CBD/EOM-SF-CCSD/6-31+G_d/CBD_eom_sf_ccsd_6_31G_d.log
2021-01-27 16:58:52 +01:00

915 lines
42 KiB
Plaintext

Running Job 1 of 1 6-31+G_d/CBD_eom_sf_ccsd_6_31G_d.inp
qchem 6-31+G_d/CBD_eom_sf_ccsd_6_31G_d.inp_24673.0 /mnt/beegfs/tmpdir/qchem24673/ 0
/share/apps/common/q-chem/5.2.1/exe/qcprog.exe_s 6-31+G_d/CBD_eom_sf_ccsd_6_31G_d.inp_24673.0 /mnt/beegfs/tmpdir/qchem24673/
Welcome to Q-Chem
A Quantum Leap Into The Future Of Chemistry
Q-Chem 5.2, Q-Chem, Inc., Pleasanton, CA (2019)
Yihan Shao, Zhengting Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit,
J. Kussmann, A. W. Lange, A. Behn, Jia Deng, Xintian Feng, D. Ghosh,
M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, T. Kus, A. Landau,
Jie Liu, E. I. Proynov, R. M. Richard, R. P. Steele, E. J. Sundstrom,
H. L. Woodcock III, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire,
S. A. Baeppler, D. Barton, Z. Benda, Y. A. Bernard, E. J. Berquist,
K. B. Bravaya, H. Burton, D. Casanova, Chun-Min Chang, Yunqing Chen,
A. Chien, K. D. Closser, M. P. Coons, S. Coriani, S. Dasgupta,
A. L. Dempwolff, M. Diedenhofen, Hainam Do, R. G. Edgar, Po-Tung Fang,
S. Faraji, S. Fatehi, Qingguo Feng, K. D. Fenk, J. Fosso-Tande,
J. Gayvert, Qinghui Ge, A. Ghysels, G. Gidofalvi, J. Gomes,
J. Gonthier, A. Gunina, D. Hait, M. W. D. Hanson-Heine,
P. H. P. Harbach, A. W. Hauser, M. F. Herbst, J. E. Herr,
E. G. Hohenstein, Z. C. Holden, Kerwin Hui, B. C. Huynh, T.-C. Jagau,
Hyunjun Ji, B. Kaduk, K. Khistyaev, Jaehoon Kim, P. Klunzinger, K. Koh,
D. Kosenkov, L. Koulias, T. Kowalczyk, C. M. Krauter, A. Kunitsa,
Ka Un Lao, A. Laurent, K. V. Lawler, Joonho Lee, D. Lefrancois,
S. Lehtola, D. S. Levine, Yi-Pei Li, You-Sheng Lin, Fenglai Liu,
E. Livshits, A. Luenser, P. Manohar, E. Mansoor, S. F. Manzer,
Shan-Ping Mao, Yuezhi Mao, N. Mardirossian, A. V. Marenich,
T. Markovich, L. A. Martinez-Martinez, S. A. Maurer, N. J. Mayhall,
S. C. McKenzie, J.-M. Mewes, P. Morgante, A. F. Morrison,
J. W. Mullinax, K. Nanda, T. S. Nguyen-Beck, R. Olivares-Amaya,
J. A. Parkhill, Zheng Pei, T. M. Perrine, F. Plasser, P. Pokhilko,
S. Prager, A. Prociuk, E. Ramos, D. R. Rehn, F. Rob, M. Scheurer,
M. Schneider, N. Sergueev, S. M. Sharada, S. Sharma, D. W. Small,
T. Stauch, T. Stein, Yu-Chuan Su, A. J. W. Thom, A. Tkatchenko,
T. Tsuchimochi, N. M. Tubman, L. Vogt, M. L. Vidal, O. Vydrov,
M. A. Watson, J. Wenzel, M. de Wergifosse, T. A. Wesolowski, A. White,
J. Witte, A. Yamada, Jun Yang, K. Yao, S. Yeganeh, S. R. Yost,
Zhi-Qiang You, A. Zech, Igor Ying Zhang, Xing Zhang, Yan Zhao,
Ying Zhu, B. R. Brooks, G. K. L. Chan, C. J. Cramer, M. S. Gordon,
W. J. Hehre, A. Klamt, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar,
A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, Jeng-Da Chai,
A. E. DePrince, III, R. A. DiStasio Jr., A. Dreuw, B. D. Dunietz,
T. R. Furlani, Chao-Ping Hsu, Yousung Jung, Jing Kong, D. S. Lambrecht,
WanZhen Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko,
J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov,
P. M. W. Gill, M. Head-Gordon
Contributors to earlier versions of Q-Chem not listed above:
R. D. Adamson, B. Austin, J. Baker, G. J. O. Beran, K. Brandhorst,
S. T. Brown, E. F. C. Byrd, A. K. Chakraborty, C.-L. Cheng,
Siu Hung Chien, D. M. Chipman, D. L. Crittenden, H. Dachsel,
R. J. Doerksen, A. D. Dutoi, L. Fusti-Molnar, W. A. Goddard III,
A. Golubeva-Zadorozhnaya, S. R. Gwaltney, G. Hawkins, A. Heyden,
S. Hirata, G. Kedziora, F. J. Keil, C. Kelley, Jihan Kim, R. A. King,
R. Z. Khaliullin, P. P. Korambath, W. Kurlancheek, A. M. Lee, M. S. Lee,
S. V. Levchenko, Ching Yeh Lin, D. Liotard, R. C. Lochan, I. Lotan,
P. E. Maslen, N. Nair, D. P. O'Neill, D. Neuhauser, E. Neuscamman,
C. M. Oana, R. Olson, B. Peters, R. Peverati, P. A. Pieniazek,
Y. M. Rhee, J. Ritchie, M. A. Rohrdanz, E. Rosta, N. J. Russ,
H. F. Schaefer III, N. E. Schultz, N. Shenvi, A. C. Simmonett, A. Sodt,
D. Stuck, K. S. Thanthiriwatte, V. Vanovschi, Tao Wang, A. Warshel,
C. F. Williams, Q. Wu, X. Xu, W. Zhang
Please cite Q-Chem as follows:
Y. Shao et al., Mol. Phys. 113, 184-215 (2015)
DOI: 10.1080/00268976.2014.952696
Q-Chem 5.2.1 for Intel X86 EM64T Linux
Parts of Q-Chem use Armadillo 8.300.2 (Tropical Shenanigans).
