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substitutions: Theory and application to cyclobutadiene
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While the equation-of-motion coupled-clust@&OM-CC) method is capable of describing certain
multiconfigurational wave functions within a single-reference framewerk., open-shell type
excited states, doublet radicals, gtit may fail in cases of more extensive degeneracy, e.g., bond
breaking and polyradicals. This work presents an extension of the EOM-CC approach to these
chemically important situations. In our approach, target multiconfigurational wave functions are
described as spin-flipping excitations from the high-spin reference state. This enables a balanced
treatment of nearly degenerate electronic configurations present in the target low-spin wave
functions. The relations between the traditional spin-conserving EOM models and the EOM
spin-flip method is discussed. The presentation of the formalism emphasizes the variational
properties of the theory and shows that the killer condition is rigorously satisfied in single-reference
EOM-CC theories. The capabilities and advantages of the new approach are demonstrated by its
application to cyclobutadiene. @004 American Institute of Physic§DOI: 10.1063/1.1630018

I. INTRODUCTION ionized and open-shell systetfis'® (for detailed reviews,
see Refs. 16, 17
The equation-of-motiodEOM) formalism is one of the The focus of this work is on the EOM spin-fligFH CC

approaches used in quantum mechanics for the direct calcmodel, which targets bond breaking, diradicals, and triradi-
lation of energy differences rather than total energiisis  cals. The next section reviews the general EOM formalism
always energy differences between the states of the systeamd explains the importance of the reference state choice.
which are observed experimentally. Chemistry and spectrosdur derivation of EOM-CC emphasizes the variational prop-
copy are often concerned about energy differences that aegties of the theory and does not invoke the projective ap-
many orders of magnitude smaller than total energies. This iproach. We demonstrate for the first time that the killer con-
the crux of a major challenge faced by the electronic strucdition is rigorously satisfied in single-reference EOM-CC
ture theory—tiny errors in total energies may result in verytheories, although, in Sura terms, “for the wrong
large errors in energy differences. For example, 1 percent geason.”® The presentation employs operator algebra—see
the ethylene total energy is about 21 eV, which exceeds evelRefs. 19, 20 for a very compact and practical summary. The
the ionization potential of the molecule! That is why EOM asgeneral formalism is followed by the presentation of working
well as other approaches formulated for energy differencegquations and the implementation of the EOM-SF-CC model
(e.g., electron propagator or Green function, and responséith single and double excitation&EOM-SF-CCSD. Sec-
techniques are potentially more accurate than approximatetion Ill presents application of the new method to cyclobuta-
methods of the similar complexity formulated for the states'diene. Concluding remarks are given in Sec. IV.
total energies. However, this potential can be fulfilled only if
the realization ensures a balanced treatment of the states of
interest. Il. THEORY

Different formalisms often yield very similar working _ ) .
equations—for example, the linear response coupled-clusterA‘ Equation-of-motion formalism
(CC) modef~*is identical to EOM-CCG:>~1°However, each Consider a generghot necessarily Hermitiaroperator
of the approaches offers certain advantages. The most apr and two of its eigenstatef)) and|f), with eigenvalues,
pealing property of the linear response formalism is that itand E; , respectively
mimics optical spectroscopy, e.g., an excited state energy is

obtained as a pole of the first-order response funétidithe H|0)=E,|0), (1)
strength of EOM theory is that it makes a very clear distinc-  _
tion between the reference and target states. In the context of H[f)=Eq|f). (2

coupled-cluster methods, this freedom in the reference staje, 5 non-Hermitian operator, bra eigenstates are not Hermit-

choice has enabled extension of EOM-CC models from treat, conjugates of ket eigenstate&|+ (|k)*). Moreover

ing electronically excited closed-shell molecules towards,qither bra nor ket eigenstates form an orthonormal set.
However, bra’s and ket's form a biorthogonal sék|l)
dElectronic mail: krylov@usc.edu = d,,, provided that the corresponding eigenvalues are non-
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zero. A general excitation operatB(f ) is defined such that
it promotes a system from the initiébr referencg state|0)

into the final statéf)
R(f)[0)=]f).

