CBD/D4h/spin-flip/EOM-SF-CCSD/6-31+G_d/CBD_eom_sf_ccsd_6_31G_d.log
2021-03-31 07:18:11 +02:00

637 lines
30 KiB
Plaintext

Running Job 1 of 1 6-31+G_d/CBD_eom_sf_ccsd_6_31G_d.inp
qchem 6-31+G_d/CBD_eom_sf_ccsd_6_31G_d.inp_2608.0 /mnt/beegfs/tmpdir/qchem2608/ 0
/share/apps/common/q-chem/5.2.1/exe/qcprog.exe_s 6-31+G_d/CBD_eom_sf_ccsd_6_31G_d.inp_2608.0 /mnt/beegfs/tmpdir/qchem2608/
Welcome to Q-Chem
A Quantum Leap Into The Future Of Chemistry
Q-Chem 5.2, Q-Chem, Inc., Pleasanton, CA (2019)
Yihan Shao, Zhengting Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit,
J. Kussmann, A. W. Lange, A. Behn, Jia Deng, Xintian Feng, D. Ghosh,
M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, T. Kus, A. Landau,
Jie Liu, E. I. Proynov, R. M. Richard, R. P. Steele, E. J. Sundstrom,
H. L. Woodcock III, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire,
S. A. Baeppler, D. Barton, Z. Benda, Y. A. Bernard, E. J. Berquist,
K. B. Bravaya, H. Burton, D. Casanova, Chun-Min Chang, Yunqing Chen,
A. Chien, K. D. Closser, M. P. Coons, S. Coriani, S. Dasgupta,
A. L. Dempwolff, M. Diedenhofen, Hainam Do, R. G. Edgar, Po-Tung Fang,
S. Faraji, S. Fatehi, Qingguo Feng, K. D. Fenk, J. Fosso-Tande,
J. Gayvert, Qinghui Ge, A. Ghysels, G. Gidofalvi, J. Gomes,
J. Gonthier, A. Gunina, D. Hait, M. W. D. Hanson-Heine,
P. H. P. Harbach, A. W. Hauser, M. F. Herbst, J. E. Herr,
E. G. Hohenstein, Z. C. Holden, Kerwin Hui, B. C. Huynh, T.-C. Jagau,
Hyunjun Ji, B. Kaduk, K. Khistyaev, Jaehoon Kim, P. Klunzinger, K. Koh,
D. Kosenkov, L. Koulias, T. Kowalczyk, C. M. Krauter, A. Kunitsa,
Ka Un Lao, A. Laurent, K. V. Lawler, Joonho Lee, D. Lefrancois,
S. Lehtola, D. S. Levine, Yi-Pei Li, You-Sheng Lin, Fenglai Liu,
E. Livshits, A. Luenser, P. Manohar, E. Mansoor, S. F. Manzer,
Shan-Ping Mao, Yuezhi Mao, N. Mardirossian, A. V. Marenich,
T. Markovich, L. A. Martinez-Martinez, S. A. Maurer, N. J. Mayhall,
S. C. McKenzie, J.-M. Mewes, P. Morgante, A. F. Morrison,
J. W. Mullinax, K. Nanda, T. S. Nguyen-Beck, R. Olivares-Amaya,
J. A. Parkhill, Zheng Pei, T. M. Perrine, F. Plasser, P. Pokhilko,
S. Prager, A. Prociuk, E. Ramos, D. R. Rehn, F. Rob, M. Scheurer,
M. Schneider, N. Sergueev, S. M. Sharada, S. Sharma, D. W. Small,
T. Stauch, T. Stein, Yu-Chuan Su, A. J. W. Thom, A. Tkatchenko,
T. Tsuchimochi, N. M. Tubman, L. Vogt, M. L. Vidal, O. Vydrov,
M. A. Watson, J. Wenzel, M. de Wergifosse, T. A. Wesolowski, A. White,
J. Witte, A. Yamada, Jun Yang, K. Yao, S. Yeganeh, S. R. Yost,
Zhi-Qiang You, A. Zech, Igor Ying Zhang, Xing Zhang, Yan Zhao,
Ying Zhu, B. R. Brooks, G. K. L. Chan, C. J. Cramer, M. S. Gordon,
W. J. Hehre, A. Klamt, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar,
A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, Jeng-Da Chai,
A. E. DePrince, III, R. A. DiStasio Jr., A. Dreuw, B. D. Dunietz,
T. R. Furlani, Chao-Ping Hsu, Yousung Jung, Jing Kong, D. S. Lambrecht,
WanZhen Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko,
J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov,
P. M. W. Gill, M. Head-Gordon
