CBD/EOM-SF-CC_2_3/6-31+G_d/CBD_eom_sf_cc2_3_6_31G_d.log
2021-02-01 07:22:00 +01:00

1289 lines
53 KiB
Plaintext

Running Job 1 of 1 6-31+G_d/CBD_eom_sf_cc2_3_6_31G_d.inp
qchem 6-31+G_d/CBD_eom_sf_cc2_3_6_31G_d.inp_33283.0 /mnt/beegfs/tmpdir/qchem33283/ 0
/share/apps/common/q-chem/5.2.1/exe/qcprog.exe_s 6-31+G_d/CBD_eom_sf_cc2_3_6_31G_d.inp_33283.0 /mnt/beegfs/tmpdir/qchem33283/
Welcome to Q-Chem
A Quantum Leap Into The Future Of Chemistry
Q-Chem 5.2, Q-Chem, Inc., Pleasanton, CA (2019)
Yihan Shao, Zhengting Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit,
J. Kussmann, A. W. Lange, A. Behn, Jia Deng, Xintian Feng, D. Ghosh,
M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, T. Kus, A. Landau,
Jie Liu, E. I. Proynov, R. M. Richard, R. P. Steele, E. J. Sundstrom,
H. L. Woodcock III, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire,
S. A. Baeppler, D. Barton, Z. Benda, Y. A. Bernard, E. J. Berquist,
K. B. Bravaya, H. Burton, D. Casanova, Chun-Min Chang, Yunqing Chen,
A. Chien, K. D. Closser, M. P. Coons, S. Coriani, S. Dasgupta,
A. L. Dempwolff, M. Diedenhofen, Hainam Do, R. G. Edgar, Po-Tung Fang,
S. Faraji, S. Fatehi, Qingguo Feng, K. D. Fenk, J. Fosso-Tande,
J. Gayvert, Qinghui Ge, A. Ghysels, G. Gidofalvi, J. Gomes,
J. Gonthier, A. Gunina, D. Hait, M. W. D. Hanson-Heine,
P. H. P. Harbach, A. W. Hauser, M. F. Herbst, J. E. Herr,
E. G. Hohenstein, Z. C. Holden, Kerwin Hui, B. C. Huynh, T.-C. Jagau,
Hyunjun Ji, B. Kaduk, K. Khistyaev, Jaehoon Kim, P. Klunzinger, K. Koh,
D. Kosenkov, L. Koulias, T. Kowalczyk, C. M. Krauter, A. Kunitsa,
Ka Un Lao, A. Laurent, K. V. Lawler, Joonho Lee, D. Lefrancois,
S. Lehtola, D. S. Levine, Yi-Pei Li, You-Sheng Lin, Fenglai Liu,
E. Livshits, A. Luenser, P. Manohar, E. Mansoor, S. F. Manzer,
Shan-Ping Mao, Yuezhi Mao, N. Mardirossian, A. V. Marenich,
T. Markovich, L. A. Martinez-Martinez, S. A. Maurer, N. J. Mayhall,
S. C. McKenzie, J.-M. Mewes, P. Morgante, A. F. Morrison,
J. W. Mullinax, K. Nanda, T. S. Nguyen-Beck, R. Olivares-Amaya,
J. A. Parkhill, Zheng Pei, T. M. Perrine, F. Plasser, P. Pokhilko,
S. Prager, A. Prociuk, E. Ramos, D. R. Rehn, F. Rob, M. Scheurer,
M. Schneider, N. Sergueev, S. M. Sharada, S. Sharma, D. W. Small,
T. Stauch, T. Stein, Yu-Chuan Su, A. J. W. Thom, A. Tkatchenko,
T. Tsuchimochi, N. M. Tubman, L. Vogt, M. L. Vidal, O. Vydrov,
M. A. Watson, J. Wenzel, M. de Wergifosse, T. A. Wesolowski, A. White,
J. Witte, A. Yamada, Jun Yang, K. Yao, S. Yeganeh, S. R. Yost,
Zhi-Qiang You, A. Zech, Igor Ying Zhang, Xing Zhang, Yan Zhao,
Ying Zhu, B. R. Brooks, G. K. L. Chan, C. J. Cramer, M. S. Gordon,
W. J. Hehre, A. Klamt, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar,
A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, Jeng-Da Chai,
A. E. DePrince, III, R. A. DiStasio Jr., A. Dreuw, B. D. Dunietz,
T. R. Furlani, Chao-Ping Hsu, Yousung Jung, Jing Kong, D. S. Lambrecht,
WanZhen Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko,
J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov,
P. M. W. Gill, M. Head-Gordon
Contributors to earlier versions of Q-Chem not listed above:
R. D. Adamson, B. Austin, J. Baker, G. J. O. Beran, K. Brandhorst,
S. T. Brown, E. F. C. Byrd, A. K. Chakraborty, C.-L. Cheng,
Siu Hung Chien, D. M. Chipman, D. L. Crittenden, H. Dachsel,
R. J. Doerksen, A. D. Dutoi, L. Fusti-Molnar, W. A. Goddard III,
A. Golubeva-Zadorozhnaya, S. R. Gwaltney, G. Hawkins, A. Heyden,
S. Hirata, G. Kedziora, F. J. Keil, C. Kelley, Jihan Kim, R. A. King,
R. Z. Khaliullin, P. P. Korambath, W. Kurlancheek, A. M. Lee, M. S. Lee,
S. V. Levchenko, Ching Yeh Lin, D. Liotard, R. C. Lochan, I. Lotan,
P. E. Maslen, N. Nair, D. P. O'Neill, D. Neuhauser, E. Neuscamman,
C. M. Oana, R. Olson, B. Peters, R. Peverati, P. A. Pieniazek,
Y. M. Rhee, J. Ritchie, M. A. Rohrdanz, E. Rosta, N. J. Russ,
H. F. Schaefer III, N. E. Schultz, N. Shenvi, A. C. Simmonett, A. Sodt,
D. Stuck, K. S. Thanthiriwatte, V. Vanovschi, Tao Wang, A. Warshel,
C. F. Williams, Q. Wu, X. Xu, W. Zhang
Please cite Q-Chem as follows:
Y. Shao et al., Mol. Phys. 113, 184-215 (2015)
DOI: 10.1080/00268976.2014.952696
Q-Chem 5.2.1 for Intel X86 EM64T Linux
Parts of Q-Chem use Armadillo 8.300.2 (Tropical Shenanigans).
http://arma.sourceforge.net/
Q-Chem begins on Thu Jan 28 17:33:39 2021
Host:
0
Scratch files written to /mnt/beegfs/tmpdir/qchem33283//
Jul1719 |scratch|qcdevops|jenkins|workspace|build_RNUM 6358
Processing $rem in /share/apps/common/q-chem/5.2.1/config/preferences:
MEM_TOTAL 5000
NAlpha2: 30
NElect 28
Mult 3
Core orbitals will be frozen
Checking the input file for inconsistencies... ...done.
--------------------------------------------------------------
User input:
--------------------------------------------------------------
$comment
EOM-SF-CC(2,3)
$end
$molecule
0 3
C -0.78248546 -0.67208001 0.00000000
C 0.78248546 -0.67208001 0.00000000
C -0.78248546 0.67208001 0.00000000
C 0.78248546 0.67208001 0.00000000
H -1.54227765 -1.43404123 -0.00000000
H 1.54227765 -1.43404123 0.00000000
H -1.54227765 1.43404123 0.00000000
H 1.54227765 1.43404123 -0.00000000
$end
$rem
JOBTYPE = sp
METHOD = eom-cc(2,3)
BASIS = 6-31+G*
SCF_CONVERGENCE = 9
SF_STATES = [2,2,1,1,1,1,1,1]
PURECART = 1111
UNRESTRICTED = TRUE
RPA = FALSE
$end
--------------------------------------------------------------
----------------------------------------------------------------
Standard Nuclear Orientation (Angstroms)
I Atom X Y Z
----------------------------------------------------------------
1 C 0.7824854600 0.6720800100 -0.0000000000
2 C -0.7824854600 0.6720800100 0.0000000000
3 C 0.7824854600 -0.6720800100 -0.0000000000
4 C -0.7824854600 -0.6720800100 0.0000000000
5 H 1.5422776500 1.4340412300 -0.0000000000
6 H -1.5422776500 1.4340412300 0.0000000000
7 H 1.5422776500 -1.4340412300 -0.0000000000
8 H -1.5422776500 -1.4340412300 0.0000000000
----------------------------------------------------------------
Molecular Point Group D2h NOp = 8
Largest Abelian Subgroup D2h NOp = 8
Nuclear Repulsion Energy = 98.83857161 hartrees
There are 15 alpha and 13 beta electrons
Q-Chem warning in module forms1/BasisType.C, line 1983:
You are not using the predefined 5D/6D in this basis set.
