fix few typos
This commit is contained in:
parent
43df8491db
commit
265a12dcfc
@ -1,13 +1,27 @@
|
|||||||
%% This BibTeX bibliography file was created using BibDesk.
|
%% This BibTeX bibliography file was created using BibDesk.
|
||||||
%% http://bibdesk.sourceforge.net/
|
%% http://bibdesk.sourceforge.net/
|
||||||
|
|
||||||
%% Created for Pierre-Francois Loos at 2021-07-19 13:49:57 +0200
|
%% Created for Pierre-Francois Loos at 2021-07-20 16:08:44 +0200
|
||||||
|
|
||||||
|
|
||||||
%% Saved with string encoding Unicode (UTF-8)
|
%% Saved with string encoding Unicode (UTF-8)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@article{Bozkaya_2011,
|
||||||
|
author = {Bozkaya,U{\u g}ur and Turney,Justin M. and Yamaguchi,Yukio and Schaefer,Henry F. and Sherrill,C. David},
|
||||||
|
date-added = {2021-07-20 16:08:28 +0200},
|
||||||
|
date-modified = {2021-07-20 16:08:40 +0200},
|
||||||
|
doi = {10.1063/1.3631129},
|
||||||
|
journal = {J. Chem. Phys.},
|
||||||
|
number = {10},
|
||||||
|
pages = {104103},
|
||||||
|
title = {Quadratically convergent algorithm for orbital optimization in the orbital-optimized coupled-cluster doubles method and in orbital-optimized second-order M{\o}ller-Plesset perturbation theory},
|
||||||
|
url = {https://doi.org/10.1063/1.3631129},
|
||||||
|
volume = {135},
|
||||||
|
year = {2011},
|
||||||
|
Bdsk-Url-1 = {https://doi.org/10.1063/1.3631129}}
|
||||||
|
|
||||||
@book{Nocedal_1999,
|
@book{Nocedal_1999,
|
||||||
address = {New York, NY, USA},
|
address = {New York, NY, USA},
|
||||||
author = {Nocedal, Jorge and Wright, Stephen J.},
|
author = {Nocedal, Jorge and Wright, Stephen J.},
|
||||||
|
@ -231,7 +231,7 @@ where $\bc$ gathers the CI coefficients, $\bk$ the orbital rotation parameters,
|
|||||||
\begin{equation}
|
\begin{equation}
|
||||||
\hk = \sum_{p < q} \sum_{\sigma} \kappa_{pq} \qty(\cre{p\sigma} \ani{q\sigma} - \cre{q\sigma} \ani{p\sigma})
|
\hk = \sum_{p < q} \sum_{\sigma} \kappa_{pq} \qty(\cre{p\sigma} \ani{q\sigma} - \cre{q\sigma} \ani{p\sigma})
|
||||||
\end{equation}
|
\end{equation}
|
||||||
is a real-valued one-electron antisymmetric operator, which creates an orthogonal transformation of the orbital coefficients when exponentiated, $\ani{p\sigma}$ ($\cre{p\sigma}$) being the second quantization annihilation (creation) operator which annihilates (creates) a spin-$\sigma$ electron in the (real-valued) spatial orbital $\MO{p}(\br)$.
|
is a real-valued one-electron antisymmetric operator, which creates an orthogonal transformation of the orbital coefficients when exponentiated, $\ani{p\sigma}$ ($\cre{p\sigma}$) being the second quantization annihilation (creation) operator which annihilates (creates) a spin-$\sigma$ electron in the (real-valued) spatial orbital $\MO{p}(\br)$. \cite{Helgaker_2013}
|
||||||
|
|
||||||
Applying the Newton-Raphson method by Taylor-expanding the variational energy to second order around $\bk = \bO$, \ie,
|
Applying the Newton-Raphson method by Taylor-expanding the variational energy to second order around $\bk = \bO$, \ie,
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
@ -243,7 +243,7 @@ one can iteratively minimize the variational energy with respect to the paramete
|
|||||||
\bk = - \bH^{-1} \cdot \bg,
|
\bk = - \bH^{-1} \cdot \bg,
|
||||||
\end{equation}
|
\end{equation}
|
||||||
where $\bg$ and $\bH$ are the orbital gradient and Hessian, respectively, both evaluated at $\bk = \bO$.
|
where $\bg$ and $\bH$ are the orbital gradient and Hessian, respectively, both evaluated at $\bk = \bO$.
|
||||||
Their elements are explicitly given by the following expressions: \cite{Henderson_2014a}
|
Their elements are explicitly given by the following expressions: \cite{Bozkaya_2011,Henderson_2014a}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\begin{split}
|
\begin{split}
|
||||||
g_{pq}
|
g_{pq}
|
||||||
|
Loading…
Reference in New Issue
Block a user