation} \end{equation}
where $\Eps{I}{\bw} = \sum_{p}^{\Norb} \ON{p}{(I)} \eps{p}{\bw}$, $\eps{p}{\bw}$ is the $p$th KS orbital energy given by the ensemble KS equation where
\begin{equation} \begin{equation}
\n{}{\bw}(\br{}) = \sum_{I=0}^{\Nens-1} \ew{I} \n{}{(I)}(\br{})
\end{equation}
is the ensemble density,
\begin{equation}
\label{eq:KS-energy}
\Eps{I}{\bw} = \sum_{p}^{\Norb} \ON{p}{(I)} \eps{p}{\bw}
\end{equation}
is the weight-dependent KS energy, and $\eps{p}{\bw}$ is the KS orbital energy associated with $\MO{p}{\bw}(\br{})$ ($\ON{p}{(I)}$ being its occupancy for the state $I$) given by the ensemble KS equation
\begin{equation}
\label{eq:eKS}
\qty( \hHc(\br{}) + \fdv{\E{\Hxc}{\bw}[\n{}{}]}{\n{}{}(\br{})}) \MO{p}{\bw}(\br{}) = \eps{p}{\bw} \MO{p}{\bw}(\br{}), \qty( \hHc(\br{}) + \fdv{\E{\Hxc}{\bw}[\n{}{}]}{\n{}{}(\br{})}) \MO{p}{\bw}(\br{}) = \eps{p}{\bw} \MO{p}{\bw}(\br{}),
\end{equation} \end{equation}
where $\hHc(\br{}) = -\frac{\nabla^2}{2} + \vext(\br{})$, $\MO{p}{\bw}(\br{})$ is a KS orbital, $\ON{p}{(I)}$ its occupancy for the state $I$, and $\n{}{\bw} = \sum_{I=0}^{\Nens-1} \ew{I} \n{}{(I)}$ is the ensemble density. where $\hHc(\br{}) = -\nabla^2/2 + \vext(\br{})$, and
Equation \eqref{eq:dEdw} is our working equation for computing excitation energies. \begin{equation}
\begin{split}
\fdv{\E{\Hxc}{\bw}[\n{}{}]}{\n{}{}(\br{})}
& = \fdv{\E{\Ha}{\bw}[\n{}{}]}{\n{}{}(\br{})} + \fdv{\E{\xc}{\bw}[\n{}{}]}{\n{}{}(\br{})}
\\
& = \frac{1}{2} \int \frac{\n{}{}(\br{}')}{\abs{\br{}-\br{}'}} d\br{}'
+ \left. \pdv{\e{\xc}{\bw{}}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{}{}(\br{})} \n{}{}(\br{}) + \e{\xc}{\bw{}}[\n{}{}(\br{})]
\end{split}
\end{equation}
is the Hxc potential.
Equation \eqref{eq:dEdw} is our working equation for computing excitation energies from a practical point of view.
%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%
%%% FUNCTIONAL %%% %%% FUNCTIONAL %%%
%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%
@ -324,12 +342,9 @@ and we then obtain
We can now combine these two exchange functionals to create a weight-dependent exchange functional for a two-state ensemble We can now combine these two exchange functionals to create a weight-dependent exchange functional for a two-state ensemble
\begin{equation} \begin{equation}
\label{eq:exw} \label{eq:exw}
\begin{split}
\e{\ex}{\ew{}}(\n{}{}) \e{\ex}{\ew{}}(\n{}{})
& = (1-\ew{}) \e{\ex}{(0)}(\n{}{}) + \ew{} \e{\ex}{(1)}(\n{}{}) = (1-\ew{}) \e{\ex}{(0)}(\n{}{}) + \ew{} \e{\ex}{(1)}(\n{}{})
\\ = \Cx{\ew{}} \n{}{1/3}
& = \Cx{\ew{}} \n{}{1/3}
\end{split}
\end{equation} \end{equation}
with with
\begin{equation} \begin{equation}
@ -487,6 +502,9 @@ In the case of a homogeneous system (or equivalently within the LDA), substituti
\label{sec:res} \label{sec:res}
Here, we consider as testing ground the minimal-basis \ce{H2} molecule. Here, we consider as testing ground the minimal-basis \ce{H2} molecule.