Requested basis set is 6-31+G(d)
There are 28 shells and 80 basis functions
Total memory of 5000 MB is distributed as follows:
MEM_STATIC is set to 192 MB
QALLOC/CCMAN JOB total memory use is 4808 MB
Warning: actual memory use might exceed 5000 MB
Total QAlloc Memory Limit 5000 MB
Mega-Array Size 188 MB
MEM_STATIC part 192 MB
Distance Matrix (Angstroms)
C ( 1) C ( 2) C ( 3) C ( 4) H ( 5) H ( 6)
C ( 2) 1.564971
C ( 3) 1.344160 2.062983
C ( 4) 2.062983 1.344160 1.564971
H ( 5) 1.076043 2.446448 2.238980 3.136920
H ( 6) 2.446448 1.076043 3.136920 2.238980 3.084555
H ( 7) 2.238980 3.136920 1.076043 2.446448 2.868082 4.211933
H ( 8) 3.136920 2.238980 2.446448 1.076043 4.211933 2.868082
H ( 7)
H ( 8) 3.084555
A cutoff of 1.0D-14 yielded 406 shell pairs
There are 3352 function pairs ( 3702 Cartesian)
Smallest overlap matrix eigenvalue = 2.41E-05
Scale SEOQF with 1.000000e-01/1.000000e-01/1.000000e-01
Standard Electronic Orientation quadrupole field applied
Nucleus-field energy = 0.0000000022 hartrees
Guess from superposition of atomic densities
Warning: Energy on first SCF cycle will be non-variational
SAD guess density has 28.000000 electrons
-----------------------------------------------------------------------
General SCF calculation program by
Eric Jon Sundstrom, Paul Horn, Yuezhi Mao, Dmitri Zuev, Alec White,
David Stuck, Shaama M.S., Shane Yost, Joonho Lee, David Small,
Daniel Levine, Susi Lehtola, Hugh Burton, Evgeny Epifanovsky,
Bang C. Huynh
-----------------------------------------------------------------------
Hartree-Fock
A unrestricted SCF calculation will be
performed using DIIS
SCF converges when DIIS error is below 1.0e-09
---------------------------------------
Cycle Energy DIIS error
---------------------------------------
1 -155.0598004125 4.24e-02
2 -153.5721137862 2.95e-03
3 -153.6143304815 7.64e-04
4 -153.6178219350 1.27e-04
5 -153.6179419896 6.30e-05
6 -153.6179732664 2.95e-05
7 -153.6179831395 9.71e-06
8 -153.6179843428 1.88e-06
9 -153.6179843880 4.04e-07
10 -153.6179843899 1.05e-07
11 -153.6179843901 2.38e-08
12 -153.6179843901 3.09e-09
13 -153.6179843902 5.70e-10 Convergence criterion met
---------------------------------------
SCF time: CPU 0.92s wall 1.00s
<S^2> = 2.015991460
SCF energy in the final basis set = -153.6179843902
Total energy in the final basis set = -153.6179843902
******************************************************
* C C M A N *
* *
* Anna I. Krylov *
* C. David Sherrill *
* Steven R. Gwaltney *
* Edward F. C. Byrd *
* June 2000 *
* *
* AND *
* *
* Sergey V. Levchenko *
* Lyudmila V. Slipchenko *
* Tao Wang *
* Ana-Maria C. Cristian *
* *
* November 2003 *
* *
* AND *
* *
* Piotr A. Pieniazek *
* C. Melania Oana *
* E. Epifanovsky *
* *
* October 2007 *
* *
* *
******************************************************
Testing symmetry... Orbitals in the original order:
Alpha MOs, Unrestricted
-- Occupied --
-11.257 -11.257 -11.256 -11.255 -1.193 -0.951 -0.856 -0.721
1 Ag 1 B3u 1 B2u 1 B1g 2 Ag 2 B3u 2 B2u 2 B1g
-0.709 -0.568 -0.565 -0.552 -0.467 -0.343 -0.241
3 Ag 3 B3u 1 B1u 4 Ag 3 B2u 1 B2g 1 B3g
-- Virtual --
0.082 0.084 0.086 0.101 0.128 0.137 0.139 0.157
4 B3u 4 B2u 5 Ag 3 B1g 2 B1u 1 Au 6 Ag 2 B2g
0.165 0.168 0.172 0.173 0.219 0.243 0.247 0.249
5 B3u 2 B3g 5 B2u 7 Ag 4 B1g 2 Au 6 B3u 6 B2u
0.288 0.318 0.346 0.385 0.405 0.423 0.494 0.516
5 B1g 7 B3u 8 Ag 6 B1g 7 B2u 8 B3u 8 B2u 7 B1g
0.767 0.783 0.887 0.889 0.892 0.893 0.925 0.966
9 Ag 8 B1g 3 B1u 10 Ag 3 B2g 9 B3u 3 B3g 3 Au
1.009 1.045 1.084 1.095 1.158 1.180 1.223 1.247
9 B2u 11 Ag 10 B3u 9 B1g 10 B1g 10 B2u 11 B3u 12 Ag
1.285 1.430 1.492 1.526 1.535 1.601 1.765 1.830
11 B2u 12 B3u 11 B1g 4 B1u 12 B2u 5 B1u 4 B2g 4 B3g
1.878 1.900 2.033 2.194 2.313 2.321 2.380 2.562
12 B1g 13 Ag 14 Ag 13 B2u 5 B2g 13 B3u 15 Ag 4 Au
2.611 2.711 2.753 2.816 2.886 2.967 3.079 3.300
5 B3g 14 B3u 5 Au 14 B2u 15 B3u 13 B1g 15 B2u 14 B1g
3.393
15 B1g
Beta MOs, Unrestricted
-- Occupied --
-11.246 -11.245 -11.245 -11.244 -1.144 -0.894 -0.807 -0.696
1 Ag 1 B3u 1 B2u 1 B1g 2 Ag 2 B3u 2 B2u 3 Ag
-0.694 -0.558 -0.535 -0.455 -0.378
2 B1g 3 B3u 4 Ag 3 B2u 1 B1u
-- Virtual --
0.047 0.083 0.086 0.088 0.095 0.103 0.139 0.141
1 B2g 4 B3u 4 B2u 5 Ag 1 B3g 3 B1g 2 B1u 6 Ag
0.167 0.173 0.173 0.181 0.187 0.219 0.225 0.254
5 B3u 5 B2u 1 Au 7 Ag 2 B2g 4 B1g 2 B3g 6 B3u
0.259 0.293 0.347 0.351 0.376 0.403 0.425 0.429
6 B2u 5 B1g 7 B3u 8 Ag 2 Au 6 B1g 7 B2u 8 B3u
0.506 0.527 0.774 0.819 0.895 0.904 0.945 0.955
8 B2u 7 B1g 9 Ag 8 B1g 10 Ag 9 B3u 3 B1u 3 B2g
0.995 1.027 1.032 1.063 1.103 1.103 1.172 1.190
3 B3g 9 B2u 3 Au 11 Ag 10 B3u 9 B1g 10 B1g 10 B2u
1.238 1.255 1.304 1.444 1.500 1.546 1.582 1.670
11 B3u 12 Ag 11 B2u 12 B3u 11 B1g 12 B2u 4 B1u 5 B1u
1.825 1.884 1.894 1.913 2.050 2.230 2.342 2.360
4 B2g 4 B3g 12 B1g 13 Ag 14 Ag 13 B2u 13 B3u 5 B2g
2.416 2.605 2.655 2.729 2.794 2.825 2.905 3.000
15 Ag 4 Au 5 B3g 14 B3u 5 Au 14 B2u 15 B3u 13 B1g
3.096 3.308 3.402
15 B2u 14 B1g 15 B1g
Setting symmetry... Orbitals will be reordered.
