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a State-of-the-art and objectives

a.1 Background

�e interaction of light and ma�er is central in chemistry, physics, and biology, playing a signi�cant role in
the proper description of several key physical, chemical and biological processes, e.g., photovoltaic devices
[1], the photophysics of vision [2], and photochemistry in general [3–9]. At the very heart of photochemistry
lies the subtle role played by the low-lying electronic states and their mutual interactions. In general, the
correct description of this phenomenon requires to locate with enough accuracy the �rst few low-lying
excited states of the system and to understand how such states interact not only between themselves (conical
intersections, spin-orbit e�ects, . . . ) but also with other degrees of freedom (coupling with ro-vibrational
modes, environnement e�ects, . . . ). In the case of the photophysics of vision, precious information can be
gained by exploring the excited states of polyenes [10–22] that are closely related to rhodopsin which is
involved in visual phototransduction [23–31].

A�er mainly focussing on the calculation of ground-state energies and properties for half a century, accurate
electronic structure theory methods have emerged for the computation of molecular excited states in the last
decades. �ere is no doubt that one of the main driving forces behind this evolution has been the emergence of
the time-dependent (TD) version [32] of density-functional theory (DFT) [33] which has practically revolution-
ized computational quantum chemistry due to its user-friendly, black-box nature compared to more expensive
complete active space (CAS) methods where one has to choose an active space based on chemical intuition.
Although the adiabatic approximation of TD-DFT [32] yields reliable excitation spectra with great e�ciency in
many cases, fundamental de�ciencies have been reported for the computation of extended conjugated systems
[34, 35], charge-transfer states [36–40], Rydberg states [35, 41–44], conical intersections [45, 46], and double
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excitations [42, 46, 47]. Although, using range-separated hybrids [48, 49] provides an e�ective solution to the
�rst three cases, one must go beyond the ubiquitous adiabatic approximation to capture the la�er two. One
possible solution is provided by spin-�ip TD-DFT which describes double excitations as single excitations
from the lowest triplet state [27, 50–54]. However, major limitations pertain [27]. In order to go beyond the
adiabatic approximation, a dressed TD-DFT approach has been proposed by Maitra and coworkers [14, 15] (see
also Refs. [19, 21, 22, 47, 55]). In this approach the exchange-correlation kernel is made frequency dependent
[56, 57], which allows to treat doubly-excited states. Albeit far from being a mature black-box approach, DFT
for ensembles (eDFT) [58–61] is another viable alternative currently under active development [62–69].

More expensive methods, such as CIS(D) [70, 71], CC2 [72, 73], CC3 [74, 75], ADC(2) [76], ADC(3) [77],
EOM-CCSD [78] (and higher orders [79, 80]) have been designed to palliate these shortcomings, but they
usually require large one-electron basis sets in order to provide converged results. Explicitly-correlated F12
versions of these methods requiring, by design, much smaller basis sets (but large auxiliary basis sets) are yet
to become mainstream [81, 82].

Multicon�gurational methods constitute a more natural class of methods to properly treat excited states.
Amongst these approaches, one �nds complete active space self-consistent �eld (CASSCF) [83], its second-order
perturbation-corrected variant (CASPT2) [84], as well as the second-order n-electron valence state perturbation
theory (NEVPT2) [85–87]. However, the exponential scaling of such methods with the number of active
electrons and orbitals also limits their application to small active spaces in their traditional implementation
[88].

Alternatively to CC and multicon�gurational methods, one can also compute transition energies for various
types of excited states using selected con�guration interaction (sCI) methods [89–96] which have recently
demonstrated their ability to reach near full CI (FCI) quality energies for small molecules [97–119]. �e idea
behind such methods is to avoid the exponential increase of the size of the CI expansion by retaining the
most energetically relevant determinants only, thanks to the use of a second-order energetic criterion to select
perturbatively determinants in the FCI space [100, 102, 104, 106, 109, 110, 112, 120, 121]. However, although
the “exponential wall” is pushed back, this type of methods is only applicable to molecules with a small number
of heavy atoms with relatively compact basis sets.

In summary, each method has its own strengths and weaknesses, and none of them is able to provide accurate
and reliable excitation energies in all scenarios. �e aim of PTEROSOR is to pursuit a di�erent avenue to
obtain excited states with the purpose of palliating some of the well-known shortcomings of DFT, EOM-CC
and GW (in particular). Moreover, PTEROSOR is also designed to advance our knowledge on non-Hermitian
Hamiltonians and their use in the computation of excited states.

a.2 PTEROSOR’s aims

PTEROSOR proposes a shi� in paradigm. Instead of using the aforedescribed excited-
state methods, we aim at developing a totally novel approach for obtaining

excited-state energies and wave functions by exploiting the properties of non-

Hermitian Hamiltonians. In particular, we propose to investigate PT -symmetric
Hamiltonians which can be seen as complex extensions of conventional Hermitian
Hamiltonians while retaining a real energy spectrum [122]. Our key idea is to analyt-
ically continue (via the complex plane) conventional electronic structure methods in
order to obtain excited states. Indeed, through the complex plane, ground and excited

states are naturally connected and are smooth and continuous analytic continuation of one another. Our plan
is to thoroughly study both single-determinant methods (such as HF and DFT) as well as correlated methods
like CC and GW. Moreover, we will use these tools to gain new insight into the convergence properties of
perturbative methods in which singularities, also known as exceptional points, dictates the radius of conver-
gence of the perturbative series. All the new features developed during the lifetime of PTEROSOR will be
implemented in qantum package, an open-source, multi-purpose and robust programming environment
for quantum chemistry developed in our group. �is task is essential to ensure that the theoretical advances
emerging from this proposal are translated into useable so�ware that will bene�t the scienti�c community.

a.3 �antum chemistry in the complex domain
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Figure 1: Riemann surface repre-
senting the analytic continuation of
the energy E(λ) in the complex do-
main.

�e notion of quantised energy levels is a central feature of Hermitian
quantum mechanics. In quantum chemistry, the ordering of the energy
levels represents the di�erent electronic states of a molecule, the lowest
being the ground state while the higher ones are the so-called excited states.
Within this quantised paradigm, electronic states look completely discon-
nected from one another. However, one can gain a di�erent perspective on
quantisation if one extends quantum chemistry into the complex domain.
In a non-Hermitian complex picture, the energy levels are sheets of a more
complicated topological manifold called Riemann surface (see Fig. 1), and
they are smooth and continuous analytic continuation of one another. In
other words, our view of the quantised nature of conventional Hermitian
quantum mechanics arises only from our limited perception of the more
complex and profound structure of its non-Hermitian variant.

