saving work in manuscript

This commit is contained in:
Pierre-Francois Loos 2021-06-18 11:41:56 +02:00
parent 9656bd8466
commit e52c280883
2 changed files with 20 additions and 7 deletions

View File

@ -1,13 +1,26 @@
%% This BibTeX bibliography file was created using BibDesk.
%% http://bibdesk.sourceforge.net/
%% Created for Pierre-Francois Loos at 2021-06-18 11:02:22 +0200
%% Created for Pierre-Francois Loos at 2021-06-18 11:30:20 +0200
%% Saved with string encoding Unicode (UTF-8)
@article{Loos_2021,
author = {Loos,Pierre-Fran{\c c}ois and Matthews,Devin A. and Lipparini,Filippo and Jacquemin,Denis},
date-added = {2021-06-18 11:30:08 +0200},
date-modified = {2021-06-18 11:30:19 +0200},
doi = {10.1063/5.0055994},
journal = {J. Chem. Phys.},
number = {22},
pages = {221103},
title = {How accurate are EOM-CC4 vertical excitation energies?},
volume = {154},
year = {2021},
Bdsk-Url-1 = {https://doi.org/10.1063/5.0055994}}
@article{Yao_2021,
author = {Yao, Yuan and Umrigar, C. J.},
date-added = {2021-06-18 11:02:08 +0200},