No MO reordering is requested
The orbitals are ordered and numbered as follows:
Alpha orbitals:
Number Energy Type Symmetry ANLMAN number Total number:
NA -11.257 FCORE Ag 1Ag 1
NA -11.257 FCORE B3u 1B3u 2
NA -11.256 FCORE B2u 1B2u 3
NA -11.255 FCORE B1g 1B1g 4
0 -1.193 AOCC Ag 2Ag 5
1 -0.709 AOCC Ag 3Ag 6
2 -0.552 AOCC Ag 4Ag 7
3 -0.721 AOCC B1g 2B1g 8
4 -0.343 AOCC B2g 1B2g 9
5 -0.241 AOCC B3g 1B3g 10
6 -0.565 AOCC B1u 1B1u 11
7 -0.856 AOCC B2u 2B2u 12
8 -0.467 AOCC B2u 3B2u 13
9 -0.951 AOCC B3u 2B3u 14
10 -0.568 AOCC B3u 3B3u 15
0 0.086 AVIRT Ag 5Ag 16
1 0.139 AVIRT Ag 6Ag 17
2 0.173 AVIRT Ag 7Ag 18
3 0.346 AVIRT Ag 8Ag 19
4 0.767 AVIRT Ag 9Ag 20
5 0.889 AVIRT Ag 10Ag 21
6 1.045 AVIRT Ag 11Ag 22
7 1.247 AVIRT Ag 12Ag 23
8 1.900 AVIRT Ag 13Ag 24
9 2.033 AVIRT Ag 14Ag 25
10 2.380 AVIRT Ag 15Ag 26
11 0.101 AVIRT B1g 3B1g 27
12 0.219 AVIRT B1g 4B1g 28
13 0.288 AVIRT B1g 5B1g 29
14 0.385 AVIRT B1g 6B1g 30
15 0.516 AVIRT B1g 7B1g 31
16 0.783 AVIRT B1g 8B1g 32
17 1.095 AVIRT B1g 9B1g 33
18 1.158 AVIRT B1g 10B1g 34
19 1.492 AVIRT B1g 11B1g 35
20 1.878 AVIRT B1g 12B1g 36
21 2.967 AVIRT B1g 13B1g 37
22 3.300 AVIRT B1g 14B1g 38
23 3.393 AVIRT B1g 15B1g 39
24 0.157 AVIRT B2g 2B2g 40
25 0.892 AVIRT B2g 3B2g 41
26 1.765 AVIRT B2g 4B2g 42
27 2.313 AVIRT B2g 5B2g 43
28 0.168 AVIRT B3g 2B3g 44
29 0.925 AVIRT B3g 3B3g 45
30 1.830 AVIRT B3g 4B3g 46
31 2.611 AVIRT B3g 5B3g 47
32 0.137 AVIRT Au 1Au 48
33 0.243 AVIRT Au 2Au 49
34 0.966 AVIRT Au 3Au 50
35 2.562 AVIRT Au 4Au 51
36 2.753 AVIRT Au 5Au 52
37 0.128 AVIRT B1u 2B1u 53
38 0.887 AVIRT B1u 3B1u 54
39 1.526 AVIRT B1u 4B1u 55
40 1.601 AVIRT B1u 5B1u 56
41 0.084 AVIRT B2u 4B2u 57
42 0.172 AVIRT B2u 5B2u 58
43 0.249 AVIRT B2u 6B2u 59
44 0.405 AVIRT B2u 7B2u 60
45 0.494 AVIRT B2u 8B2u 61
46 1.009 AVIRT B2u 9B2u 62
47 1.180 AVIRT B2u 10B2u 63
48 1.285 AVIRT B2u 11B2u 64
49 1.535 AVIRT B2u 12B2u 65
50 2.194 AVIRT B2u 13B2u 66
51 2.816 AVIRT B2u 14B2u 67
52 3.079 AVIRT B2u 15B2u 68
53 0.082 AVIRT B3u 4B3u 69
54 0.165 AVIRT B3u 5B3u 70
55 0.247 AVIRT B3u 6B3u 71
56 0.318 AVIRT B3u 7B3u 72
57 0.423 AVIRT B3u 8B3u 73
58 0.893 AVIRT B3u 9B3u 74
59 1.084 AVIRT B3u 10B3u 75
60 1.223 AVIRT B3u 11B3u 76
61 1.430 AVIRT B3u 12B3u 77
62 2.321 AVIRT B3u 13B3u 78
63 2.711 AVIRT B3u 14B3u 79
64 2.886 AVIRT B3u 15B3u 80
Beta orbitals:
Number Energy Type Symmetry ANLMAN number Total number:
NA -11.246 FCORE Ag 1Ag 1
NA -11.245 FCORE B3u 1B3u 2
NA -11.245 FCORE B2u 1B2u 3
NA -11.244 FCORE B1g 1B1g 4
0 -1.144 AOCC Ag 2Ag 5
1 -0.696 AOCC Ag 3Ag 6
2 -0.535 AOCC Ag 4Ag 7
3 -0.694 AOCC B1g 2B1g 8
4 -0.378 AOCC B1u 1B1u 9
5 -0.807 AOCC B2u 2B2u 10
6 -0.455 AOCC B2u 3B2u 11
7 -0.894 AOCC B3u 2B3u 12
8 -0.558 AOCC B3u 3B3u 13
0 0.088 AVIRT Ag 5Ag 14
1 0.141 AVIRT Ag 6Ag 15
2 0.181 AVIRT Ag 7Ag 16
3 0.351 AVIRT Ag 8Ag 17
4 0.774 AVIRT Ag 9Ag 18
5 0.895 AVIRT Ag 10Ag 19
6 1.063 AVIRT Ag 11Ag 20
7 1.255 AVIRT Ag 12Ag 21
8 1.913 AVIRT Ag 13Ag 22
9 2.050 AVIRT Ag 14Ag 23
10 2.416 AVIRT Ag 15Ag 24
11 0.103 AVIRT B1g 3B1g 25
12 0.219 AVIRT B1g 4B1g 26
13 0.293 AVIRT B1g 5B1g 27
14 0.403 AVIRT B1g 6B1g 28
15 0.527 AVIRT B1g 7B1g 29
16 0.819 AVIRT B1g 8B1g 30
17 1.103 AVIRT B1g 9B1g 31
18 1.172 AVIRT B1g 10B1g 32
19 1.500 AVIRT B1g 11B1g 33
20 1.894 AVIRT B1g 12B1g 34
21 3.000 AVIRT B1g 13B1g 35
22 3.308 AVIRT B1g 14B1g 36
23 3.402 AVIRT B1g 15B1g 37
24 0.047 AVIRT B2g 1B2g 38
25 0.187 AVIRT B2g 2B2g 39
26 0.955 AVIRT B2g 3B2g 40
27 1.825 AVIRT B2g 4B2g 41
28 2.360 AVIRT B2g 5B2g 42
29 0.095 AVIRT B3g 1B3g 43
30 0.225 AVIRT B3g 2B3g 44
31 0.995 AVIRT B3g 3B3g 45
32 1.884 AVIRT B3g 4B3g 46
33 2.655 AVIRT B3g 5B3g 47
34 0.173 AVIRT Au 1Au 48
35 0.376 AVIRT Au 2Au 49
36 1.032 AVIRT Au 3Au 50
37 2.605 AVIRT Au 4Au 51
38 2.794 AVIRT Au 5Au 52
39 0.139 AVIRT B1u 2B1u 53
40 0.945 AVIRT B1u 3B1u 54
41 1.582 AVIRT B1u 4B1u 55
42 1.670 AVIRT B1u 5B1u 56
43 0.086 AVIRT B2u 4B2u 57
44 0.173 AVIRT B2u 5B2u 58
45 0.259 AVIRT B2u 6B2u 59
46 0.425 AVIRT B2u 7B2u 60
47 0.506 AVIRT B2u 8B2u 61
48 1.027 AVIRT B2u 9B2u 62
49 1.190 AVIRT B2u 10B2u 63
50 1.304 AVIRT B2u 11B2u 64
51 1.546 AVIRT B2u 12B2u 65
52 2.230 AVIRT B2u 13B2u 66
53 2.825 AVIRT B2u 14B2u 67
54 3.096 AVIRT B2u 15B2u 68
55 0.083 AVIRT B3u 4B3u 69
56 0.167 AVIRT B3u 5B3u 70
57 0.254 AVIRT B3u 6B3u 71
58 0.347 AVIRT B3u 7B3u 72
59 0.429 AVIRT B3u 8B3u 73
60 0.904 AVIRT B3u 9B3u 74
61 1.103 AVIRT B3u 10B3u 75
62 1.238 AVIRT B3u 11B3u 76
63 1.444 AVIRT B3u 12B3u 77
64 2.342 AVIRT B3u 13B3u 78
65 2.729 AVIRT B3u 14B3u 79
66 2.905 AVIRT B3u 15B3u 80
EOM_SF_STATES = 2 2 1 1 1 1 1 1
blck_tnsr_buffsz = 4608
ccjobtype = sp
ccman2 = 0
ccsd.dOV_threshold = 0
ccsd.diis_freq = 1
ccsd.diis_max_overlap = 1
ccsd.diis_min_overlap = 1e-11
ccsd.diis_size = 7
ccsd.diis_start = 3
ccsd.energy_convergence = 1e-08
ccsd.maxiter = 100
ccsd.restart = 0
ccsd.saveampl = 0
ccsd.scale_amp = 1
ccsd.solver = diis
ccsd.t_convergence = 1e-08
ccsd.z_convergence = 1e-08