Contributors to earlier versions of Q-Chem not listed above:
R. D. Adamson, B. Austin, J. Baker, G. J. O. Beran, K. Brandhorst,
S. T. Brown, E. F. C. Byrd, A. K. Chakraborty, C.-L. Cheng,
Siu Hung Chien, D. M. Chipman, D. L. Crittenden, H. Dachsel,
R. J. Doerksen, A. D. Dutoi, L. Fusti-Molnar, W. A. Goddard III,
A. Golubeva-Zadorozhnaya, S. R. Gwaltney, G. Hawkins, A. Heyden,
S. Hirata, G. Kedziora, F. J. Keil, C. Kelley, Jihan Kim, R. A. King,
R. Z. Khaliullin, P. P. Korambath, W. Kurlancheek, A. M. Lee, M. S. Lee,
S. V. Levchenko, Ching Yeh Lin, D. Liotard, R. C. Lochan, I. Lotan,
P. E. Maslen, N. Nair, D. P. O'Neill, D. Neuhauser, E. Neuscamman,
C. M. Oana, R. Olson, B. Peters, R. Peverati, P. A. Pieniazek,
Y. M. Rhee, J. Ritchie, M. A. Rohrdanz, E. Rosta, N. J. Russ,
H. F. Schaefer III, N. E. Schultz, N. Shenvi, A. C. Simmonett, A. Sodt,
D. Stuck, K. S. Thanthiriwatte, V. Vanovschi, Tao Wang, A. Warshel,
C. F. Williams, Q. Wu, X. Xu, W. Zhang
Please cite Q-Chem as follows:
Y. Shao et al., Mol. Phys. 113, 184-215 (2015)
DOI: 10.1080/00268976.2014.952696
Q-Chem 5.2.1 for Intel X86 EM64T Linux
Parts of Q-Chem use Armadillo 8.300.2 (Tropical Shenanigans).
http://arma.sourceforge.net/
Q-Chem begins on Mon Mar 29 07:21:15 2021
Host:
0
Scratch files written to /mnt/beegfs/tmpdir/qchem2608//
Jul1719 |scratch|qcdevops|jenkins|workspace|build_RNUM 6358
Processing $rem in /share/apps/common/q-chem/5.2.1/config/preferences:
MEM_TOTAL 5000
NAlpha2: 30
NElect 28
Mult 3
Core orbitals will be frozen
Checking the input file for inconsistencies... ...done.
--------------------------------------------------------------
User input:
--------------------------------------------------------------
$comment
EOM-SF-CCSD
$end
$molecule
0 3
C 0.000000 1.017702 0.000000
C 1.017702 -0.000000 0.000000
C -1.017702 0.000000 0.000000
C -0.000000 -1.017702 0.000000
H 0.000000 2.092429 0.000000
H 2.092429 -0.000000 0.000000
H -0.000000 -2.092429 0.000000
H -2.092429 0.000000 0.000000
$end
$rem
JOBTYPE = sp
METHOD = eom-ccsd
BASIS = 6-31+G*
SCF_CONVERGENCE = 9
SF_STATES = [2,2,0,0,0,0,0,0]
PURECART = 1111
UNRESTRICTED = TRUE
RPA = FALSE
$end
--------------------------------------------------------------
----------------------------------------------------------------
Standard Nuclear Orientation (Angstroms)
I Atom X Y Z
----------------------------------------------------------------
1 C 1.0177020000 -0.0000000000 0.0000000000
2 C 0.0000000000 1.0177020000 -0.0000000000
3 C -0.0000000000 -1.0177020000 0.0000000000
4 C -1.0177020000 0.0000000000 -0.0000000000
5 H 2.0924290000 -0.0000000000 0.0000000000
6 H 0.0000000000 2.0924290000 -0.0000000000
7 H -2.0924290000 0.0000000000 -0.0000000000
8 H -0.0000000000 -2.0924290000 0.0000000000
----------------------------------------------------------------
Molecular Point Group D2h NOp = 8
Largest Abelian Subgroup D2h NOp = 8
Nuclear Repulsion Energy = 99.44981958 hartrees
There are 15 alpha and 13 beta electrons
Q-Chem warning in module forms1/BasisType.C, line 1983:
You are not using the predefined 5D/6D in this basis set.