View File

@ -55,7 +55,7 @@
We report (frozen-core) full configuration interaction (FCI) energies in finite Hilbert spaces for various five- and six-membered rings.
In the continuity of our recent work on the benzene molecule [\href{https://doi.org/10.1063/5.0027617}{J. Chem. Phys. \textbf{153}, 176101 (2020)}], itself motivated by the blind challenge of Eriksen \textit{et al.} [\href{https://doi.org/10.1021/acs.jpclett.0c02621}{J. Phys. Chem. Lett. \textbf{11}, 8922 (2020)}] on the same system, we report reference frozen-core correlation energies for twelve cyclic molecules (cyclopentadiene, furan, imidazole, pyrrole, thiophene, benzene, pyrazine, pyridazine, pyridine, pyrimidine, tetrazine, and triazine) in the standard correlation-consistent double-$\zeta$ Dunning basis set (cc-pVDZ).
This corresponds to Hilbert spaces with sizes ranging from $10^{20}$ (for thiophene) to $10^{36}$ (for benzene).
Our estimates are based on localized-orbital-based selected configuration interaction (SCI) calculations performed with the \textit{Configuration Interaction using a Perturbative Selection made Iteratively} (CIPSI) algorithm.
Our estimates are based on energetically optimized-orbital selected configuration interaction (SCI) calculations performed with the \textit{Configuration Interaction using a Perturbative Selection made Iteratively} (CIPSI) algorithm.
The performance and convergence properties of several series of methods are investigated.
In particular, we study the convergence properties of i) the M{\o}ller-Plesset perturbation series up to fifth-order (MP2, MP3, MP4, and MP5), ii) the iterative approximate single-reference coupled-cluster series CC2, CC3, and CC4, and ii) the single-reference coupled-cluster series CCSD, CCSDT, and CCSDTQ.
The performance of the ground-state gold standard CCSD(T) is also investigated.
@ -87,7 +87,7 @@ A similar systematic truncation strategy can be applied to CI methods leading to
Except for full CI (FCI) where all determinants from the Hilbert space (\ie, with excitation degree up to $N$) are considered, truncated CI methods are variational but lack size-consistency.
The non-variationality of truncated CC methods being less of an issue than the size-inconsistency of the truncated CI methods, the formers have naturally overshadowed the latters in the electronic structure landscape.
However, a different strategy has recently made a come back in the context of CI methods. \cite{Bender_1969,Whitten_1969,Huron_1973}
Indeed, selected CI (SCI) methods, \cite{Booth_2009,Giner_2013,Evangelista_2014,Giner_2015,Holmes_2016,Tubman_2016,Liu_2016,Ohtsuka_2017,Zimmerman_2017,Coe_2018,Garniron_2018} where one iteratively selects the energetically relevant determinants from the FCI space (usually) based on a perturbative criterion, has been recently shown to be highly successful to produce reference energies for ground and excited states in small- and medium-size molecules \cite{Holmes_2017,Li_2018,Li_2020,Loos_2018a,Chien_2018,Loos_2019,Loos_2020b,Loos_2020c,Loos_2020e,Garniron_2019,Eriksen_2020,Yao_2020,Veril_2021} thanks to efficient deterministic, stochastic or hybrid algorithms well suited for massive parallelization.
Indeed, selected CI (SCI) methods, \cite{Booth_2009,Giner_2013,Evangelista_2014,Giner_2015,Holmes_2016,Tubman_2016,Liu_2016,Ohtsuka_2017,Zimmerman_2017,Coe_2018,Garniron_2018} where one iteratively selects the energetically relevant determinants from the FCI space (usually) based on a perturbative criterion, has been recently shown to be highly successful in order to produce reference energies for ground and excited states in small- and medium-size molecules \cite{Holmes_2017,Li_2018,Li_2020,Loos_2018a,Chien_2018,Loos_2019,Loos_2020b,Loos_2020c,Loos_2020e,Garniron_2019,Eriksen_2020,Yao_2020,Veril_2021,Loos_2021} thanks to efficient deterministic, stochastic or hybrid algorithms well suited for massive parallelization.
We refer the interested reader to Refs.~\onlinecite{Loos_2020a,Eriksen_2021} for recent reviews.
SCI methods are based on a simple and natural observation: amongst the very large number of determinants belonging to the FCI space, only a relative small fraction of them significantly contributes to the energy.
Accordingly to this well-known fact, the SCI+PT2 family of methods performs a sparse exploration of the FCI space by selecting iteratively only the most energetically relevant determinants of the variational space and supplementing it with a second-order perturbative correction (PT2). \cite{Huron_1973,Garniron_2017,Sharma_2017,Garniron_2018,Garniron_2019}
@ -95,20 +95,20 @@ Although the formal scaling of such algorithms remain exponential, the prefactor
Note that, very recently, several groups \cite{Aroeira_2021,Lee_2021,Magoulas_2021} have coupled CC and SCI methods via the externally-corrected CC methodology, \cite{Paldus_2017} showing promising performances for weakly and strongly correlated systems.
A rather different strategy in order to reach the holy grail FCI limit is to resort to M{\o}ller-Plesset (MP) perturbation theory, \cite{Moller_1934}
which popularity originates from its black-box nature, size-extensivity, and relatively low computational scaling, making it easily applied in a broad range of molecular systems.
which popularity originates from its black-box nature, size-extensivity, and relatively low computational scaling, making it easily applied to a broad range of molecular systems.