Imagine entering a parking garage. Obviously, one can go from one level
to another continuously by going around and around using curved ramps
designed for such purposes. �e level are not quantised, they are only
quantised if one looks at a cut through the parking garage. �ankfully, by
considering the entire space, the levels are smooth and continuous, similar
to the electronic states in a molecule when one looks at them through the
complex domain.

�erefore, by analytically continuing the energy E(λ) in the complex
domain (where λ is a coupling parameter), one can smoothly connect the ground and excited states of a
molecule. �is connection is possible because, by extending real numbers to the complex domain, one loses
the ordering property of real numbers. Hence, one can interchange electronic states away from the real axis,
as the concept of ground and excited states has been lost. However, it is far from obvious to design a practical
method for such a purpose. �e main objective of PTEROSOR is to develop a novel theoretical approach
to connect, through the complex plane, electronic states. Amazingly, this smooth and continuous transition
from one state to another has been recently realised experimentally in physical se�ings such as electronics,
microwaves, mechanics, acoustics, atomic systems and optics [123–139].

a.4 Objectives

Upon completion of PTEROSOR, we expect four main outcomes:

1. �e development of a new class of single-determinant methods based on an analytic continuation of the
well-known HF and DFT methods. In particular, we are interested in developing PT -symmetric versions
of single-determinant methods and to further understand the mechanisms behind PT -symmetry-
breaking processes.

2. New insight into the convergence properties of perturbation theory. Moreover, we wish to investigate
how suitable are non-Hermitian Hamiltonians as starting points for perturbation theory. Are non-
Hermitian Hamiltonians yielding be�er and faster convergence than Hermitian ones? We hope to be
able to provide an answer to this question.

3. �e development of non-Hermitian post-HF methods taking explicitly into account the correlation
between electrons. In particular, we propose to design an analytic continuation of CC methods. Green’s
function-based methods (such as GW) will also be investigated.

4. �e e�cient and parallel implementation of the aforementioned methods in the electronic structure
code qantum package. We believe that this task is essential to ensure that the theoretical advances
emerging from PTEROSOR are translated into a useable so�ware that will bene�t the electronic
structure community.

b Methodology

b.1 PT -symmetric Hamiltonians
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Figure 2: Eigenvalues of the Hamil-
tonian (3) as a function of ε. (Figure
taken from Ref. [140].)

In order to ensure that a real energy spectrum and probability conservation,
it is commonly believed that a physically acceptable Hamiltonian H must
be (Dirac) Hermitian, i.e. H = H†, where † stands for complex conjugation
and matrix transposition. Although the condition of Hermiticity is su�cient
to ensure these properties, it is not by any means necessary. In particular, as
put into light by Bender and coworkers [122], the family of PT -symmetric
Hamiltonians [122, 141], de�ned such that H = HPT , is a new, more
general class of Hamiltonians allowing for the possibility of non-Hermitian
and complex Hamiltonians while retaining a physically-sound quantum
theory [142]. Here, PT represents the combined space-time re�exion with

P : p→ −p, r → −r, (1a)
T : p→ −p, r → +r, i→ −i, (1b)

where p and r are the momentum and position vectors of the quantum
particle, respectively. Using PT -symmetric quantum theory, a Hermitian Hamiltonian can be analytically
continued into the complex plane, becoming non-Hermitian in the process and exposing the fundamental
topology of eigenstates. PT -symmetric Hamiltonians can be seen as a intermediate class between Hermitian
Hamiltonians commonly describing closed systems (i.e. bound states) and non-Hermitian Hamiltonians which
are peculiar to resonance phenomena (i.e. open systems) where they naturally appear (see, for example,
Ref. [143]). Note that, here, we only consider bound states in closed systems.

�e textbook example of PT -symmetric Hamiltonian is [122]

H = p2 + ix3, (2)

which has been studied exhaustively by Bender and coworkers [122, 140–142, 144–152]. Although obviously
complex, this Hamiltonian has a real, positive spectrum of eigenvalues, none of them being complex!

Figure 3: Topological di�erences between conical intersec-
tions (le�) and exceptional points (right).

By generalising the Hamiltonian (2) to the more gen-
eral parametric family of PT -symmetric Hamiltoni-
ans [122]

H = p2 + x2(ix)ε, ε ∈ R, (3)

one discovers a more complex structure (see Fig. 2).
It has been observed [122] and proved [153] that, for
ε ≥ 0, the Hamiltonian (3) has an entirely positive
and real spectrum, while for ε < 0, there are some
complex eigenvalues which appear as complex conju-
gate pairs. More speci�cally, in particular regions of
parameter space, some eigenvalues coalesce and disappear by forming a pair of complex conjugate eigenvalues.
�e region where some of the eigenvalues are complex is called broken PT -symmetric region (i.e. some of
the eigenfunctions of H are not simultaneously eigenfunctions of PT ), while the region where the entire
spectrum is real is named unbroken PT -symmetric region. It turns out that the parameter values where the
symmetry breaking occurs (ε = 0 in Fig. 2) are just those values where exceptional points appear.

b.2 Exceptional points

Exceptional points (EPs) [154–157] are non-Hermitian analogs of conical intersections (CIs) [158] where
two states become exactly degenerate. CIs are ubiquitous in non-adiabatic processes and play a key role in
photochemical mechanisms. In the case of auto-ionizing resonances, EPs have a role in deactivation processes
similar to CIs in the decay of bound excited states. Although Hermitian and non-Hermitian Hamiltonians are
closely related, the behaviour of their eigenvalues near degeneracies is starkly di�erent (see Fig. 3). In order
to highlight these di�erences, we propose to consider the following 2× 2 Hamiltonian commonly used in
quantum chemistry

H =

(
ε1 λ
λ ε2

)
, (4)
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which represents two states of energies ε1 and ε2 coupled with a strength of magnitude λ. �is Hamiltonian
could represent, for example, a minimal-basis con�guration interaction with doubles (CID) for the hydrogen
molecule [159].
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-�

�
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�

Figure 4: Energies, as given by Eq. (5), of the
Hamiltonian (4) as a function of λ with ε1 =
−1/2 and ε2 = +1/2.

