H2 stretch

This commit is contained in:
Pierre-Francois Loos 2020-04-08 22:00:14 +02:00
parent 0c1a1a6d3c
commit 252ba4ec5b
2 changed files with 379 additions and 233 deletions

554
FarDFT.nb
View File

@ -10,10 +10,10 @@
NotebookFileLineBreakTest NotebookFileLineBreakTest
NotebookFileLineBreakTest NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7] NotebookDataPosition[ 158, 7]
NotebookDataLength[ 16160678, 379795] NotebookDataLength[ 16166017, 379887]
NotebookOptionsPosition[ 16109154, 379024] NotebookOptionsPosition[ 16114493, 379116]
NotebookOutlinePosition[ 16109547, 379040] NotebookOutlinePosition[ 16114886, 379132]
CellTagsIndexPosition[ 16109504, 379037] CellTagsIndexPosition[ 16114843, 379129]
WindowFrame->Normal*) WindowFrame->Normal*)
(* Beginning of Notebook Content *) (* Beginning of Notebook Content *)
@ -370230,7 +370230,7 @@ PmbQeTci0z7Ed/OatlK7+zXH9pdHmP/9HM7///v+HzuKo1w=
FormBox[ FormBox[
TemplateBox[{ TemplateBox[{
GraphicsBox[{ GraphicsBox[{
Thickness[0.02889338341519792], Thickness[0.044444444444444446`],
StyleBox[{ StyleBox[{
FilledCurveBox[CompressedData[" FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGI5IIaxWZDYzFjYDFA+Axobl3pqsSmxlxi9lPiFGDOR 1:eJxTTMoPymNmYGBgBGI5IIaxWZDYzFjYDFA+Axobl3pqsSmxlxi9lPiFGDOR
@ -370274,51 +370274,13 @@ HKJB5ucYQNTrKELC97w+JL38QPDB6e+yMpx/4WrYG/3bqg7cbqqlTKsM4PkB
zN9lCOeD05OREZwPtn+pkcOU9taoyzLqDjz+66ek/jByYACBA2oOp0HhH2fs zN9lCOeD05OREZwPtn+pkcOU9taoyzLqDjz+66ek/jByYACBA2oOp0HhH2fs
0MhytN8wXM2hYE337YwGYPr7tCEg+5cqJHw7jSH5wl0VEj5zMPMvjA8AzWio 0MhytN8wXM2hYE337YwGYPr7tCEg+5cqJHw7jSH5wl0VEj5zMPMvjA8AzWio
SA== SA==
"]],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJrIGYCYj7/9VNSO8wcniYuvGZyXtWhkeVov6G4hYOu
ovyXnG2qDvtrZS3Sj1g4nNi1o5dtg6pDA0je3ArOvy70yfG8mxVcf/6a7tsZ
DlYOpw47rc20U4Pzj4HUFyD4DCBwAMEH2yemDufPWaS884+7Otx8sL3b1eH2
64DUX1N36AsuUZnub+nwIkv72/S96nD3wtQ/B4nLIvhL7u/jm1NsDuc7ND06
PuO1GVw/WJ7ZDG6+38WJMf8+m8LVg8Pnuyncf1vMfxxK+WXqwMLZJZ+spwrn
N/y2KjiXoQLnV9//ccs4Wsmhx+sVi8lHU4eZIMCp4JASe8eN+YWpg4ExEHyW
dfA5wW47W9XMQfWTystZK2UdboD8v83MQXbXgn2p7+Qh5nGZO5Qf3uY601fB
4c+30gdzFiL4YPlTFnA+2P3Nlg4mIPODZeH8N2253UbSEnD+GiEdvvR9Qg6R
4tsvMuyzcLjOe1ss1YzfwbYyYoVprjmcnwYCx8zg/A16eYsZdcwg/qkUcCgA
xR+DGcT83YIOElOvcGYUmTo8cI13nLVRFOJfDVMHkcpJJWdZRB2egNJNvqnD
we59TSbOQg4HQPE3xdTBfc3R5Qw7BBwmgOJ3v6lDT0S3P6MBr8PXnbe6/oqa
OcSoRsic28Pt8Bfk/4lmDvYljrWn73BBwkvMHM4Hh+dTBL8bFP4HLRxe1D7O
Pr+G12H6BP4qs2xLh3SQv9QEHb5sCMiepW4Fcc9hYQeVJ83zznZZOVSB4o9b
HM5fDwqveVJwPiw+wf6fYAlx/w9Fh/8goG8B54PT22xzOD9GwfFjsg6Uv0LR
4QwI5Jg5gKLL+LCCA3r+BAByJpeS
"]],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJlIGYC4vrfVgXnXlg7zAQDFYcPGwKyZ7HbwPmpaUAw
zdbhUYT49osMag7qb3n3Gcy0hYizqTnEKDh+TJ6D4PcGl6hMn4/gL33hofd/
I4LP479+SuoOW4eniQuvmZxXhfNrPgEttkLw1T+pvJzFKQznp4P0twnA3ROh
GiFz7g8/xJz3Ng4mxkCwmd9BfOoVzgwnGwceRz6vGZkI/pJbyx8bNvM4nDjs
tDZTzs7hDBhg8vPXdN/OcEDwwfZnIPhg/65B8H1OsNvOFrWH2s/joPKked5Z
K3sH+xLH2tNzeByuCn1yPL8MwVcFyQs5wN0D48Pcq6+1UvhCiz3cP2D5W3Zw
/27Ry1vMuMcOHh4wPiy8YHwdRfkvOdfUHWTmxWmenmDnkJn/ofXkF3VI/B63
dfj59vUBS2V1iH/e2DgkhASpL8hUg9h72drB7+LEmH+LVR3Q0wcAnqLu3A==
"]]}, { "]]}, {
Thickness[0.02889338341519792]}, StripOnInput -> False]}, { Thickness[0.044444444444444446`]}, StripOnInput -> False]}, {
ImageSize -> {34.60991282689913, 21.12078704856787}, BaselinePosition -> ImageSize -> {22.49543212951432, 21.12078704856787}, BaselinePosition ->
Scaled[0.31887090512778543`], ImageSize -> {35., 22.}, Scaled[0.31887090512778543`], ImageSize -> {23., 22.},
PlotRange -> {{0., 34.61}, {0., 21.12}}, AspectRatio -> Automatic}], PlotRange -> {{0., 22.5}, {0., 21.12}}, AspectRatio -> Automatic}],
GraphicsBox[{ GraphicsBox[{
Thickness[0.02628120893561104], Thickness[0.02064409578860446],
StyleBox[{ StyleBox[{
FilledCurveBox[CompressedData[" FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGI5IIaxWZDYzFjYDFA+Axobl3pqsSmxlxi9lPiFGDOR 1:eJxTTMoPymNmYGBgBGI5IIaxWZDYzFjYDFA+Axobl3pqsSmxlxi9lPiFGDOR
@ -370361,7 +370323,6 @@ iSCC/xwkv9YQzucFpS8NA4cv+z5uTb8mCueHgNzzUB7OB7tnporDl523uv6W
GjqwcHbJJ/upQ+JvhzGcX/fbquBchAmcLzMvTvP0AxOHBpC4hjokf4SZOsgu GjqwcHbJJ/upQ+JvhzGcX/fbquBchAmcLzMvTvP0AxOHBpC4hjokf4SZOsgu
BwbkfTVo+jNzSAgJUl+QqeYAy18XQOn2tiqcDzbng4oDev4DADmMkD8= BwbkfTVo+jNzSAgJUl+QqeYAy18XQOn2tiqcDzbng4oDev4DADmMkD8=
"]], "]],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
@ -370388,11 +370349,41 @@ MKW9NeryHlWH+/v45hgzOTlk5H9oPRmi7lAMcm+do4OZzd6gaYwaDhHi2y8y
kF3+wkPvvprDUxD/r43DI5DBDqoOvhcnxvxztnFwX3N0OcMOJTi/BhS+r+Xg kF3+wkPvvprDUxD/r43DI5DBDqoOvhcnxvxztnFwX3N0OcMOJTi/BhS+r+Xg
/BjVCJlzNSIOMQqOH5N17BzsSxxrT9/hgocfjD8TBBgd4Xxw/JVC+XN4HMyv /BjVCJlzNSIOMQqOH5N17BzsSxxrT9/hgocfjD8TBBgd4Xxw/JVC+XN4HMyv
Hc01eYCIX/T0AQCSgPxI Hc01eYCIX/T0AQCSgPxI
"]],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1,
0}, {0, 1, 0}}}, {{{40.0047, 6.195309999999999}, {40.3672,
7.00469}, {40.30629999999999, 7.065629999999998}, {37.1313,
7.065629999999998}, {36.8047, 6.2562500000000005`}, {
36.86559999999999, 6.195309999999999}, {40.0047,
6.195309999999999}}}],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}}}, CompressedData["
1:eJxlk11Ik1EYxzebhGVG5vzIzWa2qWQrPwpZX//B+55XCrK0dHSRmswFWSYo
aM0L+1DSojAvdIUaXujFwkzChEhDrWxOsqkXamUmfaGQBmGJrJ33zTOiB56L
H+fwnOf/f54TeaogzbxKJpPJPbnfkz6eXHhw5IzNTWDJ88SnKKywwq9qc65e
C41xPnfQV8C0KaRzWKbDeLg1J0EpSOeHo1EvBoHy+sFviqAYtOvPNcuPESz/
LJ66ezQG9uqJ0zI3z7hsyXB+KNTLwwVZq4cKOQzS8NcxTqTxcQvjyVi13d0R
CbGNCg5PCqxz9aMaaGcuNzgfcrgfGBdg0WvQNV61bP7MwU75XQSorDw9D8He
3yILjUBPmTrZ0seDp1yiRr7frybLHoIbpupU+XcVcnpd28yFBI/TDSa3RcX0
Wd8vjiceCscb2s+zv+fCJqneCEH6nGu+7kMo4wv0/toQxqKejkD4p7bVmrMJ
9hUZyxyq9ZLf3Txj0T/Oy7g0/aLOwWGKzzLaCjegxNS6y9nLwUn9yt8o6e3k
pH5agpk/KyzWr+QQs7D1q21AyTiotKbIqfCyKLMriLGopzxQ6v+K9/0kquMi
h2ha71qAxC4OqvbgRh+NvzTHOB4HaP+Ta9CwN27EVuFl0e/bhPH2W02L8RkC
e+9fDmMs7ufzcLR+SdG7jYI075NqFD1SLjmCBbhpNEaAaIt9bFMEUWPT6TKV
Bi9jDTWORgKH6JcGs+ue7qxf4HGH6h3QSPV389L9uEiUUn9/cNK+LHpZ3D9X
FOPXoxmzOya08G2uMciP8+w/KCi/9XI23acwwlh8P42gtvLqCZcqGhUtma8S
rAQyGj06zOTcG0tqIyhX9N+Mz9Qheaz/bFKPZ//oYH5rJX/7CFK6PYMRtNDT