http://arma.sourceforge.net/
Q-Chem begins on Wed Jan 27 16:50:09 2021
Host:
0
Scratch files written to /mnt/beegfs/tmpdir/qchem24673//
Jul1719 |scratch|qcdevops|jenkins|workspace|build_RNUM 6358
Processing $rem in /share/apps/common/q-chem/5.2.1/config/preferences:
MEM_TOTAL 5000
NAlpha2: 30
NElect 28
Mult 3
Core orbitals will be frozen
Checking the input file for inconsistencies... ...done.
--------------------------------------------------------------
User input:
--------------------------------------------------------------
$comment
EOM-SF-CCSD
$end
$molecule
0 3
C -0.78248546 -0.67208001 0.00000000
C 0.78248546 -0.67208001 0.00000000
C -0.78248546 0.67208001 0.00000000
C 0.78248546 0.67208001 0.00000000
H -1.54227765 -1.43404123 -0.00000000
H 1.54227765 -1.43404123 0.00000000
H -1.54227765 1.43404123 0.00000000
H 1.54227765 1.43404123 -0.00000000
$end
$rem
JOBTYPE = sp
METHOD = eom-ccsd
BASIS = 6-31+G*
SCF_CONVERGENCE = 9
SF_STATES = [2,2,1,1,1,1,1,1]
PURECART = 1111
UNRESTRICTED = TRUE
RPA = FALSE
$end
--------------------------------------------------------------
----------------------------------------------------------------
Standard Nuclear Orientation (Angstroms)
I Atom X Y Z
----------------------------------------------------------------
1 C 0.7824854600 0.6720800100 -0.0000000000
2 C -0.7824854600 0.6720800100 0.0000000000
3 C 0.7824854600 -0.6720800100 -0.0000000000
4 C -0.7824854600 -0.6720800100 0.0000000000
5 H 1.5422776500 1.4340412300 -0.0000000000
6 H -1.5422776500 1.4340412300 0.0000000000
7 H 1.5422776500 -1.4340412300 -0.0000000000
8 H -1.5422776500 -1.4340412300 0.0000000000
----------------------------------------------------------------
Molecular Point Group D2h NOp = 8
Largest Abelian Subgroup D2h NOp = 8
Nuclear Repulsion Energy = 98.83857161 hartrees
There are 15 alpha and 13 beta electrons
Q-Chem warning in module forms1/BasisType.C, line 1983:
You are not using the predefined 5D/6D in this basis set.
Requested basis set is 6-31+G(d)
There are 28 shells and 80 basis functions
Total memory of 5000 MB is distributed as follows:
MEM_STATIC is set to 192 MB
QALLOC/CCMAN JOB total memory use is 4808 MB
Warning: actual memory use might exceed 5000 MB
Total QAlloc Memory Limit 5000 MB
Mega-Array Size 188 MB
MEM_STATIC part 192 MB
Distance Matrix (Angstroms)
C ( 1) C ( 2) C ( 3) C ( 4) H ( 5) H ( 6)
C ( 2) 1.564971
C ( 3) 1.344160 2.062983
C ( 4) 2.062983 1.344160 1.564971
H ( 5) 1.076043 2.446448 2.238980 3.136920
H ( 6) 2.446448 1.076043 3.136920 2.238980 3.084555
H ( 7) 2.238980 3.136920 1.076043 2.446448 2.868082 4.211933
H ( 8) 3.136920 2.238980 2.446448 1.076043 4.211933 2.868082
H ( 7)
H ( 8) 3.084555
A cutoff of 1.0D-14 yielded 406 shell pairs
There are 3352 function pairs ( 3702 Cartesian)
Smallest overlap matrix eigenvalue = 2.41E-05
Scale SEOQF with 1.000000e-01/1.000000e-01/1.000000e-01
Standard Electronic Orientation quadrupole field applied
Nucleus-field energy = 0.0000000022 hartrees
Guess from superposition of atomic densities
Warning: Energy on first SCF cycle will be non-variational
SAD guess density has 28.000000 electrons
-----------------------------------------------------------------------
General SCF calculation program by
Eric Jon Sundstrom, Paul Horn, Yuezhi Mao, Dmitri Zuev, Alec White,
David Stuck, Shaama M.S., Shane Yost, Joonho Lee, David Small,
Daniel Levine, Susi Lehtola, Hugh Burton, Evgeny Epifanovsky,
Bang C. Huynh
-----------------------------------------------------------------------
Hartree-Fock
A unrestricted SCF calculation will be
performed using DIIS
SCF converges when DIIS error is below 1.0e-09
---------------------------------------
Cycle Energy DIIS error
---------------------------------------
1 -155.0598004125 4.24e-02
2 -153.5721137873 2.95e-03
3 -153.6143304815 7.64e-04
4 -153.6178219349 1.27e-04
5 -153.6179419900 6.30e-05
6 -153.6179732663 2.95e-05
7 -153.6179831400 9.71e-06
8 -153.6179843427 1.88e-06
9 -153.6179843880 4.04e-07
10 -153.6179843900 1.05e-07
11 -153.6179843900 2.38e-08
12 -153.6179843902 3.09e-09
13 -153.6179843903 5.70e-10 Convergence criterion met
---------------------------------------
SCF time: CPU 1.07s wall 2.00s
<S^2> = 2.015991460
SCF energy in the final basis set = -153.6179843903
Total energy in the final basis set = -153.6179843903
------------------------------------------------------------------------------
CCMAN2: suite of methods based on coupled cluster
and equation of motion theories.