For real λ, the Hamiltonian (4) is clearly Hermitian, and it be-
comes non-Hermitian for any complex λ value. Its eigenvalues
are

E± =
ε1 + ε2

2
± 1

2

√
(ε1 − ε2)2 + 4λ2, (5)

and they are represented as a function of λ in Fig. 4. One notices
that the two states become degenerate only for a pair of complex
conjugate values of λ

λEP = ±i
ε1 − ε2

2
, with energy EEP =

ε1 + ε2

2
, (6)

which correspond to square-root singularities in the complex-
λ plane (see Fig. 4). �ese two λ values, given by Eq. (6), are
the so-called EPs and one can clearly see that they connect the
ground and excited states. Starting from λEP, two square-root
branch cuts run on the imaginary axis towards ±i∞. In the real
λ axis, the point for which the states are the closest (λ = 0) is
called an avoided crossing and this occurs at λ = Re(λEP). �e
“shape” of the avoided crossing in linked to the magnitude of
Im(λEP): the smaller Im(λEP), the sharper the avoided crossing
is.

Around λ = λEP, Eq. (5) behaves as [143]

E± = EEP ±
√

2λEP
√

λ− λEP, (7)

and following a complex contour around the EP, i.e. λ = λEP +
R exp(iθ), yields

E±(θ) = EEP ±
√

2λEPR exp(iθ/2), (8)

and we have

E±(2π) = E∓(0), E±(4π) = E±(0). (9)

�is evidences that encircling non-Hermitian degeneracies at EPs leads to an interconversion of states, and
two loops around the EP are necessary to recover the initial energy. Additionally, the wave function picks up a
geometric phase (also known as Berry phase [160]) and four loops are required to recover the starting wave
function. In contrast, encircling Hermitian degeneracies at CIs introduces only a geometric phase while leaving
the states unchanged. More dramatically, whilst eigenvectors remain orthogonal at CIs, at non-Hermitian EPs
the eigenvectors themselves become equivalent, resulting in a self-orthogonal state [143]. Exceptional points

are going to be our gateway to excited states. Moreover, as we shall discuss later, although EPs usually
lie o� the real axis, these singular points are intimately related to the convergence properties of perturbative
methods and avoided crossing on the real axis are indicative of singularities in the complex plane.

b.3 Complex adiabatic connection

-4 -2 0 2 4
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Figure 5: Energies (in hartree) of the
di�erent HF solutions as functions of the
e-e interaction strength λ.

In one of our recent paper [161], using holomorphic Hartree-Fock
(h-HF) [162–164] as an analytic continuation of conventional HF the-
ory, we have demonstrated, on a very simple model, that one can
interconvert states of di�erent symmetries and natures by following
well-de�ned contours in the complex λ-plane, where λ is the strength
of the electron-electron (e-e) interaction. In particular, by slowly vary-
ing λ in a similar (yet di�erent) manner to an adiabatic connection
in DFT (we do not enforce a density-�xed path), one can “morph”
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a ground-state wave function into an excited-state wave function
via a stationary path of HF solutions [165]. In such a way, we could
obtain a doubly-excited state wave function starting from the ground
state wave function. One of the fundamental discovery we made
was that Coulson-Fisher points (where multiple symmetry-broken
solutions coalesce) play a central role and can be classi�ed as quasi ex-
ceptional points, as the wave functions do not become self-orthogonal.
�e �ndings reported in Ref. [161] represent the very �rst study of
non-Hermitian quantum mechanics for the exploration of multiple
solutions at the HF level. It perfectly illustrates the deeper topology
of electronic states revealed using a complex-scaled e-e interaction.
�rough the introduction of non-Hermiticity, we have provided a more general framework in which the
complex and diverse characteristics of multiple solutions can be explored and understood. �is proof of

concept study will serve as a kick-starter for the PTEROSOR project. Below, we provide further details
on how it can be done.

A proof of concept using a simple model. Let us consider a very simple model system consisting of two
opposite-spin electrons interacting through the long-range Coulomb potential but con�ned to the surface of
a sphere of radius R (which will be set to unity for convenience). Moreover, let us consider only two basis
functions: a s-type orbital “s” and a p-type orbital “pz”. We have λ = 0 for the non-interacting system and
λ = 1 for the physical (i.e. interacting) system. �e “two-electrons-on-a-sphere” paradigm (see Ref. [166] for
more details) possesses a number of interesting features [166–169], and it can be seen as a unique theoretical
laboratory to test various theoretical methods [169].

Here, we wish to illustrate how one can obtain the restricted HF (RHF) doubly-excited state p2
z (at λ = 1)

starting from the RHF ground state con�guration s2 (also at λ = 1). Similar to the H2 molecule, we de�ne a
unrestricted HF (UHF) wave function

ΨUHF(θ1, θ2) = ϕ(θ1)ϕ(π − θ2), (10)

and its associated energy as

EUHF(χ, λ) = (1− cos 2χ) + (λ/75)(67− 6 cos 2χ + 14 cos 4χ), (11)

where the spatial orbital is
ϕ = s cos χ + pz sin χ, (12)

χ is the mixing angle between the two basis functions, θi is the polar angle of the ith electron. For χ = 0 and
π/2, we recover the RHF s2 ground state and the p2

z doubly-excited state with respective energies Es2

RHF(λ) = λ

and Ep2
z

RHF(λ) = 2 + 29λ/25. �ey are represented, as a function of λ, by the black and green solid lines in
Fig. 5. By ensuring the stationarity of the UHF energy, i.e., ∂EUHF

/
∂χ = 0, one gets

EUHF(λ) = −75/(112λ) + 25/28 + 59λ/84. (13)

For λ > 3/2, the UHF wave function is a real-valued “symmetry-broken” UHF (sb-UHF) solution of the
ground-state RHF wave function, while it is a real-valued sb-UHF solution of the excited RHF wave function
for λ < −75/62 (purple dashed lines in Fig. 5). For −75/62 < λ < 3/2, the UHF solution is a holomorphic
UHF (h-UHF) solution with pure imaginary coe�cients (orange do�ed lines in Fig. 5). Its energy, though, still
given by Eq. (13), stays real. �ese energies are represented in Fig. 5 as functions of λ where one can observe
two di�erent regimes: the repulsive regime (λ > 0) and the a�ractive regime (λ < 0). �e Coulson-Fischer
points corresponding to the λ values where the RHF and sb-UHF solutions coalesce are located at the “kissing”
points of Eq. (13) with the ground and excited RHF states (black dots in Fig. 5). Note that the h-UHF energy
is singular at λ = 0 due to the self-orthogonality phenomenon (see Chapter 9 of Ref. [143] for a detailed
discussion).