Requested basis set is 6-31+G(d)
There are 28 shells and 80 basis functions
Total memory of 5000 MB is distributed as follows:
MEM_STATIC is set to 192 MB
QALLOC/CCMAN JOB total memory use is 4808 MB
Warning: actual memory use might exceed 5000 MB
Total QAlloc Memory Limit 5000 MB
Mega-Array Size 188 MB
MEM_STATIC part 192 MB
Distance Matrix (Angstroms)
C ( 1) C ( 2) C ( 3) C ( 4) H ( 5) H ( 6)
C ( 2) 1.439248
C ( 3) 1.439248 2.035404
C ( 4) 2.035404 1.439248 1.439248
H ( 5) 1.074727 2.326795 2.326795 3.110131
H ( 6) 2.326795 1.074727 3.110131 2.326795 2.959141
H ( 7) 3.110131 2.326795 2.326795 1.074727 4.184858 2.959141
H ( 8) 2.326795 3.110131 1.074727 2.326795 2.959141 4.184858
H ( 7)
H ( 8) 2.959141
A cutoff of 1.0D-14 yielded 406 shell pairs
There are 3352 function pairs ( 3702 Cartesian)
Smallest overlap matrix eigenvalue = 2.37E-05
Scale SEOQF with 1.000000e-01/1.000000e-01/1.000000e-01
Standard Electronic Orientation quadrupole field applied
Nucleus-field energy = 0.0000000023 hartrees
Guess from superposition of atomic densities
Warning: Energy on first SCF cycle will be non-variational
SAD guess density has 28.000000 electrons
-----------------------------------------------------------------------
General SCF calculation program by
Eric Jon Sundstrom, Paul Horn, Yuezhi Mao, Dmitri Zuev, Alec White,
David Stuck, Shaama M.S., Shane Yost, Joonho Lee, David Small,
Daniel Levine, Susi Lehtola, Hugh Burton, Evgeny Epifanovsky,
Bang C. Huynh
-----------------------------------------------------------------------
Hartree-Fock
A unrestricted SCF calculation will be
performed using DIIS
SCF converges when DIIS error is below 1.0e-09
---------------------------------------
Cycle Energy DIIS error
---------------------------------------
1 -155.1157473766 4.26e-02
2 -153.6116685752 2.93e-03
3 -153.6528956902 7.51e-04
4 -153.6562312230 1.18e-04
5 -153.6563409599 5.80e-05
6 -153.6563678974 2.82e-05
7 -153.6563766073 8.92e-06
8 -153.6563776254 1.68e-06
9 -153.6563776618 2.84e-07
10 -153.6563776628 6.39e-08
11 -153.6563776628 9.98e-09
12 -153.6563776629 1.51e-09
13 -153.6563776629 2.65e-10 Convergence criterion met
---------------------------------------
SCF time: CPU 1.26s wall 1.00s
<S^2> = 2.015622841
SCF energy in the final basis set = -153.6563776629
Total energy in the final basis set = -153.6563776629
------------------------------------------------------------------------------
CCMAN2: suite of methods based on coupled cluster
and equation of motion theories.
Components:
* libvmm-1.3-trunk
by Evgeny Epifanovsky, Ilya Kaliman.
* libtensor-2.5-trunk
by Evgeny Epifanovsky, Michael Wormit, Dmitry Zuev, Sam Manzer,
Ilya Kaliman.
* libcc-2.5-trunk
by Evgeny Epifanovsky, Arik Landau, Tomasz Kus, Kirill Khistyaev,
Dmitry Zuev, Prashant Manohar, Xintian Feng, Anna Krylov,
Matthew Goldey, Alec White, Thomas Jagau, Kaushik Nanda,
Anastasia Gunina, Alexander Kunitsa, Joonho Lee.
CCMAN original authors:
Anna I. Krylov, C. David Sherrill, Steven R. Gwaltney,
Edward F. C. Byrd (2000)
Sergey V. Levchenko, Lyudmila V. Slipchenko, Tao Wang,
Ana-Maria C. Cristian (2003)
Piotr A. Pieniazek, C. Melania Oana, Evgeny Epifanovsky (2007)
Prashant Manohar (2009)
------------------------------------------------------------------------------
Allocating and initializing 4808MB of RAM...