Components:
* libvmm-1.3-trunk
by Evgeny Epifanovsky, Ilya Kaliman.
* libtensor-2.5-trunk
by Evgeny Epifanovsky, Michael Wormit, Dmitry Zuev, Sam Manzer,
Ilya Kaliman.
* libcc-2.5-trunk
by Evgeny Epifanovsky, Arik Landau, Tomasz Kus, Kirill Khistyaev,
Dmitry Zuev, Prashant Manohar, Xintian Feng, Anna Krylov,
Matthew Goldey, Alec White, Thomas Jagau, Kaushik Nanda,
Anastasia Gunina, Alexander Kunitsa, Joonho Lee.
CCMAN original authors:
Anna I. Krylov, C. David Sherrill, Steven R. Gwaltney,
Edward F. C. Byrd (2000)
Sergey V. Levchenko, Lyudmila V. Slipchenko, Tao Wang,
Ana-Maria C. Cristian (2003)
Piotr A. Pieniazek, C. Melania Oana, Evgeny Epifanovsky (2007)
Prashant Manohar (2009)
------------------------------------------------------------------------------
Allocating and initializing 4808MB of RAM...
Calculation will run on 1 core.
Alpha MOs, Unrestricted
-- Occupied --
-11.257 -11.257 -11.256 -11.255 -1.193 -0.951 -0.856 -0.721
1 Ag 1 B3u 1 B2u 1 B1g 2 Ag 2 B3u 2 B2u 2 B1g
-0.709 -0.568 -0.565 -0.552 -0.467 -0.343 -0.241
3 Ag 3 B3u 1 B1u 4 Ag 3 B2u 1 B2g 1 B3g
-- Virtual --
0.082 0.084 0.086 0.101 0.128 0.137 0.139 0.157
4 B3u 4 B2u 5 Ag 3 B1g 2 B1u 1 Au 6 Ag 2 B2g
0.165 0.168 0.172 0.173 0.219 0.243 0.247 0.249
5 B3u 2 B3g 5 B2u 7 Ag 4 B1g 2 Au 6 B3u 6 B2u
0.288 0.318 0.346 0.385 0.405 0.423 0.494 0.516
5 B1g 7 B3u 8 Ag 6 B1g 7 B2u 8 B3u 8 B2u 7 B1g
0.767 0.783 0.887 0.889 0.892 0.893 0.925 0.966
9 Ag 8 B1g 3 B1u 10 Ag 3 B2g 9 B3u 3 B3g 3 Au
1.009 1.045 1.084 1.095 1.158 1.180 1.223 1.247
9 B2u 11 Ag 10 B3u 9 B1g 10 B1g 10 B2u 11 B3u 12 Ag
1.285 1.430 1.492 1.526 1.535 1.601 1.765 1.830
11 B2u 12 B3u 11 B1g 4 B1u 12 B2u 5 B1u 4 B2g 4 B3g
1.878 1.900 2.033 2.194 2.313 2.321 2.380 2.562
12 B1g 13 Ag 14 Ag 13 B2u 5 B2g 13 B3u 15 Ag 4 Au
2.611 2.711 2.753 2.816 2.886 2.967 3.079 3.300
5 B3g 14 B3u 5 Au 14 B2u 15 B3u 13 B1g 15 B2u 14 B1g
3.393
15 B1g
Beta MOs, Unrestricted
-- Occupied --
-11.246 -11.245 -11.245 -11.244 -1.144 -0.894 -0.807 -0.696
1 Ag 1 B3u 1 B2u 1 B1g 2 Ag 2 B3u 2 B2u 3 Ag
-0.694 -0.558 -0.535 -0.455 -0.378
2 B1g 3 B3u 4 Ag 3 B2u 1 B1u
-- Virtual --
0.047 0.083 0.086 0.088 0.095 0.103 0.139 0.141
1 B2g 4 B3u 4 B2u 5 Ag 1 B3g 3 B1g 2 B1u 6 Ag
0.167 0.173 0.173 0.181 0.187 0.219 0.225 0.254
5 B3u 5 B2u 1 Au 7 Ag 2 B2g 4 B1g 2 B3g 6 B3u
0.259 0.293 0.347 0.351 0.376 0.403 0.425 0.429
6 B2u 5 B1g 7 B3u 8 Ag 2 Au 6 B1g 7 B2u 8 B3u
0.506 0.527 0.774 0.819 0.895 0.904 0.945 0.955
8 B2u 7 B1g 9 Ag 8 B1g 10 Ag 9 B3u 3 B1u 3 B2g
0.995 1.027 1.032 1.063 1.103 1.103 1.172 1.190
3 B3g 9 B2u 3 Au 11 Ag 10 B3u 9 B1g 10 B1g 10 B2u
1.238 1.255 1.304 1.444 1.500 1.546 1.582 1.670
11 B3u 12 Ag 11 B2u 12 B3u 11 B1g 12 B2u 4 B1u 5 B1u
1.825 1.884 1.894 1.913 2.050 2.230 2.342 2.360
4 B2g 4 B3g 12 B1g 13 Ag 14 Ag 13 B2u 13 B3u 5 B2g
2.416 2.605 2.655 2.729 2.794 2.825 2.905 3.000
15 Ag 4 Au 5 B3g 14 B3u 5 Au 14 B2u 15 B3u 13 B1g
3.096 3.308 3.402
15 B2u 14 B1g 15 B1g
Occupation and symmetry of molecular orbitals
Point group: D2h (8 irreducible representations).
