moving down computational details

This commit is contained in:
Pierre-Francois Loos 2021-07-25 22:02:35 +02:00
parent d5bb4a2a4e
commit f028a860db
2 changed files with 42 additions and 42 deletions

View File

@ -1,7 +1,7 @@
%% This BibTeX bibliography file was created using BibDesk. %% This BibTeX bibliography file was created using BibDesk.
%% http://bibdesk.sourceforge.net/ %% http://bibdesk.sourceforge.net/
%% Created for Pierre-Francois Loos at 2021-07-21 13:08:32 +0200 %% Created for Pierre-Francois Loos at 2021-07-25 21:27:51 +0200
%% Saved with string encoding Unicode (UTF-8) %% Saved with string encoding Unicode (UTF-8)

View File

@ -108,7 +108,7 @@ The performance of the ground-state gold standard CCSD(T) is also investigated.
\label{sec:intro} \label{sec:intro}
%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%
Electronic structure theory relies heavily on approximations. \cite{Szabo_1996,Helgaker_2013,Jensen_2017} Electronic structure theory relies heavily on approximations. \cite{Szabo_1996,Helgaker_2013,Jensen_2017}
Loosely speaking, to make any theory useful, three main approximations must be enforced. Loosely speaking, to make any method practical, three main approximations must be enforced.
The first fundamental approximation, known as the Born-Oppenheimer approximation, usually consists in assuming that the motion of nuclei and electrons are decoupled. \cite{Born_1927} The first fundamental approximation, known as the Born-Oppenheimer approximation, usually consists in assuming that the motion of nuclei and electrons are decoupled. \cite{Born_1927}
The nuclei coordinates can then be treated as parameters in the electronic Hamiltonian. The nuclei coordinates can then be treated as parameters in the electronic Hamiltonian.
The second central approximation which makes calculations feasible by a computer is the basis set approximation where one introduces a set of pre-defined basis functions to represent the many-electron wave function of the system. The second central approximation which makes calculations feasible by a computer is the basis set approximation where one introduces a set of pre-defined basis functions to represent the many-electron wave function of the system.
@ -118,16 +118,16 @@ For example, in configuration interaction (CI) methods, the wave function is exp
The truncation of $\hT$ allows to define a hierarchy of non-variational and size-extensive methods with improved accuracy: The truncation of $\hT$ allows to define a hierarchy of non-variational and size-extensive methods with improved accuracy:
CC with singles and doubles (CCSD), \cite{Cizek_1966,Purvis_1982} CC with singles, doubles, and triples (CCSDT), \cite{Noga_1987a,Scuseria_1988} CC with singles, doubles, triples, and quadruples (CCSDTQ), \cite{Oliphant_1991,Kucharski_1992} with corresponding computational scalings of $\order*{\Norb^{6}}$, $\order*{\Norb^{8}}$, and $\order*{\Norb^{10}}$, respectively (where $\Norb$ denotes the number of orbitals). CC with singles and doubles (CCSD), \cite{Cizek_1966,Purvis_1982} CC with singles, doubles, and triples (CCSDT), \cite{Noga_1987a,Scuseria_1988} CC with singles, doubles, triples, and quadruples (CCSDTQ), \cite{Oliphant_1991,Kucharski_1992} with corresponding computational scalings of $\order*{\Norb^{6}}$, $\order*{\Norb^{8}}$, and $\order*{\Norb^{10}}$, respectively (where $\Norb$ denotes the number of orbitals).
Parallel to the ``complete'' CC series presented above, an alternative series of approximate iterative CC models have been developed by the Aarhus group in the context of CC response theory \cite{Christiansen_1998} where one skips the most expensive terms and avoids the storage of the higher-excitation amplitudes: CC2, \cite{Christiansen_1995a} CC3, \cite{Christiansen_1995b,Koch_1997} and CC4. \cite{Kallay_2005,Matthews_2021,Loos_2021} Parallel to the ``complete'' CC series presented above, an alternative family of approximate iterative CC models have been developed by the Aarhus group in the context of CC response theory \cite{Christiansen_1998} where one skips the most expensive terms and avoids the storage of the higher-excitation amplitudes: CC2, \cite{Christiansen_1995a} CC3, \cite{Christiansen_1995b,Koch_1997} and CC4. \cite{Kallay_2005,Matthews_2021}
These iterative methods scale as $\order*{\Norb^{5}}$, $\order*{\Norb^{7}}$, and $\order*{\Norb^{9}}$, respectively, and can be seen as cheaper approximations of CCSD, CCSDT, and CCSDTQ. These iterative methods scale as $\order*{\Norb^{5}}$, $\order*{\Norb^{7}}$, and $\order*{\Norb^{9}}$, respectively, and can be seen as cheaper approximations of CCSD, CCSDT, and CCSDTQ.