We select STO-3G as minimal basis, and study the behaviour of the total energy of \ce{H2} as a function of the internuclear distance $\RHH$ (in bohr). We select STO-3G as minimal basis, and study the behaviour of the total energy of \ce{H2} as a function of the internuclear distance $\RHH$ (in bohr).
This minimal-basis example is quite pedagogical as the molecular orbitals are fixed by symmetry.
Therefore, there is no density-driven error and the only error that we are going to see is the functional-driven error (and this is what we want to study).
The bonding and antibonding orbitals of the \ce{H2} molecule are given by The bonding and antibonding orbitals of the \ce{H2} molecule are given by
\begin{subequations} \begin{subequations}
\begin{align} \begin{align}
@ -519,14 +537,14 @@ with
\end{subequations} \end{subequations}
Note that, in the HF case, there is no self-interaction error as $\eJ{pp} = \eK{pp}$. Note that, in the HF case, there is no self-interaction error as $\eJ{pp} = \eK{pp}$.
We also define the HF excitation energy as $\Ex{\HF}{(1)} = \E{\HF}{(1)} - \E{\HF}{(0)}$. We also define the HF excitation energy as $\Ex{\HF}{(1)} = \E{\HF}{(1)} - \E{\HF}{(0)}$.
The HF orbital energies are %The HF orbital energies are
\begin{subequations} %\begin{subequations}
\begin{align} %\begin{align}
\eps{1}{\HF} & = \eHc{1} + 2\eJ{11} - \eK{11}, % \eps{1}{\HF} & = \eHc{1} + 2\eJ{11} - \eK{11},
\\ % \\
\eps{2}{\HF} & = \eHc{2} + 2\eJ{12} - \eK{12}. % \eps{2}{\HF} & = \eHc{2} + 2\eJ{12} - \eK{12}.
\end{align} %\end{align}
\end{subequations} %\end{subequations}
As reference results, we consider CID (configuration interaction with doubles) computed in the same (minimal) basis set. As reference results, we consider CID (configuration interaction with doubles) computed in the same (minimal) basis set.
The CID energies of the ground state and doubly-excited states are provided by the eigenvalues of the following CID matrix: The CID energies of the ground state and doubly-excited states are provided by the eigenvalues of the following CID matrix:
@ -568,14 +586,17 @@ with
\n{}{(1)}(\br{}) & = 2 \MO{2}{2}(\br{}), \n{}{(1)}(\br{}) & = 2 \MO{2}{2}(\br{}),
\end{align} \end{align}
Note that, contrary to the HF case, self-interaction is present in LDA. Note that, contrary to the HF case, self-interaction is present in LDA.
The KS orbital energies are given by %The KS orbital energies are given by
\begin{subequations} %\begin{subequations}
\begin{align} %\begin{align}
\eps{1}{\LDA} & = \eHc{1} + 2\eJ{11} + \ldots, % \eps{1}{\LDA}
\\ % & = \eHc{1} + 2\eJ{11}
\eps{2}{\LDA} & = \eHc{2} + 2\eJ{12} + \ldots. % + \frac{1}{2} \int \left. \fdv{\E{\xc}{\LDA}[\n{}{}]}{\n{}{}} \right|_{\n{}{} = \n{}{(0)}(\br{})} \n{}{(0)}(\br{}) d\br{},
\end{align} % \\
\end{subequations} % \eps{2}{\LDA} & = \eHc{2} + 2\eJ{12}
% + \frac{1}{2} \int \left. \fdv{\E{\xc}{\LDA}[\n{}{}]}{\n{}{}} \right|_{\n{}{} = \n{}{(0)}(\br{})} \n{}{(1)}(\br{}) d\br{}.
%\end{align}
%\end{subequations}
At the eLDA, we have At the eLDA, we have
\begin{subequations} \begin{subequations}
@ -599,13 +620,13 @@ Interestingly here, there is a strong connection between the LDA and eLDA excita
\end{split} \end{split}
\end{equation} \end{equation}
The KS orbital energies are given by The KS orbital energies are given by
\begin{subequations} %\begin{subequations}
\begin{align} %\begin{align}
\eps{1}{\eLDA} & = \eHc{1} + 2\eJ{11} + \ldots, % \eps{1}{\eLDA} & = \eHc{1} + 2\eJ{11} + \ldots,
\\ % \\
\eps{2}{\eLDA} & = \eHc{2} + 2\eJ{12} + \ldots. % \eps{2}{\eLDA} & = \eHc{2} + 2\eJ{12} + \ldots.