Ag B1g B2g B3g Au B1u B2u B3u All
------------------------------------------------------------------------
All molecular orbitals:
- Alpha 15 15 5 5 5 5 15 15 80
- Beta 15 15 5 5 5 5 15 15 80
------------------------------------------------------------------------
Alpha orbitals:
- Frozen occupied 1 1 0 0 0 0 1 1 4
- Active occupied 3 1 1 1 0 1 2 2 11
- Active virtual 11 13 4 4 5 4 12 12 65
- Frozen virtual 0 0 0 0 0 0 0 0 0
------------------------------------------------------------------------
Beta orbitals:
- Frozen occupied 1 1 0 0 0 0 1 1 4
- Active occupied 3 1 0 0 0 1 2 2 9
- Active virtual 11 13 5 5 5 4 12 12 67
- Frozen virtual 0 0 0 0 0 0 0 0 0
------------------------------------------------------------------------
Import integrals: CPU 0.00 s wall 0.00 s
Import integrals: CPU 4.20 s wall 10.46 s
MP2 amplitudes: CPU 0.71 s wall 2.14 s
Running a double precision version
CCSD T amplitudes will be solved using DIIS.
Start Size MaxIter EConv TConv
3 7 100 1.00e-06 1.00e-04
------------------------------------------------------------------------------
Energy (a.u.) Ediff Tdiff Comment
------------------------------------------------------------------------------
-154.10164164
1 -154.11418896 1.25e-02 7.13e-01
2 -154.12899834 1.48e-02 8.77e-02
3 -154.13105245 2.05e-03 3.22e-02
4 -154.13318721 2.13e-03 1.51e-02 Switched to DIIS steps.
5 -154.13371718 5.30e-04 8.31e-03
6 -154.13372641 9.24e-06 2.56e-03
7 -154.13372573 6.88e-07 5.33e-04
8 -154.13372790 2.17e-06 2.48e-04
9 -154.13372826 3.55e-07 6.79e-05
------------------------------------------------------------------------------
-154.13372826 CCSD T converged.
End of double precision
SCF energy = -153.61798439
MP2 energy = -154.10164164
CCSD correlation energy = -0.51574386
CCSD total energy = -154.13372826
CCSD T1^2 = 0.0057 T2^2 = 0.2239 Leading amplitudes:
Amplitude Orbitals with energies
0.0375 1 (B1u) B -> 3 (B1u) B
-0.3781 0.9455
0.0300 1 (B1u) B -> 2 (B1u) B
-0.3781 0.1388
0.0239 1 (B3g) A -> 3 (B3g) A
-0.2406 0.9247
0.0141 1 (B2g) A -> 3 (B2g) A
-0.3430 0.8920
Amplitude Orbitals with energies
-0.0869 1 (B3g) A 1 (B1u) B -> 1 (Au) A 1 (B2g) B
-0.2406 -0.3781 0.1368 0.0468
0.0869 1 (B3g) A 1 (B1u) B -> 1 (B2g) B 1 (Au) A
-0.2406 -0.3781 0.0468 0.1368
0.0869 1 (B1u) B 1 (B3g) A -> 1 (Au) A 1 (B2g) B
-0.3781 -0.2406 0.1368 0.0468
-0.0869 1 (B1u) B 1 (B3g) A -> 1 (B2g) B 1 (Au) A
-0.3781 -0.2406 0.0468 0.1368
Computing CCSD intermediates for later calculations in double precision
Finished.
CCSD calculation: CPU 20.25 s wall 25.42 s
Solving for EOMSF-CCSD Ag transitions.
Running a double precision version
EOMSF-CCSD/MP2 right amplitudes will be solved using Davidson.
Amplitudes will be solved using standard algorithm.
Hard-coded thresholds:
LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02
Roots MaxVec MaxIter Precond Conv Shift
2 120 60 1 1.00e-05 0.00e+00
------------------------------------------------------------------------------
Iter ConvRoots NVecs ResNorm Current eigenvalues (eV)
------------------------------------------------------------------------------
0 0 4 1.93e-01 2.8118 5.0009
1 0 6 4.57e-02 0.7711 2.6373
2 0 8 3.13e-03 0.1077 1.9251
3 0 10 4.31e-04 0.0290 1.8729
4 0 12 5.38e-05 0.0215 1.8721
5 2 14 5.92e-06 0.0185* 1.8709*
Davidson procedure converged
EOMSF transition 1/Ag
Total energy = -154.13304878 a.u. Excitation energy = 0.0185 eV.
R1^2 = 0.9403 R2^2 = 0.0597 Res^2 = 6.64e-06
Conv-d = yes
Amplitude Transitions between orbitals
0.6339 1 (B2g) A -> 1 (B2g) B
0.5664 1 (B3g) A -> 1 (B3g) B
0.3793 1 (B3g) A -> 2 (B3g) B
0.2484 1 (B2g) A -> 2 (B2g) B
Summary of significant orbitals:
Number Type Irrep Energy
14 Occ Alpha 1 (B2g) -0.3430
15 Occ Alpha 1 (B3g) -0.2406
14 Vir Beta 1 (B2g) 0.0468
26 Vir Beta 2 (B2g) 0.1873
18 Vir Beta 1 (B3g) 0.0946
28 Vir Beta 2 (B3g) 0.2254
EOMSF transition 2/Ag
Total energy = -154.06497542 a.u. Excitation energy = 1.8709 eV.
