saving work
This commit is contained in:
parent
061430e7e1
commit
462c33c1b0
44
g.tex
44
g.tex
@ -456,7 +456,7 @@ The time-averaged contribution of the on-state weight can then be easily calcula
|
|||||||
Details of the implementation of this effective dynamics can be in found in Refs.~\onlinecite{Assaraf_1999B} and \onlinecite{Caffarel_2000}.
|
Details of the implementation of this effective dynamics can be in found in Refs.~\onlinecite{Assaraf_1999B} and \onlinecite{Caffarel_2000}.
|
||||||
|
|
||||||
%=======================================%
|
%=======================================%
|
||||||
\subsection{General domains}
|
\subsection{Multi-state domains}
|
||||||
\label{sec:general_domains}
|
\label{sec:general_domains}
|
||||||
%=======================================%
|
%=======================================%
|
||||||
|
|
||||||
@ -584,21 +584,25 @@ We then have
|
|||||||
\qty[ \prod_{k=0}^{p-1} \mel{ I_k }{ \qty(T_{I_k})^{n_k-1} F_{I_k} }{ I_{k+1} } ]
|
\qty[ \prod_{k=0}^{p-1} \mel{ I_k }{ \qty(T_{I_k})^{n_k-1} F_{I_k} }{ I_{k+1} } ]
|
||||||
G^{(n_p-1),{\cal D}}_{I_p I_N}
|
G^{(n_p-1),{\cal D}}_{I_p I_N}
|
||||||
\end{multline}
|
\end{multline}
|
||||||
|
where $\delta_{i,j}$ is a Kronecker delta.
|
||||||
|
|
||||||
This expression is the path-integral representation of the Green's matrix using only the variables $(\ket{I_k},n_k)$ of the effective dynamics defined over the set of domains.
|
This expression is the path-integral representation of the Green's matrix using only the variables $(\ket{I_k},n_k)$ of the effective dynamics defined over the set of domains.
|
||||||
The standard formula derived above, Eq.~\eqref{eq:G} may be considered as the particular case where the domain associated with each state is empty,
|
The standard formula derived above [see Eq.~\eqref{eq:G}] may be considered as the particular case where the domain associated with each state is empty,
|
||||||
In that case, $p=N$ and $n_k=1$ for $k=0$ to $N$ and we are left only with the $p$-th component of the sum, that is, $G^{(N)}_{I_0 I_N}
|
In that case, $p=N$ and $n_k=1$ for $0 \le k \le N$ and we are left only with the $p$th component of the sum, that is, $G^{(N)}_{I_0 I_N}
|
||||||
= \prod_{k=0}^{N-1} \mel{ I_k }{ F_{I_k} }{ I_{k+1} } $ where $F=T$.
|
= \prod_{k=0}^{N-1} \mel{ I_k }{ F_{I_k} }{ I_{k+1} } $ where $F=T$.
|
||||||
|
|
||||||
To express the fundamental equation for $G$ under the form of a probabilistic average, we write the importance-sampled version of the equation
|
To express the fundamental equation for $G$ under the form of a probabilistic average, we write the importance-sampled version of the equation
|
||||||
\be
|
\begin{multline}
|
||||||
\label{eq:Gbart}
|
\label{eq:Gbart}
|
||||||
{\bar G}^{(N)}_{I_0 I_N}={\bar G}^{(N),{\cal D}}_{I_0 I_N} +
|
\bar{G}^{(N)}_{I_0 I_N}=\bar{G}^{(N),\cD}_{I_0 I_N} +
|
||||||
\sum_{p=1}^{N}
|
\sum_{p=1}^{N}
|
||||||
\sum_{|I_1\rangle \notin {\cal D}_{I_0}, \hdots , |I_p\rangle \notin {\cal D}_{I_{p-1}}}
|
\sum_{\ket{I_1} \notin \cD_{I_0}, \ldots , \ket{I_p} \notin \cD_{I_{p-1}}}
|
||||||
\sum_{n_0 \ge 1} ... \sum_{n_p \ge 1}
|
\sum_{n_0 \ge 1} \cdots \sum_{n_p \ge 1}
|
||||||
\delta(\sum_k n_k=N+1) \Big[ \prod_{k=0}^{p-1} [\frac{\PsiG_{I_{k+1}}}{\PsiG_{I_k}} \langle I_k| T^{n_k-1}_{I_k} F_{I_k} |I_{k+1} \rangle \Big]
|
\\
|
||||||
{\bar G}^{(n_p-1),{\cal D}}_{I_p I_N}.