/of+/78r/Aem9K2/
"]]}, { "]]}, {
Thickness[0.02628120893561104]}, StripOnInput -> False]}, { Thickness[0.02064409578860446]}, StripOnInput -> False]}, {
ImageSize -> {38.05024159402241, 21.12078704856787}, BaselinePosition -> ImageSize -> {48.44440348692403, 21.12078704856787}, BaselinePosition ->
Scaled[0.31887090512778543`], ImageSize -> {39., 22.}, Scaled[0.31887090512778543`], ImageSize -> {49., 22.},
PlotRange -> {{0., 38.05}, {0., 21.12}}, AspectRatio -> Automatic}], PlotRange -> {{0., 48.44}, {0., 21.12}}, AspectRatio -> Automatic}],
GraphicsBox[{ GraphicsBox[{
Thickness[0.016812373907195696`], Thickness[0.016812373907195696`],
@ -370524,7 +370515,7 @@ BPvf2gfi/h+KkHDv9obzwenNAcFPOHxZO5UTyl+h6DADZM5KLweQNuPDCg7o
PlotRange -> {{0., 59.48}, {0., 21.12}}, AspectRatio -> Automatic}], PlotRange -> {{0., 59.48}, {0., 21.12}}, AspectRatio -> Automatic}],
GraphicsBox[{ GraphicsBox[{
Thickness[0.013326226012793176`], Thickness[0.011705489874751257`],
StyleBox[{ StyleBox[{
FilledCurveBox[CompressedData[" FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGI5IIaxWZDYzFjYDFA+Axobl3pqsSmxlxi9lPiFGDOR 1:eJxTTMoPymNmYGBgBGI5IIaxWZDYzFjYDFA+Axobl3pqsSmxlxi9lPiFGDOR
@ -370546,7 +370537,6 @@ ajvILX/hofdfBc7/C0ofhppw/lNQOO3Vd0hNA4Jjag7JIH//QKQXGB8cjx8F
4PzrvLfFUs0YIO48qg/nw8yH8WH2F4DSpz8v3H3geF4pBHc/OD9uZoPzW8Rr 4PzrvLfFUs0YIO48qg/nw8yH8WH2F4DSpz8v3H3geF4pBHc/OD9uZoPzW8Rr
WTPdWOB8aVD5sIAJHj7g8kKBCR5+2702WMyxZISHL3r5AgB2g+xJ WTPdWOB8aVD5sIAJHj7g8kKBCR5+2702WMyxZISHL3r5AgB2g+xJ
"]], "]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1,
@ -370580,7 +370570,6 @@ tILjx+QYS7j/YHyY/2H8B67xjrMMReD84LeXP85IFICbF6EaIXPuDz/cPhOQ
uzfzw93D48jnNSMTwV9ya/ljw2YeB2mQPQ9g6nng5oHpMzzw8IDxYeGFIv/X uzfzw93D48jnNSMTwV9ya/ljw2YeB2mQPQ9g6nng5oHpMzzw8IDxYeGFIv/X
Cq4fFt4w82F8mP2w+IK5DxafMPfD4hvmPxgf5n/09AEAaBb/xg== Cq4fFt4w82F8mP2w+IK5DxafMPfD4hvmPxgf5n/09AEAaBb/xg==
"]], "]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData[" 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
@ -370595,61 +370584,91 @@ kF3+wkPvvprDUxD/r43DI5DBDqoOvhcnxvxztnFwX3N0OcMOJTi/BhS+r+Xg
/BjVCJlzNSIOMQqOH5N17BzsSxxrT9/hgocfjD8TBBgd4Xxw/JVC+XN4HMyv /BjVCJlzNSIOMQqOH5N17BzsSxxrT9/hgocfjD8TBBgd4Xxw/JVC+XN4HMyv
Hc01eYCIX/T0AQCSgPxI Hc01eYCIX/T0AQCSgPxI
"]], "]],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1,
0}, {0, 1, 0}}}, {{{40.0047, 6.195309999999999}, {40.3672,
7.00469}, {40.30629999999999, 7.065629999999998}, {37.1313,
7.065629999999998}, {36.8047, 6.2562500000000005`}, {
36.86559999999999, 6.195309999999999}, {40.0047,
6.195309999999999}}}],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}}}, CompressedData["
1:eJxlk11Ik1EYxzebhGVG5vzIzWa2qWQrPwpZX//B+55XCrK0dHSRmswFWSYo
aM0L+1DSojAvdIUaXujFwkzChEhDrWxOsqkXamUmfaGQBmGJrJ33zTOiB56L
H+fwnOf/f54TeaogzbxKJpPJPbnfkz6eXHhw5IzNTWDJ88SnKKywwq9qc65e
C41xPnfQV8C0KaRzWKbDeLg1J0EpSOeHo1EvBoHy+sFviqAYtOvPNcuPESz/
LJ66ezQG9uqJ0zI3z7hsyXB+KNTLwwVZq4cKOQzS8NcxTqTxcQvjyVi13d0R
CbGNCg5PCqxz9aMaaGcuNzgfcrgfGBdg0WvQNV61bP7MwU75XQSorDw9D8He
3yILjUBPmTrZ0seDp1yiRr7frybLHoIbpupU+XcVcnpd28yFBI/TDSa3RcX0
Wd8vjiceCscb2s+zv+fCJqneCEH6nGu+7kMo4wv0/toQxqKejkD4p7bVmrMJ
9hUZyxyq9ZLf3Txj0T/Oy7g0/aLOwWGKzzLaCjegxNS6y9nLwUn9yt8o6e3k
pH5agpk/KyzWr+QQs7D1q21AyTiotKbIqfCyKLMriLGopzxQ6v+K9/0kquMi
h2ha71qAxC4OqvbgRh+NvzTHOB4HaP+Ta9CwN27EVuFl0e/bhPH2W02L8RkC
e+9fDmMs7ufzcLR+SdG7jYI075NqFD1SLjmCBbhpNEaAaIt9bFMEUWPT6TKV
Bi9jDTWORgKH6JcGs+ue7qxf4HGH6h3QSPV389L9uEiUUn9/cNK+LHpZ3D9X
FOPXoxmzOya08G2uMciP8+w/KCi/9XI23acwwlh8P42gtvLqCZcqGhUtma8S
rAQyGj06zOTcG0tqIyhX9N+Mz9Qheaz/bFKPZ//oYH5rJX/7CFK6PYMRtNDT
/of+/78r/Aem9K2/
"]],
FilledCurveBox[CompressedData[" FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIpIAaxQYAJSjNCxZjR2DA5BjQ2LjXUEifGXlLdSS31 1:eJxTTMoPymNmYGBgBGIpIAaxQYAJSjNCxZjR2DA5BjQ2LjXUEifGXlLdSS31
AJgXAjc= AJgXAjc=
"], CompressedData[" "], CompressedData["
1:eJxTTMoPSmVmYGBgBGJjIGYC4vbl4aeMvjg7PElceM1EX90Bxm/4bVVw7oW6 1:eJxTTMoPSmVmYGBgBGJjIGYC4je8+wxmSnk6PElceM1EX90Bxm/4bVVw7oW6
w4N9fHOMvZwddBTlv+Rcw+TPt9G5MksNwTcGAWbc/G6vVywmkU5w82F8mP31 g6tqKdOsAg8HHUX5LznXMPksiydZMfoi+DNBQBM3/9OGgOxZ9e5w82F8mP1g
IPEJTg5T2lujLsuoO/SA5Dc6OUjNi9M8LQCVP+DksMOh6dHxG2oOZ0DgipOD eru7w5T21qjLMuoOX0Dy190dpObFaZ4WgMo/d3fY4dD06PgNNQcTYyD47e4g
7PIXHnryag47b3X9Tf3u7KCwa8G+1HeiEHPVXRwOdu9rMnEWcriYH89+ztIF u/yFh568moO848fkM7KeDgq7FuxLfSfq4H2C3Xa2r6fDwe59TSbOQg7m147m
4q7JAg4hJSrT/we4OLyofZx9/g23g96EBT8M5yH4IGtm7HZx+LLv49b0bwIQ miR4OoC0GU8WcNh5q+tvarmnw4vax9nn33A7TPnGFj/jCIIPMvb/Q0+HL/s+
+XMuDvIg8/uEIO5jdHWouv/jlnG2mEOE+PaLDHxuDgwgkKDqMBMEDN0cNqg+ bk3/JgCR/+LpIA8yv08I4j51L4eq+z9uGWeLOeyvlbVIN/F2YACBBFWH/yAQ
aZ63Vs3hDe8+g5lObg5bzH8cSuFSd0g8fFk7NdEN7t8TmlaTTve7wcMDxoeF 7u2wQfVJ87y1ag4hJSrT/2d4O2wx/3EohUvd4bim1aTT7d5w/+pPWPDDcJs3
F9i9L1zh4XlTuibR6CyCD7ZvpSvEvDvqkPCpcXWQmHqFM+ORugPr4klWjKUI PDxgfFh47QG5l98bHp72wGCY8dkLzgfbd94LYt4ddUj4LPZykJh6hTPjkbpD
PshZZ6MQ/BXAYPzv6Aq3D8aHuQesbpIr3L0HamUt0re4OuiC7BdTd+D1Xz8l DufPBemzEfwer1csJo0IPo//+impGV5w+2B8mHvqQeI7vODuVQd66+wtLwdd
9YQrPH5g/I16eYsZaxD8U4ed1mbaqTlURKwwPXvY1WHOIuWdf56rQsJnl6vD kP1i6g4lW0V/n37nBY8fGH+jXt5ixhoE/9Rhp7WZdmoO9/fxzTF+5eUwZ5Hy
jAn8VWbdqhD/z3dxWCukw5duJwKJ33xniP0xag4Kjh+Tz+Q6O/icYLedXaoG zj/PVSHh88DLYcYE/iqzblWI/495OqwV0uFLtxOBxO9UD4j9MWoObcvDTxlN
Sb85zg61IPd3IPiPQBGzAMEHm/9azaFkq+jv03XOcPeDzZnrDPcfev4AAGr5 8XDwAcVzqRok/U7ycKgFubMDwX8UIb794gIEH2z+azWHm9I1iUZLPeDuB7vz
YvQ= iAfcf+j5AwB8xGuR
"]], "]],
FilledCurveBox[CompressedData[" FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4BHHxSZGPbIaUtXT2i5KzKeF 1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4BHHxSZGPbIaUtXT2i5KzKeF
m5HFAbkaAl0= m5HFAbkaAl0=
"], CompressedData[" "], CompressedData["
1:eJx1VGtIFFEUXq2UFN1tV1cQS82dGV/5XLQH1RHJmd1ZUkxKS3xk62a+gvRH 1:eJxTTMoPSmVmYGBgBGJnIGYC4v8goBzg8KL2cfb5N9wOa7pvZzCoBzjIbBSb
iRBmam2RhqCuYaY/RDLUSDKQTSoz0vWBpKJRkIqKG6gIWZq2d8a5S0EHDsPH z5TA6yD8yfF8mmaAQ4xqhMy5PXwOhy9rp0pqBThc570tlmrG76BpNel0vU6A
nXPOfN93z3hfzI/X7hKJRDaWjLakrSUHUbiwsFA8kz1sdgRq9laDyZ0Fj075 w5d9H7emiwk4vOHdZzDTKMBB/ZPKy1mdgg5nQMAiwMF9zdHlDDeEHFaDzF8f