\end{align} %\end{align}
\end{subequations} %\end{subequations}
These equations can be combined to define three ensemble energies These equations can be combined to define three ensemble energies
@ -629,13 +650,13 @@ Similar energies than the ones given in Eqs.~\eqref{eq:EwHF}, \eqref{eq:EwLDA} a
\n{}{\ew{}} = (1-\ew{}) \n{}{(0)} + \ew{} \n{}{(1)}. \n{}{\ew{}} = (1-\ew{}) \n{}{(0)} + \ew{} \n{}{(1)}.
\end{equation} \end{equation}
(This is what one would do in practice, \ie, by performing a KS ensemble calculation.) (This is what one would do in practice, \ie, by performing a KS ensemble calculation.)
We will label these energies as $\bE{}{\ew{}}$ to avoid confusion. We will label these energies as $\tE{}{\ew{}}$ to avoid confusion.
\begin{widetext} \begin{widetext}
For HF, we have For HF, we have
\begin{equation} \begin{equation}
\label{eq:bEwHF} \label{eq:bEwHF}
\begin{split} \begin{split}
\bE{\HF}{\ew{}} \tE{\HF}{\ew{}}
& = \titou{\int \hHc(\br{}) \n{}{\ew{}}(\br{}) d\br{}} & = \titou{\int \hHc(\br{}) \n{}{\ew{}}(\br{}) d\br{}}
+ \frac{1}{2} \iint \frac{\n{}{\ew{}}(\br{})\n{}{\ew{}}(\br{}')}{\abs{\br{} - \br{}'}} d\br{} d\br{}' + \frac{1}{2} \iint \frac{\n{}{\ew{}}(\br{})\n{}{\ew{}}(\br{}')}{\abs{\br{} - \br{}'}} d\br{} d\br{}'
\\ \\
@ -648,7 +669,7 @@ In the case of the LDA, it reads
\begin{equation} \begin{equation}
\label{eq:bEwLDA} \label{eq:bEwLDA}
\begin{split} \begin{split}
\bE{\LDA}{\ew{}} \tE{\LDA}{\ew{}}
& = \titou{\int \hHc(\br{}) \n{}{\ew{}}(\br{}) d\br{}} & = \titou{\int \hHc(\br{}) \n{}{\ew{}}(\br{}) d\br{}}
+ \iint \frac{\n{}{\ew{}}(\br{})\n{}{\ew{}}(\br{}')}{\abs{\br{} - \br{}'}} d\br{} d\br{}' + \iint \frac{\n{}{\ew{}}(\br{})\n{}{\ew{}}(\br{}')}{\abs{\br{} - \br{}'}} d\br{} d\br{}'
+ \int \e{\xc}{\LDA}[\n{}{\ew{}}(\br{})] \n{}{\ew{}}(\br{}) d\br{} + \int \e{\xc}{\LDA}[\n{}{\ew{}}(\br{})] \n{}{\ew{}}(\br{}) d\br{}
@ -665,7 +686,7 @@ For eLDA, the ensemble energy can be decomposed as
\begin{equation} \begin{equation}
\label{eq:bEweLDA} \label{eq:bEweLDA}
\begin{split} \begin{split}
\bE{\eLDA}{\ew{}} \tE{\eLDA}{\ew{}}
& = \titou{\int \hHc(\br{}) \n{}{\ew{}}(\br{}) d\br{}} & = \titou{\int \hHc(\br{}) \n{}{\ew{}}(\br{}) d\br{}}
+ \iint \frac{\n{}{\ew{}}(\br{})\n{}{\ew{}}(\br{}')}{\abs{\br{} - \br{}'}} d\br{} d\br{}' + \iint \frac{\n{}{\ew{}}(\br{})\n{}{\ew{}}(\br{}')}{\abs{\br{} - \br{}'}} d\br{} d\br{}'
+ \int \be{\xc}{\ew{}}[\n{}{\ew{}}(\br{})] \n{}{\ew{}}(\br{}) d\br{} + \int \be{\xc}{\ew{}}[\n{}{\ew{}}(\br{})] \n{}{\ew{}}(\br{}) d\br{}
@ -694,13 +715,64 @@ This would be, for example, the case with the exact xc functional.