Coupled-cluster methods have been particularly successful at computing accurately various properties for small- and medium-sized molecules. Coupled-cluster methods have been particularly successful at computing accurately various properties for small- and medium-sized molecules.
\cite{Kallay_2003,Kallay_2004a,Gauss_2006,Kallay_2006,Gauss_2009} \cite{Kallay_2003,Kallay_2004a,Gauss_2006,Kallay_2006,Gauss_2009,Chrayteh_2021,Sarkar_2021}
A similar systematic truncation strategy can be applied to CI methods leading to the well-established family of methods known as CISD, CISDT, CISDTQ, \ldots~where one systematically increases the maximum excitation degree of the determinants taken into account. A similar systematic truncation strategy can be applied to CI methods leading to the well-established family of methods known as CISD, CISDT, CISDTQ, \ldots~where one systematically increases the maximum excitation degree of the determinants taken into account.
Except for full CI (FCI) where all determinants from the Hilbert space (\ie, with excitation degree up to $\Nel$) are considered, truncated CI methods are variational but lack size-consistency. Except for full CI (FCI) where all determinants from the Hilbert space (\ie, with excitation degree up to $\Nel$) are considered, truncated CI methods are variational but lack size-consistency.
The non-variationality of truncated CC methods being less of an issue than the size-inconsistency of the truncated CI methods, the formers have naturally overshadowed the latters in the electronic structure landscape. The non-variationality of truncated CC methods being less of an issue than the size-inconsistency of the truncated CI methods, the formers have naturally overshadowed the latters in the electronic structure landscape.
However, a different strategy has recently made a come back in the context of CI methods. \cite{Bender_1969,Whitten_1969,Huron_1973} However, a different strategy has recently made a come back in the context of CI methods. \cite{Bender_1969,Whitten_1969,Huron_1973}
Indeed, selected CI (SCI) methods, \cite{Booth_2009,Giner_2013,Evangelista_2014,Giner_2015,Holmes_2016,Tubman_2016,Liu_2016,Ohtsuka_2017,Zimmerman_2017,Coe_2018,Garniron_2018} where one iteratively selects the important determinants from the FCI space (usually) based on a perturbative criterion, has been recently shown to be highly successful in order to produce reference energies for ground and excited states in small- and medium-sized molecules \cite{Holmes_2017,Li_2018,Li_2020,Loos_2018a,Chien_2018,Loos_2019,Loos_2020b,Loos_2020c,Loos_2020e,Garniron_2019,Eriksen_2020,Yao_2020,Veril_2021,Loos_2021} thanks to efficient deterministic, stochastic or hybrid algorithms well suited for massive parallelization. Indeed, selected CI (SCI) methods, \cite{Booth_2009,Giner_2013,Evangelista_2014,Giner_2015,Caffarel_2016b,Holmes_2016,Tubman_2016,Liu_2016,Ohtsuka_2017,Zimmerman_2017,Coe_2018,Garniron_2018} where one iteratively selects the important determinants from the FCI space (usually) based on a perturbative criterion, has been recently shown to be highly successful in order to produce reference energies for ground and excited states in small- and medium-sized molecules \cite{Caffarel_2014,Caffarel_2016a,Scemama_2016,Holmes_2017,Li_2018,Scemama_2018,Scemama_2018b,Li_2020,Loos_2018a,Chien_2018,Loos_2019,Loos_2020b,Loos_2020c,Loos_2020e,Garniron_2019,Eriksen_2020,Yao_2020,Williams_2020,Veril_2021,Loos_2021} thanks to efficient deterministic, stochastic or hybrid algorithms well suited for massive parallelization.
We refer the interested reader to Refs.~\onlinecite{Loos_2020a,Eriksen_2021} for recent reviews. We refer the interested reader to Refs.~\onlinecite{Loos_2020a,Eriksen_2021} for recent reviews.
