OK with appendix

This commit is contained in:
Pierre-Francois Loos 2022-10-03 21:20:06 +02:00
parent b6da6bfd37
commit afac9706af

25
g.tex
View File

@ -724,11 +724,11 @@ Let us define the energy-dependent Green's matrix
The denomination ``energy-dependent'' is chosen here since
this quantity is the discrete version of the Laplace transform of the time-dependent Green's function in a continuous space,
usually known under this name.\cite{note}
The remarkable property is that, thanks to the summation over $N$ up to infinity, the constrained multiple sums appearing in Eq.~\eqref{eq:Gt} can be factorized in terms of a product of unconstrained single sums, as follows
The remarkable property is that, thanks to the summation over $N$ up to infinity, the constrained multiple sums appearing in Eq.~\eqref{eq:Gt} can be factorized in terms of a product of unconstrained sums, as follows
\begin{multline}
\sum_{N=1}^\infty \sum_{p=1}^N \sum_{n_0 \ge 1} \cdots \sum_{n_p \ge 1} \delta_{\sum_{k=0}^p n_k,N+1} F(n_0,\ldots,n_N)
\\
= \sum_{p=1}^{\infty} \sum_{n_0=1}^{\infty} \cdots \sum_{n_p=1}^{\infty} F(n_0,\ldots,n_N).
= \sum_{p=1}^{\infty} \sum_{n_0=1}^{\infty} \cdots \sum_{n_p=1}^{\infty} F(n_0,\ldots,n_N),
\end{multline}
where $F$ is some arbitrary function of the trapping times.
Using the fact that $G^E_{ij}= \tau \sum_{N=0}^{\infty} G^{(N)}_{ij}$, where $G^{(N)}_{ij}$ is given by Eq.~\eqref{eq:Gt}, and summing over the variables $n_k$, we get
@ -738,7 +738,7 @@ Using the fact that $G^E_{ij}= \tau \sum_{N=0}^{\infty} G^{(N)}_{ij}$, where $G^
= {G}^{E,\cD}_{i_0 i_N}
+ \sum_{p=1}^{\infty} \sum_{I_1 \notin \cD_0, \hdots , I_p \notin \cD_{p-1}} \\
\qty[ \prod_{k=0}^{p-1} \mel{ I_k }{ {\qty[ P_k \qty( H-E \Id ) P_k ] }^{-1} (-H)(\Id-P_k) }{ I_{k+1} } ]
{G}^{E,\cD}_{I_p i_N}
{G}^{E,\cD}_{I_p i_N},
\end{multline}
where, ${G}^{E,\cD}$ is the energy-dependent domain's Green matrix defined as ${G}^{E,\cD}_{ij} = \tau \sum_{N=0}^{\infty} \mel{ i }{ \titou{T^N_i} }{ j}$.
@ -1361,6 +1361,7 @@ and
\ee
For a $2\times2$ matrix of the form
\be
\label{eq:2x2_matrix}
H =
\begin{pmatrix}
H_{11} & H_{12} \\
@ -1372,7 +1373,7 @@ Using Eqs.~\eqref{eq:defA1} and \eqref{eq:defA2}, one gets, for $i = 1$ or $2$,
\begin{align}
A_i & = -\frac{H_{12}}{H_{ii}-E},
&
C_i & = \frac{1}{H_{ii}-E} \Psi_i.
C_i & = \frac{1}{H_{ii}-E} \Psi_i,
\end{align}
which finally yields
\be
@ -1382,18 +1383,20 @@ which finally yields
% { (H_{11}-E)(H_{22}-E) - H^2_{12}}
% \\
= \frac{ H_{22}-E}{\Delta} \Psi_1 - \frac{H_{12}}{\Delta} \Psi_2,
\label{final}
\label{eq:final}
\ee
where $\Delta$ is the determinant of $H$.
On the other hand, the quantity $\mel{ 1 }{ \qty(H-E \Id)^{-1} }{ \Psi}$ of the L.H.S of Eq.(\ref{final}) can be directly calculated using the inverse of the $2\times2$ matrix
Alternatively, the quantity $\mel{ 1 }{ \qty(H-E \Id)^{-1} }{ \Psi}$ in the left-hand-side of Eq.~\eqref{eq:final} can be directly calculated using the inverse of the matrix defined in Eq.~\eqref{eq:2x2_matrix}, yielding
\be
{ \qty(H-E \Id)^{-1} }{ |\Psi\rangle}=
\begin{split}
\qty(H-E \Id)^{-1} \ket{\Psi}& =
\frac{1}{H-E \Id} \begin{pmatrix}
\Psi_1 \\
\Psi_2 \\
\end{pmatrix}
= \frac{1}{\Delta}
\\
& = \frac{1}{\Delta}
\begin{pmatrix}
H_{22}-E & - H_{21} \\
- H_{21} & H_{11}-E \\
@ -1401,10 +1404,10 @@ On the other hand, the quantity $\mel{ 1 }{ \qty(H-E \Id)^{-1} }{ \Psi}$ of the
\begin{pmatrix}
\Psi_1 \\
\Psi_2 \\
\end{pmatrix}
\end{pmatrix}.
\end{split}
\ee
As seen, the first component of the vector ${ \qty(H-E \Id)^{-1} }{ |\Psi\rangle}$ is identical to the one given in
Eq.~\eqref{final}, thus confirming independently the validity of this equation.
As readily seen, the first component of the vector $\qty(H-E \Id)^{-1}\ket{\Psi}$ is identical to the one given in Eq.~\eqref{eq:final}, thus confirming independently the validity of this equation.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\bibliography{g}