saving work in CIPSI section

This commit is contained in:
Pierre-Francois Loos 2021-06-19 07:08:49 +02:00
parent 986c671422
commit fc3a82f2b6
2 changed files with 63 additions and 8 deletions

View File

@ -1,7 +1,7 @@
%% This BibTeX bibliography file was created using BibDesk. %% This BibTeX bibliography file was created using BibDesk.
%% http://bibdesk.sourceforge.net/ %% http://bibdesk.sourceforge.net/
%% Created for Pierre-Francois Loos at 2021-06-18 21:40:11 +0200 %% Created for Pierre-Francois Loos at 2021-06-19 07:02:58 +0200
%% Saved with string encoding Unicode (UTF-8) %% Saved with string encoding Unicode (UTF-8)

View File

@ -22,6 +22,14 @@
\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}} \newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}}
\newcommand{\QP}{\textsc{quantum package}} \newcommand{\QP}{\textsc{quantum package}}
\newcommand{\Ndet}{N_\text{det}}
\newcommand{\Norb}{N_\text{orb}}
\newcommand{\br}{\boldsymbol{r}}
\newcommand{\bc}{\boldsymbol{c}}
\newcommand{\bC}{\boldsymbol{C}}
\usepackage[ \usepackage[
colorlinks=true, colorlinks=true,
citecolor=blue, citecolor=blue,
@ -106,6 +114,7 @@ The CCSD(T) method, \cite{Raghavachari_1989} known as the gold-standard of quant
Motivated by the recent blind test of Eriksen \textit{et al.}\cite{Eriksen_2020}~reporting the performance of a large panel of emerging electronic structure methods [the many-body expansion FCI (MBE-FCI), \cite{Eriksen_2017,Eriksen_2018,Eriksen_2019a,Eriksen_2019b} adaptive sampling CI (ASCI), \cite{Tubman_2016,Tubman_2018,Tubman_2020} iterative CI (iCI), \cite{Liu_2014,Liu_2016,Lei_2017,Zhang_2020} semistochastic heat-bath CI (SHCI), \cite{Holmes_2016,Holmes_2017,Sharma_2017} the full coupled-cluster reduction (FCCR), \cite{Xu_2018,Xu_2020} density-matrix renormalization group (DMRG), \cite{White_1992,White_1993,Chan_2011} adaptive-shift FCI quantum Monte Carlo (AS-FCIQMC), \cite{Booth_2009,Cleland_2010,Ghanem_2019} and cluster-analysis-driven FCIQMC (CAD-FCIQMC) \cite{Deustua_2017,Deustua_2018}] on the non-relativistic frozen-core correlation energy of the benzene molecule in the standard correlation-consistent double-$\zeta$ Dunning basis set (cc-pVDZ), some of us have recently investigated the performance of the \textit{Configuration Interaction using a Perturbative Selection made Iteratively} (CIPSI) method \cite{Huron_1973,Giner_2013,Giner_2015,Garniron_2018,Garniron_2019} on the very same system \cite{Loos_2020e} [see also Ref.~\onlinecite{Lee_2020} for a study of the performance of phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) \cite{Motta_2018}]. Motivated by the recent blind test of Eriksen \textit{et al.}\cite{Eriksen_2020}~reporting the performance of a large panel of emerging electronic structure methods [the many-body expansion FCI (MBE-FCI), \cite{Eriksen_2017,Eriksen_2018,Eriksen_2019a,Eriksen_2019b} adaptive sampling CI (ASCI), \cite{Tubman_2016,Tubman_2018,Tubman_2020} iterative CI (iCI), \cite{Liu_2014,Liu_2016,Lei_2017,Zhang_2020} semistochastic heat-bath CI (SHCI), \cite{Holmes_2016,Holmes_2017,Sharma_2017} the full coupled-cluster reduction (FCCR), \cite{Xu_2018,Xu_2020} density-matrix renormalization group (DMRG), \cite{White_1992,White_1993,Chan_2011} adaptive-shift FCI quantum Monte Carlo (AS-FCIQMC), \cite{Booth_2009,Cleland_2010,Ghanem_2019} and cluster-analysis-driven FCIQMC (CAD-FCIQMC) \cite{Deustua_2017,Deustua_2018}] on the non-relativistic frozen-core correlation energy of the benzene molecule in the standard correlation-consistent double-$\zeta$ Dunning basis set (cc-pVDZ), some of us have recently investigated the performance of the \textit{Configuration Interaction using a Perturbative Selection made Iteratively} (CIPSI) method \cite{Huron_1973,Giner_2013,Giner_2015,Garniron_2018,Garniron_2019} on the very same system \cite{Loos_2020e} [see also Ref.~\onlinecite{Lee_2020} for a study of the performance of phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) \cite{Motta_2018}].