do_efp = 0
do_ri = 0
eom.convergence = 1e-06
eom.do_fake_ipea = 0
eom.dthreshold = 1e-06
eom.filter_ipea = 0
eom.maxiter = 30
eom.maxvectors = 60
eom.nguess_doubles = 0
eom.nguess_singles = 0
eom.preconv_doubles = 0
eom.preconv_sd = 0
eom.preconv_singles = 0
eom.use_exdiag = 0
eomcorr = sdt
mgc.amodel = 0
mgc.canonize = 0
mgc.canonize_final = 0
mgc.canonize_freq = 50
mgc.dOV_threshold = 0
mgc.diis = 0
mgc.diis12_switch = 1e-05
mgc.diis_freq = 2
mgc.diis_max_overlap = 1
mgc.diis_min_overlap = 1e-11
mgc.diis_size = 7
mgc.diis_start = 2
mgc.do_ed_ccd = 0
mgc.do_qccd = 0
mgc.energy_convergence = 1e-08
mgc.hess_threshold = 0.01
mgc.iterate_ov = 0
mgc.maxiter = 100
mgc.maxtrank = 0
mgc.mgc_ampread = 0
mgc.mgc_amps = 2
mgc.mgc_ampscale = 0
mgc.mgc_cc_gvb_guess = 0
mgc.mgc_create_dm = 0
mgc.mgc_eom = 0
mgc.mgc_frzn_core = 0
mgc.mgc_gvb_n_pairs = 0
mgc.mgc_ip = 0
mgc.mgc_localinter = 0
mgc.mgc_localints = 1
mgc.mgc_oo_type = 0
mgc.mgc_ph = 0
mgc.mgc_renorm = 0
mgc.mgc_skip_ae = 0
mgc.mgc_write_ints = 0
mgc.nlpairs = 2
mgc.preconv_frozen = 0
mgc.preconv_t2z = 0
mgc.preconv_t2z_each = 0
mgc.reset_theta = 15
mgc.restart = 0
mgc.saveampl = 0
mgc.scale_amp = 1
mgc.solver = diis
mgc.t_convergence = 1e-08
mgc.theta_convergence = 0.0001
mgc.theta_grad_convergence = 0.0001
mgc.theta_grad_threshold = 0.01
mgc.theta_stepsize = 1
mgc.turn_on_qccd = 0.01
mgc.z_convergence = 1e-08
ooccd.canonize_final = 0
ooccd.canonize_freq = 50
ooccd.dOV_threshold = 0
ooccd.diis = 0
ooccd.diis12_switch = 1e-05
ooccd.diis_freq = 2
ooccd.diis_max_overlap = 1
ooccd.diis_min_overlap = 1e-11
ooccd.diis_size = 7
ooccd.diis_start = 2
ooccd.do_ed_ccd = 0
ooccd.do_qccd = 0
ooccd.energy_convergence = 1e-08
ooccd.hess_threshold = 0.01
ooccd.iterate_ov = 0
ooccd.maxiter = 100
ooccd.preconv_frozen = 0
ooccd.preconv_t2z = 0
ooccd.preconv_t2z_each = 0
ooccd.reset_theta = 15
ooccd.restart = 0
ooccd.saveampl = 0
ooccd.scale_amp = 1
ooccd.solver = diis
ooccd.t_convergence = 1e-08
ooccd.theta_convergence = 0.0001
ooccd.theta_grad_convergence = 0.0001
ooccd.theta_grad_threshold = 0.01
ooccd.theta_stepsize = 1
ooccd.turn_on_qccd = 0.01
ooccd.z_convergence = 1e-08
orbitals.canonize = 1
orbitals.do_fno = 0
orbitals.mp2_grad = 0
orbitals.mp2no_guess = 0
orbitals.reorthogonalize_mo = 0
orbitals.restart_no_scf = 0
orbitals.restricted_amplitudes = 1
orbitals.restricted_triples = 0
print_lvl = 1
pt_corr.incl_core_corr = 1
pt_corr.incl_virt_corr = 1
pt_corr.sd_corr_only = 0
refcorr = ccsd
solvent_model.cc_solvent = 0
svd.analyze_t2 = 0
svd.d1_d2_diag = 0
svd.energy_decomp = 0
svd.svd_algorithm = 1
svd.svd_decompose_geminals = 0
svd.svd_first_geminal = 0
svd.svd_incl_singles = 1
svd.svd_n_values = 1
svd.svd_plot_geminals = 0
svd.t2_lowrank = 0
test_mode = 0
threads = 1
tmp_maxbuffsz = 200
unrestricted = 1
MOLECULAR PARAMETERS:
ORB SYMM INFO:
POINT GROUP=D2h NIRREPS = 8
MOL ORB= 80
IRREPS = Ag B1g B2g B3g Au B1u B2u B3u
ORBSPI = 15 15 5 5 5 5 15 15
DOCC = 3 1 0 0 0 1 2 2
SOCC = 0 0 1 1 0 0 0 0
FDOCC = 1 1 0 0 0 0 1 1
RDOCC = 0 0 0 0 0 0 0 0
AAOCC = 3 1 1 1 0 1 2 2
BAOCC = 3 1 0 0 0 1 2 2
AAVIRT = 11 13 4 4 5 4 12 12
BAVIRT = 11 13 5 5 5 4 12 12
RUOCC = 0 0 0 0 0 0 0 0
FUOCC = 0 0 0 0 0 0 0 0
IRREP MULT TABLE:
0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0
ORBSYM ALPHA= Ag B3u B2u B1g Ag Ag Ag B1g B2g B3g
B1u B2u B2u B3u B3u Ag Ag Ag Ag Ag
Ag Ag Ag Ag Ag Ag B1g B1g B1g B1g
B1g B1g B1g B1g B1g B1g B1g B1g B1g B2g
B2g B2g B2g B3g B3g B3g B3g Au Au Au
Au Au B1u B1u B1u B1u B2u B2u B2u B2u
B2u B2u B2u B2u B2u B2u B2u B2u B3u B3u
B3u B3u B3u B3u B3u B3u B3u B3u B3u B3u
ORBSYM BETA = Ag B3u B2u B1g Ag Ag Ag B1g B1u B2u
B2u B3u B3u Ag Ag Ag Ag Ag Ag Ag
Ag Ag Ag Ag B1g B1g B1g B1g B1g B1g
B1g B1g B1g B1g B1g B1g B1g B2g B2g B2g
B2g B2g B3g B3g B3g B3g B3g Au Au Au
Au Au B1u B1u B1u B1u B2u B2u B2u B2u
B2u B2u B2u B2u B2u B2u B2u B2u B3u B3u
B3u B3u B3u B3u B3u B3u B3u B3u B3u B3u
BASIS ORBS = 80 MOL ORBS = 80
NAUXBASIS = 0
FROZEN OCC = 4 FROZEN VIR = 0
CORR ORBS = 76 CORR SP ORBS = 152
NUM ALP ELEC = 15 NUM BET ELEC = 13
NUM ALP EXPL = 11 NUM BET EXPL = 9
NUM SO OCC = 20 NUM SO VIR = 132
NUM RESTR DOCC= 0 NUM RESTR DVIRT= 0
ORBS PER BLCK = 16 RESTRICTED_REF = 0
BLOCKING PARAMETERS:
NUM ROCC BLOCKS = 0 NUM AOCC BLOCKS= 7
NUM AVIRT BLOCKS= 8 NUM RVIRT BLOCKS= 0
ORBITALS/BLOCK = 3 1 1 1 1 2 2 3 1 1 2 2 0 0 11 13 4 4 5 4 12 12 11 13 5 5 5 4 12 12
BIRREP = Ag B1g B2g B3g B1u B2u B3u Ag B1g B1u B2u B3u Ag Ag Ag B1g B2g B3g Au B1u B2u B3u Ag B1g B2g B3g Au B1u B2u B3u
EHF = -153.617984388 EMP2 = -154.101641633
Beginning CC iterations
Itr|Var|D|Energy |Delta_E|Delta_t|Comments
1| CC|-| -154.114188953|1.3E-02|1.5E-01|
2| CC|-| -154.128998340|1.5E-02|5.9E-02|
3| CC|-| -154.131052447|2.1E-03|2.7E-02|
4| CC|+| -154.133187211|2.1E-03|1.2E-02|
5| CC|+| -154.133717173|5.3E-04|3.4E-03|
6| CC|+| -154.133726412|9.2E-06|8.8E-04|
7| CC|+| -154.133725724|6.9E-07|3.5E-04|