Calculation will run on 1 core.
Alpha MOs, Unrestricted
-- Occupied --
-11.252 -11.251 -11.251 -11.250 -1.197 -0.899 -0.899 -0.719
1 Ag 1 B3u 1 B2u 2 Ag 3 Ag 2 B3u 2 B2u 4 Ag
-0.709 -0.566 -0.554 -0.520 -0.520 -0.290 -0.290
5 Ag 1 B1u 1 B1g 3 B3u 3 B2u 1 B2g 1 B3g
-- Virtual --
0.083 0.083 0.086 0.102 0.128 0.139 0.140 0.162
4 B3u 4 B2u 6 Ag 7 Ag 2 B1u 3 B1u 2 B1g 2 B2g
0.162 0.170 0.170 0.173 0.220 0.245 0.248 0.248
2 B3g 5 B3u 5 B2u 8 Ag 3 B1g 4 B1u 6 B3u 6 B2u
0.289 0.347 0.378 0.378 0.396 0.454 0.454 0.524
9 Ag 10 Ag 7 B3u 7 B2u 11 Ag 8 B3u 8 B2u 4 B1g
0.783 0.796 0.881 0.897 0.910 0.910 0.951 0.951
5 B1g 12 Ag 13 Ag 5 B1u 3 B2g 3 B3g 9 B3u 9 B2u
0.967 1.025 1.089 1.129 1.129 1.154 1.237 1.252
6 B1u 14 Ag 6 B1g 10 B3u 10 B2u 15 Ag 16 Ag 11 B3u
1.252 1.487 1.487 1.492 1.544 1.553 1.787 1.787
11 B2u 12 B3u 12 B2u 17 Ag 7 B1u 1 Au 4 B2g 4 B3g
1.887 1.906 2.160 2.277 2.286 2.286 2.477 2.477
18 Ag 19 Ag 7 B1g 20 Ag 13 B3u 13 B2u 5 B2g 5 B3g
2.618 2.726 2.750 2.750 2.985 2.987 2.987 3.288
2 Au 8 B1u 14 B3u 14 B2u 21 Ag 15 B2u 15 B3u 8 B1g
3.415
22 Ag
Beta MOs, Unrestricted
-- Occupied --
-11.241 -11.240 -11.240 -11.239 -1.148 -0.846 -0.846 -0.696
1 Ag 1 B3u 1 B2u 2 Ag 3 Ag 2 B3u 2 B2u 4 Ag
-0.692 -0.536 -0.509 -0.509 -0.380
5 Ag 1 B1g 3 B3u 3 B2u 1 B1u
-- Virtual --
0.076 0.076 0.085 0.085 0.088 0.103 0.138 0.141
1 B2g 1 B3g 4 B3u 4 B2u 6 Ag 7 Ag 2 B1u 2 B1g
0.171 0.171 0.174 0.180 0.205 0.205 0.220 0.256
5 B3u 5 B2u 3 B1u 8 Ag 2 B2g 2 B3g 3 B1g 6 B3u
0.256 0.293 0.352 0.380 0.404 0.404 0.414 0.462
6 B2u 9 Ag 10 Ag 4 B1u 7 B3u 7 B2u 11 Ag 8 B3u
0.462 0.535 0.791 0.835 0.887 0.954 0.966 0.966
8 B2u 4 B1g 5 B1g 12 Ag 13 Ag 5 B1u 9 B3u 9 B2u
0.977 0.977 1.033 1.044 1.097 1.144 1.144 1.167
3 B2g 3 B3g 6 B1u 14 Ag 6 B1g 10 B3u 10 B2u 15 Ag
1.245 1.269 1.269 1.499 1.499 1.500 1.600 1.625
16 Ag 11 B3u 11 B2u 12 B3u 12 B2u 17 Ag 7 B1u 1 Au
1.844 1.844 1.903 1.913 2.169 2.316 2.316 2.326
4 B2g 4 B3g 18 Ag 19 Ag 7 B1g 13 B3u 13 B2u 20 Ag
2.522 2.522 2.662 2.762 2.762 2.767 3.005 3.005
5 B2g 5 B3g 2 Au 14 B3u 14 B2u 8 B1u 15 B3u 15 B2u
3.018 3.295 3.423
21 Ag 8 B1g 22 Ag
Occupation and symmetry of molecular orbitals
Point group: D2h (8 irreducible representations).