�e key observation is that the h-UHF solution is a ground state wave function in the repulsive regime
but becomes, a�er going through λ = 0, an excited state wave function, as shown in Fig. 5. �is can
be evidenced looking at the number of nodes of the wave function. �erefore, similar to the adiabatic
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Figure 6: Real (le�) and imaginary (center and right) components of the mixing angle χ for the two degenerate sb-UHF
solutions as a function of the real and imaginary parts of λ. �e colouring indicates the phase of χ. Following a path
once around the branch point at λ = 3/2 interconverts the two sb-UHF solutions (solid red), whilst completing a second
rotation returns the solutions to their original states (dashed red). �e adiabatic contour enabling a smooth transition
from the ground state to the excited state is represented by the solid blue curve.

connection in DFT, by constructing a complex adiabatic path from the repulsive to the attractive

regime (i.e. slowly varying the e-e strength from one point to the other), one can “morph” a ground

state wave function into an excited state wave function. However, because of the singularity of the
holomorphic energy at λ = 0, one cannot stay on the real axis to connect the repulsive and a�ractive states,
i.e. it does not provide a smooth transition of the wave function coe�cients. Luckily, we know, thanks to
complex analysis, that an alternative way of ge�ing from positive to negative real numbers is to follow a
contour around the logarithmic branch cut running from the repulsive Coulson-Fischer point (see Fig. 6). In
such a way, one can ensure a smooth transition of the wave function coe�cients from the repulsive to the
a�ractive states.

-3 -2 -1 0 1 2 3
-4

-2

0

2

4

Figure 7: Complex adiabatic connection path followed to obtain the
physical transition s2 → p2

z (at λ = 1).

�e complex adiabatic path followed to
obtain the physical transition s2 → p2

z (at
λ = 1) is shown in Fig. 7. Starting on the
RHF ground state wave function at λ = 1,
one increases λ in order to reach the re-
pulsive Coulson-Fischer (branch) point at
λ = 3/2. From this point, one follows
the complex contour represented in the
right panel of Fig. 7 in order to avoid the
branch cut running along the real axis. Do-
ing so, one ends up on the excited sb-UHF
state where one can then increase λ up
to the a�ractive Coulson-Fischer point at
λ = −75/62. From here, one can adiabat-
ically follow the p2

z RHF state up to λ = 1,
completing the complex adiabatic connection path.

b.4 Work plan

PTEROSOR is organised in 4 work packages (WPs), each of them being divided in well-de�ned tasks. �ese
work packages are largely independent although WP2 and WP3 will bene�t from the theoretical advances
accomplished during WP1. �e PTEROSOR team will carry out all the tasks under my supervision. �e
aforementioned analytic continuation of quantum chemistry methods puts forward novel strategies to study
excited states requiring the design of novel computational tools and methods. �is will be addressed in the
�rst three work packages. WP4 deals with their implementation in the electronic structure code qantum
package which is currently being developed in our team.
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b.4.1 WP1: Single-determinant methods

�e �rst work package proposes to study the so-called single-determinant methods such as HF and DFT. We
believe that it is paramount to thoroughly “dissect” these two methods as HF theory performs a pivotal role in
quantum chemistry providing a mean-�eld platform upon which electron correlation can be computed, and
DFT is indisputably the most widely-used method in electronic structure calculations.

Task 1.1— Further understanding of the HF energy landscape. Our primary task is to further under-
stand the plethora of h-HF solutions forming this intricate energy landscape. To do so, we propose to use the
same system as in Ref. [161] (which consists of two electrons restricted to remain on the surface of a sphere
[166, 170]) and to push further its analysis. �is simple system, also known as spherium, provides a unique
paradigm to study electronic correlation e�ects from the weakly correlated regime to the strongly correlated
regime, since the mathematics are simple while the physics is rich [166–169, 171–182]. In particular, the study
of Ref. [161] only considers a minimal basis and a certain type of symmetry-broken solutions. We are eager to
consider a larger number of basis functions and more complex symmetry-breaking processes. Moreover, we
are contemplating studying other systems like the Hubbard model as well as small diatomic molecules to see
how transferable are the results obtained during this task. Using a (hyper)spherical parametrisation of the
occupied orbital [see Eq. (12)], we should be able to investigate, in details, the di�erent h-HF solutions in the
a�ractive and repulsive regimes for larger numbers of basis functions. For example, in the three-basis function
case (adding a dz2 basis function), this parametrisation reads

ϕ = s cos φ sin θ + pz sin φ sin θ + dz2 cos θ. (14)

�is procedure can be easily generalised to larger numbers of basis functions. Moreover, we would like to
consider symmetry-broken RHF solutions, which have the form

ΨRHF(θ1, θ2) = ϕ(θ1)ϕ(θ2). (15)

�ey might evidence some new hidden connections between states of di�erent natures. For example, it might
be possible to link RHF and UHF solutions by following new complex contours. Of particular interest is a
deeper understanding of the quasi-EPs in λ-space where symmetry-broken solutions coalesce. Some solutions
may not actually exhibit EPs and some of them may be o� the real axis. Moreover, it might be possible to
have solutions which are never real and stay complex for any value of λ. �eir physical signi�cance will
be investigated. At this stage, we claim that di�erent �avours of quasi-EPs points may exist depending on
the nature of the energy function before and a�er the EP. For example, some solutions might be real in the
sb-UHF region and become complex when they enter the holomorphic region. We believe that, in that case,
the topology of the EP might di�er from what we have already observed. Finally, it is crucial to understand
the interconnection between excited states. Are they forming a well-organised structure like in Fig. 1 or a
more complex structure with more subtle connections between excited states? In Ref. [171], we have observed
that the excited states of Wigner crystals are interconnected within the HF manifold, forming a “fountain” of
saddle points.

Risk level: LOW. �e risks for this task are low as it is guaranteed that we are going to discover some
interesting new features. However, we might face technical di�culties due to the exponential increase of the
number of HF solutions with respect to the number of basis functions.