In the continuity of this recent work, we report here a significant extension by estimating the (frozen-core) FCI/cc-pVDZ correlation energy of twelve cyclic molecules (cyclopentadiene, furan, imidazole, pyrrole, thiophene, benzene, pyrazine, pyridazine, pyridine, pyrimidine, tetrazine, and triazine) with the help of CIPSI employing energetically-optimized orbitals at the same level of theory. \cite{Yao_2020,Yao_2021} In the continuity of this recent work, we report here a significant extension by estimating the (frozen-core) FCI/cc-pVDZ correlation energy of twelve cyclic molecules (cyclopentadiene, furan, imidazole, pyrrole, thiophene, benzene, pyrazine, pyridazine, pyridine, pyrimidine, tetrazine, and triazine) with the help of CIPSI employing energetically-optimized orbitals at the same level of theory. \cite{Yao_2020,Yao_2021}
These systems are depicted in Fig.~\ref{fig:mol}.
This set of molecular systems corresponds to Hilbert spaces with sizes ranging from $10^{28}$ (for thiophene) to $10^{36}$ (for benzene). This set of molecular systems corresponds to Hilbert spaces with sizes ranging from $10^{28}$ (for thiophene) to $10^{36}$ (for benzene).
In addition to CIPSI, the performance and convergence properties of several series of methods are investigated. In addition to CIPSI, the performance and convergence properties of several series of methods are investigated.
In particular, we study i) the MP perturbation series up to fifth-order (MP2, MP3, MP4, and MP5), ii) the CC2, CC3, and CC4 approximate series, and ii) the ``complete'' CC series up to quadruples (\ie, CCSD, CCSDT, and CCSDTQ). In particular, we study i) the MP perturbation series up to fifth-order (MP2, MP3, MP4, and MP5), ii) the CC2, CC3, and CC4 approximate series, and ii) the ``complete'' CC series up to quadruples (\ie, CCSD, CCSDT, and CCSDTQ).
@ -120,16 +129,17 @@ The performance of the ground-state gold standard CCSD(T) is also investigated.
\end{figure*} \end{figure*}
%%% FIG 1 %%% %%% FIG 1 %%%
%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Computational details} \section{Computational details}
%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The geometries of the twelve systems considered in the present study have been all obtained at the CC3/aug-cc-pVTZ level of theory and have been extracted from a previous study. \cite{Loos_2020a} The geometries of the twelve systems considered in the present study have been all obtained at the CC3/aug-cc-pVTZ level of theory and have been extracted from a previous study. \cite{Loos_2020a}
Note that, for the sake of consistency, the geometry of benzene considered here is different from one of Ref.~\onlinecite{Loos_2020e} which has been computed at a lower level of theory [MP2/6-31G(d)]. \cite{Schreiber_2008} Note that, for the sake of consistency, the geometry of benzene considered here is different from one of Ref.~\onlinecite{Loos_2020e} which has been computed at a lower level of theory [MP2/6-31G(d)]. \cite{Schreiber_2008}
The MP2, MP3, MP4, CC2, CC3, CC4, CCSD, CCSDT, and CCSDTQ calculations have been performed with CFOUR, \cite{Matthews_2020} while the CCSD(T) and MP5 calculations have been computed with Gaussian 09. \cite{g09} The MP2, MP3, MP4, CC2, CC3, CC4, CCSD, CCSDT, and CCSDTQ calculations have been performed with CFOUR, \cite{Matthews_2020} while the CCSD(T) and MP5 calculations have been computed with Gaussian 09. \cite{g09}
The CIPSI calculations have been performed with {\QP}. \cite{Garniron_2019} The CIPSI calculations have been performed with {\QP}. \cite{Garniron_2019}
The particularity of the current implementation is that the selection step and the PT2 correction are computed \textit{simultaneously} via a hybrid semistochastic algorithm \cite{Garniron_2017,Garniron_2019} (which explains the statistical error associated with the PT2 correction in the following). \titou{The particularity of the current implementation is that the selection step and the PT2 correction are computed \textit{simultaneously} via a hybrid semistochastic algorithm \cite{Garniron_2017,Garniron_2019} (which explains the statistical error associated with the PT2 correction in the following).