R1^2 = 0.9383 R2^2 = 0.0617 Res^2 = 5.21e-06
Conv-d = yes
Amplitude Transitions between orbitals
-0.6432 1 (B2g) A -> 1 (B2g) B
0.6104 1 (B3g) A -> 1 (B3g) B
0.3161 1 (B3g) A -> 2 (B3g) B
-0.2169 1 (B2g) A -> 2 (B2g) B
Summary of significant orbitals:
Number Type Irrep Energy
14 Occ Alpha 1 (B2g) -0.3430
15 Occ Alpha 1 (B3g) -0.2406
14 Vir Beta 1 (B2g) 0.0468
26 Vir Beta 2 (B2g) 0.1873
18 Vir Beta 1 (B3g) 0.0946
28 Vir Beta 2 (B3g) 0.2254
Solving for EOMSF-CCSD B1g transitions.
Running a double precision version
EOMSF-CCSD/MP2 right amplitudes will be solved using Davidson.
Amplitudes will be solved using standard algorithm.
Hard-coded thresholds:
LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02
Roots MaxVec MaxIter Precond Conv Shift
2 120 60 1 1.00e-05 0.00e+00
------------------------------------------------------------------------------
Iter ConvRoots NVecs ResNorm Current eigenvalues (eV)
------------------------------------------------------------------------------
0 0 4 1.82e-01 1.6682 7.4116
1 0 6 5.55e-02 -0.6670 5.0214
2 0 8 1.37e-02 -1.5477 3.2979
3 0 10 2.30e-03 -1.6380 2.6966
4 0 12 2.67e-04 -1.6425 2.6444
5 1 14 2.79e-05 -1.6444* 2.6333
6 2 15 4.69e-06 -1.6443* 2.6311*
Davidson procedure converged
EOMSF transition 1/B1g
Total energy = -154.19415697 a.u. Excitation energy = -1.6443 eV.
R1^2 = 0.9531 R2^2 = 0.0469 Res^2 = 3.19e-06
Conv-d = yes
Amplitude Transitions between orbitals
-0.8792 1 (B3g) A -> 1 (B2g) B
-0.3309 1 (B3g) A -> 2 (B2g) B
-0.1663 1 (B2g) A -> 1 (B3g) B
-0.1377 1 (B2g) A -> 2 (B3g) B
Summary of significant orbitals:
Number Type Irrep Energy
14 Occ Alpha 1 (B2g) -0.3430
15 Occ Alpha 1 (B3g) -0.2406
14 Vir Beta 1 (B2g) 0.0468
26 Vir Beta 2 (B2g) 0.1873
18 Vir Beta 1 (B3g) 0.0946
28 Vir Beta 2 (B3g) 0.2254
EOMSF transition 2/B1g
Total energy = -154.03703670 a.u. Excitation energy = 2.6311 eV.
R1^2 = 0.9085 R2^2 = 0.0915 Res^2 = 6.18e-06
Conv-d = yes
Amplitude Transitions between orbitals
-0.7749 1 (B2g) A -> 1 (B3g) B
-0.4923 1 (B2g) A -> 2 (B3g) B
0.2129 1 (B3g) A -> 1 (B2g) B
0.0909 1 (B2g) A -> 3 (B3g) B
Summary of significant orbitals:
Number Type Irrep Energy
14 Occ Alpha 1 (B2g) -0.3430
15 Occ Alpha 1 (B3g) -0.2406
14 Vir Beta 1 (B2g) 0.0468
18 Vir Beta 1 (B3g) 0.0946
28 Vir Beta 2 (B3g) 0.2254
46 Vir Beta 3 (B3g) 0.9954
Solving for EOMSF-CCSD B2g transitions.
Running a double precision version
EOMSF-CCSD/MP2 right amplitudes will be solved using Davidson.
Amplitudes will be solved using standard algorithm.
Hard-coded thresholds:
LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02
Roots MaxVec MaxIter Precond Conv Shift
1 120 60 1 1.00e-05 0.00e+00
------------------------------------------------------------------------------
Iter ConvRoots NVecs ResNorm Current eigenvalues (eV)
------------------------------------------------------------------------------
0 0 2 9.32e-02 7.4709
1 0 3 2.19e-02 5.7801
2 0 4 4.20e-03 5.2441
3 0 5 1.03e-03 5.1281
4 0 6 2.36e-04 5.1038
5 0 7 3.89e-05 5.0988
6 0 8 1.35e-05 5.0983
7 1 9 5.65e-06 5.0983*
Davidson procedure converged
EOMSF transition 1/B2g
Total energy = -153.94637063 a.u. Excitation energy = 5.0983 eV.
R1^2 = 0.9437 R2^2 = 0.0563 Res^2 = 5.65e-06
Conv-d = yes
Amplitude Transitions between orbitals
-0.9166 1 (B3g) A -> 3 (B1g) B
-0.2061 1 (B3g) A -> 5 (B1g) B
0.1687 1 (B3g) A -> 6 (B1g) B
0.1475 1 (B2g) A -> 5 (Ag) B
Summary of significant orbitals:
Number Type Irrep Energy
14 Occ Alpha 1 (B2g) -0.3430
15 Occ Alpha 1 (B3g) -0.2406
17 Vir Beta 5 (Ag) 0.0883
19 Vir Beta 3 (B1g) 0.1026
31 Vir Beta 5 (B1g) 0.2930
35 Vir Beta 6 (B1g) 0.4035
Solving for EOMSF-CCSD B3g transitions.