Ag B1g B2g B3g Au B1u B2u B3u All
------------------------------------------------------------------------
All molecular orbitals:
- Alpha 22 8 5 5 2 8 15 15 80
- Beta 22 8 5 5 2 8 15 15 80
------------------------------------------------------------------------
Alpha orbitals:
- Frozen occupied 2 0 0 0 0 0 1 1 4
- Active occupied 3 1 1 1 0 1 2 2 11
- Active virtual 17 7 4 4 2 7 12 12 65
- Frozen virtual 0 0 0 0 0 0 0 0 0
------------------------------------------------------------------------
Beta orbitals:
- Frozen occupied 2 0 0 0 0 0 1 1 4
- Active occupied 3 1 0 0 0 1 2 2 9
- Active virtual 17 7 5 5 2 7 12 12 67
- Frozen virtual 0 0 0 0 0 0 0 0 0
------------------------------------------------------------------------
Import integrals: CPU 0.00 s wall 0.00 s
Import integrals: CPU 3.25 s wall 10.99 s
MP2 amplitudes: CPU 0.74 s wall 2.60 s
Running a double precision version
CCSD T amplitudes will be solved using DIIS.
Start Size MaxIter EConv TConv
3 7 100 1.00e-06 1.00e-04
------------------------------------------------------------------------------
Energy (a.u.) Ediff Tdiff Comment
------------------------------------------------------------------------------
-154.13602911
1 -154.15059068 1.46e-02 7.06e-01
2 -154.16436926 1.38e-02 8.44e-02
3 -154.16657914 2.21e-03 3.03e-02
4 -154.16862162 2.04e-03 1.56e-02 Switched to DIIS steps.
5 -154.16902115 4.00e-04 6.83e-03
6 -154.16902439 3.24e-06 2.12e-03
7 -154.16902275 1.64e-06 4.07e-04
8 -154.16902396 1.21e-06 1.71e-04
9 -154.16902419 2.26e-07 4.00e-05
------------------------------------------------------------------------------
-154.16902419 CCSD T converged.
End of double precision
SCF energy = -153.65637766
MP2 energy = -154.13602911
CCSD correlation energy = -0.51264652
CCSD total energy = -154.16902419
CCSD T1^2 = 0.0051 T2^2 = 0.2176 Leading amplitudes:
Amplitude Orbitals with energies
0.0361 1 (B1u) B -> 5 (B1u) B
-0.3805 0.9541
0.0284 1 (B1u) B -> 2 (B1u) B
-0.3805 0.1383
0.0184 1 (B2g) A -> 3 (B2g) A
-0.2896 0.9104
0.0184 1 (B3g) A -> 3 (B3g) A
-0.2896 0.9104
Amplitude Orbitals with energies
0.0650 1 (B3g) A 1 (B1u) B -> 3 (B1u) A 1 (B3g) B
-0.2896 -0.3805 0.1391 0.0759
-0.0650 1 (B3g) A 1 (B1u) B -> 1 (B3g) B 3 (B1u) A
-0.2896 -0.3805 0.0759 0.1391
-0.0650 1 (B1u) B 1 (B3g) A -> 3 (B1u) A 1 (B3g) B
-0.3805 -0.2896 0.1391 0.0759
0.0650 1 (B1u) B 1 (B3g) A -> 1 (B3g) B 3 (B1u) A
-0.3805 -0.2896 0.0759 0.1391
0.0650 1 (B2g) A 1 (B1u) B -> 3 (B1u) A 1 (B2g) B
-0.2896 -0.3805 0.1391 0.0759
-0.0650 1 (B2g) A 1 (B1u) B -> 1 (B2g) B 3 (B1u) A
-0.2896 -0.3805 0.0759 0.1391
-0.0650 1 (B1u) B 1 (B2g) A -> 3 (B1u) A 1 (B2g) B
-0.3805 -0.2896 0.1391 0.0759
0.0650 1 (B1u) B 1 (B2g) A -> 1 (B2g) B 3 (B1u) A
-0.3805 -0.2896 0.0759 0.1391
Computing CCSD intermediates for later calculations in double precision
Finished.