8| CC|+| -154.133727897|2.2E-06|1.0E-04|
9| CC|+| -154.133728253|3.6E-07|3.5E-05|
10| CC|+| -154.133728563|3.1E-07|1.3E-05|
11| CC|+| -154.133728618|5.6E-08|3.6E-06|
12| CC|+| -154.133728649|3.1E-08|1.1E-06|
13| CC|+| -154.133728634|1.5E-08|4.7E-07|
14| CC|+| -154.133728628|5.4E-09|1.8E-07|
15| CC|+| -154.133728624|4.1E-09|6.6E-08|
16| CC|+| -154.133728623|1.0E-09|2.8E-08|
17| CC|+| -154.133728623|2.2E-10|9.5E-09|
CC calculation converged, 17 iterations
Largest T amplitudes
Largest singles amplitudes:
Value i -> a
0.0375 4( B1u ) B -> 40( B1u ) B
-0.0300 4( B1u ) B -> 39( B1u ) B
-0.0239 5( B3g ) A -> 29( B3g ) A
-0.0141 4( B2g ) A -> 25( B2g ) A
-0.0107 1( Ag ) B -> 3( Ag ) B
Largest doubles amplitudes:
Value i j -> a b
-0.0868 5( B3g ) A, 4( B1u ) B -> 32( Au ) A, 24( B2g ) B
0.0789 5( B3g ) A, 4( B1u ) B -> 33( Au ) A, 24( B2g ) B
-0.0507 4( B2g ) A, 4( B1u ) B -> 32( Au ) A, 29( B3g ) B
-0.0482 4( B2g ) A, 4( B1u ) B -> 32( Au ) A, 30( B3g ) B
0.0480 4( B2g ) A, 4( B1u ) B -> 33( Au ) A, 29( B3g ) B
EHF = -153.617984388
EMP2 = -154.101641633
Correlation Energy = -0.515744235
CCSD Total Energy = -154.133728623
CCSD or (V)OO-CCD job: CPU 25.99 s wall 152.51 s
DOING EOM-SF-CC(2,3) CALCULATIONS
Doubles diagonal is not filtered.
Singles guess formation using Slater determinants:
State 1: 5 -> 94 ( 0.4088)
State 2: 4 -> 89 ( 0.4746)
2 singly-excited guess vectors generated
SOLVE EOM-CC(2,3) EQUATIONS FOR RIGHT VECTORS of LOWSPIN STATES OF Ag IRREP
PARAMETERS FOR NS-DAVIDSON DIAGONALIZATION PROCEDURE:
NROOTS = 2 MAX VECTORS = 60 MAXITER = 30
CONVERGENCE =1.0E-06 THRESHOLD =1.0E-06
SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=0
PARAMETERS FOR NS-DAVIDSON DIAGONALIZATION PROCEDURE:
NROOTS = 2 MAX VECTORS = 60 MAXITER = 30
CONVERGENCE =1.0E-06 THRESHOLD =1.0E-06
SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=0
Itr|ConvR|ResNormR|NVecs|Comments
0| 0 |1.7E-01 | 2 |
1| 0 |3.6E-02 | 4 |
2| 0 |9.2E-03 | 6 |
3| 0 |1.9E-03 | 8 |
4| 0 |3.9E-04 | 10 |
5| 0 |1.0E-04 | 12 |
6| 0 |2.8E-05 | 14 |
7| 0 |8.0E-06 | 16 |
8| 1 |2.1E-06 | 18 |NSDavidsonRight<T>::CalcCorrectionVec(): Warning! Scaled norm for root 1 is too small: 4.64E-07; ||Res||=3.21E-06
9| 2 |9.0E-07 | 19 |Collapse current subspace
DAVIDSON ITERATIONS CONVERGED, 9 ITERATIONS
Excitation energies, hartree
0
0 -0.009858
1 0.057843
2 lowest LOWSPIN roots of symmetry Ag :
Root 1 Conv-d yes Tot Ene= -154.143586418 hartree (Ex Ene -0.2682 eV), U0^2=0.000000, U1^2=0.918934, U2^2=0.077316 ||Res||=9.2E-07
Right U1:
Value i -> a
0.6287 4( B2g ) A -> 24( B2g ) B
0.5570 5( B3g ) A -> 29( B3g ) B
0.3747 5( B3g ) A -> 30( B3g ) B
0.2475 4( B2g ) A -> 25( B2g ) B
Root 2 Conv-d yes Tot Ene= -154.075885518 hartree (Ex Ene 1.5740 eV), U0^2=0.000000, U1^2=0.913071, U2^2=0.081313 ||Res||=8.9E-07
Right U1:
Value i -> a
-0.6339 4( B2g ) A -> 24( B2g ) B
0.5997 5( B3g ) A -> 29( B3g ) B
0.3157 5( B3g ) A -> 30( B3g ) B
-0.2165 4( B2g ) A -> 25( B2g ) B
Singles guess formation using Slater determinants:
State 1: 5 -> 89 ( 0.3775)
State 2: 5 -> 90 ( 0.4985)
2 singly-excited guess vectors generated
SOLVE EOM-CC(2,3) EQUATIONS FOR RIGHT VECTORS of LOWSPIN STATES OF B1g IRREP
PARAMETERS FOR NS-DAVIDSON DIAGONALIZATION PROCEDURE:
NROOTS = 2 MAX VECTORS = 60 MAXITER = 30
CONVERGENCE =1.0E-06 THRESHOLD =1.0E-06
SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=0
PARAMETERS FOR NS-DAVIDSON DIAGONALIZATION PROCEDURE:
NROOTS = 2 MAX VECTORS = 60 MAXITER = 30
CONVERGENCE =1.0E-06 THRESHOLD =1.0E-06
SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=0
Itr|ConvR|ResNormR|NVecs|Comments
0| 0 |1.6E-01 | 2 |
1| 0 |2.6E-02 | 4 |
2| 0 |4.3E-03 | 6 |
3| 0 |1.4E-02 | 8 |Matrix::Gen_Diag() : eigenvalue of 3.19E+00+1.66E-02i for root 8
Matrix::Gen_Diag() : eigenvalue of 3.19E+00-1.66E-02i for root 9
2 complex roots ( 8, 9,)
4| 0 |2.6E-02 | 10 |
5| 0 |4.8E-03 | 12 |
6| 0 |1.6E-03 | 14 |
7| 0 |6.0E-04 | 16 |NSDavidsonRight<T>::CalcCorrectionVec(): Warning! Scaled norm for root 0 is too small: 2.13E-07; ||Res||=2.06E-06
8| 1 |2.0E-04 | 18 |
9| 1 |5.3E-05 | 19 |
10| 1 |1.6E-05 | 20 |
11| 1 |5.8E-06 | 21 |
12| 1 |2.5E-06 | 22 |
13| 1 |9.7E-07 | 23 |NSDavidsonRight<T>::CalcCorrectionVec(): Warning! Scaled norm for root 1 is too small: 2.65E-07; ||Res||=1.69E-06
14| 2 |3.8E-07 | 24 |Collapse current subspace
DAVIDSON ITERATIONS CONVERGED, 14 ITERATIONS
Excitation energies, hartree
0
0 -0.064633
1 0.084596
2 lowest LOWSPIN roots of symmetry B1g :
Root 1 Conv-d yes Tot Ene= -154.198361376 hartree (Ex Ene -1.7587 eV), U0^2=0.000000, U1^2=0.929652, U2^2=0.065117 ||Res||=2.4E-07
Right U1:
Value i -> a
0.8767 5( B3g ) A -> 24( B2g ) B
0.3286 5( B3g ) A -> 25( B2g ) B
0.1398 4( B2g ) A -> 29( B3g ) B
0.1170 4( B2g ) A -> 30( B3g ) B
Root 2 Conv-d yes Tot Ene= -154.049132811 hartree (Ex Ene 2.3020 eV), U0^2=0.000000, U1^2=0.851951, U2^2=0.137599 ||Res||=5.2E-07