Running a double precision version
EOMSF-CCSD/MP2 right amplitudes will be solved using Davidson.
Amplitudes will be solved using standard algorithm.
Hard-coded thresholds:
LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02
Roots MaxVec MaxIter Precond Conv Shift
1 120 60 1 1.00e-05 0.00e+00
------------------------------------------------------------------------------
Iter ConvRoots NVecs ResNorm Current eigenvalues (eV)
------------------------------------------------------------------------------
0 0 2 9.86e-02 6.4611
1 0 3 2.55e-02 4.7461
2 0 4 3.30e-03 4.2186
3 0 5 6.71e-04 4.1347
4 0 6 1.74e-04 4.1184
5 0 7 6.34e-05 4.1129
6 0 8 3.75e-05 4.1111
7 0 9 1.19e-05 4.1103
8 1 10 2.08e-06 4.1094*
Davidson procedure converged
EOMSF transition 1/B3g
Total energy = -153.98270977 a.u. Excitation energy = 4.1094 eV.
R1^2 = 0.9447 R2^2 = 0.0553 Res^2 = 2.08e-06
Conv-d = yes
Amplitude Transitions between orbitals
-0.9351 1 (B3g) A -> 5 (Ag) B
0.1992 1 (B3g) A -> 7 (Ag) B
-0.1457 1 (B3g) A -> 8 (Ag) B
0.0460 1 (B2g) A -> 3 (B1g) B
Summary of significant orbitals:
Number Type Irrep Energy
14 Occ Alpha 1 (B2g) -0.3430
15 Occ Alpha 1 (B3g) -0.2406
17 Vir Beta 5 (Ag) 0.0883
25 Vir Beta 7 (Ag) 0.1807
33 Vir Beta 8 (Ag) 0.3511
19 Vir Beta 3 (B1g) 0.1026
Solving for EOMSF-CCSD Au transitions.
Running a double precision version
EOMSF-CCSD/MP2 right amplitudes will be solved using Davidson.
Amplitudes will be solved using standard algorithm.
Hard-coded thresholds:
LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02
Roots MaxVec MaxIter Precond Conv Shift
1 120 60 1 1.00e-05 0.00e+00
------------------------------------------------------------------------------
Iter ConvRoots NVecs ResNorm Current eigenvalues (eV)
------------------------------------------------------------------------------
0 0 2 9.66e-02 6.6242
1 0 3 2.41e-02 4.9075
2 0 4 5.02e-03 4.3317
3 0 5 1.41e-03 4.1932
4 0 6 5.51e-04 4.1538
5 0 7 2.05e-04 4.1375
6 0 8 1.03e-04 4.1310
7 0 9 8.20e-05 4.1274
8 0 10 1.30e-04 4.1203
9 0 11 1.39e-04 4.1121
10 0 12 3.65e-05 4.1099
11 1 13 7.69e-06 4.1094*
Davidson procedure converged
EOMSF transition 1/Au
Total energy = -153.98271048 a.u. Excitation energy = 4.1094 eV.
R1^2 = 0.9439 R2^2 = 0.0561 Res^2 = 7.69e-06
Conv-d = yes
Amplitude Transitions between orbitals
-0.8512 1 (B3g) A -> 4 (B3u) B
-0.2846 1 (B3g) A -> 7 (B3u) B
-0.2481 3 (B2u) A -> 1 (B2g) B
0.1740 1 (B3g) A -> 5 (B3u) B
0.1663 1 (B3g) A -> 6 (B3u) B
Summary of significant orbitals:
Number Type Irrep Energy
15 Occ Alpha 1 (B3g) -0.2406
13 Occ Alpha 3 (B2u) -0.4667
14 Vir Beta 1 (B2g) 0.0468
15 Vir Beta 4 (B3u) 0.0835
22 Vir Beta 5 (B3u) 0.1666
29 Vir Beta 6 (B3u) 0.2544
32 Vir Beta 7 (B3u) 0.3471
Solving for EOMSF-CCSD B1u transitions.
Running a double precision version
EOMSF-CCSD/MP2 right amplitudes will be solved using Davidson.
Amplitudes will be solved using standard algorithm.
Hard-coded thresholds:
LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02
Roots MaxVec MaxIter Precond Conv Shift
1 120 60 1 1.00e-05 0.00e+00
------------------------------------------------------------------------------
Iter ConvRoots NVecs ResNorm Current eigenvalues (eV)
------------------------------------------------------------------------------
0 0 2 9.37e-02 6.6392
1 0 3 2.21e-02 4.9582
2 0 4 3.40e-03 4.4495
3 0 5 5.92e-04 4.3654
4 0 6 1.01e-04 4.3529
5 0 7 1.34e-05 4.3510
6 1 8 3.48e-06 4.3510*
Davidson procedure converged
EOMSF transition 1/B1u
Total energy = -153.97383051 a.u. Excitation energy = 4.3510 eV.
R1^2 = 0.9465 R2^2 = 0.0535 Res^2 = 3.48e-06
Conv-d = yes
Amplitude Transitions between orbitals
-0.9404 1 (B3g) A -> 4 (B2u) B
0.1782 1 (B3g) A -> 6 (B2u) B
-0.1278 1 (B3g) A -> 7 (B2u) B
0.0795 1 (B3g) A -> 5 (B2u) B
Summary of significant orbitals:
Number Type Irrep Energy
15 Occ Alpha 1 (B3g) -0.2406
16 Vir Beta 4 (B2u) 0.0859
23 Vir Beta 5 (B2u) 0.1727
30 Vir Beta 6 (B2u) 0.2585
36 Vir Beta 7 (B2u) 0.4246
Solving for EOMSF-CCSD B2u transitions.