CCSD calculation: CPU 23.72 s wall 27.90 s
Solving for EOMSF-CCSD Ag transitions.
Running a double precision version
EOMSF-CCSD/MP2 right amplitudes will be solved using Davidson.
Amplitudes will be solved using standard algorithm.
Hard-coded thresholds:
LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02
Roots MaxVec MaxIter Precond Conv Shift
2 120 60 1 1.00e-05 0.00e+00
------------------------------------------------------------------------------
Iter ConvRoots NVecs ResNorm Current eigenvalues (eV)
------------------------------------------------------------------------------
0 0 4 1.90e-01 2.6093 2.8005
1 0 6 4.46e-02 0.4043 0.7440
2 0 8 3.68e-03 -0.3556 0.1014
3 0 10 4.48e-04 -0.4210 0.0271
4 0 12 4.32e-05 -0.4260 0.0206
5 2 14 3.65e-06 -0.4275* 0.0183*
Davidson procedure converged
EOMSF transition 1/Ag
Total energy = -154.18473357 a.u. Excitation energy = -0.4275 eV.
R1^2 = 0.9628 R2^2 = 0.0372 Res^2 = 3.13e-06
Conv-d = yes
Amplitude Transitions between orbitals
-0.5959 1 (B2g) A -> 1 (B2g) B
-0.5959 1 (B3g) A -> 1 (B3g) B
-0.3291 1 (B3g) A -> 2 (B3g) B
0.3291 1 (B2g) A -> 2 (B2g) B
0.1271 1 (B1u) A -> 4 (B1u) B
Summary of significant orbitals:
Number Type Irrep Energy
14 Occ Alpha 1 (B2g) -0.2896
15 Occ Alpha 1 (B3g) -0.2896
10 Occ Alpha 1 (B1u) -0.5661
14 Vir Beta 1 (B2g) 0.0759
26 Vir Beta 2 (B2g) 0.2049
15 Vir Beta 1 (B3g) 0.0759
27 Vir Beta 2 (B3g) 0.2049
33 Vir Beta 4 (B1u) 0.3796
EOMSF transition 2/Ag
Total energy = -154.16835329 a.u. Excitation energy = 0.0183 eV.
R1^2 = 0.9428 R2^2 = 0.0572 Res^2 = 4.17e-06
Conv-d = yes
Amplitude Transitions between orbitals
0.6009 1 (B2g) A -> 1 (B2g) B
-0.6009 1 (B3g) A -> 1 (B3g) B
-0.3228 1 (B3g) A -> 2 (B3g) B
-0.3228 1 (B2g) A -> 2 (B2g) B
Summary of significant orbitals:
Number Type Irrep Energy
14 Occ Alpha 1 (B2g) -0.2896
15 Occ Alpha 1 (B3g) -0.2896
14 Vir Beta 1 (B2g) 0.0759
26 Vir Beta 2 (B2g) 0.2049
15 Vir Beta 1 (B3g) 0.0759
27 Vir Beta 2 (B3g) 0.2049
Solving for EOMSF-CCSD B1g transitions.
Running a double precision version
EOMSF-CCSD/MP2 right amplitudes will be solved using Davidson.
Amplitudes will be solved using standard algorithm.
Hard-coded thresholds:
LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02
Roots MaxVec MaxIter Precond Conv Shift
2 120 60 1 1.00e-05 0.00e+00
------------------------------------------------------------------------------
Iter ConvRoots NVecs ResNorm Current eigenvalues (eV)
------------------------------------------------------------------------------
0 0 4 2.11e-01 5.0078 5.3182
1 0 6 5.50e-02 2.6320 2.6323
2 0 8 3.86e-03 1.6007 1.9441
3 0 10 5.53e-04 1.4653 1.8993
4 0 12 7.33e-05 1.4530 1.8994
5 2 14 6.69e-06 1.4474* 1.8984*
Davidson procedure converged
EOMSF transition 1/B1g
Total energy = -154.11583218 a.u. Excitation energy = 1.4474 eV.