Y9s0J1juiMs2eLKQTCR6DPU4Q0KBombbi4UJp2m5NkIMnlErGYMEC2vGlS6d 4JAQEqS+IFPNITb36L9NmwMcdjg0PTp+Q81h962uv6m7Axyk5sVpnhZQd9hf
XAItC0zQdigL1Kpi0XBnH+gyLXGCBbqtr0U0KQUF6u+vgbSEeKoxi4TylnMf K2uRfibAYUp7a9RlGXWH/Hj2c5JPAxyeJC68ZqKP4Df8tio490LdAeyfyQEO
w5Qa6IaSb/2TJKBHbbQG3BtS/AYkFGg+2B+v12qguvz2+TEPCtr005dFNRqY OoryX3KuqTssnmTF6NuDm9+/4IfhMyeEfhgfZr6C48fkM4kI+8H+qQlw2GL+
TX8yrgy24psbR68OLVDA8VljIdDbcy1nnALJatRw5tz/sdnJGFIXz+J6AQv9 41AKl7rDd7b4GT6tAQ4zJvBXmb1Wg4RPW4BDLci8DgTf5wS77exSBP/X29cH
xbHt1dpKFs/n+Lxn4UXk+ptLDhR0T939rZ1gobZSfCNiieT1mWShGPWrsGKO LJPV4PrB/g1Qc/CXE8vylQ9wEKmcVHKWRdShx+sVi4mjv4PfxYkx/xarQtwl
R6EV//q+1Hskg8T1HN84EnL2/mzUObLgcv1hgWm3KyS6vRwVOavh9GhV8lYz 7++gC3K/mLrDW1B4S/k7zFmkvPOPu7qD7gSgB/j8Hao/bQjIltKAuPeOH5zf
AR1Bec02ZhUcQt8vp6AH1c+r4FGTz6tNmoLN5Ny+rSkVFK1ajHP3hdo6S7Ra vjz8lNEeP4cLV8Pe6M9Wc1j6wkPv/0I/BwOtlcIXWlQdZswEgkA/hw+L1iuc
8Rk0v0IFI5/OmoPrSbjW5boxkKeCEP9W2UgpAYhe5gEVLDe1e5mYg/x5CgPm 9VCCyE/0dXjTltttFC3qsAMUP9994OpVnjTPO/vJx+EpyF3nVR3iQR786ONg
slx92AVXKEN+vaPx+6it4TUNc0ivYQKCKhvXQ400hIVbQkZiLPATsOA3p4uJ ZAwEwmpwPsx/MD4svsHhxOALj2/xqVc4M7R84eGdw/lzQXq2Lzw+YHxYfLmq
xn5zuv+gsd6R4325ysMM9kPAgl8uyM9C+m8/r1jxaH6q/ZDfTr/PFBDo/j2P ljLNWuEDj095UHzNRfBZQBEe6wMx7466Q7j49osMz7zh+mF8mPng8Bb0gdsP
wfUCFvonIb2/xOD5JDp3oLHfUjRvPw1a7h7s+BVA8/rPE6BEvGdouJ+oj7VZ lrfzgcc32L4AH4fUNCA4puYw10bnyqw4H0j4P1eFiIv5OvRGdPszfhCC+6cf
lmI+DxAOkWDcqzeWKH0kvL52DN6/TuRvghVz+5TOQKlb8Z4sOzGvXx4DRV/X xDcQgPMPdO9rMlEWgISvpS88/4Hd0Y7g35CuSTSa6uvQIl7LmsnG75AACr+F
p8KfSuAk2hc9g+edIgptDbU7fioUMIL4J6nBF+3johu/H/fU8Ewa6KxrkEHq vg7V93/cMl4t4FCyVfT36X0I+8ojVpiePQ2NTxUViP97/R00QPnxpTgkf+z3
27EAbZWa9/eYjL9P/Wo8/9//wx/fv9+l d1grpMOXPk/YYco3YAI84g+JX2thSHr65Q+3H718AAB5Ttqs
"]], "]],
FilledCurveBox[CompressedData[" FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGI5IIaxWaBsBiifAY3NCJVHV4NLHJcaUtXjUkOq+YPB 1:eJxTTMoPymNmYGBgBGI5IIaxWaBsBiifAY3NCJVHV4NLHJcaUtXjUkOq+YPB
nQAGXgI/ nQAGXgI/
"], CompressedData[" "], CompressedData["
1:eJxTTMoPSmVmYGBgBGJzIGYC4jXdtzMY2n0ddBTlv+RcU3fg9V8/JdXA12FK 1:eJxTTMoPSmVmYGBgBGJzIGYC4vx49nOSsYEOOoryX3KuqTsoOH5MPmMY6DCl
e2vU5TvqDhJTr3BmKCH4Ap8cz6ed9XFo+G1VcO4Fgv8kceE1E311h/jDl7VT vTXq8h11B/UnzfPOaiH4iydZMfoyBDo0/LYqOPcCwX+SuPCaib66g2d1s76P
BaHqZdQdXFRLmWZF+DpsMf9xKIVL3cH82tFckwRfh4Bb0jWJl9TgfJl5cZqn ElS9jLqDtc6VWc9cAx22mP84lMKl7rC1pebCZs9Ah4Bb0jWJl9TgfJl5cZqn
P6jA+Q9c4x1nGYrA+fK7FuxLzROAmxehGiFz7g8/3D4TYyDYzA93D48jn9eM P6jA+Q9c4x1nGYrA+fK7FuxLzROAmxehGiFz7g8/3D4TYyDYzA93D48jn9eM
TAR/ya3ljw2beRxS00DA1+EMGGDya0H+akDw/4PAdNz8u/v45hhb+cHNh/Fh TAR/ya3ljw2beRzOgIBPIIQ+g8mPEN9+kSEKwZ8JAqm4+Rw/F6Rv3oYwH8aH
9utOWPDD8BvCfeDwXo9w/55bXX9TlyP8B+PD/A/je+yvlbVwV3Xo8XrFYuIY 2b/h4cupm6Yg3AcO70KE+7+zxc/wyUX4D8aH+R/G99hfK2vhrgqJj1tBUPN5
ADWfx4Hj54L0zW0BDvYljrWn73DB+Qwg4MAN58+YCQSR3A7WOldmPWsNcGgR IP5TCHawL3GsPX2HC85nAAEHbjh/BsjdkdwOV4/mmjTIBzu0iNeyZrLxOKiC
r2XNZONx6AaZB+R/2fdxa7oYrwPImvQWmHkIfm9Etz9jAR+cD4svGB8Wn4sn zJMLdviy7+PWdDFeh0iQ/+Vg5iH4vRHd/owFfHA+LL5gfFh82oDiRzEYHt/C
WTH6dgTA47siYoXp2dUB8PQg7/gx+czZAHh6gfFh6WnDw5dTN9UEwNMjOj8/ nxzPp7kGw9PDzltdf1PTg+HpBcaHpSdvUHyKBcPTIzqfExS+XAh+7bptSfV/
nv2cZCGC/1hE9uTTZNz8naDwE0eYD+PD7BcGpQ9LhPuCS1Sm/49BuB8czQkI g3Dyg0tUpv/fEAQ3H8aH2b+6+3YGw+UguPve8O4zmPktCO7+9DQg+BUE9x+M
/8H4MP/D+MFvL3+coSjsIA7KL7d84fah5y8AW3qGhg== D/M/jB/89vLHGYrCkPBsQ+QP9PwFACm8dyQ=
"]], "]],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
@ -370657,29 +370676,29 @@ nv2cZCGC/1hE9uTTZNz8naDwE0eYD+PD7BcGpQ9LhPuCS1Sm/49BuB8czQkI
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}}}, CompressedData[" 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJrIGYC4sOXtVMlnQIdniYuvGZyXtVB3vFj8pmlgQ66 1:eJxTTMoPSmVmYGBgBGJrIGYC4pjco/823Q52eJq48JrJeVWHnbe6/qbahzjo
ivJfcrapOuTHs5+TvBjocGLXjl62DVB53SA4f2tLzYXNhkFw/dKvH5lJGQQ5 Ksp/ydmm6sD5c0H65qwQhxO7dvSybYDKH0fwA+TEsnxPh8D1b22pubD5ZIjD
nDrstDbTTg3OPwZSX4DgM4DAAQQfbJ+YOpw/Z5Hyzj/u6nDzG1iO9htuV4fb qcNOazPt1OD8YyD1BQg+AwgcQPDB9ompw/lzFinv/OOuDje/geVov+F2dbj9
rwNSf03d4bGI7MmnnwMdXmRpf5u+Vx3uXpj6nbe6/qYuR/BfbF/P/LwGwZ+w OiD119QdatdtS6rvDXF4kaX9bfpedbh7YepDSlSm/3dA8JsCPec2iCH42laT
4IfhsyiEfrC8QiDc/OASlen/ZQJR7ZcNhPvvLe8+g5lygQ4snF3yyXqqcH7D Ttd/CYbrbwbJ7wqGm/+Gd5/BzG3BqPZvD4b7r2N5+CmjHcEOLJxd8sl6qnB+
b6uCcxkqcH71/R+3jKOVHBZPsmL0BZo3EwQ4FRwixLdfZJAKdDAwBoLPsg7C w2+rgnMZKnB+9f0ft4yjlRxsdK7MerY12GEmCHAqOHzeEJA9a3Owg4ExEHyW
nxzPp2kGOqh+Unk5a6UsxP++gQ6yuxbsS30n7/AGZF5SoEP54W2uM30VHPbX dVjTfTuD4XCwg+onlZezVspC/P882EF214J9qe/kHdpB5v0Jdig/vM11pq+C
ylqkdyD4YPlLCD7Y/QxBDiYg84Nl4fw3bbndRtIScP4aIR2+9H1CDleP5po0 Q4T49osMSiFwfhtIPgfBB7t/VoiDCcj8YFk4/01bbreRtAScv0ZIhy99n5BD
nA90uM57WyzVjN/BX04sy7cawQe7OxDBX9N9O4NBG+qfSgFI/AHDD2z+bkEH QTz7OcnMEIfrvLfFUs34HV5sX8/8XATBB5vzOhjOd1ctZZp1BOqfSgFI/O0M
V9VSpll/AhweuMY7ztooCvHvqwAHkcpJJWdZRB0qIlaYnv0d4HCwe1+TibMQ hpi/W9DhwT6+OcbTgh0euMY7ztooCvFvc7CDSOWkkrMsog7CnxzPp00NdjjY
JP5YAx3c1xxdzrBDABK//IEOPRHd/owGvA4167Yl1asGOsSoRsic28MN8b9L va/JxFkIEn/zgh3c1xxdzrBDABK/K4MdeiK6/RkNeB3EPQL+SOwPdohRjZA5
oIN9iWPt6TtckPBKRfDB4TkTwQeH/wVgfNc+zj6/htdB/UnzvLO/Ah3S04BA t4fbIRLk/3vBDvYljrWn73BBwus/gg8OT+MQOB8c/kD/vah9nH1+Da/DgVpZ
TdDBWufKrGeaQRD3HBZ24Pi5IH2zU5BDFSj+uMXh/PWg8JonBefD4hPsf5Yg i/QpIQ7paUCgJuhw9WiuScPhEIh7Dgs7LJpkxeh7J8ShChR/3OJw/npQeM2T
iPt/KDr8B4HVgXA+OL21IfjiHgF/JLKh/BWKDqBoMrYOhNCHFRzQ8ycAzQWL gvNh8Qn2/9wQiPt/KELEXRF8LVB6U0DwNzx8OXUTC5S/QtHhDAhcCXYABbPx
Tw== YQUH9PwJAGQFoFY=
"]]}, { "]]}, {
Thickness[0.013326226012793176`]}, StripOnInput -> False]}, { Thickness[0.011705489874751257`]}, StripOnInput -> False]}, {
ImageSize -> {75.03563636363636, 21.12078704856787}, BaselinePosition -> ImageSize -> {85.42978829389789, 21.12078704856787}, BaselinePosition ->
Scaled[0.31887090512778543`], ImageSize -> {76., 22.}, Scaled[0.31887090512778543`], ImageSize -> {86., 22.},
PlotRange -> {{0., 75.04}, {0., 21.12}}, AspectRatio -> Automatic}], PlotRange -> {{0., 85.43}, {0., 21.12}}, AspectRatio -> Automatic}],
GraphicsBox[{ GraphicsBox[{
Thickness[0.015710919088766692`], Thickness[0.01096130658774526],
StyleBox[{ StyleBox[{