Running a double precision version
EOMSF-CCSD/MP2 right amplitudes will be solved using Davidson.
Amplitudes will be solved using standard algorithm.
Hard-coded thresholds:
LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02
Roots MaxVec MaxIter Precond Conv Shift
1 120 60 1 1.00e-05 0.00e+00
------------------------------------------------------------------------------
Iter ConvRoots NVecs ResNorm Current eigenvalues (eV)
------------------------------------------------------------------------------
0 0 2 9.76e-02 7.0821
1 0 3 2.51e-02 5.5037
2 0 4 1.97e-03 5.0551
3 0 5 3.37e-04 5.0118
4 0 6 9.77e-05 5.0046
5 0 7 1.03e-04 4.9995
6 0 8 7.04e-05 4.9988
7 0 9 4.08e-05 4.9990
8 0 10 1.47e-05 4.9981
9 1 11 3.11e-06 4.9978*
Davidson procedure converged
EOMSF transition 1/B2u
Total energy = -153.95006181 a.u. Excitation energy = 4.9978 eV.
R1^2 = 0.9495 R2^2 = 0.0505 Res^2 = 3.11e-06
Conv-d = yes
Amplitude Transitions between orbitals
0.9571 1 (B3g) A -> 2 (B1u) B
-0.1018 1 (B2g) A -> 2 (Au) B
-0.0924 1 (B1u) A -> 2 (B3g) B
0.0774 1 (B3g) A -> 3 (B1u) B
Summary of significant orbitals:
Number Type Irrep Energy
14 Occ Alpha 1 (B2g) -0.3430
15 Occ Alpha 1 (B3g) -0.2406
11 Occ Alpha 1 (B1u) -0.5651
28 Vir Beta 2 (B3g) 0.2254
34 Vir Beta 2 (Au) 0.3760
20 Vir Beta 2 (B1u) 0.1388
44 Vir Beta 3 (B1u) 0.9455
Solving for EOMSF-CCSD B3u transitions.
Running a double precision version
EOMSF-CCSD/MP2 right amplitudes will be solved using Davidson.
Amplitudes will be solved using standard algorithm.
Hard-coded thresholds:
LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02
Roots MaxVec MaxIter Precond Conv Shift
1 120 60 1 1.00e-05 0.00e+00
------------------------------------------------------------------------------
Iter ConvRoots NVecs ResNorm Current eigenvalues (eV)
------------------------------------------------------------------------------
0 0 2 9.25e-02 8.6931
1 0 3 2.42e-02 7.0498
2 0 4 1.91e-02 6.1881
3 0 5 2.73e-02 5.0013
4 0 6 5.30e-03 4.4102
5 0 7 3.72e-03 4.1737
6 0 8 1.38e-03 4.0504
7 0 9 2.51e-04 4.0262
8 0 10 3.40e-05 4.0187
9 1 11 8.69e-06 4.0179*
Davidson procedure converged
EOMSF transition 1/B3u
Total energy = -153.98607162 a.u. Excitation energy = 4.0179 eV.
R1^2 = 0.8384 R2^2 = 0.1616 Res^2 = 8.69e-06
Conv-d = yes
Amplitude Transitions between orbitals
-0.5622 1 (B3g) A -> 2 (Au) B
-0.5454 1 (B1u) A -> 1 (B2g) B
0.3950 1 (B3g) A -> 1 (Au) B
-0.2168 1 (B1u) A -> 2 (B2g) B
-0.1014 1 (B3g) A -> 3 (Au) B
Summary of significant orbitals:
Number Type Irrep Energy
15 Occ Alpha 1 (B3g) -0.2406
11 Occ Alpha 1 (B1u) -0.5651
14 Vir Beta 1 (B2g) 0.0468
26 Vir Beta 2 (B2g) 0.1873
24 Vir Beta 1 (Au) 0.1730
34 Vir Beta 2 (Au) 0.3760
48 Vir Beta 3 (Au) 1.0325
EOMSF-CCSD calculation: CPU 85.46 s wall 90.77 s
Total ccman2 time: CPU 111.71 s wall 130.04 s
--------------------------------------------------------------
Orbital Energies (a.u.) and Symmetries
--------------------------------------------------------------
Alpha MOs, Unrestricted
-- Occupied --
-11.257 -11.257 -11.256 -11.255 -1.193 -0.951 -0.856 -0.721
1 Ag 1 B3u 1 B2u 1 B1g 2 Ag 2 B3u 2 B2u 2 B1g
-0.709 -0.568 -0.565 -0.552 -0.467 -0.343 -0.241
3 Ag 3 B3u 1 B1u 4 Ag 3 B2u 1 B2g 1 B3g
-- Virtual --
0.082 0.084 0.086 0.101 0.128 0.137 0.139 0.157
4 B3u 4 B2u 5 Ag 3 B1g 2 B1u 1 Au 6 Ag 2 B2g
0.165 0.168 0.172 0.173 0.219 0.243 0.247 0.249
5 B3u 2 B3g 5 B2u 7 Ag 4 B1g 2 Au 6 B3u 6 B2u
0.288 0.318 0.346 0.385 0.405 0.423 0.494 0.516