SCI methods are based on a well-known fact: amongst the very large number of determinants contained in the FCI space, only a relative small fraction of them significantly contributes to the energy. SCI methods are based on a well-known fact: amongst the very large number of determinants contained in the FCI space, only a relative small fraction of them significantly contributes to the energy.
Accordingly, the SCI+PT2 family of methods performs a sparse exploration of the FCI space by selecting iteratively only the most energetically relevant determinants of the variational space and supplementing it with a second-order perturbative correction (PT2). \cite{Huron_1973,Garniron_2017,Sharma_2017,Garniron_2018,Garniron_2019} Accordingly, the SCI+PT2 family of methods performs a sparse exploration of the FCI space by selecting iteratively only the most energetically relevant determinants of the variational space and supplementing it with a second-order perturbative correction (PT2). \cite{Huron_1973,Garniron_2017,Sharma_2017,Garniron_2018,Garniron_2019}
@ -144,7 +144,7 @@ However, it is now widely recognised that the series of MP approximations might
Again, MP perturbation theory and CC methods can be coupled. Again, MP perturbation theory and CC methods can be coupled.
The CCSD(T) method, \cite{Raghavachari_1989} known as the gold-standard of quantum chemistry for weakly correlated systems, is probably the most iconic example of such coupling. The CCSD(T) method, \cite{Raghavachari_1989} known as the gold-standard of quantum chemistry for weakly correlated systems, is probably the most iconic example of such coupling.
Motivated by the recent blind test of Eriksen \textit{et al.}\cite{Eriksen_2020}~reporting the performance of a large panel of emerging electronic structure methods [the many-body expansion FCI (MBE-FCI), \cite{Eriksen_2017,Eriksen_2018,Eriksen_2019a,Eriksen_2019b} adaptive sampling CI (ASCI), \cite{Tubman_2016,Tubman_2018,Tubman_2020} iterative CI (iCI), \cite{Liu_2014,Liu_2016,Lei_2017,Zhang_2020} semistochastic heat-bath CI (SHCI), \cite{Holmes_2016,Holmes_2017,Sharma_2017} the full coupled-cluster reduction (FCCR), \cite{Xu_2018,Xu_2020} density-matrix renormalization group (DMRG), \cite{White_1992,White_1993,Chan_2011} adaptive-shift FCI quantum Monte Carlo (AS-FCIQMC), \cite{Booth_2009,Cleland_2010,Ghanem_2019} and cluster-analysis-driven FCIQMC (CAD-FCIQMC) \cite{Deustua_2017,Deustua_2018}] on the non-relativistic frozen-core correlation energy of the benzene molecule in the standard correlation-consistent double-$\zeta$ Dunning basis set (cc-pVDZ), some of us have recently investigated the performance of the \textit{Configuration Interaction using a Perturbative Selection made Iteratively} (CIPSI) method \cite{Huron_1973,Giner_2013,Giner_2015,Garniron_2018,Garniron_2019} on the very same system \cite{Loos_2020e} [see also Ref.~\onlinecite{Lee_2020} for a study of the performance of phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) \cite{Motta_2018}]. Motivated by the recent blind test of Eriksen \textit{et al.}\cite{Eriksen_2020}~reporting the performance of a large panel of emerging electronic structure methods [the many-body expansion FCI (MBE-FCI), \cite{Eriksen_2017,Eriksen_2018,Eriksen_2019a,Eriksen_2019b} adaptive sampling CI (ASCI), \cite{Tubman_2016,Tubman_2018,Tubman_2020} iterative CI (iCI), \cite{Liu_2014,Liu_2016,Lei_2017,Zhang_2020} semistochastic heat-bath CI (SHCI), \cite{Holmes_2016,Holmes_2017,Sharma_2017} the full coupled-cluster reduction (FCCR), \cite{Xu_2018,Xu_2020} density-matrix renormalization group (DMRG), \cite{White_1992,White_1993,Chan_2011} adaptive-shift FCI quantum Monte Carlo (AS-FCIQMC), \cite{Booth_2009,Cleland_2010,Ghanem_2019} and cluster-analysis-driven FCIQMC (CAD-FCIQMC) \cite{Deustua_2017,Deustua_2018}] on the non-relativistic frozen-core correlation energy of the benzene molecule in the standard correlation-consistent double-$\zeta$ Dunning basis set (cc-pVDZ), some of us have recently investigated the performance of the SCI method known as \textit{Configuration Interaction using a Perturbative Selection made Iteratively} (CIPSI). \cite{Huron_1973,Giner_2013,Giner_2015,Garniron_2018,Garniron_2019} on the very same system \cite{Loos_2020e} [see also Ref.~\onlinecite{Lee_2020} for a study of the performance of phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) \cite{Motta_2018}].