Task 1.2— Towards a PT -symmetric theory for single-determinant methods. Holomorphic HF is a
very useful tool which provides an analytic continuation of conventional HF theory. However, it is not per se a
PT -symmetric theory. �e �rst part of Task 1.2 will be to study in which conditions h-HF is a PT -symmetric
theory. �e important factor for consideration is the symmetry of the one-electron e�ective Hamiltonian,
the Fock operator. �e challenge is therefore to identify the conditions for a PT -symmetric Fock operator.
Moreover, because the HF wave function is built as a Slater determinant of the eigenfunctions of the Fock
operator, the link between the symmetry of the Fock operator and the overall HF wave function is not trivial.
Another possibility would be to directly study the symmetry of the one-electron density which completely
determines the symmetry of the Fock operator. To do so, we may have to work in a spinor basis as the PT
operator also reverses orbitals and spin angular momentum in the case of fermions Another related question
would be to know whether PT can be de�ned as a genuine symmetry, similar to spatial and spin symmetries.
In most practical applications, the HF wave function is required to display at least some of the symmetries of
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the exact wave function. For example, RHF is chosen to be an eigenfunction of the spin operators S2 and Sz. In
UHF, the wave function is allowed to break symmetry under S2 but not Sz. Yet another HF �avour, generalised
HF (GHF), imposes none of the correct symmetries [183]. During this task we would like to answer the
following question: can PT symmetry be considered as a new type of symmetry one can break similar to the
symmetries associated with S2 and Sz? Related to this point, we note that symmetry-breaking and restoration
techniques are promising methods to catch strong correlation at polynomial cost and are actively developed
[184–187]. �e main goal of Task 1.2 is to design a proper PT -symmetric version of quantum chemistry
single-determinant methods. To do so, we believe that the crux lies in the de�nition of the inner product
[142]. Indeed, in the case of PT -symmetric Hamiltonians, in order to obtain a well-de�ned quantum theory,
one has to be extra careful in the de�nition of the metric to ensure positive probabilities. To obtain a proper
quantum theory, Bender et al. [145] have shown that one needs to introduce a new operator called C which
is de�ned, a posteriori, by the eigenfunctions ϕi of the problem, i.e. C = ∑i |ϕi〉〈ϕi|. �is operator de�nes
the inner product and one has 〈a|b〉CPT = 〈CPT a|b〉. For example, in h-HF theory [162–164], the complex
conjugation of orbital coe�cients is simply removed from the HF equations, resulting in a non-Hermitian
Hamiltonian and an energy function that is complex analytic with respect to the orbital coe�cients. �is
strategy is not always suitable to ensure PT -symmetric requirements. �e very exciting feature here is that
we may have to use a di�erent inner product depending on the type of symmetry-broken solutions!

Risk level: HIGH. �e risks associated with this task are high as it is very exploratory and we may struggle
to design a PT -symmetric version of HF and DFT. Nonetheless, in the worst-case scenario, it will provide new
insight into symmetry-breaking processes and their multiple solutions. �e reward will be very high in case of
success as it will deliver a new type of single-determinant method with very peculiar and mathematically-sound
properties.

Task 1.3— A time-independent DFT formalism for excited states. Within Kohn-Sham (KS) DFT, the
standard paradigm to obtain excited states is TD-DFT [32], and, in its adiabatic approximation, it yields reliable
excitation spectra with great e�ciency in many cases. Nevertheless, fundamental de�ciencies have been
reported in various cases [34–39, 41–47]. More importantly here, TD-DFT is well known to be unable to
describe certain types of excited states such as charge-transfer [36–40], Rydberg [35, 41–44] and doubly-excited
[42, 46, 47, 121] states. Some of these failures can be tracked down to the inadequacy of the ground state KS
orbitals to describe these excited states [188–190]. Similarly to HF, KS-DFT exhibits many broken-symmetry
solutions that one can follow to walk through the complex plane via a complex adiabatic connection. �erefore,
by extending our work of Ref. [161] and detailed above, we propose to take advantage of the holomorphic
and/or PT -symmetric version (see Task 1.2) of KS-DFT to obtain excited states of di�erent natures. Using this
time-independent formalism, we are curious to known if the interconnection between ground and excited
states is topologically di�erent depending on the nature of the excited states. Obviously, this kind of formalism
will not be adequate for all types of excited states. Indeed, open-shell singlet states are, by nature, badly
described by single-determinant methods. To palliate this, we propose to investigate whether or not a complex
adiabatic connection formalism could be applied to DFT for ensembles [62–69] for which a generalised adiabatic
connection has been developed [191]. Also, we believe that it would be particularly interesting to study the
in�uence of the quality of the exchange-correlation (xc) functional on the location of the Coulson-Fisher points.
Indeed, the universal, exact xc functional should never break any symmetry, implying the total absence of
these EPs. Consequently, the location of the EPs could be a way of probing the accuracy of the xc functionals:
these points should move towards ±∞ when the xc funcitonal becomes more accurate.

Risk level: MEDIUM. �e risks for this task are mild but the reward is very high as it could deliver a new
way of computing excitation energies at a low computational cost using the DFT machinery.

Task 1.4— Following stationary states in the complex plane. From a strict computational point of view,
converging single-determinant calculations on excited states is not a straightforward task as the variational
principle will always lean towards the lowest-energy solution. Following excited-state solutions when one
varies λ (or other parameters such as the bond length) is even harder. �erefore, peculiar strategies must be
designed in order to stay on the desired solution. Moreover, in the complex plane, due to the lack of ordering,
one has to employ a complex extension of the variational principle [143]. �erefore, Task 4.1 deals with the
development of a pragmatic yet e�cient method to following stationary states in the complex plane. More
explicitly, in the spirit of the maximum overlap method [189, 190, 192], we propose to follow a given solution
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by populating the orbitals resembling the most to the previous iteration. �is can be done by computing the
overlap between the previous and current set of molecular orbitals. �is procedure has been shown to be fairly
robust and does not involve any additional computational cost. However, such method must be adapted to
the complex domain. We also plan on adapting a recent algorithm to locate EPs for our purposes [193, 194].
Indeed, locating EPs is going to be crucial in the present context as they are going to be points where one can
link ground and excited states.

Risk level: LOW. �e principal risks are of technical order here. Self-orthogonal states might bring some
complications while following states or locating EPs.

b.4.2 WP2: Perturbation theory

�e main goals of PTEROSOR’s second work package is to gain further insight into the convergence properties
of perturbation theory and to investigate how suitable are non-Hermitian Hamiltonians as starting points.