FilledCurveBox[CompressedData[" FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGI5IIaxWZDYzFjYDFA+Axobl3pqsSmxlxi9lPiFGDOR 1:eJxTTMoPymNmYGBgBGI5IIaxWZDYzFjYDFA+Axobl3pqsSmxlxi9lPiFGDOR
@ -370750,72 +370769,145 @@ kF3+wkPvvprDUxD/r43DI5DBDqoOvhcnxvxztnFwX3N0OcMOJTi/BhS+r+Xg
/BjVCJlzNSIOMQqOH5N17BzsSxxrT9/hgocfjD8TBBgd4Xxw/JVC+XN4HMyv /BjVCJlzNSIOMQqOH5N17BzsSxxrT9/hgocfjD8TBBgd4Xxw/JVC+XN4HMyv
Hc01eYCIX/T0AQCSgPxI Hc01eYCIX/T0AQCSgPxI
"]], "]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGI1IIaxWaBsBiifAY3NCJVnRmMTo54YcWrZNZjdhksN FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1,
qebjEgcA+c4CbQ== 0}, {0, 1, 0}}}, {{{40.0047, 6.195309999999999}, {40.3672,
"], CompressedData[" 7.00469}, {40.30629999999999, 7.065629999999998}, {37.1313,
1:eJxTTMoPSmVmYGBgBGJPIGZigIIdbg4PXOMdZxmKOMD4wW8vf5yRKOBwMT+e 7.065629999999998}, {36.8047, 6.2562500000000005`}, {
/dxGN4fq+z9uGXMLOPR4vWIxyXRzMDEGgs38DlO+scXPMHFz4HHk85qRieAv 36.86559999999999, 6.195309999999999}, {40.0047,
ubX8sWEzj0NlxArTs9Uw9TwOD/bxzTFe5eZwBgx4HCSmXuHM+IXgh5SoTP8f 6.195309999999999}}}],
4A7nu6mWMs3qcIfrrwCZ99gdbj6MD7N/Jhi4w933hnefwcwgd4cI1QiZc3/4
HdSeNM876+UO9x+MD/M/jC8zL07z9AcVOD/glnRN4iU1uHlbzH8cSuFSh9s3 FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
pb016rKMOkT+lrvDk8SF10z0EfyG31YF516oO9wEGmOU6u6goyj/JecaJh9m 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
H4zv0PTo+Axj3HxYfMHMB/tb2dXBY83R5Qw/RCD8bme4/OcNAdmz+J3h+tH5 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
PP7rp6T+cILzu0Hx/RA33/sEu+3sVCe4+TA+zP/g4FnpBA8fV1B8fnCChx/M 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
Plj4wviw8IfxYfED48vvWrAvNU8Abh4sfmH2weIf5h5Y+oDxYelnvo3OlVn/ 0}}}, CompressedData["
nODpDZ1fC/KXhDOc/x8E9HHzwen7kjPcfBgfZr/+hAU/DPuc4e4Dh5O7M9z9 1:eJxlk11Ik1EYxzebhGVG5vzIzWa2qWQrPwpZX//B+55XCrK0dHSRmswFWSYo
O291/U21d4b7D8aH+R/Gn7NIeecfdVWHBSD3vnOB2N/D7SDyyfF8Gq8rnA8O aM0L+1DSojAvdIUaXujFwkzChEhDrWxOsqkXamUmfaGQBmGJrJ33zTOiB56L
LwlXhxiw+TyQ8FF0dVD/pPJyVicfJL1pucLtB6cvZ1eIv+4LOuiC3Bvm6vCm H+fwnOf/f54TeaogzbxKJpPJPbnfkz6eXHhw5IzNTWDJ88SnKKywwq9qc65e
LbfbyFoYkj8TXB12BltF/H8u7LBRL28xY4mbg3DlpJKzIsoQ8zvdIOnvhLJD C41xPnfQV8C0KaRzWKbDeLg1J0EpSOeHo1EvBoHy+sFviqAYtOvPNcuPESz/
2/LwU0Zz3By8QOEeqgJPrzD3o5c/AFwT9rs= LJ66ezQG9uqJ0zI3z7hsyXB+KNTLwwVZq4cKOQzS8NcxTqTxcQvjyVi13d0R
"]], CbGNCg5PCqxz9aMaaGcuNzgfcrgfGBdg0WvQNV61bP7MwU75XQSorDw9D8He
FilledCurveBox[CompressedData[" 3yILjUBPmTrZ0seDp1yiRr7frybLHoIbpupU+XcVcnpd28yFBI/TDSa3RcX0
1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4GEjqydGLy71uPSSqp5Ut1Fi Wd8vjiceCscb2s+zv+fCJqneCEH6nGu+7kMo4wv0/toQxqKejkD4p7bVmrMJ
JjHitLALAM7SAnU= 9hUZyxyq9ZLf3Txj0T/Oy7g0/aLOwWGKzzLaCjegxNS6y9nLwUn9yt8o6e3k
"], CompressedData[" pH5agpk/KyzWr+QQs7D1q21AyTiotKbIqfCyKLMriLGopzxQ6v+K9/0kquMi
1:eJxTTMoPSmVmYGBgBGJvIGYCYnnHj8lnfD0dHrjGO84ylHMILlGZ/r/C00H9 h2ha71qAxC4OqvbgRh+NvzTHOB4HaP+Ta9CwN27EVuFl0e/bhPH2W02L8RkC
k8rLWZ5yDntudf1NXe7p8GXfx63pYXIOLIsnWTG+RfB3gOTjveD8EJD+Di+4 e+9fDmMs7ufzcLR+SdG7jYI075NqFD1SLjmCBbhpNEaAaIt9bFMEUWPT6TKV
eWdAYImXQ8jbyx9nHJR16PF6xWKy0Qsi3iMDUb/Dy8HEGAg2S0Lse47gv+fd Bi9jDTWORgKH6JcGs+ue7qxf4HGH6h3QSPV389L9uEiUUn9/cNK+LHpZ3D9X
ZzDzEcI8XPyeiG5/RgF5OL9FgV31zBVMPsx84cpJJWdDlOD2w/gw94GsNxZW FOPXoxmzOya08G2uMciP8+w/KCi/9XI23acwwlh8P42gtvLqCZcqGhUtma8S
dPiyISB71novB+Vrj4IZ7ig4/IjJPfpvlZfDHU3ZNf8XK8D9123juSutSAHV rAQyGj06zOTcG0tqIyhX9N+Mz9Qheaz/bFKPZ//oYH5rJX/7CFK6PYMRtNDT
/44KDuDwjfVyWCukw5eup+BwXNNq0unvnnB+yVbR36e3IfjiU69wZjR5Qtxj /of+/78r/Aem9K2/
AtUPix9HBF8U5NAtag5ty8NPGdV4Osguf+Ghd1/N4T8ITPd0MNBaKXzhiRok
HD8j+CKfHM+n2XrB+eURK0zPTvZyYACBA2oOFSD+YS8HFs4u+eQ+NYf631YF
5154OSSEBKkvyFRz8DnBbjv7rZfDFvMfh1K8EPwp7a1Rl/eoosprqTg4ND06
PkPZG4P/Ikv72/S5qg45nD8XpGt7O6SmAcExNYf9tbIW6TbeDjqK8l9yrqk7
uKuWMs364OUgAQqXR+oO9/fxzTE+5OXQAHaXOiQ86xF8cPjd8oSrLwaFb58n
3DxXkHkRCP4yYLD9N0Twb0rXJBqx4uaDgvm/ogfcPhj/SeLCayb66pD4yPGA
hIeMOiQdbfaA+J9L3eE3KP3s8nDYAQqIG2pwvsy8OM3TH1TgfEj6FoHzg0H5
J1EAbl6EaoTMuT/8cPsg+YUf7h4eRz6vGZkI/pJbyx8bNvNA/FMLU88DNw+c
js/wONiD4ofZE87fqJe3mDHEE1W+2xOuH5x+n3nCzYfxYfZP+cYWP2OOJ9x9
3qD0EeoJdz8sPcP8h1oeiTigl08AYpgGkQ==
"]], "]],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, {
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}}}, {CompressedData["
1:eJxTTMoPSmViYGDQAGIQPd9G58osMS+HHcFWEf+PCzpITL3CmcHk5XCwe1+T
ibOQw4cNAdmz5ns6yO9asC81T8Bho17eYsYaT4cI1QiZc3/4HWaCgCWCz7p4
khXjVQ9U+UYPB+HKSSVnUwQd0kAgzANi/mFhh+ASlen/LTwc3rTldhtFizro
TVjww1DPw6FNgV31zBYxB2MQ0PZwCH57+eOMRkmHMyDA4wnn77zV9Te1HMG/
kB/Pfm6np0MKyJ5lkg77a2Ut0lW8IO7Xk3IIF99+kUHNC+K+O1IOX0D+U/dy
qLn/45axtzSc/x8E7iP46SDztik43JCuSTTa6umQCuK3KUHUsSP4a7pvZzCc
94Dzwfb3eDjsza95O9NUyYEFFD6+Hg73XeMdZy1UhITHOXeHcE6xduN6BYcc
zp8L0me7Q8z9Lwvng8PxpwScrwDyzztRhze8+wxmbnJ3MAGFU7CwQ9vy8FNG
d9wd1grp8KXXCTrc38c3x1jKw8G+xLH29B1eeHxA+FwO3ifYbWd/RfCLt4r+
Pq3nCeeDnZHu6XAAFF+LuR2eJC68ZrLc00Fmo9h8pgRehxBQ/F3wdOiN6PZn
LOBziD98WTv1oyfEPZv5IennO1S/soADenoDABtyF80=
"], CompressedData["
1:eJxTTMoPSmViYGAQBmIQHS6+/SLDPE+Hmvs/bhl7Szt4n2C3ne3r6WBiDALS
Dm6qpUyzNDwdUtKAQE3aIbhEZfr/Dx5w/sX8ePZzKxH8mSDQ6AHXrzdhwQ9D
PQ+H/ohuf8YCBL9VgV31zBZZh/21shbpJh4OIpWTSs4ekXPg9V8/JdXDwwGs
nVkBYl8GlC+s6JDN+XNB+moPB+cJzUJpuxQh7v2K4MPcC+PX/bYqOBfgCXFX
pqLD5G9s8TNyPCHmHVZwmG+jc2VWn6eD7K4F+1LfyTskHL6snTrT02F7sFXE
/3Y5B/TwAQDQMXP/
"]}],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIpIAaxQYAJSjNCxZjR2DA5BjQ2LjXUEifGXlLdSS31
AJgXAjc=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJjIGYCYgXHj8lneH0cniQuvGair+4A4zf8tio490Ld
oSJihenZZG8HHUX5LznXMPnm147mmjgg+GdAQAY3X+VJ87yzRV5w82F8mP3i
U69wZqzycpjS3hp1WQYqf8rLQWpenOZpAaj8LS+HHQ5Nj47fUHNITwOCd14O
sstfeOjJqzmElKhM/y/g46Cwa8G+1HeiDrUgexx8HA5272sycRZyyOH8uSA9
2MfBGAQmCzi84d1nMDPLx+FF7ePs82+4HY5qWk06vR3BvyFdk2h01cfhy76P
W9O/CTgcB8k/93GQB5nfJ+SgCnKflK9D1f0ft4yzxRy+bAjInqXu58AAAgmq
DiYge7z9HDaAFK5Vc2hfHn7KKMbPYYv5j0MpXOoOf2Jyj/6r8oP7N+HwZe3U
lX7w8IDxYeH1FuReJj94eJZsFf19+pkvnA+277AvxLw76g6poPCZ5usgAQq3
R+oOc210rszqQ/D318papJcg+PbAYJ0R7Qu3D8aHuWeDXt5ixjW+cPdGiG+/
yHDO10EXZL+YusNSYDT8f+gLjx8YfyNIXw2Cf+qw09pMOzUHkU+O59Pu+jrM
WaS8889zVUj4XPF1mDGBv8qsWxXi/50+DmuFdPjS7UQg8dvhDbE/Rs1hz62u
v6nt3g4+J9htZ5eqOciD0m+rNyTeOxD8RyCHLkDwwea/VnPg8V8/JXWGN9z9