In the continuity of this recent work, we report here a significant extension by estimating the (frozen-core) FCI/cc-pVDZ correlation energy of twelve cyclic molecules (cyclopentadiene, furan, imidazole, pyrrole, thiophene, benzene, pyrazine, pyridazine, pyridine, pyrimidine, tetrazine, and triazine) with the help of CIPSI employing energetically-optimized orbitals at the same level of theory. \cite{Yao_2020,Yao_2021} In the continuity of this recent work, we report here a significant extension by estimating the (frozen-core) FCI/cc-pVDZ correlation energy of twelve cyclic molecules (cyclopentadiene, furan, imidazole, pyrrole, thiophene, benzene, pyrazine, pyridazine, pyridine, pyrimidine, tetrazine, and triazine) with the help of CIPSI employing energetically-optimized orbitals at the same level of theory. \cite{Yao_2020,Yao_2021}
These systems are depicted in Fig.~\ref{fig:mol}. These systems are depicted in Fig.~\ref{fig:mol}.
This set of molecular systems corresponds to Hilbert spaces with sizes ranging from $10^{28}$ (for thiophene) to $10^{36}$ (for benzene). This set of molecular systems corresponds to Hilbert spaces with sizes ranging from $10^{28}$ (for thiophene) to $10^{36}$ (for benzene).
@ -162,46 +162,12 @@ The performance of the ground-state gold standard CCSD(T) is also investigated.
%%% %%% %%% %%% %%% %%%
The present manuscript is organized as follows. The present manuscript is organized as follows.
In Sec.~\ref{sec:compdet}, computational details concerning geometries, basis sets, and methods are reported. In Sec \ref{sec:OO-CIPSI}, we provide theoretical details about the CIPSI algorithm and the orbital optimization procedure that we have employed here.
Section \ref{sec:OO-CIPSI} provides theoretical details about the CIPSI algorithm and the orbital optimization procedure that we have employed here. Section.~\ref{sec:compdet} deals with computational details concerning geometries, basis sets, and methods.
In Sec.~\ref{sec:res}, we report our reference FCI correlation energies for the five-membered and six-membered cyclic molecules obtained thanks to extrapolated orbital-optimized CIPSI calculations (Sec.~\ref{sec:cipsi_res}). In Sec.~\ref{sec:res}, we report our reference FCI correlation energies for the five-membered and six-membered cyclic molecules obtained thanks to extrapolated orbital-optimized CIPSI calculations (Sec.~\ref{sec:cipsi_res}).
These reference correlation energies are then used to benchmark and study the convergence properties of various perturbative and CC methods (Sec.~\ref{sec:mpcc_res}). These reference correlation energies are then used to benchmark and study the convergence properties of various perturbative and CC methods (Sec.~\ref{sec:mpcc_res}).
Finally, we draw our conclusions in Sec.~\ref{sec:ccl}. Finally, we draw our conclusions in Sec.~\ref{sec:ccl}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Computational details}
\label{sec:compdet}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The geometries of the twelve systems considered in the present study have been all obtained at the CC3/aug-cc-pVTZ level of theory and have been extracted from a previous study. \cite{Loos_2020a}
Note that, for the sake of consistency, the geometry of benzene considered here is different from one of Ref.~\onlinecite{Loos_2020e} which has been computed at a lower level of theory [MP2/6-31G(d)]. \cite{Schreiber_2008}
The MP2, MP3, MP4, CC2, CC3, CC4, CCSD, CCSDT, and CCSDTQ calculations have been performed with CFOUR, \cite{Matthews_2020} while the CCSD(T) and MP5 calculations have been computed with GAUSSIAN 09. \cite{g09}
The CIPSI calculations have been performed with QUANTUM PACKAGE. \cite{Garniron_2019}
In the current implementation, the selection step and the PT2 correction are computed simultaneously via a hybrid semistochastic algorithm \cite{Garniron_2017,Garniron_2019} (which explains the statistical error associated with the PT2 correction in the following).