Task 2.1— Towards a better understanding of perturbation theory. Within perturbation theory, the
Schrödinger equation is usually rewri�en as

HΨ(λ) = (H(0) + λH(1))Ψ(λ) = E(λ)Ψ(λ), with E(λ) =
∞

∑
k=0

λkE(k). (16)

However, it is not unusual that the series E(λ) has a radius of convergence |λ0| < 1. �is means that the
series is divergent in the domain |λ| < |λ0|, hence for the physical system at λ = 1. As eluded above, |λ0| is
determined by the location of the singularity of E(λ) closest to the origin. �ese singularities are nothing
but EPs at λ0 and λ∗0 . In the �rst task of WP2, we propose to thoroughly investigate the connection between
Coulson-Fisher quasi-EPs and the radius of convergence of Møller-Plesset perturbation theory (MPPT). MPPT
has the particularity of relying on a HF wave function as a zeroth-order wave function. However, the �avour of
HF one can select (restricted, unrestricted, generalised, holomorphic, . . . ) is up for grabs, and the convergence
properties of the MPPT series will drastically change depending on this choice. For example, MPPT calculations
based on UHF wave functions have shown to be slowly convergent due to spin contamination while RHF-
based MPPT calculations can be divergent [195, 196]. Although MPPT is widespread in the community, its
convergence properties have not, to the very best of our knowledge, a�racted much a�ention [197–199]. We
believe that they deserve greater understanding, particularly in a non-Hermitian se�ing. Following Olsen’s
footsteps [198], we will use a simple 2× 2 model to start with, and slowly build up on these results. Moreover,
we are interested in testing some of the summation techniques for divergent series, such as Padé approximant,
Shanks transformation and Richardson extrapolation [200].

Risk level: MEDIUM. �e risks associated with this task are mild, and in any scenario, this will provide a
greater understanding of perturbation theory in general.

Task 2.2— Hermitian vsPT -symmetric Møller-Plesset perturbation theory. Mostafazadeh has shown
that, for any PT -symmetric Hamiltonian H , there exists an antisymmetric Hermitian operator Q such as the
operator

h = e−Q/2HeQ/2 (17)

is Hermitian [201–204]. In plain words, a non-Hermitian Hamiltonian that has an unbroken PT -symmetry
can be converted by means of a similarity transformation to a physically equivalent Hermitian Hamiltonian.
Unfortunately, it has been observed that the Hermitian operator h is sometimes much more complicated than its
PT -symmetric version H . For instance, a local PT -symmetric Hamiltonian can be converted to a highly non-
local Hamiltonian via such similarity transform [148, 204, 205]. �is hints that the PT -symmetric Hamiltonian
might be a more convenient object to work with than its Hermitian counterpart. In the context of MPPT,
we propose to answer the following question: is the non-Hermitian Hamiltonian more suitable as reference
Hamiltonian H(0) than the Hermitian one? Indeed, as mentioned in Task 2.1, the radius of convergence is
intimately connected to the location of singularities in the complex plane; these singularities are, themselves,
linked to the choice of H(0). Really, it depends on our ability of selecting a zeroth-order Hamiltonian such as H
does not have any EP inside the unit λ circle. A di�erent choice — Hermitian or not — would then move these
singularities to a di�erent location with a direct consequence on the radius of convergence. Two questions
have to be addressed regarding the choice of a non-Hermitian zeroth-order Hamiltonian: i) are the terms E(k)
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of the perturbative series easier/cheaper to compute? ii) is the radius of convergence consistently larger? As
in Task 2.1, we will consider a 2× 2 model as a �rst, simple example and slowly increase the complexity of our
problem. �e e�ect and nature of the similarity transform will be thoroughly investigated as it is intimately
connected to the C operator de�ned above ensuring a physically-sound inner product for PT -symmetric
Hamiltonians.

Risk level: MEDIUM. Similar to the previous task, the risk level here is mild and the reward is high. Finding
a new staring point for perturbation theory with a larger radius of convergence could potentially be highly
bene�cial to the electronic structure community. Moreover, similarity transform-based methods are steadily
appearing in quantum chemistry and the present results might drive further the development of such methods.

b.4.3 WP3: Correlated methods

�e third work package deals with the so-called correlated or post-HF methods which takes explicitly into
account the correlation between electrons.

Task 3.1— Analytic continuation of coupled cluster methods. �e CC family of methods o�ers a
powerful wave function approach for the description of most chemical systems and is well regarded as the
gold standard of quantum chemistry. Similar to HF, CC methods, because of their non linearity, exhibit a large
manifold of genuine real and complex solutions exhibiting unbroken or broken symmetry [206]. In the �rst
task of WP3, we propose to apply a similar complex adiabatic connection as the one described in Task 1.1 (see
also Ref. [161]) to CC methods. �is would allow us to access, through the complex plane, excited states at
the CC level without the need of a time-dependent formalism such as EOM-CC. In particular, we are eager to
know if the obtention of CC excited states via the complex plane could potentially cure some of the drawbacks
of EOM-CC. For example, it is possible to rely on high-level truncation of EOM-CC in order to capture double
excitations as shown in recent studies [111, 121, 207]. However, in order to provide a satisfactory level of
correlation for such states, one must, at least, introduce contributions from the triple excitations. In practice,
this is o�en di�cult as the scalings of CC3, EOM-CCSDT, and EOM-CCSDTQ are N7, N8 and N10, respectively
(where N is proportional to the size of the system), obviously limiting the applicability of this strategy to
small molecules. In order to walk serenely on complex adiabatic paths, we must create an e�ective analytic
continuation of CC methods. We believe that three main strategies could be potentially followed to achieve
such task. First, one could perform an analytic continuation of the HF orbitals and energies (as described above)
and perform a conventional CC calculation on top of it. �e second option would be to analytically continue
the CC amplitudes (instead of the orbital coe�cients), while retaining a conventional set of HF orbitals and
energies. �ird, one could combine the �rst two options and analytically continue both the HF orbitals and
the CC amplitudes. We will obviously investigate all these options. Moreover, similar to Task 1.2, we will
analyse if a PT -symmetric version of CC can be designed. At this stage, we think that a way of designing a
PT -symmetric CC method is to make the coupling between states pure imaginary. Our preliminary analysis
based on a model system has shown that it is possible to link ground and excited states in such a way. �e
points where the electronic states become degenerate correspond to PT phase transitions.

Risk level: HIGH. �is particular task is one of the most risky task of the PTEROSOR project. However, it
is also one of the most rewarding. Moreover, our very preliminary investigation is very encouraging and we
are eager to push further this analysis if the present proposal is funded.

G
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Σ

εHF/KSεGW

�Self-consistency
Figure 8: Hedin’s pentagon
[208]: the red path shows the self-
consistent GW process which by-
passes the computation of the ver-
tex function Γ.