YH9u94b7Dz1/AACpPWiK
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4BHHxSZGPbIaUtXT2i5KzKeF
m5HFAbkaAl0=
"], CompressedData["
1:eJx1VHsslWEYPy7RZTg5LmNMOOf7iCJElPU0M13k+95PFyuL6CTD+IM/hDGO
1NTorA3HNdbUKN2otpJVurlPbqlZIYSFbA41Ou/39X1na+vZ3j9+e9/ned7f
7/c+r31UIiPXE4lEOpoVoFm6muWJowjBZMZoXNfMJhhpNi7zVCGwuWdRqRtp
BIGyFF1VGYJwWZhN51NjWDKIKA4uRzBgNGwh9zaB8ITW1fuVCBab5xtjLMRg
t28+uv0GAnJBOqW6tBnWcNQhCKpvrRUNmnL1HRiIPMKQVbEEFFapd3wjGHgM
2V/fDBIwa9TsXrKdAeuKU85tYhJ+3qXjVHsZuJaXe6LXhoQapZ/O4TAGxk5f
7/dy0+KsX35JnZMksHwMGXC1t1uM7yehrzXBK2sN/Re/7HWRWzUhIZ/HfP3Q
ZGnR2gck9Gf5/EDw0Ef94sxGEpz9lG2ZagTFhSbnvacJTp9lBBm43kUtDn5r
6F+aosUrs9MtvtGEkM/ypQnIQQfKs5QIzFKVyR365pAadnNnhwRBSM/V8NUa
GcjGcio6dBFsw/e3IMEF54sQlFU7PvkdRMKhtBy34BUa0hY0wlk7QQmOL1rM
9u+hobvv2IxbKQF5tcffe7yiwX3rLUm3QsbxK6VhrrphS8d+B25/Dw0zFxLy
PU6ac/5+poTzlw9+1/caomAc69Ulg1ZMaIACD+yDhBAwz4/HvN+szhOU4Pfz
DNtdMetpQe/JRw16E0604AePeb/q84fPiQoowc9cfF+FFsdvWK6KCaC4ep9I
eIbrt4cI+Tzm68/h97YUIvRn96WU4Dfbz4cC+VlNvCZAHz/AQIrTf0IG7Th+
U3AlLJ/SmTMV+BRg7C4WcEt+c7aXo5jTV0wL88f6663FrN7+NCgsM9bFGpjA
qJntu/EAjZ8j6o+edWKYwfPC0EK/xAjDTquhv35KpdCoSO9+4IvACc/jlCU3
H6EIbpu6GsdUSCD9TlNU5lHE+btbwr2nJO1/8O//8Aejq9Xz
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGI5IIaxWaBsBiifAY3NCJVHV4NLHJcaUtXjUkOq+YPB
nQAGXgI/
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJzIGYC4sWTrBh9LwQ56CjKf8m5pu4QXKIy/f+SIIcp
7a1Rl++oO0SKb7/IMA/Bv3o016ShOMih4bdVwbkXCP6TxIXXTPTVHWrWbUuq
nwpVL6PukB/Pfk5yZ5DDFvMfh1K41B1ebF/P/HxPkEPALemaxEtqcL7MvDjN
0x9U4PwHrvGOswxF4Hz5XQv2peYJwM2LUI2QOfeHH26fiTEQbOaHu4fHkc9r
RiaCv+TW8seGzTwO/0Fgf5DDGTDA5Hd7vWIxOYvgg6kbuPnWOldmPdMMhpsP
48Psfywie/IpezDcfeDwfoJwv7bVpNP1DxD+g/Fh/ofxPfbXylq4q0Liwy8E
aj4PxH+TQxzsSxxrT9/hgvMZQMCBG86fMRMIIrkdOH4uSN88KcShRbyWNZON
xyECZB6Q/2Xfx63pYrwOPSD/T4SZh+D3RnT7Mxbwwfmw+ILxYfFZAIqfqSHw
+HZVLWWatSMEnh7e8O4zmHkrBJ5eYHxYeqoFxWdnCDw9ovNtQOFbi+BvePhy
6qYC3Py25eGnjFQQ5sP4MPsf7OObY+yGcJ+C48fkM5kI94OCbWYuwn8wPsz/
MH7w28sfZygKQ8LzFyJ/oOcvAFyjjBE=
"]],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}}}, CompressedData[" 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJTIGYC4vbl4aeMtvg4yMyL0zz9QcUBxt/h0PTo+A01 1:eJxTTMoPSmVmYGBgBGJrIGYC4gkLfhg+8wt1eJq48JrJeVWHN7z7DGZuCnXQ
hy16eYsZ9/g4bDH/cSiFS93hT0zu0X9Mvg5T2lujLsuoO9yQrkk08vV1eJK4 VZT/krNN1cFG58qsZ3dDHU7s2tHLtgEqbxUG5zcFes5tsAuD63+xfT3zc5sw
8JqJPoLf8Nuq4NwLdYf9tbIW6Xd8HHQU5b/kXFN3EJ96hTNjF4K//IWH3v9M h1OHndZm2qnB+cdA6gsQfAYQOIDgg+0TU4fz5yxS3vnHXR1ufgPL0X7D7epw
BP8MCMgg+B82BGTP+u4Nse+OugOP//opqR3ecPNhfJj9b3j3Gcy85A1334yZ +3VA6q+pO2x4+HLqJoYwhxdZ2t+m71WHuxemvm15+CmjLQj+1paaC5s7EfzY
QCCJcH/C4cvaqYoI/8H4MP/D+NGqETLn/gjB+V/2fdyaPk3QIYfz54J0YR+H 3KP/NqWHwvWD5XVD4eYrOH5MPqMZimq/Vijcf7tudf1N1Q51YOHskk/WU4Xz
9DQgaBNwUH/SPO/sL2+HA937mkyUBRxUQPxT3g4xIP17+OD8JbeWPzZs5nGo G35bFZzLUIHzq+//uGUcreRQEM9+ThJo3kwQ4FRwUH3SPO+sWqiDgTEQfJZ1
BbnbwAfizzM8DvZAZ8ywRvArIlaYnk1G8C/kx7OfK0TwweHXheDvBYXvGh8H eLCPb46xWaiD6ieVl7NWykL8HxXqILtrwb7Ud/IOO0Hm5Yc6lB/e5jrTV8Gh
E2Mg2MzjYH7taK7JDx8H+xLH2tNzeBxcVEuZZi3whdu/ARSfZxB8kU+O59P+ x+sVi8lUBB8sfx/BB7ufN8zBBGR+sCyc/6Ytt9tIWgLOXyOkw5e+T8hh0SQr
4uZ/AYX/eT9U+2/5OYCCdWalAMT8B36Q8GATcvgPAu/9HNoU2FXPbBFzmGuj Rt87oQ7XeW+LpZrxO8i8fmQm1YHgp4FAHIJfGbHC9Kw51D+VApD40wmFmL9b
c2XWPgQfbP8aP4eq+z9uGXuLQMxb5ecA0p6mJuIQUqIy/f8KPweFXQv2pZ4T 0EHok+P5NM5Qhweu8Y6zNopC/PstxEGkclLJWRZRB1fVUqZZHKEOB7v3NZk4
dthzq+tv6nI/h4Og8D0s7BAuvv0iwzw/SPzECEH8PdnPQbhyUsnZFEFIeuqE C0HiTzDUwX3N0eUMOwQg8SsT6tAT0e3PaMDr4FndrO9jFOoQoxohc24PN8T/
ukdN0CECpL7Mz2GtkA5f+jwBiHnvfR12BltF/HcXgKQvcwQf7P7/PnA+LP0G gaEO9iWOtafvcEHCqwjBB4fnMgQfHP7A9PGi9nH2+TW8Dl82BGTPYg9zSAf5
v738cUaiADx/VIPcvxrBh6UfAF2wg9A= S03QgePngvTNZmEQ9xwWdrh6NNekwT/MoQoUf9zicP56UHjNk4LzYfEJ9r9A
GMT9PxQdzoDAjlA4H5zeJiP4T0RkTz4th/JXKELyhUeoAyi6jA8rOKDnTwCm
tpgx
"]]}, { "]]}, {
Thickness[0.015710919088766692`]}, StripOnInput -> False]}, { Thickness[0.01096130658774526]}, StripOnInput -> False]}, {
ImageSize -> {63.647990037359904`, 21.12078704856787}, ImageSize -> {91.23252801992528, 21.12078704856787}, BaselinePosition ->
BaselinePosition -> Scaled[0.31887090512778543`], Scaled[0.31887090512778543`], ImageSize -> {92., 22.},
ImageSize -> {64., 22.}, PlotRange -> {{0., 63.65}, {0., 21.12}}, PlotRange -> {{0., 91.23}, {0., 21.12}}, AspectRatio -> Automatic}]},
AspectRatio -> Automatic}]}, "PointLegend", "PointLegend", DisplayFunction -> (FormBox[
DisplayFunction -> (FormBox[
StyleBox[ StyleBox[
StyleBox[ StyleBox[
PaneBox[ PaneBox[
@ -371257,9 +371349,9 @@ v738cUaiADx/VIPcvxrBh6UfAF2wg9A=
3.7952328691117477`*^9}, {3.79525637996977*^9, 3.7952565021604767`*^9}, 3.7952328691117477`*^9}, {3.79525637996977*^9, 3.7952565021604767`*^9},
3.795256708483235*^9, 3.7952600260945587`*^9, 3.795260578404459*^9, { 3.795256708483235*^9, 3.7952600260945587`*^9, 3.795260578404459*^9, {
3.795260637324193*^9, 3.795260648171019*^9}, 3.795260701739809*^9, { 3.795260637324193*^9, 3.795260648171019*^9}, 3.795260701739809*^9, {
3.795320421346336*^9, 3.795320464054949*^9}}, 3.795320421346336*^9, 3.795320464054949*^9}, 3.795333455129352*^9},
CellLabel-> CellLabel->
"Out[198]=",ExpressionUUID->"33f9e8f0-146c-4af3-81a8-38dc2a8c43ad"] "Out[210]=",ExpressionUUID->"beedfd16-e437-4dab-a7bf-189f446c7a25"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
@ -379701,99 +379793,99 @@ Cell[15333770, 364239, 200149, 3542, 249, "Output",ExpressionUUID->"357e2709-ec1
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15533956, 367786, 2879, 62, 367, "Input",ExpressionUUID->"b3f6951d-bf84-466d-8be0-5fa497cd2249"], Cell[15533956, 367786, 2879, 62, 367, "Input",ExpressionUUID->"b3f6951d-bf84-466d-8be0-5fa497cd2249"],
Cell[15536838, 367850, 193023, 3411, 270, "Output",ExpressionUUID->"33f9e8f0-146c-4af3-81a8-38dc2a8c43ad"] Cell[15536838, 367850, 198362, 3503, 270, "Output",ExpressionUUID->"beedfd16-e437-4dab-a7bf-189f446c7a25"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15729898, 371266, 2361, 59, 249, "Input",ExpressionUUID->"480efb8a-9a05-41e0-9e2f-f1efa4801aa1"], Cell[15735237, 371358, 2361, 59, 249, "Input",ExpressionUUID->"480efb8a-9a05-41e0-9e2f-f1efa4801aa1"],