Here, we employ the renormalized version of the PT2 correction which has been recently implemented and tested for a more efficient extrapolation to the FCI limit thanks to a partial resummation of the higher-order of perturbation. \cite{Garniron_2019}
We refer the interested reader to Ref.~\onlinecite{Garniron_2019} where one can find all the details regarding the implementation of the PT2 correction and the CIPSI algorithm.
For all these calculations, we consider Dunning's correlation-consistent double-$\zeta$ basis (cc-pVDZ).
Although the FCI energy has the enjoyable property of being independent of the set of one-electron orbitals used to construct the many-electron Slater determinants, as a truncated CI method, the convergence properties of CIPSI strongly dependent on this orbital choice.
In the present study, we investigate, in particular, the convergence behavior of the CIPSI energy for two sets of orbitals: natural orbitals (NOs) and optimized orbitals (OOs).
Following our usual procedure, \cite{Scemama_2018,Scemama_2018b,Scemama_2019,Loos_2018a,Loos_2019,Loos_2020a,Loos_2020b,Loos_2020c,Loos_2020e} we perform first a preliminary SCI calculation using HF orbitals in order to generate a SCI wave function with at least $10^7$ determinants.
Natural orbitals are computed based on this wave function and they are used to perform a new CIPSI run.
Successive orbital optimizations are then performed, which consist in minimizing the variational CIPSI energy at each iteration up to approximately $2 \times 10^5$ determinants.
When convergence is achieved in terms of orbital optimization, as our ``production'' run, we perform a new CIPSI calculation from scratch using this set of optimized orbitals.
Using optimized orbitals has the undeniable advantage to produce, for a given variational energy, more compact CI expansions.
For the benzene molecule, we also explore the use of localized orbitals (LOs) which are produced with the Boys-Foster localization procedure \cite{Boys_1960} that we apply to the natural orbitals in several orbital windows in order to preserve a strict $\sigma$-$\pi$ separation in the planar systems considered here. \cite{Loos_2020e}
Because they take advantage of the local character of electron correlation, localized orbitals have been shown to provide faster convergence towards the FCI limit compared to natural orbitals. \cite{Angeli_2003,Angeli_2009,BenAmor_2011,Suaud_2017,Chien_2018,Eriksen_2020,Loos_2020e}
As we shall see below, employing optimized orbitals has the advantage to produce an even smoother and faster convergence of the SCI energy toward the FCI limit.
Note both localized and optimized orbitals do break the spatial symmetry.
Unlike excited-state calculations where it is important to enforce that the wave functions are eigenfunctions of the $\Hat{S}^2$ spin operator, \cite{Chilkuri_2021} the present wave functions do not fulfill this property as we aim for the lowest possible energy of a closed-shell singlet state.
We have found that $\expval*{\Hat{S}^2}$ is, nonetheless, very close to zero for each system.
The present calculations have been performed on the AMD partition of GENCI's Irene supercomputer.
Each Irene's AMD node is a dual-socket AMD Rome (EPYC) CPU at 2.60 GHz with 256GiB of RAM, with a total of 64 physical cores per socket.
These nodes are connected via Infiniband HDR100.
In total, the present calculations have required around 3,000,000 core hours.
All the data (geometries, energies, etc) and supplementary material associated with the present manuscript are openly available in Zenodo at \href{http://doi.org/XX.XXXX/zenodo.XXXXXXX}{http://doi.org/XX.XXXX/zenodo.XXXXXXX}.
%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%
\section{CIPSI with optimized orbitals} \section{CIPSI with optimized orbitals}
\label{sec:OO-CIPSI} \label{sec:OO-CIPSI}
@ -343,6 +309,40 @@ By choosing the right value of $\lambda$, the step size is constrained into a hy
The evolution of the trust radius during the optimization and the use of a condition to cancel the step when the energy rises ensure the convergence of the algorithm. The evolution of the trust radius during the optimization and the use of a condition to cancel the step when the energy rises ensure the convergence of the algorithm.