5 B1g 7 B3u 8 Ag 6 B1g 7 B2u 8 B3u 8 B2u 7 B1g
0.767 0.783 0.887 0.889 0.892 0.893 0.925 0.966
9 Ag 8 B1g 3 B1u 10 Ag 3 B2g 9 B3u 3 B3g 3 Au
1.009 1.045 1.084 1.095 1.158 1.180 1.223 1.247
9 B2u 11 Ag 10 B3u 9 B1g 10 B1g 10 B2u 11 B3u 12 Ag
1.285 1.430 1.492 1.526 1.535 1.601 1.765 1.830
11 B2u 12 B3u 11 B1g 4 B1u 12 B2u 5 B1u 4 B2g 4 B3g
1.878 1.900 2.033 2.194 2.313 2.321 2.380 2.562
12 B1g 13 Ag 14 Ag 13 B2u 5 B2g 13 B3u 15 Ag 4 Au
2.611 2.711 2.753 2.816 2.886 2.967 3.079 3.300
5 B3g 14 B3u 5 Au 14 B2u 15 B3u 13 B1g 15 B2u 14 B1g
3.393
15 B1g
Beta MOs, Unrestricted
-- Occupied --
-11.246 -11.245 -11.245 -11.244 -1.144 -0.894 -0.807 -0.696
1 Ag 1 B3u 1 B2u 1 B1g 2 Ag 2 B3u 2 B2u 3 Ag
-0.694 -0.558 -0.535 -0.455 -0.378
2 B1g 3 B3u 4 Ag 3 B2u 1 B1u
-- Virtual --
0.047 0.083 0.086 0.088 0.095 0.103 0.139 0.141
1 B2g 4 B3u 4 B2u 5 Ag 1 B3g 3 B1g 2 B1u 6 Ag
0.167 0.173 0.173 0.181 0.187 0.219 0.225 0.254
5 B3u 5 B2u 1 Au 7 Ag 2 B2g 4 B1g 2 B3g 6 B3u
0.259 0.293 0.347 0.351 0.376 0.403 0.425 0.429
6 B2u 5 B1g 7 B3u 8 Ag 2 Au 6 B1g 7 B2u 8 B3u
0.506 0.527 0.774 0.819 0.895 0.904 0.945 0.955
8 B2u 7 B1g 9 Ag 8 B1g 10 Ag 9 B3u 3 B1u 3 B2g
0.995 1.027 1.032 1.063 1.103 1.103 1.172 1.190
3 B3g 9 B2u 3 Au 11 Ag 10 B3u 9 B1g 10 B1g 10 B2u
1.238 1.255 1.304 1.444 1.500 1.546 1.582 1.670
11 B3u 12 Ag 11 B2u 12 B3u 11 B1g 12 B2u 4 B1u 5 B1u
1.825 1.884 1.894 1.913 2.050 2.230 2.342 2.360
4 B2g 4 B3g 12 B1g 13 Ag 14 Ag 13 B2u 13 B3u 5 B2g
2.416 2.605 2.655 2.729 2.794 2.825 2.905 3.000
15 Ag 4 Au 5 B3g 14 B3u 5 Au 14 B2u 15 B3u 13 B1g
3.096 3.308 3.402
15 B2u 14 B1g 15 B1g
--------------------------------------------------------------
Ground-State Mulliken Net Atomic Charges
Atom Charge (a.u.) Spin (a.u.)
--------------------------------------------------------
1 C -0.243205 0.550599
2 C -0.243205 0.550599
3 C -0.243205 0.550599
4 C -0.243205 0.550599
5 H 0.243205 -0.050599
6 H 0.243205 -0.050599
7 H 0.243205 -0.050599
8 H 0.243205 -0.050599
--------------------------------------------------------
Sum of atomic charges = 0.000000
Sum of spin charges = 2.000000
-----------------------------------------------------------------
Cartesian Multipole Moments
-----------------------------------------------------------------
Charge (ESU x 10^10)
0.0000
Dipole Moment (Debye)
X 0.0000 Y -0.0000 Z 0.0000
Tot 0.0000
Quadrupole Moments (Debye-Ang)
XX -20.8207 XY 0.0000 YY -22.8336
XZ 0.0000 YZ -0.0000 ZZ -28.2679
Octopole Moments (Debye-Ang^2)
XXX 0.0000 XXY 0.0000 XYY 0.0000
YYY -0.0000 XXZ 0.0000 XYZ -0.0000
YYZ 0.0000 XZZ 0.0000 YZZ 0.0000
ZZZ 0.0000
Hexadecapole Moments (Debye-Ang^3)
XXXX -134.3734 XXXY 0.0000 XXYY -32.7026
XYYY 0.0000 YYYY -117.5540 XXXZ 0.0000
XXYZ -0.0000 XYYZ -0.0000 YYYZ -0.0000
XXZZ -33.7125 XYZZ -0.0000 YYZZ -31.4025
XZZZ 0.0000 YZZZ -0.0000 ZZZZ -38.9819
-----------------------------------------------------------------
Archival summary:
1\1\lcpq-curie.ups-tlse.fr\SP\ProcedureUnspecified\6-31+G*\44(3)\emonino\WedJan2716:52:262021WedJan2716:52:262021\0\\#,ProcedureUnspecified,6-31+G*,\\0,3\C\H,1,1.07604\C,1,1.34416,2,135.082\H,3,1.07604,1,135.082,2,-0,0\C,3,1.56497,1,90,2,180,0\H,5,1.07604,3,134.918,1,180,0\C,5,1.34416,3,90,1,-0,0\H,7,1.07604,5,135.082,3,180,0\\HF=-153.617984\\@
Total job time: 136.87s(wall), 117.42s(cpu)
Wed Jan 27 16:52:26 2021
*************************************************************
* *
* Thank you very much for using Q-Chem. Have a nice day. *
* *
*************************************************************