Right U1:
Value i -> a
-0.7553 4( B2g ) A -> 29( B3g ) B
-0.4864 4( B2g ) A -> 30( B3g ) B
0.1646 5( B3g ) A -> 24( B2g ) B
-0.0922 4( B2g ) A -> 31( B3g ) B
Singles guess formation using Slater determinants:
State 1: 5 -> 76 ( 0.4043)
1 singly-excited guess vectors generated
SOLVE EOM-CC(2,3) EQUATIONS FOR RIGHT VECTORS of LOWSPIN STATES OF B2g IRREP
PARAMETERS FOR NS-DAVIDSON DIAGONALIZATION PROCEDURE:
NROOTS = 1 MAX VECTORS = 60 MAXITER = 30
CONVERGENCE =1.0E-06 THRESHOLD =1.0E-06
SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=0
PARAMETERS FOR NS-DAVIDSON DIAGONALIZATION PROCEDURE:
NROOTS = 1 MAX VECTORS = 60 MAXITER = 30
CONVERGENCE =1.0E-06 THRESHOLD =1.0E-06
SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=0
Itr|ConvR|ResNormR|NVecs|Comments
0| 0 |9.9E-02 | 1 |
1| 0 |1.9E-02 | 2 |
2| 0 |4.0E-03 | 3 |
3| 0 |1.6E-03 | 4 |
4| 0 |5.1E-04 | 5 |
5| 0 |1.7E-04 | 6 |
6| 0 |8.0E-05 | 7 |
7| 0 |4.8E-05 | 8 |
8| 0 |2.6E-05 | 9 |
9| 0 |1.7E-05 | 10 |
10| 0 |1.0E-05 | 11 |
11| 0 |6.4E-06 | 12 |
12| 0 |4.9E-06 | 13 |
13| 0 |4.2E-06 | 14 |
14| 0 |4.1E-06 | 15 |
15| 0 |4.1E-06 | 16 |
16| 0 |4.2E-06 | 17 |
17| 0 |3.4E-06 | 18 |
18| 0 |2.4E-06 | 19 |
19| 0 |1.7E-06 | 20 |NSDavidsonRight<T>::CalcCorrectionVec(): Warning! Scaled norm for root 0 is too small: 3.83E-07; ||Res||=1.68E-06
20| 0 |1.5E-06 | 21 |NSDavidsonRight<T>::CalcCorrectionVec(): Warning! Scaled norm for root 0 is too small: 3.86E-07; ||Res||=1.55E-06
21| 0 |1.2E-06 | 22 |NSDavidsonRight<T>::CalcCorrectionVec(): Warning! Scaled norm for root 0 is too small: 2.93E-07; ||Res||=1.21E-06
22| 1 |8.6E-07 | 23 |Collapse current subspace
DAVIDSON ITERATIONS CONVERGED, 22 ITERATIONS
Excitation energies, hartree
0
0 0.177719
1 lowest LOWSPIN roots of symmetry B2g :
Root 1 Conv-d yes Tot Ene= -153.956009617 hartree (Ex Ene 4.8360 eV), U0^2=0.000000, U1^2=0.910863, U2^2=0.082799 ||Res||=8.6E-07
Right U1:
Value i -> a
-0.9008 5( B3g ) A -> 11( B1g ) B
0.2082 5( B3g ) A -> 13( B1g ) B
-0.1734 5( B3g ) A -> 14( B1g ) B
0.1260 4( B2g ) A -> 0( Ag ) B
Singles guess formation using Slater determinants:
State 1: 5 -> 65 ( 0.3912)
1 singly-excited guess vectors generated
SOLVE EOM-CC(2,3) EQUATIONS FOR RIGHT VECTORS of LOWSPIN STATES OF B3g IRREP
PARAMETERS FOR NS-DAVIDSON DIAGONALIZATION PROCEDURE:
NROOTS = 1 MAX VECTORS = 60 MAXITER = 30
CONVERGENCE =1.0E-06 THRESHOLD =1.0E-06
SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=0
PARAMETERS FOR NS-DAVIDSON DIAGONALIZATION PROCEDURE:
NROOTS = 1 MAX VECTORS = 60 MAXITER = 30
CONVERGENCE =1.0E-06 THRESHOLD =1.0E-06
SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=0
Itr|ConvR|ResNormR|NVecs|Comments
0| 0 |1.1E-01 | 1 |
1| 0 |1.9E-02 | 2 |
2| 0 |3.2E-03 | 3 |
3| 0 |9.8E-04 | 4 |
4| 0 |2.9E-04 | 5 |
5| 0 |1.1E-04 | 6 |
6| 0 |5.2E-05 | 7 |
7| 0 |3.2E-05 | 8 |
8| 0 |1.5E-05 | 9 |
9| 0 |9.7E-06 | 10 |
10| 0 |9.7E-06 | 11 |
11| 0 |1.2E-05 | 12 |
12| 0 |1.2E-05 | 13 |
13| 0 |1.3E-05 | 14 |
14| 0 |1.1E-05 | 15 |
15| 0 |7.8E-06 | 16 |
16| 0 |4.4E-06 | 17 |
17| 0 |2.6E-06 | 18 |
18| 0 |2.2E-06 | 19 |NSDavidsonRight<T>::CalcCorrectionVec(): Warning! Scaled norm for root 0 is too small: 4.42E-07; ||Res||=2.15E-06
19| 0 |1.7E-06 | 20 |NSDavidsonRight<T>::CalcCorrectionVec(): Warning! Scaled norm for root 0 is too small: 3.34E-07; ||Res||=1.73E-06
20| 1 |1.0E-06 | 21 |Collapse current subspace
DAVIDSON ITERATIONS CONVERGED, 20 ITERATIONS
Excitation energies, hartree
0
0 0.141558
1 lowest LOWSPIN roots of symmetry B3g :
Root 1 Conv-d yes Tot Ene= -153.992170221 hartree (Ex Ene 3.8520 eV), U0^2=0.000000, U1^2=0.909206, U2^2=0.084379 ||Res||=1.0E-06
Right U1:
Value i -> a
0.9182 5( B3g ) A -> 0( Ag ) B
0.1916 5( B3g ) A -> 2( Ag ) B
0.1474 5( B3g ) A -> 3( Ag ) B
-0.0392 4( B2g ) A -> 11( B1g ) B
Singles guess formation using Slater determinants:
State 1: 5 ->120 ( 0.3860)
1 singly-excited guess vectors generated
SOLVE EOM-CC(2,3) EQUATIONS FOR RIGHT VECTORS of LOWSPIN STATES OF Au IRREP
PARAMETERS FOR NS-DAVIDSON DIAGONALIZATION PROCEDURE:
NROOTS = 1 MAX VECTORS = 60 MAXITER = 30
CONVERGENCE =1.0E-06 THRESHOLD =1.0E-06
SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=0
PARAMETERS FOR NS-DAVIDSON DIAGONALIZATION PROCEDURE:
NROOTS = 1 MAX VECTORS = 60 MAXITER = 30
CONVERGENCE =1.0E-06 THRESHOLD =1.0E-06
SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=0
Itr|ConvR|ResNormR|NVecs|Comments
0| 0 |1.0E-01 | 1 |
1| 0 |2.0E-02 | 2 |
2| 0 |4.4E-03 | 3 |
3| 0 |2.1E-03 | 4 |
4| 0 |9.6E-04 | 5 |
5| 0 |4.8E-04 | 6 |
6| 0 |2.5E-04 | 7 |
7| 0 |1.6E-04 | 8 |
8| 0 |1.6E-04 | 9 |
9| 0 |2.6E-04 | 10 |
10| 0 |2.2E-04 | 11 |
11| 0 |1.3E-04 | 12 |
12| 0 |7.8E-05 | 13 |
13| 0 |5.5E-05 | 14 |
14| 0 |4.3E-05 | 15 |
15| 0 |3.9E-05 | 16 |
16| 0 |3.6E-05 | 17 |
17| 0 |3.1E-05 | 18 |
18| 0 |2.5E-05 | 19 |
19| 0 |1.8E-05 | 20 |
20| 0 |1.3E-05 | 21 |
21| 0 |1.1E-05 | 22 |
22| 0 |1.1E-05 | 23 |
23| 0 |6.6E-06 | 24 |