R1^2 = 0.9039 R2^2 = 0.0961 Res^2 = 9.48e-06
Conv-d = yes
Amplitude Transitions between orbitals
-0.6069 1 (B2g) A -> 1 (B3g) B
-0.6069 1 (B3g) A -> 1 (B2g) B
-0.2842 1 (B2g) A -> 2 (B3g) B
0.2842 1 (B3g) A -> 2 (B2g) B
Summary of significant orbitals:
Number Type Irrep Energy
14 Occ Alpha 1 (B2g) -0.2896
15 Occ Alpha 1 (B3g) -0.2896
14 Vir Beta 1 (B2g) 0.0759
26 Vir Beta 2 (B2g) 0.2049
15 Vir Beta 1 (B3g) 0.0759
27 Vir Beta 2 (B3g) 0.2049
EOMSF transition 2/B1g
Total energy = -154.09925886 a.u. Excitation energy = 1.8984 eV.
R1^2 = 0.9407 R2^2 = 0.0593 Res^2 = 3.91e-06
Conv-d = yes
Amplitude Transitions between orbitals
0.6255 1 (B3g) A -> 1 (B2g) B
-0.6255 1 (B2g) A -> 1 (B3g) B
-0.2767 1 (B3g) A -> 2 (B2g) B
-0.2767 1 (B2g) A -> 2 (B3g) B
Summary of significant orbitals:
Number Type Irrep Energy
14 Occ Alpha 1 (B2g) -0.2896
15 Occ Alpha 1 (B3g) -0.2896
14 Vir Beta 1 (B2g) 0.0759
26 Vir Beta 2 (B2g) 0.2049
15 Vir Beta 1 (B3g) 0.0759
27 Vir Beta 2 (B3g) 0.2049
EOMSF-CCSD calculation: CPU 31.24 s wall 34.39 s
Total ccman2 time: CPU 59.94 s wall 77.42 s
--------------------------------------------------------------
Orbital Energies (a.u.) and Symmetries
--------------------------------------------------------------
Alpha MOs, Unrestricted
-- Occupied --
-11.252 -11.251 -11.251 -11.250 -1.197 -0.899 -0.899 -0.719
1 Ag 1 B3u 1 B2u 2 Ag 3 Ag 2 B3u 2 B2u 4 Ag
-0.709 -0.566 -0.554 -0.520 -0.520 -0.290 -0.290
5 Ag 1 B1u 1 B1g 3 B3u 3 B2u 1 B2g 1 B3g
-- Virtual --
0.083 0.083 0.086 0.102 0.128 0.139 0.140 0.162
4 B3u 4 B2u 6 Ag 7 Ag 2 B1u 3 B1u 2 B1g 2 B2g
0.162 0.170 0.170 0.173 0.220 0.245 0.248 0.248
2 B3g 5 B3u 5 B2u 8 Ag 3 B1g 4 B1u 6 B3u 6 B2u
0.289 0.347 0.378 0.378 0.396 0.454 0.454 0.524
9 Ag 10 Ag 7 B3u 7 B2u 11 Ag 8 B3u 8 B2u 4 B1g
0.783 0.796 0.881 0.897 0.910 0.910 0.951 0.951
5 B1g 12 Ag 13 Ag 5 B1u 3 B2g 3 B3g 9 B3u 9 B2u
0.967 1.025 1.089 1.129 1.129 1.154 1.237 1.252
6 B1u 14 Ag 6 B1g 10 B3u 10 B2u 15 Ag 16 Ag 11 B3u
1.252 1.487 1.487 1.492 1.544 1.553 1.787 1.787
11 B2u 12 B3u 12 B2u 17 Ag 7 B1u 1 Au 4 B2g 4 B3g
1.887 1.906 2.160 2.277 2.286 2.286 2.477 2.477
18 Ag 19 Ag 7 B1g 20 Ag 13 B3u 13 B2u 5 B2g 5 B3g
2.618 2.726 2.750 2.750 2.985 2.987 2.987 3.288
2 Au 8 B1u 14 B3u 14 B2u 21 Ag 15 B2u 15 B3u 8 B1g
3.415
22 Ag
Beta MOs, Unrestricted
-- Occupied --
-11.241 -11.240 -11.240 -11.239 -1.148 -0.846 -0.846 -0.696
1 Ag 1 B3u 1 B2u 2 Ag 3 Ag 2 B3u 2 B2u 4 Ag
-0.692 -0.536 -0.509 -0.509 -0.380
5 Ag 1 B1g 3 B3u 3 B2u 1 B1u
-- Virtual --
0.076 0.076 0.085 0.085 0.088 0.103 0.138 0.141
1 B2g 1 B3g 4 B3u 4 B2u 6 Ag 7 Ag 2 B1u 2 B1g