Again, at least in theory, one can obtain the exact energy of the system by ramping up the degree of the perturbative series. \cite{Marie_2021}
The second-order M{\o}ller-Plesset (MP2) method \cite{Moller_1934} [which scales as $\order*{N^{5}}$] has been broadly adopted in quantum chemistry for several decades, and is now included in double-hybrid functionals \cite{Grimme_2006} alongside exact Hartree-Fock exchange within density-functional theory. \cite{Hohenberg_1964,Kohn_1965}
Its higher-order variants [MP3, \cite{Pople_1976}
MP4, \cite{Krishnan_1980} MP5, \cite{Kucharski_1989} and MP6 \cite{He_1996a,He_1996b} which scales as $\order*{N^{6}}$, $\order*{N^{7}}$, and $\order*{N^{8}}$, respectively] have been investigated much more scarcely.
However, it is now widely recognised that the series of MP approximations might show erratic, slow, or divergent behavior that limit its applicability and systematic improvability. \cite{Laidig_1985,Knowles_1985,Handy_1985,Gill_1986,Laidig_1987,Nobes_1987,Gill_1988,Gill_1988a,Lepetit_1988,Malrieu_2003}
Again, MP perturbation theory and CC methods can be coupled.
The CCSD(T) method \cite{Raghavachari_1989} known as the gold-standard of quantum chemistry for weakly correlated systems is probably the most successful example of such coupling.
The CCSD(T) method \cite{Raghavachari_1989} known as the gold-standard of quantum chemistry for weakly correlated systems is probably the most iconic example of such coupling.
Motivated by the recent blind test of Eriksen \textit{et al.}\cite{Eriksen_2020}~reporting the performance of a large panel of emerging electronic structure methods [the many-body expansion FCI (MBE-FCI), \cite{Eriksen_2017,Eriksen_2018,Eriksen_2019a,Eriksen_2019b} adaptive sampling CI (ASCI), \cite{Tubman_2016,Tubman_2018,Tubman_2020} iterative CI (iCI), \cite{Liu_2014,Liu_2016,Lei_2017,Zhang_2020} semistochastic heat-bath CI (SHCI), \cite{Holmes_2016,Holmes_2017,Sharma_2017} the full coupled-cluster reduction (FCCR), \cite{Xu_2018,Xu_2020} the density-matrix renormalization group (DMRG) approach, \cite{White_1992,White_1993,Chan_2011} adaptive-shift FCI quantum Monte Carlo (AS-FCIQMC), \cite{Booth_2009,Cleland_2010,Ghanem_2019} and cluster-analysis-driven FCIQMC (CAD-FCIQMC) \cite{Deustua_2017,Deustua_2018}] on the non-relativistic frozen-core correlation energy of the benzene molecule in the standard correlation-consistent double-$\zeta$ Dunning basis set (cc-pVDZ), some of us have recently investigated the performance of the \textit{configuration interaction using a perturbative selection made iteratively} (CIPSI) method \cite{Huron_1973,Giner_2013,Giner_2015,Garniron_2018,Garniron_2019} on the very same system [see also Ref.~\onlinecite{Lee_2020} for a study of the performance of phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) \cite{Motta_2018}].
Motivated by the recent blind test of Eriksen \textit{et al.}\cite{Eriksen_2020}~reporting the performance of a large panel of emerging electronic structure methods [the many-body expansion FCI (MBE-FCI), \cite{Eriksen_2017,Eriksen_2018,Eriksen_2019a,Eriksen_2019b} adaptive sampling CI (ASCI), \cite{Tubman_2016,Tubman_2018,Tubman_2020} iterative CI (iCI), \cite{Liu_2014,Liu_2016,Lei_2017,Zhang_2020} semistochastic heat-bath CI (SHCI), \cite{Holmes_2016,Holmes_2017,Sharma_2017} the full coupled-cluster reduction (FCCR), \cite{Xu_2018,Xu_2020} density-matrix renormalization group (DMRG), \cite{White_1992,White_1993,Chan_2011} adaptive-shift FCI quantum Monte Carlo (AS-FCIQMC), \cite{Booth_2009,Cleland_2010,Ghanem_2019} and cluster-analysis-driven FCIQMC (CAD-FCIQMC) \cite{Deustua_2017,Deustua_2018}] on the non-relativistic frozen-core correlation energy of the benzene molecule in the standard correlation-consistent double-$\zeta$ Dunning basis set (cc-pVDZ), some of us have recently investigated the performance of the \textit{configuration interaction using a perturbative selection made iteratively} (CIPSI) method \cite{Huron_1973,Giner_2013,Giner_2015,Garniron_2018,Garniron_2019} on the very same system [see also Ref.~\onlinecite{Lee_2020} for a study of the performance of phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) \cite{Motta_2018}].
In the continuity of this recent work, we report here a significant extension by estimating the (frozen-core) FCI/cc-pVDZ correlation energy of twelve cyclic molecules (cyclopentadiene, furan, imidazole, pyrrole, thiophene, benzene, pyrazine, pyridazine, pyridine, pyrimidine, tetrazine, and triazine) with the help of the CIPSI method employing energetically-optimized orbitals at the same level of theory. \cite{Yao_2020,Yao_2021}
This set of molecular systems corresponds to Hilbert spaces with sizes ranging from $10^{20}$ (for thiophene) to $10^{36}$ (for benzene).
In addition to CIPSI, the performance and convergence properties of several series of methods are investigated.
In particular, we study the convergence properties of i) the MP perturbation series up to fifth-order (MP2, MP3, MP4, and MP5), ii) the CC2, CC3, and CC4 approximate series, and ii) the ``complete'' CC series up to quadruples (\ie, CCSD, CCSDT, and CCSDTQ).
In particular, we study i) the MP perturbation series up to fifth-order (MP2, MP3, MP4, and MP5), ii) the CC2, CC3, and CC4 approximate series, and ii) the ``complete'' CC series up to quadruples (\ie, CCSD, CCSDT, and CCSDTQ).
The performance of the ground-state gold standard CCSD(T) is also investigated.
%%% FIG 1 %%%