Moreover, a renormalized version of the PT2 correction (dubbed rPT2 below) has been recently implemented and tested for a more efficient extrapolation to the FCI limit thanks to a partial resummation of the higher-order of perturbation. \cite{Garniron_2019} Moreover, a renormalized version of the PT2 correction (dubbed rPT2 below) has been recently implemented and tested for a more efficient extrapolation to the FCI limit thanks to a partial resummation of the higher-order of perturbation. \cite{Garniron_2019}
We refer the interested reader to Ref.~\onlinecite{Garniron_2019} where one can find all the details regarding the implementation of the rPT2 correction and the CIPSI algorithm. We refer the interested reader to Ref.~\onlinecite{Garniron_2019} where one can find all the details regarding the implementation of the rPT2 correction and the CIPSI algorithm.}
For all these calculations, we consider Dunning's correlation-consistent double-$\zeta$ basis (cc-pVDZ) which consists of Hilbert space sizes ranging from $10^{20}$ (for thiophene) to $10^{36}$ (for benzene). For all these calculations, we consider Dunning's correlation-consistent double-$\zeta$ basis (cc-pVDZ) which consists of Hilbert space sizes ranging from $10^{20}$ (for thiophene) to $10^{36}$ (for benzene).
Although the FCI energy has the enjoyable property of being independent of the set of one-electron orbitals used to construct the many-electron Slater determinants, as a truncated CI method, the convergence properties of CIPSI strongly dependent on this orbital choice. Although the FCI energy has the enjoyable property of being independent of the set of one-electron orbitals used to construct the many-electron Slater determinants, as a truncated CI method, the convergence properties of CIPSI strongly dependent on this orbital choice.
@ -143,14 +153,51 @@ Using these localized orbitals as starting point, we also perform successive orb
When convergence is achieved in terms of orbital optimization, as our ``production'' run, we perform a new CIPSI calculation from scratch using this set of optimized orbitals. When convergence is achieved in terms of orbital optimization, as our ``production'' run, we perform a new CIPSI calculation from scratch using this set of optimized orbitals.
As we shall see below, employing optimized orbitals has the advantage to produce a smoother and faster convergence of the SCI energy toward the FCI limit. As we shall see below, employing optimized orbitals has the advantage to produce a smoother and faster convergence of the SCI energy toward the FCI limit.
The total SCI energy is defined as the sum of the variational energy $E_\text{var.}$ (computed via diagonalization of the CI matrix in the reference space) and a second-order perturbative correction $E_\text{(r)PT2}$ which takes into account the external determinants, \ie, the determinants which do not belong to the variational space but are linked to the reference space via a nonzero matrix element.
The magnitude of $E_\text{(r)PT2}$ provides a qualitative idea of the ``distance'' to the FCI limit. %%%%%%%%%%%%%%%%%%%%%%%%%
We then linearly extrapolate the total SCI energy to $E_\text{(r)PT2} = 0$ (which effectively corresponds to the FCI limit). \section{CIPSI with optimized orbitals}
%%%%%%%%%%%%%%%%%%%%%%%%%
Here, we provide key details about the CIPSI method.
Note that we focus on the ground state but the present discussion can be easily extended to excited states. \cite{Scemama_2019,Veril_2021}
At each iteration $k$, the total CIPSI energy $E_\text{CIPSI}^{(k)}$ is defined as the sum of the variational energy
\begin{equation}
E_\text{var}^{(k)} = \frac{\mel*{\Psi_\text{var}^{(k)}}{\Hat{H}}{\Psi_\text{var}^{(k)}}}{\braket*{\Psi_\text{var}^{(k)}}{\Psi_\text{var}^{(k)}}}
\end{equation}
and a second-order perturbative correction
\begin{equation}
E_\text{PT2}^{(k)}
= \sum_{\alpha \in \mathcal{A}_k} e_{\alpha}
= \sum_{\alpha \in \mathcal{A}_k} \frac{\mel*{\Psi_\text{var}^{(k)}}{\Hat{H}}{\alpha}}{E_\text{var}^{(k)} - \mel*{\alpha}{\Hat{H}}{\alpha}}
\end{equation}
where $\Psi_\text{var}^{(k)} = \sum_{I \in \mathcal{I}_k} c_I^{(k)} \ket*{I}$ is the variational wave function, $\mathcal{I}_k$ is the set of internal determinants $\ket*{I}$ and $\mathcal{A}_k$ is the set of external determinants $\ket*{\alpha}$ which do not belong to the variational space but are linked to it via a nonzero matrix element, \ie, $\mel*{\Psi_\text{var}^{(k)}}{\Hat{H}}{\alpha} \neq 0$.
