fix few typos
This commit is contained in:
parent
91e4365250
commit
43df8491db
@ -200,7 +200,7 @@ and a second-order perturbative correction
|
|||||||
\begin{equation}
|
\begin{equation}
|
||||||
\EPT^{(k)}
|
\EPT^{(k)}
|
||||||
= \sum_{\alpha \in \cA_k} e_{\alpha}^{(k)}
|
= \sum_{\alpha \in \cA_k} e_{\alpha}^{(k)}
|
||||||
= \sum_{\alpha \in \cA_k} \frac{\mel*{\Psivar^{(k)}}{\hH}{\alpha}}{\Evar^{(k)} - \mel*{\alpha}{\hH}{\alpha}}
|
= \sum_{\alpha \in \cA_k} \frac{\abs*{\mel*{\Psivar^{(k)}}{\hH}{\alpha}}^2}{\Evar^{(k)} - \mel*{\alpha}{\hH}{\alpha}}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
where $\hH$ is the (non-relativistic) electronic Hamiltonian,
|
where $\hH$ is the (non-relativistic) electronic Hamiltonian,
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
@ -231,7 +231,7 @@ where $\bc$ gathers the CI coefficients, $\bk$ the orbital rotation parameters,
|
|||||||
\begin{equation}
|
\begin{equation}
|
||||||
\hk = \sum_{p < q} \sum_{\sigma} \kappa_{pq} \qty(\cre{p\sigma} \ani{q\sigma} - \cre{q\sigma} \ani{p\sigma})
|
\hk = \sum_{p < q} \sum_{\sigma} \kappa_{pq} \qty(\cre{p\sigma} \ani{q\sigma} - \cre{q\sigma} \ani{p\sigma})
|
||||||
\end{equation}
|
\end{equation}
|
||||||
is a real-valued one-electron anti-hermitian operator, which creates a unitary transformation of the orbital coefficients when exponentiated, $\ani{p\sigma}$ ($\cre{p\sigma}$) being the second quantization annihilation (creation) operator which annihilates (creates) a spin-$\sigma$ electron in the (real-valued) spatial orbital $\MO{p}(\br)$.
|
is a real-valued one-electron antisymmetric operator, which creates an orthogonal transformation of the orbital coefficients when exponentiated, $\ani{p\sigma}$ ($\cre{p\sigma}$) being the second quantization annihilation (creation) operator which annihilates (creates) a spin-$\sigma$ electron in the (real-valued) spatial orbital $\MO{p}(\br)$.
|
||||||
|
|
||||||
Applying the Newton-Raphson method by Taylor-expanding the variational energy to second order around $\bk = \bO$, \ie,
|
Applying the Newton-Raphson method by Taylor-expanding the variational energy to second order around $\bk = \bO$, \ie,
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user