Cell[15732262, 371327, 18375, 343, 246, "Output",ExpressionUUID->"04fe6bb8-2432-44e9-94ef-c4d032d36970"] Cell[15737601, 371419, 18375, 343, 246, "Output",ExpressionUUID->"04fe6bb8-2432-44e9-94ef-c4d032d36970"]
}, Open ]], }, Open ]],
Cell[15750652, 371673, 893, 24, 30, "Input",ExpressionUUID->"eba743cb-9b99-4968-9e03-ca45aab743f7"], Cell[15755991, 371765, 893, 24, 30, "Input",ExpressionUUID->"eba743cb-9b99-4968-9e03-ca45aab743f7"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15751570, 371701, 2043, 56, 131, "Input",ExpressionUUID->"8977b581-2fdd-4e80-865e-b9ee82c025b3"], Cell[15756909, 371793, 2043, 56, 131, "Input",ExpressionUUID->"8977b581-2fdd-4e80-865e-b9ee82c025b3"],
Cell[15753616, 371759, 1627, 28, 77, "Output",ExpressionUUID->"ff1ee934-574a-488f-845a-38d339f17597"], Cell[15758955, 371851, 1627, 28, 77, "Output",ExpressionUUID->"ff1ee934-574a-488f-845a-38d339f17597"],
Cell[15755246, 371789, 461, 8, 34, "Output",ExpressionUUID->"fcbd15f7-7044-4024-a773-e3ba58909c91"], Cell[15760585, 371881, 461, 8, 34, "Output",ExpressionUUID->"fcbd15f7-7044-4024-a773-e3ba58909c91"],
Cell[15755710, 371799, 1640, 29, 77, "Output",ExpressionUUID->"4ff3411b-c53a-4f8d-9aa5-3f2f2171818f"] Cell[15761049, 371891, 1640, 29, 77, "Output",ExpressionUUID->"4ff3411b-c53a-4f8d-9aa5-3f2f2171818f"]
}, Open ]], }, Open ]],
Cell[15757365, 371831, 969, 25, 30, "Input",ExpressionUUID->"d178bbe2-f7e2-46a5-a39a-6ea5c791c5b0"], Cell[15762704, 371923, 969, 25, 30, "Input",ExpressionUUID->"d178bbe2-f7e2-46a5-a39a-6ea5c791c5b0"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15758359, 371860, 4048, 104, 103, "Input",ExpressionUUID->"555f9003-f225-466f-9574-844402a303fe"], Cell[15763698, 371952, 4048, 104, 103, "Input",ExpressionUUID->"555f9003-f225-466f-9574-844402a303fe"],
Cell[15762410, 371966, 835, 17, 34, "Output",ExpressionUUID->"234fa73c-d858-4963-892d-305064f5ea60"] Cell[15767749, 372058, 835, 17, 34, "Output",ExpressionUUID->"234fa73c-d858-4963-892d-305064f5ea60"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15763282, 371988, 691, 21, 33, "Input",ExpressionUUID->"1a6caf45-2eea-4ee7-9384-eb8ffbd80006"], Cell[15768621, 372080, 691, 21, 33, "Input",ExpressionUUID->"1a6caf45-2eea-4ee7-9384-eb8ffbd80006"],
Cell[15763976, 372011, 595, 17, 34, "Output",ExpressionUUID->"2a722cfa-23aa-435e-b09c-483568356fb5"] Cell[15769315, 372103, 595, 17, 34, "Output",ExpressionUUID->"2a722cfa-23aa-435e-b09c-483568356fb5"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15764608, 372033, 969, 28, 48, InheritFromParent,ExpressionUUID->"c855c04f-d5c2-47c2-ab31-320359277503"], Cell[15769947, 372125, 969, 28, 48, InheritFromParent,ExpressionUUID->"c855c04f-d5c2-47c2-ab31-320359277503"],
Cell[15765580, 372063, 495, 14, 34, "Output",ExpressionUUID->"7bcf9fb3-7298-44dd-9402-e8ab08f6a4d7"] Cell[15770919, 372155, 495, 14, 34, "Output",ExpressionUUID->"7bcf9fb3-7298-44dd-9402-e8ab08f6a4d7"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15766112, 372082, 3998, 90, 501, "Input",ExpressionUUID->"3e1d531d-968b-4347-a125-72660d1219b5"], Cell[15771451, 372174, 3998, 90, 501, "Input",ExpressionUUID->"3e1d531d-968b-4347-a125-72660d1219b5"],
Cell[15770113, 372174, 43518, 786, 376, "Output",ExpressionUUID->"a4b3733d-fc2c-45d7-b906-27c8fb6182bd"] Cell[15775452, 372266, 43518, 786, 376, "Output",ExpressionUUID->"a4b3733d-fc2c-45d7-b906-27c8fb6182bd"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15813668, 372965, 986, 29, 56, "Input",ExpressionUUID->"827a1054-eda5-4739-83bf-0386aaca1ac7"], Cell[15819007, 373057, 986, 29, 56, "Input",ExpressionUUID->"827a1054-eda5-4739-83bf-0386aaca1ac7"],
Cell[15814657, 372996, 496, 14, 34, "Output",ExpressionUUID->"383d63a4-d030-4692-878e-3d6817645c5d"] Cell[15819996, 373088, 496, 14, 34, "Output",ExpressionUUID->"383d63a4-d030-4692-878e-3d6817645c5d"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15815190, 373015, 1436, 45, 33, "Input",ExpressionUUID->"52ecb6d7-628e-48c3-8fdf-04e32fa73ba3"], Cell[15820529, 373107, 1436, 45, 33, "Input",ExpressionUUID->"52ecb6d7-628e-48c3-8fdf-04e32fa73ba3"],
Cell[15816629, 373062, 275, 5, 34, "Output",ExpressionUUID->"01188a81-253a-4fef-851b-1f1c8014ba9a"] Cell[15821968, 373154, 275, 5, 34, "Output",ExpressionUUID->"01188a81-253a-4fef-851b-1f1c8014ba9a"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15816941, 373072, 1307, 44, 33, "Input",ExpressionUUID->"1b5f1cb0-3fd7-435b-8c04-9aeb03cf006c"], Cell[15822280, 373164, 1307, 44, 33, "Input",ExpressionUUID->"1b5f1cb0-3fd7-435b-8c04-9aeb03cf006c"],
Cell[15818251, 373118, 156, 3, 34, "Output",ExpressionUUID->"8bdb68f5-1fd2-448b-a479-95a1c8963c85"] Cell[15823590, 373210, 156, 3, 34, "Output",ExpressionUUID->"8bdb68f5-1fd2-448b-a479-95a1c8963c85"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15818444, 373126, 12100, 237, 1018, "Input",ExpressionUUID->"0a7923af-71ee-45df-8b56-0e8b12a0a6d1"], Cell[15823783, 373218, 12100, 237, 1018, "Input",ExpressionUUID->"0a7923af-71ee-45df-8b56-0e8b12a0a6d1"],
Cell[15830547, 373365, 8842, 152, 790, "Output",ExpressionUUID->"5db96a25-79a9-4efe-8b1f-76b5aa8f7756"] Cell[15835886, 373457, 8842, 152, 790, "Output",ExpressionUUID->"5db96a25-79a9-4efe-8b1f-76b5aa8f7756"]
}, Open ]] }, Open ]]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15839438, 373523, 156, 3, 67, "Section",ExpressionUUID->"7e57ea5d-eda6-4859-be05-fbdab0057af8"], Cell[15844777, 373615, 156, 3, 67, "Section",ExpressionUUID->"7e57ea5d-eda6-4859-be05-fbdab0057af8"],
Cell[15839597, 373528, 1046, 21, 199, "Input",ExpressionUUID->"9b0a9925-7ea3-472a-8b52-c47b533609b7"], Cell[15844936, 373620, 1046, 21, 199, "Input",ExpressionUUID->"9b0a9925-7ea3-472a-8b52-c47b533609b7"],