Task 3.2— Fixing up GW. �e idea behind Green’s function methods,
and more particularly its so-called GW approximation, is to transform an
unsolvable many-electron problem into a set of non-linear one-electron
equations. GW allows an explicit incorporation of electron correlation via
a sequence of self-consistent steps [208], known as Hedin’s equations (see
Fig. 8). Important experimental properties such as ionisation potentials,
electron a�nities as well as spectral functions, which are related to direct
and inverse photo-emission, can be obtained directly from the Green’s
function [209, 210]. Historically, GW methods have been mostly applied to
solids [209]. However, studies on atoms and molecules have been �ourishing
in the past ten years [211, 212]. Nowadays, e�cient implementations of GW
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methods for localised basis sets are available in several so�wares [212–214],
and we have recently implemented GW in qantum package in order to
perform such types of calculations [111, 215]. �ere exists many �avours
of GW. �e simplest and most popular variant is G0W0 [216], which has
been widely used in the literature [211]. Although G0W0 provides accurate
results, due to its perturbative nature, it is strongly starting-point dependent.
In the present context, we will focus our interest on “quasiparticle self-
consistent” GW (qsGW) [217–219], where one updates both the quasiparticle energies and the corresponding
“Dyson” orbitals. One of the undesirable feature of qsGW is the brutal “Hermitisation” (via symmetrisation) of
the naturally non-Hermitian self-energy: Σ̃ = (Σ + Σ†)/2. In Task 3.2, we are interested to know what are the
consequences of this brute force symmetrisation. Our plan is to treat the non-Hermitian part of the self-energy
Σ − Σ̃ as a perturbation of its Hermitian part Σ̃. Using this straightforward decomposition, one can show,
using perturbation theory, that the �rst non-vanishing correction is obtained at second order in perturbation
at no extra cost as all the required quantities have been already calculated during the diagonalisation of Σ̃.
More precisely, one can show that all odd order contributions are zero, and only even orders contribute.
Resummations via Padé approximant techniques will also be investigated [220].

Risk level: MEDIUM. We believe that the risks associated with this task are mild. One potential issue
would be to face a divergent perturbative series. However, as mentioned above, tools do exist in order to sum
divergent series. GW methods are slowly becoming mainstream in chemistry and it is important to pursuit
their development and be�er understand their underlying approximations.

b.4.4 WP4: Implementation

A large amount of time and e�ort will be dedicated to the e�cient and parallel im-
plementation of the ideas developed in WP1, WP2 and WP3. �is last work package
is fairly independent of the �rst three and will run continuously throughout the
�ve years of the project. During the last few years, we have developed in our team
an open-source, multi-purpose and robust programming environment for quantum
chemistry named qantum package. Its current capabilities range from high-level
ab inito methods (such as selected CI [103, 111, 112, 121]) to range-separated DFT
methods [221], as well as multi-reference methods [222–224]. qantum package
strives to allow easy implementation, collaborative work and experimentation of new
methods, while making parallel computation as simple and e�cient as possible on modern supercomputer
architectures. �e second version of qantum package has just been released and the associated article
detailing its various features is currently under preparation. All the new features developed during the

lifetime of PTEROSOR will be implemented in qantum package. �is task is essential to ensure that
the theoretical advances emerging from this proposal are translated into useable so�ware that will bene�t the
electronic structure community.

b.5 Feasibility and risk assessment

PTEROSOR is a risky project which, I believe, lies perfectly in a “high risk/high gain” philosophy. �e use
of non-Hermitian Hamiltonians in the computation of excited states is in its infancy, and many exciting
properties remain to be found and understood. In the worst-case scenario, PTEROSOR will signi�cantly
advance our knowledge in this pristine research �eld. In the best-case scenario, it will deliver to the entire
scienti�c community a completely novel computational tool to study excited states. Here, we propose to
embrace a global and detailed study of non-Hermitian quantum mechanics for, in particular, the determination
of excited-state properties.

c Resources

c.1 PTEROSOR’s team

�e research team will be composed by the PI, 3 PhD students, 4 postdocs and two CNRS researchers (Anthony
Scemama and Michel Ca�arel) who will devote 15% and 10% of their time to the PTEROSOR project. PhDs
and postdocs will be commi�ed to the project for three and two years (respectively). Each group member will
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be briefed about the progress of the project in a monthly meeting. I will assign to each PhD student a postdoc
as a mentor who will help them with their day-to-day issues. I will also have weekly research meetings with
each of them to follow the progress of their tasks. �e PTEROSOR team will also include two complementary
CNRS researchers from the Laboratoire de Chimie et Physique �antiques (LCPQ). �e three of us are actively
collaborating on various subjects [103, 109–112, 121].

– Anthony Scemama (research engineer) is an expert in information technology in general, and in HPC in
particular. Dr Scemama’s involvement is essential to ensure that the theoretical advances emerging from
PTEROSOR are translated into useable, highly e�cient and sustainable so�wares that will bene�t the local
and global scienti�c community.

– Michel Ca�arel is an expert in correlated methods where he has made several seminal contributions in the
last 25 years. His mentoring and experience will be extremely valuable to ensure a successful outcome for
this ambitious research project.

c.2 Task distribution

Five-year research plan of PTEROSOR

2020 2021 2022 2023 2024

Work package 1

Task 1.1: PhD 1
Task 1.2: Postdoc 1
Task 1.3: Postdoc 4

Task 1.4: PhD 1
Work package 2

Task 2.1: Postdoc 2
Task 2.2: PhD 2

Work package 3

Task 3.1: PhD 3
Task 3.2: Postdoc 3

Work package 4

WP1: We will devote one PhD student (PhD 1) and two postdocs (Postdoc 1 & 4) to the �rst work package.
Task 1.1 and Task 1.2 require a good background in mathematics. �e PhD student and the postdoc will
learn how to use the program Mathematica which will be used to solve di�cult integrals, manipulate large
mathematical expressions and simplify them. �e second half of PhD 1 will be devoted to a more technical
part (Task 1.4) which will require good skills in computer science and knowledge in programming languages
such as Fortran or C++. Postdoc 4 will be entirely dedicated to Task 1.3 which deals with the development of a
time-independent non-Hermitian DFT method. �is will require a fair amount of theoretical work as well as
implementation.

WP2: One PhD student (PhD 2) and one postdoc (Postdoc 2) will be devoted to WP2. Task 2.1, which requires
stronger mathematical skills and experience in perturbative methods will be carried out by Postdoc 2, while
Task 2.2 which will require more time and testing, will be handled by PhD 2. Again, the Mathematica so�ware
will be used during preliminary studies on the simple 2× 2 model. For larger systems, we will develop a
speci�c module in qantum package for implementing our non-Hermitian perturbative methods.