Extracting excitation energies from Eqs.~\eqref{eq:bEwHF}, \eqref{eq:bEwLDA} and \eqref{eq:bEweLDA} is more tricky. Extracting excitation energies from Eqs.~\eqref{eq:bEwHF}, \eqref{eq:bEwLDA} and \eqref{eq:bEweLDA} is more tricky.
To do so, we will employ Eq.~\eqref{eq:dEdw}. To do so, we will employ Eq.~\eqref{eq:dEdw}.
The derivative discontinuity, modelled by the last term of the RHS of Eq.~\eqref{eq:dEdw} and only non-zero in the case of an explicitly weight-dependent functional, is straightforward to compute in our case [see Eq.~\eqref{eq:dexcdw}]. The two first terms are
\begin{align} \begin{align}
\Eps{0}{\ew{}} & = 2 \eHc{1} + \ldots, \Eps{0}{\ew{}} & = 2(1-\ew{}) \eps{1}{\ew{}},
\\ &
\Eps{1}{\ew{}} & = 2 \eHc{2} + \ldots. \Eps{1}{\ew{}} & = 2 \ew{} \eps{2}{\ew{}},
\end{align} \end{align}
where the HF, LDA and eLDA weight-dependent orbital energies are
\begin{subequations}
\begin{align}
\eps{1}{\ew{},\HF}
& = \eHc{1} + (1-\ew{})(2\eJ{11} - \eK{11}) + \ew{}(2\eJ{12} - \eK{12}),
\\
\eps{2}{\ew{},\HF}
& = \eHc{2} + (1-\ew{})(2\eJ{12} - \eK{12}) + \ew{}(2\eJ{22} - \eK{22}),
\end{align}
\end{subequations}
\begin{subequations}
\begin{align}
\begin{split}
\eps{1}{\ew{},\LDA}
& = \eHc{1} + 2(1-\ew{}) \eJ{11} + 2\ew{} \eJ{12}
\\
& + \frac{1}{2} \int \left. \fdv{\E{\xc}{\LDA}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{}{\ew{}}(\br{})} \n{}{(0)}(\br{}) d\br{},
\end{split}
\\
\begin{split}
\eps{2}{\ew{},\LDA}
& = \eHc{2} + 2(1-\ew{}) \eJ{12} + 2 \ew{} \eJ{22}
\\
& + \frac{1}{2} \int \left. \fdv{\E{\xc}{\LDA}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{}{\ew{}}(\br{})} \n{}{(1)}(\br{}) d\br{},
\end{split}
\end{align}
\end{subequations}
\begin{subequations}
\begin{align}
\begin{split}
\eps{1}{\ew{},\eLDA}
& = \eHc{1} + (1-\ew{})(2\eJ{11} - \eK{11}) + \ew{}(2\eJ{12} - \eK{12})
\\
& + \frac{1}{2} \int \left. \fdv{\bE{\xc}{\ew{}}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{}{\ew{}}(\br{})} \n{}{(0)}(\br{}) d\br{},
\end{split}
\\
\begin{split}
\eps{2}{\ew{},\eLDA} & = \eHc{2} + (1-\ew{})(2\eJ{12} - \eK{12}) + \ew{}(2\eJ{22} - \eK{22})
\\
& + \frac{1}{2} \int \left. \fdv{\bE{\xc}{\ew{}}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{}{\ew{}}(\br{})} \n{}{(1)}(\br{}) d\br{},
\end{split}
\end{align}
\end{subequations}
respectively.
The derivative discontinuity is modelled by the last term of the RHS of Eq.~\eqref{eq:dEdw}.
Note that this contribution is only non-zero in the case of an explicitly weight-dependent functional [see Eq.~\eqref{eq:dexcdw}].
%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%
%%% CONCLUSION %%% %%% CONCLUSION %%%