Cell[15840646, 373551, 11736, 316, 535, "Input",ExpressionUUID->"e2303c87-a8e1-4df1-944f-cd2b088263a9"], Cell[15845985, 373643, 11736, 316, 535, "Input",ExpressionUUID->"e2303c87-a8e1-4df1-944f-cd2b088263a9"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15852407, 373871, 2544, 43, 220, "Input",ExpressionUUID->"c25cd409-06ed-474f-bd83-a59b0babaccb"], Cell[15857746, 373963, 2544, 43, 220, "Input",ExpressionUUID->"c25cd409-06ed-474f-bd83-a59b0babaccb"],
Cell[15854954, 373916, 74041, 1485, 391, "Output",ExpressionUUID->"ef35eb6f-e664-48a1-adf8-f3ed74eebdce"] Cell[15860293, 374008, 74041, 1485, 391, "Output",ExpressionUUID->"ef35eb6f-e664-48a1-adf8-f3ed74eebdce"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[15929032, 375406, 1442, 29, 220, "Input",ExpressionUUID->"b6366ba0-47af-4fdb-8ffb-513b455421e0"], Cell[15934371, 375498, 1442, 29, 220, "Input",ExpressionUUID->"b6366ba0-47af-4fdb-8ffb-513b455421e0"],
Cell[15930477, 375437, 74203, 1485, 385, "Output",ExpressionUUID->"aee73340-d188-4c02-9c0b-bc1febe9fc98"] Cell[15935816, 375529, 74203, 1485, 385, "Output",ExpressionUUID->"aee73340-d188-4c02-9c0b-bc1febe9fc98"]
}, Open ]], }, Open ]],
Cell[16004695, 376925, 893, 24, 30, "Input",ExpressionUUID->"5add9728-32e3-4599-868d-3a1b2239db00"], Cell[16010034, 377017, 893, 24, 30, "Input",ExpressionUUID->"5add9728-32e3-4599-868d-3a1b2239db00"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[16005613, 376953, 1514, 40, 90, "Input",ExpressionUUID->"2a0688ee-74ad-46db-ba7b-224b2b808675"], Cell[16010952, 377045, 1514, 40, 90, "Input",ExpressionUUID->"2a0688ee-74ad-46db-ba7b-224b2b808675"],
Cell[16007130, 376995, 1692, 27, 77, "Output",ExpressionUUID->"883dd515-3ae6-41b5-8367-626b24f3c665"], Cell[16012469, 377087, 1692, 27, 77, "Output",ExpressionUUID->"883dd515-3ae6-41b5-8367-626b24f3c665"],
Cell[16008825, 377024, 1682, 26, 77, "Output",ExpressionUUID->"2ffa3de5-1cd0-4d04-8ace-5bda4e8413ac"] Cell[16014164, 377116, 1682, 26, 77, "Output",ExpressionUUID->"2ffa3de5-1cd0-4d04-8ace-5bda4e8413ac"]
}, Open ]], }, Open ]],
Cell[16010522, 377053, 969, 25, 30, "Input",ExpressionUUID->"68f3e2d3-26c7-43c5-b8e3-f4ed45d25ed9"], Cell[16015861, 377145, 969, 25, 30, "Input",ExpressionUUID->"68f3e2d3-26c7-43c5-b8e3-f4ed45d25ed9"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[16011516, 377082, 1898, 45, 80, "Input",ExpressionUUID->"5e80185d-9c89-4378-a52b-f7ae39447f4c"], Cell[16016855, 377174, 1898, 45, 80, "Input",ExpressionUUID->"5e80185d-9c89-4378-a52b-f7ae39447f4c"],
Cell[16013417, 377129, 889, 16, 34, "Output",ExpressionUUID->"1623f7b4-b625-468f-95f3-f9cb422fab7a"] Cell[16018756, 377221, 889, 16, 34, "Output",ExpressionUUID->"1623f7b4-b625-468f-95f3-f9cb422fab7a"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[16014343, 377150, 3937, 88, 501, "Input",ExpressionUUID->"9b865922-379a-437f-9465-86ea61099c7c"], Cell[16019682, 377242, 3937, 88, 501, "Input",ExpressionUUID->"9b865922-379a-437f-9465-86ea61099c7c"],
Cell[16018283, 377240, 43640, 786, 383, "Output",ExpressionUUID->"758bdb93-96f6-41cf-bb21-1d7d3ec2623e"] Cell[16023622, 377332, 43640, 786, 383, "Output",ExpressionUUID->"758bdb93-96f6-41cf-bb21-1d7d3ec2623e"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[16061960, 378031, 1875, 56, 79, "Input",ExpressionUUID->"c985275f-ef22-4f69-b6cc-ef3826053597"], Cell[16067299, 378123, 1875, 56, 79, "Input",ExpressionUUID->"c985275f-ef22-4f69-b6cc-ef3826053597"],
Cell[16063838, 378089, 672, 19, 34, "Output",ExpressionUUID->"898aac3e-1016-4685-a14a-61fdedacf977"], Cell[16069177, 378181, 672, 19, 34, "Output",ExpressionUUID->"898aac3e-1016-4685-a14a-61fdedacf977"],
Cell[16064513, 378110, 674, 19, 34, "Output",ExpressionUUID->"132f03f3-ad06-4c9d-aac7-3f9d9f66b481"] Cell[16069852, 378202, 674, 19, 34, "Output",ExpressionUUID->"132f03f3-ad06-4c9d-aac7-3f9d9f66b481"]
}, Open ]], }, Open ]],
Cell[16065202, 378132, 2114, 69, 174, "Input",ExpressionUUID->"627c8f0b-bf5d-4930-b7f0-4db83f0ff9e6"] Cell[16070541, 378224, 2114, 69, 174, "Input",ExpressionUUID->"627c8f0b-bf5d-4930-b7f0-4db83f0ff9e6"]
}, Closed]], }, Closed]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[16067353, 378206, 161, 3, 53, "Section",ExpressionUUID->"aa4e43b6-16bb-48ec-b510-dd62918a249d"], Cell[16072692, 378298, 161, 3, 53, "Section",ExpressionUUID->"aa4e43b6-16bb-48ec-b510-dd62918a249d"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[16067539, 378213, 11273, 236, 1060, "Input",ExpressionUUID->"74a386fd-d786-4f8e-ac35-d0ff9ba081f6"], Cell[16072878, 378305, 11273, 236, 1060, "Input",ExpressionUUID->"74a386fd-d786-4f8e-ac35-d0ff9ba081f6"],
Cell[16078815, 378451, 9389, 154, 824, "Output",ExpressionUUID->"d7d06b61-0933-4088-93bd-8e0fba5dd977"] Cell[16084154, 378543, 9389, 154, 824, "Output",ExpressionUUID->"d7d06b61-0933-4088-93bd-8e0fba5dd977"]
}, Open ]] }, Open ]]
}, Closed]], }, Closed]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[16088253, 378611, 150, 3, 53, "Section",ExpressionUUID->"c824cb5c-4a52-46d1-a35a-851caf0c9277"], Cell[16093592, 378703, 150, 3, 53, "Section",ExpressionUUID->"c824cb5c-4a52-46d1-a35a-851caf0c9277"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[16088428, 378618, 11846, 251, 1102, "Input",ExpressionUUID->"90c1c688-5be7-41e3-9c39-705d685f5e99"], Cell[16093767, 378710, 11846, 251, 1102, "Input",ExpressionUUID->"90c1c688-5be7-41e3-9c39-705d685f5e99"],
Cell[16100277, 378871, 8837, 148, 860, "Output",ExpressionUUID->"8dd3c70a-b7fc-44f3-8f55-b16fedb42516"] Cell[16105616, 378963, 8837, 148, 860, "Output",ExpressionUUID->"8dd3c70a-b7fc-44f3-8f55-b16fedb42516"]
}, Open ]] }, Open ]]
}, Closed]] }, Closed]]
}, Open ]] }, Open ]]

View File

@ -314,7 +314,7 @@ where $\e{\ex}{\ew{}}(\n{}{})$ and $\e{\co}{\ew{}}(\n{}{})$ are the weight-depen
\label{sec:compdet} \label{sec:compdet}
The self-consistent GOK-DFT calculations have been performed with the \texttt{QuAcK} software, freely available on \texttt{github}, where the present functional has been implemented. The self-consistent GOK-DFT calculations have been performed with the \texttt{QuAcK} software, freely available on \texttt{github}, where the present functional has been implemented.