WP3: For the third work package, we will also dedicate one PhD student (PhD 3) and one postdoc (Postdoc
3). In particular, Task 3.1 will require a good knowledge in correlated electronic structure theory and we will
seek a strong PhD candidate for this task. Task 3.2 will be carried out by Postdoc 3 with a good knowledge of
condensed ma�er methods as requirement. A general CC module will be developed in qantum package
speci�cally for Task 3.1, while we will rely on the current GW module for Task 3.2. �e new CC module will
include conventional CC methods as well as the new non-Hermitian variants developed in PTEROSOR.
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WP4: �e fourth work package will run through the entire lifetime of the project. I would like that each PhD
student and postdoc contributes to the implementation of the methods developed in PTEROSOR. Obviously,
this might be weighted accordingly to the personal coding skills of each group member. As mentioned earlier,
Anthony Scemama will be actively involved in WP4 as he is an expert in HPC and information technology in
general.

My tasks involve supervision of the whole project, training of the PhD students and the postdocs, and
reorientation of di�erent parts of the project if necessary. �e whole PTEROSOR team will meet once a week
to review the relevant aspects of the project, and I will meet with each member individually once or twice
a week (depending on the personal advances) to discuss the latest developments. Twice a month, we will
organise Literature Clubs, where we will review the most important papers in the literature that have been
published recently. Every second month, we will also organise a series of lectures to cover certain research
topics. Some people from other groups will also join these discussions. �e size of the team is adequate to
carry out the project and it has been designed in such a way that my whole group (including the current
members) never has more than six people. Because the postdocs will help with the day-to-day tasks of the PhD
students, I am positive I can manage a group of this size. During the third year of the project I will organise
a mid-term workshop. �is workshop will be open to a maximum of 50 people (including the PTEROSOR

team) where I will invite several renowned experts in the �eld to exchange our most recent outcomes and
encourage collaboration with our group. During the last year of PTEROSOR, I will also organise the �nal
conference dedicated to new methodologies for excited states.

PTEROSOR is expected to produce about 25 peer-review papers related with the objectives planned in the
proposal, all of which will be published in an open-access format in the leading journals of the �eld (PRL,
JCTC, PRA, JPCL, PCCP, PRB, JCP, etc.). I will participate in most of the main international conferences of
my �eld (WATOC, ICQC, ACS meetings, etc) and I will encourage the team members to take part too. I have
allocated part of the budget to cover one conference per PhD every year, plus their a�endance at a Summer
School on electronic structure methods (the one organised in Sicily is currently the most adequate one) and
the national meeting of French computational chemists (once every two years). For the postdocs, I encourage
two conferences per year and, if they need further training also their participation at a Summer School. In
addition, the PhD and postdocs will participate in the institute (IRSAMC) joint seminar program and deliver
talks in front of a more general audience. �e whole team will participate in numerous outreach activities
organised by IRSAMC and the LCPQ, which is highly commi�ed to communication and dissemination events
among the general public. We will participate in “Pint of Science” that organises talks for the general public in
local pubs of Toulouse several times a year, as well as other dissemination activities.

c.3 Budget

– Personnel costs: the largest share of resources will be dedicated to salaries.
– PI: the PI is a CNRS researcher and the requested amount corresponds to 75% of his time over �ve years.
– Senior sta�: as stated above, two CNRS employees (Anthony Scemama and Michel Ca�arel) will

partially work on the project. �ey will be actively involved in the co-supervision of students and
postdocs. Anthony Scemama and Michel Ca�arel have agreed to dedicate 15% and 10% of their time to
this ERC project.

– Post-docs: 4 postdocs will be recruited in Toulouse, 8 years in total, with a one-year overlap between
each contract.

– Students: 3 PhDs will be recruited at the LCPQ. A PhD lasts 3 years in France.
– Other direct costs:

– Travels: the PI and his team will have available budget to a�end and travel to international conferences
and workshops: e6 000/year for PI (e30 000), e5000 for the senior sta� (e50 000); e4 000/year for
postdocs (e32 000); e3 000/year for PhDs (e27 000). Overall, this will e95 000 for travel and e37 000 of
fees and (i.e. other costs). �is will cover �ights, accommodation and registration fees for international
conferences, and will allow the PI and his team to travel to major international conferences such as
WATOC (which will be located in Vancouver in 2020).

– Equipment: We do not require any equipment. All the calculations required to successfully complete
this research project will be obtained via CPU allocations from GENCI, CALMIP and CINES. Indeed,
we have access to millions of CPU hours thanks to our successful grants from CALMIP (allocations
2019-18005) and from GENCI-TGCC (Grant A0040801738). For the la�er a�ribution, we have obtained 3
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000 000 CPU hours on the new GENCI machine, Irene. CALMIP’s allocation is also 1 500 000 CPU hours.
– Other: these are constituted of two separate costs: i) organisation of the mid-term workshop: e40 000

(we want to maintain the cost as low as possible for the a�endees so not to screen participations on
the basis of the wealth of their group in such transfer-of-knowledge event); and ii) the �nal conference
dedicated to new methodologies for excited states that will be organised: e55 000 (e30 000 for travels
and lodging of keynote speakers; e25 000 for organisation).

– Publications: �e high-impact journals in chemistry and physics (Nat. Comm., J. Phys. Chem. Le�.,
Phys. Rev. Le�., J. Chem. �eory Comput., etc) are mainly edited by publishers requiring high fees for
open access. �erefore, we decided to dedicate a substantial amount to publication costs (e50 000). �ese
costs could also be used to support cover charges.

Cost Category Total in Euro

Direct

Costs

Personnel

PI 320 820
Senior Sta� 132 755
Postdocs 434 304
Students 351 630
Other 0

i. Total Direct Costs for Personnel (in Euro) 1 239 509
Travel 95 000
Equipment 0

Other goods

and services

Consumables 0
Publications (including Open Access fees), etc. 50 000
Other (see below) 132 000

ii. Total Other Direct Costs (in Euro) 277 000
1 - Total Direct Costs (i + ii) (in Euro) 1 516 509
2 - Indirect Costs (overheads) 25% of Direct Costs (in Euro) 379 127
3a) - Subcontracting Costs (no overheads) (in Euro) 0
3b) - Other Direct Costs with no overheads (in Euro) 0
Total Estimated Eligible Costs (1 + 2 + 3) (in Euro) 1 895 636
Total Requested EU Contribution (in Euro) 1 895 636

Please indicate the duration of project in months: 60
Please indicate the % of working time the PI dedicates to the project over the period of

the grant:

75%
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