More details can be found in Ref.~\onlinecite{Nocedal_1999}. More details can be found in Ref.~\onlinecite{Nocedal_1999}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Computational details}
\label{sec:compdet}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The geometries of the twelve systems considered in the present study have been all obtained at the CC3/aug-cc-pVTZ level of theory and have been extracted from a previous study. \cite{Loos_2020a}
Note that, for the sake of consistency, the geometry of benzene considered here is different from one of Ref.~\onlinecite{Loos_2020e} which has been computed at a lower level of theory [MP2/6-31G(d)]. \cite{Schreiber_2008}
The MP2, MP3, MP4, CC2, CC3, CC4, CCSD, CCSDT, and CCSDTQ calculations have been performed with CFOUR, \cite{Matthews_2020} while the CCSD(T) and MP5 calculations have been computed with GAUSSIAN 09. \cite{g09}
The CIPSI calculations have been performed with QUANTUM PACKAGE. \cite{Garniron_2019}
In the current implementation, the selection step and the PT2 correction are computed simultaneously via a hybrid semistochastic algorithm.\cite{Garniron_2017,Garniron_2019} %(which explains the statistical error associated with the PT2 correction in the following).
Here, we employ the renormalized version of the PT2 correction which has been recently implemented and tested for a more efficient extrapolation to the FCI limit thanks to a partial resummation of the higher-order of perturbation. \cite{Garniron_2019}
We refer the interested reader to Ref.~\onlinecite{Garniron_2019} where one can find all the details regarding the implementation of the PT2 correction and the CIPSI algorithm.
For all these calculations, we consider Dunning's correlation-consistent double-$\zeta$ basis (cc-pVDZ).
Although the FCI energy has the enjoyable property of being independent of the set of one-electron orbitals used to construct the many-electron Slater determinants, as a truncated CI method, the convergence properties of CIPSI strongly dependent on this orbital choice.
In the present study, we investigate, in particular, the convergence behavior of the CIPSI energy for two sets of orbitals: natural orbitals (NOs) and optimized orbitals (OOs).
Following our usual procedure, \cite{Scemama_2018,Scemama_2018b,Scemama_2019,Loos_2018a,Loos_2019,Loos_2020a,Loos_2020b,Loos_2020c,Loos_2020e} we perform first a preliminary SCI calculation using HF orbitals in order to generate a SCI wave function with at least $10^7$ determinants.
Natural orbitals are computed based on this wave function and they are used to perform a new CIPSI run.
Successive orbital optimizations are then performed, which consist in minimizing the variational CIPSI energy at each iteration up to approximately $2 \times 10^5$ determinants.
When convergence is achieved in terms of orbital optimization, as our ``production'' run, we perform a new CIPSI calculation from scratch using this set of optimized orbitals.
Using optimized orbitals has the undeniable advantage to produce, for a given variational energy, more compact CI expansions.
For the benzene molecule, we also explore the use of localized orbitals (LOs) which are produced with the Boys-Foster localization procedure \cite{Boys_1960} that we apply to the natural orbitals in several orbital windows in order to preserve a strict $\sigma$-$\pi$ separation in the planar systems considered here. \cite{Loos_2020e}
Because they take advantage of the local character of electron correlation, localized orbitals have been shown to provide faster convergence towards the FCI limit compared to natural orbitals. \cite{Angeli_2003,Angeli_2009,BenAmor_2011,Suaud_2017,Chien_2018,Eriksen_2020,Loos_2020e}
As we shall see below, employing optimized orbitals has the advantage to produce an even smoother and faster convergence of the SCI energy toward the FCI limit.
Note both localized and optimized orbitals do break the spatial symmetry.
Unlike excited-state calculations where it is important to enforce that the wave functions are eigenfunctions of the $\Hat{S}^2$ spin operator, \cite{Chilkuri_2021} the present wave functions do not fulfill this property as we aim for the lowest possible energy of a closed-shell singlet state.
We have found that $\expval*{\Hat{S}^2}$ is, nonetheless, very close to zero for each system.
The present calculations have been performed on the AMD partition of GENCI's Irene supercomputer.
Each Irene's AMD node is a dual-socket AMD Rome (EPYC) CPU at 2.60 GHz with 256GiB of RAM, with a total of 64 physical cores per socket.
These nodes are connected via Infiniband HDR100.
In total, the present calculations have required around 3,000,000 core hours.
All the data (geometries, energies, etc) and supplementary material associated with the present manuscript are openly available in Zenodo at \href{http://doi.org/XX.XXXX/zenodo.XXXXXXX}{http://doi.org/XX.XXXX/zenodo.XXXXXXX}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Results and discussion} \section{Results and discussion}
\label{sec:res} \label{sec:res}