For more details about the self-consistent implementation of GOK-DFT, we refer the interested reader to Ref.~\onlinecite{Loos_2020} where additional technical details can be found. For more details about the self-consistent implementation of GOK-DFT, we refer the interested reader to Ref.~\onlinecite{Loos_2020} where additional technical details can be found.
For all calculations, we use the aug-cc-pVXZ (X = D, T, and Q) Dunning's family of atomic basis sets. For all calculations, we use a restricted formalism and the aug-cc-pVXZ (X = D, T, and Q) Dunning's family of atomic basis sets.
Numerical quadratures are performed with the \texttt{numgrid} library using 194 angular points (Lebedev grid) and a radial precision of $10^{-6}$. \cite{Becke_1988,Lindh_2001} Numerical quadratures are performed with the \texttt{numgrid} library using 194 angular points (Lebedev grid) and a radial precision of $10^{-6}$. \cite{Becke_1988,Lindh_2001}
This study deals only with spin-unpolarised systems, \ie, $\n{\uparrow}{} = \n{\downarrow}{} = \n{}{}/2$ (where $\n{\uparrow}{}$ and $\n{\downarrow}{}$ are the spin-up and spin-down electron densities). This study deals only with spin-unpolarised systems, \ie, $\n{\uparrow}{} = \n{\downarrow}{} = \n{}{}/2$ (where $\n{\uparrow}{}$ and $\n{\downarrow}{}$ are the spin-up and spin-down electron densities).
Moreover, we restrict our study to the case of a two-state ensemble (\ie, $\nEns = 2$) where both the ground state ($I=0$ with weight $1 - \ew{}$) and the first doubly-excited state ($I=1$ with weight $\ew{}$) are considered. Moreover, we restrict our study to the case of a two-state ensemble (\ie, $\nEns = 2$) where both the ground state ($I=0$ with weight $1 - \ew{}$) and the first doubly-excited state ($I=1$ with weight $\ew{}$) are considered.
@ -633,6 +633,8 @@ MOM excitation energies can then be obtained via GOK-DFT ensemble calculations b
The results gathered in Table \ref{tab:BigTab_H2} show that the GOK-DFT excitation energies obtained with the GIC-SeVWN5 functional at zero weight are the most accurate with an improvement of $0.25$ eV as compared to GIC-SVWN5, which is due to the ensemble derivative contribution of the eVWN5 functional. The results gathered in Table \ref{tab:BigTab_H2} show that the GOK-DFT excitation energies obtained with the GIC-SeVWN5 functional at zero weight are the most accurate with an improvement of $0.25$ eV as compared to GIC-SVWN5, which is due to the ensemble derivative contribution of the eVWN5 functional.
The GIC-SeVWN5 excitation energies at equi-weights (\ie, $\ew{} = 1/2$) are less satisfactory, but still remains in good agreement with FCI, with again a small improvement as compared to GIC-SVWN5. The GIC-SeVWN5 excitation energies at equi-weights (\ie, $\ew{} = 1/2$) are less satisfactory, but still remains in good agreement with FCI, with again a small improvement as compared to GIC-SVWN5.
The GIC-S functional does not alter the MOM excitation energy as the correction vanishes accordingly for $\ew{} = 1$.
%%% TABLE I %%% %%% TABLE I %%%
\begin{table*} \begin{table*}
\caption{ \caption{
@ -657,6 +659,10 @@ Excitation energies (in eV) associated with the lowest double excitation of \ce{
& & aug-cc-pVTZ & 38.54 & 27.81 & 24.46 & 27.17 \\ & & aug-cc-pVTZ & 38.54 & 27.81 & 24.46 & 27.17 \\
& & aug-cc-pVQZ & 38.81 & 27.81 & 24.46 & 27.17 \\ & & aug-cc-pVQZ & 38.81 & 27.81 & 24.46 & 27.17 \\
\\ \\
S & eVWN5 & aug-cc-pVDZ & 21.28 & 27.92 & 24.49 & 27.27 \\
& & aug-cc-pVTZ & 21.39 & 27.98 & 24.55 & 27.34 \\
& & aug-cc-pVQZ & 21.38 & 27.97 & 24.55 & 27.34 \\
\\
GIC-S & & aug-cc-pVDZ & 26.83 & 26.51 & 26.53 & 26.60 \\ GIC-S & & aug-cc-pVDZ & 26.83 & 26.51 & 26.53 & 26.60 \\
& & aug-cc-pVTZ & 26.88 & 26.59 & 26.61 & 26.67 \\ & & aug-cc-pVTZ & 26.88 & 26.59 & 26.61 & 26.67 \\
& & aug-cc-pVQZ & 26.82 & 26.60 & 26.62 & 26.67 \\ & & aug-cc-pVQZ & 26.82 & 26.60 & 26.62 & 26.67 \\
@ -682,12 +688,60 @@ Excitation energies (in eV) associated with the lowest double excitation of \ce{
\end{table*} \end{table*}
%%% %%% %%% %%% %%% %%% %%% %%%
%%% TABLE I %%%
\begin{table*}
\caption{
Excitation energies (in eV) associated with the lowest double excitation of \ce{H2} with $\RHH = 3.7$ bohr for various methods, combinations of xc functionals, and basis sets.
\label{tab:BigTab_H2}
}
\begin{ruledtabular}
\begin{tabular}{llccccc}
\mc{2}{c}{xc functional} & & \mc{2}{c}{GOK} \\
\cline{1-2} \cline{4-5}
exchange & correlation & Basis & $\ew{} = 0$ & $\ew{} = 1/2$ & LIM & MOM \\
\hline
HF & & aug-cc-pVDZ & 19.08 & 6.58 & 12.92 & \\
& & aug-cc-pVTZ & 19.09 & 6.59 & 12.92 & \\
\\
S & & aug-cc-pVDZ & 5.31 & 5.60 & 5.46 & 5.56 \\
& & aug-cc-pVTZ & 5.31 & 5.60 & 5.46 & 5.56 \\
\\
S & VWN5 & aug-cc-pVDZ & 5.34 & 5.57 & 5.46 & 5.53 \\
& & aug-cc-pVTZ & 5.34 & 5.57 & 5.46 & 5.52 \\
\\
S & eVWN5 & aug-cc-pVDZ & 5.53 & 5.76 & 5.56 & 5.72 \\
& & aug-cc-pVTZ & 5.53 & 5.76 & 5.56 & 5.72 \\
& & aug-cc-pVQZ & & & & \\
\\
GIC-S & & aug-cc-pVDZ & 10.54 & 5.61 & 8.47 & 5.56 \\
& & aug-cc-pVTZ & 10.53 & 5.61 & 8.47 & 5.56 \\
\\
GIC-S & VWN5 & aug-cc-pVDZ & 10.67 & 5.59 & 8.55 & 5.53 \\
& & aug-cc-pVTZ & 10.67 & 5.59 & 8.55 & 5.52 \\
\\
GIC-S & eVWN5 & aug-cc-pVDZ & 10.86 & 5.77 & 8.64 & 5.72 \\
& & aug-cc-pVTZ & 10.86 & 5.77 & 8.64 & 5.72 \\
\\
% HF & FCI & aug-cc-pVDZ & & & & 8.78 \\
% HF & FCI & aug-cc-pVTZ & & & & 8.71 \\
% HF & FCI & aug-cc-pVQZ & & & & 8.70 \\
HF & FCI & aug-cc-pV5Z & & & & 8.69 \\
\end{tabular}
\end{ruledtabular}
\fnt[1]{Reference \onlinecite{Mielke_2005}.}
\fnt[2]{Reference \onlinecite{Barca_2018a}.}
\end{table*}
%%% %%% %%% %%%
%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%
%%% CONCLUSION %%% %%% CONCLUSION %%%
%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%
\section{Conclusion} \section{Conclusion}
\label{sec:ccl} \label{sec:ccl}
As concluding remarks, we would like to say that what we have done, we think, is awesome. We have studied the weight dependence of the ensemble energy in the framework of GOK-DFT.
%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%
%%% ACKNOWLEDGEMENTS %%% %%% ACKNOWLEDGEMENTS %%%