|
\times
|
||||||
\ee
|
\delta_{\sum_k n_k,N+1} \qty{ \prod_{k=0}^{p-1} \qty[ \frac{\PsiG_{I_{k+1}}}{\PsiG_{I_k}} \mel{ I_k }{ \qty(T_{I_k})^{n_k-1} F_{I_k} }{ I_{k+1} } ] }
|
||||||
|
\bar{G}^{(n_p-1),\cD}_{I_p I_N}.
|
||||||
|
\end{multline}
|
||||||
Introducing the weight
|
Introducing the weight
|
||||||
\be
|
\be
|
||||||
W_{I_k I_{k+1}} = \frac{\mel{ I_k }{ \qty(T_{I_k})^{n_k-1} F_{I_k} }{ I_{k+1} }}{\mel{ I_k }{ \qty(T^{+}_{I_k})^{n_k-1} F^+_{I_k} }{ I_{k+1} }}
|
W_{I_k I_{k+1}} = \frac{\mel{ I_k }{ \qty(T_{I_k})^{n_k-1} F_{I_k} }{ I_{k+1} }}{\mel{ I_k }{ \qty(T^{+}_{I_k})^{n_k-1} F^+_{I_k} }{ I_{k+1} }}
|
||||||
@ -606,20 +610,22 @@ Introducing the weight
|
|||||||
and using the effective transition probability defined in Eq.~\eqref{eq:eq3C}, we get
|
and using the effective transition probability defined in Eq.~\eqref{eq:eq3C}, we get
|
||||||
\be
|
\be
|
||||||
\label{eq:Gbart}
|
\label{eq:Gbart}
|
||||||
\bar{G}^{(N)}_{I_0 I_N}=\bar{G}^{(N),\cD}_{I_0 I_N}+ \sum_{p=1}^{N}
|
\bar{G}^{(N)}_{I_0 I_N} = \bar{G}^{(N),\cD}_{I_0 I_N} + \sum_{p=1}^{N}
|
||||||
\bigg \langle
|
\expval{
|
||||||
\Big( \prod_{k=0}^{p-1} W_{I_k I_{k+1}} \Big)
|
\qty( \prod_{k=0}^{p-1} W_{I_k I_{k+1}} )
|
||||||
{\bar G}^{(n_p-1), {\cal D}}_{I_p I_N}
|
\bar{G}^{(n_p-1), {\cal D}}_{I_p I_N}
|
||||||
\bigg \rangle
|
}
|
||||||
\ee
|
\ee
|
||||||
where the average is defined as
|
where the average is defined as
|
||||||
\be
|
\begin{multline}
|
||||||
\expval{F}
|
\expval{F}
|
||||||
= \sum_{|I_1\rangle \notin {\cal D}_{I_0}, \hdots , |I_p\rangle \notin {\cal D}_{I_{p-1}}}
|
= \sum_{\ket{I_1} \notin \cD_{I_0}, \ldots , \ket{I_p} \notin \cD_{I_{p-1}}}
|
||||||
\sum_{n_0 \ge 1} \cdots \sum_{n_p \ge 1}
|
\sum_{n_0 \ge 1} \cdots \sum_{n_p \ge 1}
|
||||||
\delta_{\sum_k n_k,N+1}
|
\delta_{\sum_k n_k,N+1}
|
||||||
\prod_{k=0}^{N-1}\cP_{I_k \to I_{k+1}}(n_k-1) F(I_0,n_0;...;I_N,n_N)
|
\\
|
||||||
\ee
|
\times
|
||||||
|
\prod_{k=0}^{N-1}\cP_{I_k \to I_{k+1}}(n_k-1) F(I_0,n_0;\ldots.;I_N,n_N)
|
||||||
|
\end{multline}
|
||||||
In practice, a schematic DMC algorithm to compute the average is as follows.\\
|
In practice, a schematic DMC algorithm to compute the average is as follows.\\
|
||||||
i) Choose some initial vector $\ket{I_0}$\\
|
i) Choose some initial vector $\ket{I_0}$\\
|
||||||
ii) Generate a stochastic path by running over $k$ (starting at $k=0$) as follows.\\
|
ii) Generate a stochastic path by running over $k$ (starting at $k=0$) as follows.\\
|
||||||
|
Loading…
Reference in New Issue
Block a user