The killer condition means that the reference sfjecannot
be de-excitedi.e., that the reference can be regarded as a
vacuum. Alternatively, (9) can be interpreted as orthogonal-
3) ity of the reference and final states
No assumptions are made about the nature of the initial and L(f)[0)=|0)(f[0)=0.
final states: they can be the ground and electronically excited
states(or any two electronic statgsf an N-electron system, Note that the killer conditiori10) is satisfied when the exact
or states of aiN-electron and an ionized or detached systeminitial state is used as the reference, and the operator basis is
etc. It is convenient to represent the excitation oper&or complete with respect to the final states. Another simple case
from Eq. (3) by the following bra-ket form: when the killer condition is easily satisfied is when the single
Slater determinant is used as the referejide and the op-
R(f)=[f)(0]. eratorL is pure de-excitation operators with respect to the
reference|0) (i.e., does not annihilate electrons from the
occupied orbitals and does not create electrons in the virtual
orbitalg. For an excellent presentation of the different deri-
vations of the EOM equations, and the role of the killer
condition, see the recent work of Sutjand co-worker®
One of the disturbing consequences of the violation of
killer condition is that functional$7) and (8) become non-
equivalent. Indeed, which of the three functionals should be
©) employed in the derivation of working equations? All of
them give the exact result in the limit of the complete opera-

where[H,R(f )]=HR(f )~ R(f )H, andwq;=E;—E,. The e e . .
above equation shows that if no approximations have bee??r basis set,' however, th? choice betyveen them in the case
of an approximate theory is rather arbitrary.

made for the excitation operat®(f ), the exact energy dif- At this point, we depart from the textbook EOM

ference can be computed without an explicit calculation . o
@ot P P presentation. Instead of general excitation operators

of the initial and final states. v . .
By introducing the de-excitation operator L(f) R(f),L*(f) which generate thexactfinal state|f) when

=|0)(f|, the transition energyo; can be written as a gen- acting onany reference state Brovitied théd|0) # 0, we
vy introduce less general operatdR§f ),L*(f) defined with

respect to the specific referen@

(10

(4)

The so-defined operator is of rank dhand can act on any

reference statfd)
R(f)[0)=[f){0[0). ®

Therefore, for any stat&)) which has a nonzero overlap
with the exact reference stae|

[H,R(f)1[0) = worR(f)[0),

eral expectation value of the non-Hermitian operador

_(@IL(HIH.RH)IO)
(OIL(f)R(f)[0)

@)

@of R(f)=]f)(0],

(11)
In expressior(7) (as well as in the subsequent presentation  L(f)=[0)(f|.
the bra reference sta(@| can be chosen to be a Hermitian ~
conjugate of the ket reference state. Foffy provides a  Unlike R(f), R(f) will not yield the exact final state when
useful functional whose stationary values will coincide with acting on a statég) with nonzero overlap with0) if (0|g)
the eigenvalues of6) when operatoR(f ) is represented in  =0: R(f)|g)=|f)(0|g)=0. Because commutator equation
a complete operator basis set. However, the corresponding) s no longer valid forR (unless, of course, the reference

w's do not provide upper bounds of the exact energy differ-|~6> happens to be the exact eigenstd, functionals(7)

ences, even when a Hermitian operdiae., the bare Hamil-
tonianH) is used in Eq(7), and the de-excitation operator is
a Hermitian conjugate of the excitation operafiorthis case

the corresponding total energies are upper bounds of the e
act total energies given that a linear parametrization of th€

excitation operatoR(f ) is used®).

and(8) will not yield the exactwy; even when the operators

R(f),L*(f) are expanded over the complete basis. How-
gver, thedifferencebetween the resulting; and the exact
ne assumes the same constant value for all the target states

[f).24 Therefore, for an arbitrary referend®), the exact

Alternatively, one can consider functionals based on th&N€rgy gap between any two target stafgsand|i) will be

so-called commutator metti¢®2°

_(OI[L(f),[H,R(F)]]1:[0)

= - 8
(OJ[L(f),R(f)]-[0)

Wof

All three functionals yield identical results in the complete
operator basis set limit, or when the so-called killer condition

is satisfied

L(f)[0)=0. (9)

retrieved from functional$7) and (8) in the limit when the
operatorsR(f ),L " (f) are expanded over the complete ba-
sis.

In practice, excitation and de-excitation operators are ex-
panded over a finite basis set. In the case of a linear param-
etrization, it is convenient to expand the excitation and de-
excitation operators over a set of operatogsand \

Fe<f>=§ Pk (12)
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N . traditionally used to derive the EOM equaticii;®although
L(f)= ; LA (13)  variational properties of the EOM-CC theory have been
recognized:’
When acting on the referen¢®@), these operators generate a  Alternatively, in a single-reference coupled-cluster EOM
biorthogonal set of basis functions theory, one can consider a single Slater determipdg} as
o~ the reference staﬂ@) which greatly simplifies the choice of
pkl0)=k), (14) ot =T+ 30 ; i ;
the excitation operatofR,L ™,”" and easily satisfies the killer
O|n =], (15  condition(9). Correlation effects are folded i through the
L 5 5 similarity transformatioft
(k)= dic, (k[#= (k)" (16)