The sets $\mathcal{I}_k$ and $\mathcal{A}_k$ define, at the $k$th iteration, the internal and external spaces, respectively.
In practice, $E_\text{var}^{(k)}$ is computed by diagonalizing the CI matrix in the reference space and the magnitude of $E_\text{PT2}$ provides a qualitative idea of the ``distance'' to the FCI limit.
We then linearly extrapolate, using large variational space, the CIPSI energy to $E_\text{PT2} = 0$ (which effectively corresponds to the FCI limit).
Note that, unlike excited-state calculations where it is important to enforce that the wave functions are eigenfunctions of the $\Hat{S}^2$ spin operator, \cite{Chilkuri_2021} the present wave functions do not fulfil this property as we aim for the lowest possible energy of a singlet state. Note that, unlike excited-state calculations where it is important to enforce that the wave functions are eigenfunctions of the $\Hat{S}^2$ spin operator, \cite{Chilkuri_2021} the present wave functions do not fulfil this property as we aim for the lowest possible energy of a singlet state.
We have found that $\expval*{\Hat{S}^2}$ is, nonetheless, very close to zero for each system. We have found that $\expval*{\Hat{S}^2}$ is, nonetheless, very close to zero for each system.
From a more general point of view, the variational energy $E_\text{var}^{(k)}$ depends on both the coefficient $\{ c_I \}_{1 \le I \le \Ndet^{(k)}}$ but also on the orbital coefficients $\{C_{\mu p}\}_{1 \le \mu,p \le \Norb,1 \le \mu,p \le \Norb}$ such that the $p$th orbital is
\begin{equation}
\phi_p(\br) = \sum_{\mu} C_{\mu p} \chi_{\mu}(\br)
\end{equation}
where $\chi_{\mu}(\br)$ is a basis function.
The diagonalization of the CI matrix ensures that
\begin{equation}
\pdv{E_\text{var}(\bc,\bC)}{c_I} = 0,
\end{equation}
but, a priori, we have
\begin{equation}
\pdv{E_\text{var}(\bc,\bC)}{C_{\mu p}} \neq 0,
\end{equation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Results and discussion} \section{Results and discussion}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{table*} \begin{table*}
\caption{Total energy $E$ (in \Eh) and correlation energy $\Ec$ (in \mEh) for the frozen-core ground state of five-membered rings in the cc-pVDZ basis set. \caption{Total energy $E$ (in \Eh) and correlation energy $\Ec$ (in \mEh) for the frozen-core ground state of five-membered rings in the cc-pVDZ basis set.
@ -219,16 +266,24 @@ We have found that $\expval*{\Hat{S}^2}$ is, nonetheless, very close to zero for
\end{squeezetable} \end{squeezetable}
%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Conclusion} \section{Conclusion}
%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{acknowledgements} \begin{acknowledgements}
This work was performed using HPC resources from GENCI-TGCC (2020-gen1738) and from CALMIP (Toulouse) under allocation 2021-18005. This work was performed using HPC resources from GENCI-TGCC (2020-gen1738) and from CALMIP (Toulouse) under allocation 2021-18005.
PFL, AS, and MC have received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No.~863481). PFL, AS, and MC have received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No.~863481).
\end{acknowledgements} \end{acknowledgements}
%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Data availability statement} \section*{Data availability statement}
%%%%%%%%%%%%%%%%%%%%%%%%%
The data that support the findings of this study are openly available in Zenodo at \href{http://doi.org/XX.XXXX/zenodo.XXXXXXX}{http://doi.org/XX.XXXX/zenodo.XXXXXXX}. The data that support the findings of this study are openly available in Zenodo at \href{http://doi.org/XX.XXXX/zenodo.XXXXXXX}{http://doi.org/XX.XXXX/zenodo.XXXXXXX}.
%%%%%%%%%%%%%%%%%%%%%%%%%
\bibliography{Ec} \bibliography{Ec}
%%%%%%%%%%%%%%%%%%%%%%%%%
\end{document} \end{document}