0.171 0.171 0.174 0.180 0.205 0.205 0.220 0.256
5 B3u 5 B2u 3 B1u 8 Ag 2 B2g 2 B3g 3 B1g 6 B3u
0.256 0.293 0.352 0.380 0.404 0.404 0.414 0.462
6 B2u 9 Ag 10 Ag 4 B1u 7 B3u 7 B2u 11 Ag 8 B3u
0.462 0.535 0.791 0.835 0.887 0.954 0.966 0.966
8 B2u 4 B1g 5 B1g 12 Ag 13 Ag 5 B1u 9 B3u 9 B2u
0.977 0.977 1.033 1.044 1.097 1.144 1.144 1.167
3 B2g 3 B3g 6 B1u 14 Ag 6 B1g 10 B3u 10 B2u 15 Ag
1.245 1.269 1.269 1.499 1.499 1.500 1.600 1.625
16 Ag 11 B3u 11 B2u 12 B3u 12 B2u 17 Ag 7 B1u 1 Au
1.844 1.844 1.903 1.913 2.169 2.316 2.316 2.326
4 B2g 4 B3g 18 Ag 19 Ag 7 B1g 13 B3u 13 B2u 20 Ag
2.522 2.522 2.662 2.762 2.762 2.767 3.005 3.005
5 B2g 5 B3g 2 Au 14 B3u 14 B2u 8 B1u 15 B3u 15 B2u
3.018 3.295 3.423
21 Ag 8 B1g 22 Ag
--------------------------------------------------------------
Ground-State Mulliken Net Atomic Charges
Atom Charge (a.u.) Spin (a.u.)
--------------------------------------------------------
1 C -0.242093 0.550633
2 C -0.242093 0.550633
3 C -0.242093 0.550633
4 C -0.242093 0.550633
5 H 0.242093 -0.050633
6 H 0.242093 -0.050633
7 H 0.242093 -0.050633
8 H 0.242093 -0.050633
--------------------------------------------------------
Sum of atomic charges = 0.000000
Sum of spin charges = 2.000000
-----------------------------------------------------------------
Cartesian Multipole Moments
-----------------------------------------------------------------
Charge (ESU x 10^10)
0.0000
Dipole Moment (Debye)
X 0.0000 Y 0.0000 Z 0.0000
Tot 0.0000
Quadrupole Moments (Debye-Ang)
XX -21.8160 XY 0.0000 YY -21.8160
XZ 0.0000 YZ 0.0000 ZZ -28.0295
Octopole Moments (Debye-Ang^2)
XXX 0.0000 XXY 0.0000 XYY 0.0000
YYY -0.0000 XXZ 0.0000 XYZ 0.0000
YYZ -0.0000 XZZ 0.0000 YZZ -0.0000
ZZZ 0.0000
Hexadecapole Moments (Debye-Ang^3)
XXXX -109.5969 XXXY 0.0000 XXYY -45.6336
XYYY 0.0000 YYYY -109.5969 XXXZ 0.0000
XXYZ 0.0000 XYYZ -0.0000 YYYZ 0.0000
XXZZ -31.5652 XYZZ 0.0000 YYZZ -31.5652
XZZZ 0.0000 YZZZ 0.0000 ZZZZ -37.5868
-----------------------------------------------------------------
Archival summary:
1\1\compute-3-0.local\SP\ProcedureUnspecified\6-31+G*\44(3)\emonino\MonMar2907:22:372021MonMar2907:22:372021\0\\#,ProcedureUnspecified,6-31+G*,\\0,3\C\H,1,1.07473\C,1,1.43925,2,135\H,3,1.07473,1,135,2,-0,0\C,3,1.43925,1,90,2,180,0\H,5,1.07473,3,135,1,180,0\C,5,1.43925,3,90,1,-0,0\H,7,1.07473,5,135,3,180,0\\HF=-153.656378\\@
Total job time: 82.10s(wall), 62.57s(cpu)
Mon Mar 29 07:22:37 2021
*************************************************************
* *
* Thank you very much for using Q-Chem. Have a nice day. *
* *
*************************************************************