24| 0 |3.2E-06 | 25 |
25| 0 |1.4E-06 | 26 |NSDavidsonRight<T>::CalcCorrectionVec(): Warning! Scaled norm for root 0 is too small: 2.72E-07; ||Res||=1.39E-06
26| 1 |6.7E-07 | 27 |Collapse current subspace
DAVIDSON ITERATIONS CONVERGED, 26 ITERATIONS
Excitation energies, hartree
0
0 0.140873
1 lowest LOWSPIN roots of symmetry Au :
Root 1 Conv-d yes Tot Ene= -153.992856023 hartree (Ex Ene 3.8333 eV), U0^2=0.000000, U1^2=0.881351, U2^2=0.110063 ||Res||=6.7E-07
Right U1:
Value i -> a
0.7954 5( B3g ) A -> 55( B3u ) B
0.3075 8( B2u ) A -> 24( B2g ) B
-0.2780 5( B3g ) A -> 58( B3u ) B
0.1668 5( B3g ) A -> 56( B3u ) B
Singles guess formation using Slater determinants:
State 1: 5 ->108 ( 0.3879)
1 singly-excited guess vectors generated
SOLVE EOM-CC(2,3) EQUATIONS FOR RIGHT VECTORS of LOWSPIN STATES OF B1u IRREP
PARAMETERS FOR NS-DAVIDSON DIAGONALIZATION PROCEDURE:
NROOTS = 1 MAX VECTORS = 60 MAXITER = 30
CONVERGENCE =1.0E-06 THRESHOLD =1.0E-06
SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=0
PARAMETERS FOR NS-DAVIDSON DIAGONALIZATION PROCEDURE:
NROOTS = 1 MAX VECTORS = 60 MAXITER = 30
CONVERGENCE =1.0E-06 THRESHOLD =1.0E-06
SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=0
Itr|ConvR|ResNormR|NVecs|Comments
0| 0 |1.0E-01 | 1 |
1| 0 |1.8E-02 | 2 |
2| 0 |3.1E-03 | 3 |
3| 0 |9.0E-04 | 4 |
4| 0 |2.2E-04 | 5 |
5| 0 |6.2E-05 | 6 |
6| 0 |2.1E-05 | 7 |
7| 0 |1.2E-05 | 8 |
8| 0 |7.7E-06 | 9 |
9| 0 |7.9E-06 | 10 |
10| 0 |1.1E-05 | 11 |
11| 0 |1.3E-05 | 12 |
12| 0 |1.0E-05 | 13 |
13| 0 |7.1E-06 | 14 |
14| 0 |6.3E-06 | 15 |
15| 0 |5.8E-06 | 16 |
16| 0 |4.1E-06 | 17 |
17| 0 |1.8E-06 | 18 |NSDavidsonRight<T>::CalcCorrectionVec(): Warning! Scaled norm for root 0 is too small: 3.98E-07; ||Res||=1.84E-06
18| 1 |7.8E-07 | 19 |Collapse current subspace
DAVIDSON ITERATIONS CONVERGED, 18 ITERATIONS
Excitation energies, hartree
0
0 0.150685
1 lowest LOWSPIN roots of symmetry B1u :
Root 1 Conv-d yes Tot Ene= -153.983043759 hartree (Ex Ene 4.1003 eV), U0^2=0.000000, U1^2=0.914756, U2^2=0.079097 ||Res||=7.8E-07
Right U1:
Value i -> a
-0.9241 5( B3g ) A -> 43( B2u ) B
-0.1769 5( B3g ) A -> 45( B2u ) B
-0.1298 5( B3g ) A -> 46( B2u ) B
-0.0768 5( B3g ) A -> 44( B2u ) B
Singles guess formation using Slater determinants:
State 1: 5 ->104 ( 0.4412)
1 singly-excited guess vectors generated
SOLVE EOM-CC(2,3) EQUATIONS FOR RIGHT VECTORS of LOWSPIN STATES OF B2u IRREP
PARAMETERS FOR NS-DAVIDSON DIAGONALIZATION PROCEDURE:
NROOTS = 1 MAX VECTORS = 60 MAXITER = 30
CONVERGENCE =1.0E-06 THRESHOLD =1.0E-06
SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=0
PARAMETERS FOR NS-DAVIDSON DIAGONALIZATION PROCEDURE:
NROOTS = 1 MAX VECTORS = 60 MAXITER = 30
CONVERGENCE =1.0E-06 THRESHOLD =1.0E-06
SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=0
Itr|ConvR|ResNormR|NVecs|Comments
0| 0 |1.0E-01 | 1 |
1| 0 |1.6E-02 | 2 |
2| 0 |2.4E-03 | 3 |
3| 0 |6.1E-04 | 4 |
4| 0 |1.7E-04 | 5 |
5| 0 |8.4E-05 | 6 |
6| 0 |5.4E-05 | 7 |
7| 0 |5.2E-05 | 8 |
8| 0 |6.7E-05 | 9 |
9| 0 |1.2E-04 | 10 |
10| 0 |1.5E-04 | 11 |
11| 0 |1.1E-04 | 12 |
12| 0 |5.8E-05 | 13 |
13| 0 |3.2E-05 | 14 |
14| 0 |1.4E-05 | 15 |
15| 0 |4.1E-06 | 16 |
16| 0 |1.5E-06 | 17 |NSDavidsonRight<T>::CalcCorrectionVec(): Warning! Scaled norm for root 0 is too small: 2.92E-07; ||Res||=1.50E-06
17| 1 |8.7E-07 | 18 |Collapse current subspace
DAVIDSON ITERATIONS CONVERGED, 17 ITERATIONS
Excitation energies, hartree
0
0 0.174522
1 lowest LOWSPIN roots of symmetry B2u :
Root 1 Conv-d yes Tot Ene= -153.959206277 hartree (Ex Ene 4.7490 eV), U0^2=0.000000, U1^2=0.869261, U2^2=0.121642 ||Res||=8.7E-07
Right U1:
Value i -> a
0.9146 5( B3g ) A -> 39( B1u ) B
0.0975 4( B2g ) A -> 35( Au ) B
0.0912 6( B1u ) A -> 30( B3g ) B
-0.0764 5( B3g ) A -> 40( B1u ) B
Singles guess formation using Slater determinants:
State 1: 5 -> 99 ( 0.4743)
1 singly-excited guess vectors generated
SOLVE EOM-CC(2,3) EQUATIONS FOR RIGHT VECTORS of LOWSPIN STATES OF B3u IRREP
PARAMETERS FOR NS-DAVIDSON DIAGONALIZATION PROCEDURE:
NROOTS = 1 MAX VECTORS = 60 MAXITER = 30
CONVERGENCE =1.0E-06 THRESHOLD =1.0E-06
SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=0
PARAMETERS FOR NS-DAVIDSON DIAGONALIZATION PROCEDURE:
NROOTS = 1 MAX VECTORS = 60 MAXITER = 30
CONVERGENCE =1.0E-06 THRESHOLD =1.0E-06
SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=0
Itr|ConvR|ResNormR|NVecs|Comments
0| 0 |9.9E-02 | 1 |
1| 0 |2.5E-02 | 2 |
2| 0 |3.1E-02 | 3 |
3| 0 |2.6E-02 | 4 |
4| 0 |1.1E-02 | 5 |
5| 0 |9.8E-03 | 6 |
6| 0 |7.2E-03 | 7 |
7| 0 |2.3E-03 | 8 |
8| 0 |9.9E-04 | 9 |
9| 0 |4.1E-04 | 10 |
10| 0 |1.6E-04 | 11 |
11| 0 |4.4E-05 | 12 |
12| 0 |1.0E-05 | 13 |
13| 0 |3.3E-06 | 14 |
14| 0 |1.3E-06 | 15 |NSDavidsonRight<T>::CalcCorrectionVec(): Warning! Scaled norm for root 0 is too small: 2.27E-07; ||Res||=1.31E-06
15| 1 |4.7E-07 | 16 |Collapse current subspace
DAVIDSON ITERATIONS CONVERGED, 15 ITERATIONS
Excitation energies, hartree
0
0 0.112164
1 lowest LOWSPIN roots of symmetry B3u :
Root 1 Conv-d yes Tot Ene= -154.021564995 hartree (Ex Ene 3.0521 eV), U0^2=0.000000, U1^2=0.504459, U2^2=0.467727 ||Res||=4.7E-07
Right U1:
Value i -> a
0.4454 5( B3g ) A -> 35( Au ) B
0.4319 6( B1u ) A -> 24( B2g ) B
0.2763 5( B3g ) A -> 34( Au ) B
0.1737 6( B1u ) A -> 25( B2g ) B
Right U2:
Value i j -> a b
0.3773 4( B2g ) A, 5( B3g ) A -> 32( Au ) A, 24( B2g ) B
-0.3266 5( B3g ) A, 4( B1u ) B -> 24( B2g ) B, 29( B3g ) B
-0.2426 5( B3g ) A, 4( B1u ) B -> 24( B2g ) B, 30( B3g ) B
-0.2400 4( B2g ) A, 5( B3g ) A -> 33( Au ) A, 24( B2g ) B
EOM(2,3) CPU 53097.70 s wall 264188.99 s
CCMAN JOB: ALL CPU 53123.77 s wall 264341.60 s
--------------------------------------------------------------
Orbital Energies (a.u.) and Symmetries
--------------------------------------------------------------
Alpha MOs, Unrestricted
-- Occupied --
-11.257 -11.257 -11.256 -11.255 -1.193 -0.709 -0.552 -0.721
1 Ag 1 B3u 1 B2u 1 B1g 2 Ag 3 Ag 4 Ag 2 B1g
-0.343 -0.241 -0.565 -0.856 -0.467 -0.951 -0.568
1 B2g 1 B3g 1 B1u 2 B2u 3 B2u 2 B3u 3 B3u
-- Virtual --
0.086 0.139 0.173 0.346 0.767 0.889 1.045 1.247
5 Ag 6 Ag 7 Ag 8 Ag 9 Ag 10 Ag 11 Ag 12 Ag
1.900 2.033 2.380 0.101 0.219 0.288 0.385 0.516
13 Ag 14 Ag 15 Ag 3 B1g 4 B1g 5 B1g 6 B1g 7 B1g
0.783 1.095 1.158 1.492 1.878 2.967 3.300 3.393
8 B1g 9 B1g 10 B1g 11 B1g 12 B1g 13 B1g 14 B1g 15 B1g
0.157 0.892 1.765 2.313 0.168 0.925 1.830 2.611
2 B2g 3 B2g 4 B2g 5 B2g 2 B3g 3 B3g 4 B3g 5 B3g
0.137 0.243 0.966 2.562 2.753 0.128 0.887 1.526
1 Au 2 Au 3 Au 4 Au 5 Au 2 B1u 3 B1u 4 B1u
1.601 0.084 0.172 0.249 0.405 0.494 1.009 1.180
5 B1u 4 B2u 5 B2u 6 B2u 7 B2u 8 B2u 9 B2u 10 B2u
1.285 1.535 2.194 2.816 3.079 0.082 0.165 0.247
11 B2u 12 B2u 13 B2u 14 B2u 15 B2u 4 B3u 5 B3u 6 B3u
0.318 0.423 0.893 1.084 1.223 1.430 2.321 2.711
7 B3u 8 B3u 9 B3u 10 B3u 11 B3u 12 B3u 13 B3u 14 B3u
2.886
15 B3u
Beta MOs, Unrestricted
-- Occupied --
-11.246 -11.245 -11.245 -11.244 -1.144 -0.696 -0.535 -0.694
1 Ag 1 B3u 1 B2u 1 B1g 2 Ag 3 Ag 4 Ag 2 B1g
-0.378 -0.807 -0.455 -0.894 -0.558
1 B1u 2 B2u 3 B2u 2 B3u 3 B3u
-- Virtual --
0.088 0.141 0.181 0.351 0.774 0.895 1.063 1.255
5 Ag 6 Ag 7 Ag 8 Ag 9 Ag 10 Ag 11 Ag 12 Ag
1.913 2.050 2.416 0.103 0.219 0.293 0.403 0.527
13 Ag 14 Ag 15 Ag 3 B1g 4 B1g 5 B1g 6 B1g 7 B1g
0.819 1.103 1.172 1.500 1.894 3.000 3.308 3.402
8 B1g 9 B1g 10 B1g 11 B1g 12 B1g 13 B1g 14 B1g 15 B1g
0.047 0.187 0.955 1.825 2.360 0.095 0.225 0.995
1 B2g 2 B2g 3 B2g 4 B2g 5 B2g 1 B3g 2 B3g 3 B3g
1.884 2.655 0.173 0.376 1.032 2.605 2.794 0.139
4 B3g 5 B3g 1 Au 2 Au 3 Au 4 Au 5 Au 2 B1u
0.945 1.582 1.670 0.086 0.173 0.259 0.425 0.506
3 B1u 4 B1u 5 B1u 4 B2u 5 B2u 6 B2u 7 B2u 8 B2u
1.027 1.190 1.304 1.546 2.230 2.825 3.096 0.083
9 B2u 10 B2u 11 B2u 12 B2u 13 B2u 14 B2u 15 B2u 4 B3u
0.167 0.254 0.347 0.429 0.904 1.103 1.238 1.444
5 B3u 6 B3u 7 B3u 8 B3u 9 B3u 10 B3u 11 B3u 12 B3u
2.342 2.729 2.905
13 B3u 14 B3u 15 B3u
--------------------------------------------------------------
Ground-State Mulliken Net Atomic Charges
Atom Charge (a.u.) Spin (a.u.)
--------------------------------------------------------
1 C -0.243205 0.550599
2 C -0.243205 0.550599
3 C -0.243205 0.550599
4 C -0.243205 0.550599
5 H 0.243205 -0.050599
6 H 0.243205 -0.050599
7 H 0.243205 -0.050599
8 H 0.243205 -0.050599
--------------------------------------------------------
Sum of atomic charges = 0.000000
Sum of spin charges = 2.000000
-----------------------------------------------------------------
Cartesian Multipole Moments
-----------------------------------------------------------------
Charge (ESU x 10^10)
-0.0000
Dipole Moment (Debye)
X 0.0000 Y -0.0000 Z -0.0000
Tot 0.0000
Quadrupole Moments (Debye-Ang)
XX -20.8207 XY -0.0000 YY -22.8336
XZ -0.0000 YZ 0.0000 ZZ -28.2679
Octopole Moments (Debye-Ang^2)
XXX 0.0000 XXY 0.0000 XYY 0.0000
YYY 0.0000 XXZ -0.0000 XYZ 0.0000
YYZ -0.0000 XZZ -0.0000 YZZ -0.0000
ZZZ -0.0000
Hexadecapole Moments (Debye-Ang^3)
XXXX -134.3734 XXXY -0.0000 XXYY -32.7026
XYYY 0.0000 YYYY -117.5540 XXXZ -0.0000
XXYZ 0.0000 XYYZ -0.0000 YYYZ -0.0000
XXZZ -33.7125 XYZZ 0.0000 YYZZ -31.4025
XZZZ -0.0000 YZZZ 0.0000 ZZZZ -38.9819
-----------------------------------------------------------------
Archival summary:
1\1\compute-3-0.local\SP\ProcedureUnspecified\6-31+G*\44(3)\emonino\SunJan3118:59:222021SunJan3118:59:222021\0\\#,ProcedureUnspecified,6-31+G*,\\0,3\C\H,1,1.07604\C,1,1.34416,2,135.082\H,3,1.07604,1,135.082,2,-0,0\C,3,1.56497,1,90,2,180,0\H,5,1.07604,3,134.918,1,180,0\C,5,1.34416,3,90,1,-0,0\H,7,1.07604,5,135.082,3,180,0\\HF=-153.617984\\@
Total job time: 264343.18s(wall), 53124.86s(cpu)
Sun Jan 31 18:59:22 2021
*************************************************************
* *
* Thank you very much for using Q-Chem. Have a nice day. *
* *
*************************************************************