H=e THe', (21)

The completeness of the operator basig ggi\,} is derived
from the completeness of the Hilbert spadk),(T|}. Note T=Tot ot T, (22)
that only the completeness with respect to the target stataghereT, arek-fold excitations from®,). Regardless of the
|f) is required for the EOM functionals to yield the exact nature of T, similarity transformation does not change the
energy differences between the target states, while the Hilkeigenvalues of the Hamiltonian—therefore stationary values
bert space can be incomplete with respect to other groups @ff functionals(7)—(8) yield exact energy differences between
eigenstates, provided that the target states are not interactifige target states when the excitation operaﬁ;&* are ex-
across the Hamiltonian with these grouesg., states of dif- panded over the complete operator basis set. However, the
ferent point group or spin symmetry, or with different num- exactw, can only be obtained when both the operator set is
ber of electrons complete and0)=|0). The latter can be achieved by an

It is convenient(although not necessaryo choose op-  5npropriate choice of from the similarity transformation,
eratorsp ,\ to be of rank one i.e., whenT is not truncated and satisfies the CC equations

pi= k)0, for the referencé0), the single determinan®) becomes an
o (17)  eigenstate ofi.
Me=[0)(T]. Even in the case of the exat L™, and|0), the corre-

By considering the first variation of functionél) with ~ sponding left and right eigenvectors kdf are not Hermitian
respect to the righR and leftL vectors, and by assuming conjugates. Eigenstates of the bare Hamiltortarcan be
that variationssR and 5L are independerisee Ref. 20 for ~OPtained from the eigenstates ldfas follows:
the discussion of bivariational principle, an extension of |\P>:'§eT|(I)O>. (23)

variational principle to the case of non-Hermitian Hamilto- _ _
niang, we arrive at a non-Hermitian secular problem for theln the EOM-CC approach, amplituddsare defined by the

expansion coefficient&r,} and{l,} coupled-cluster equatiofis?®*?for the reference state
(H—Ey)R=RQ, (18) Ecc=(PolH|®y), (24)
L(H—Ey)=QL, (19 (®f[H|®o)=0, (@F[H|Dg)=0, -, (25

e whereE is the total coupled-cluster energy for the refer-
Eo=(0[H|0), 20 ence state, and the so-called projective equati@Bsdefine
where matrice®R andL are constructed from the expansion amplitudes of the cluster operatdFg. Usually®*°but not
coefficients(12) and (13), e-g-vRif:rif; diagonal matrixQ necessarily’ the cluster operatdf is truncated at the same
contains the transition energie®i,= wq ; andH is the ma-  level as the EOM operatof$ andL*. When this is the case,

trix of the Hamiltonian operatoH in the basis of14) and ~ OF whenT is truncated at the higher excitation level ttan
(15): Hy = (T|H[k). the reference determinaftb,) is an eigenstate dfl in the

At this point, we can discuss choices of the referencesubspace of up tm-tuple excited determinants, the corre-

B), the HamiltoniarH, and the operator basis ,\,. The  SPonding eigenvalue beirtgcc from Eq. (24).

first applications of the EOM formalism used the bare _

HamiltonianH, and employed correlateb.g., multirefer-  B- Choice of the reference state

ence wave functions as the reference stiig *>%°By anal- A subtle issue for discussion is the choice of the refer-
ogy, the first applications of the EOM formalism to the CC ence statd0). Formally, any reference state can be used in
models also used the bare Hamiltonieng., see Ref. 2 and Eqs. (6)—(8) without affecting the ability of the theory to
references therejnand the CC wave functiéh®®as the ref-  converge to the exact answior the energy differences be-
erence|0). In this approach, the killer conditiof®) is not  tween the target statesHowever, as can be seen from Egs.
satisfied. Moreover, a straightforward application of func-(14) and (15), the operator basis sefp,} and{\,} are de-
tional (7) does not yieldEOM-CC equations even if one fined with respect to the reference state. The quality of the
replaces the bra reference K |exp(—T) as opposed to operator basis set can be judged by the quality of the basis of
(®olexp(T™). That is why a projective approach has beenmany-electron basis functions which are generated by the
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basis operators from the refererieee Eqs(14) and(15)].  sent aclosed-sheltation or anion, and the EOM operatdts
Therefore, the choice of the reference is directly related tQnqT do not conserve the number of electrdAsd37

the choice of the operator basfer different references, the
same ansatz for the excitation operatSrevould result in a RIPZE ri
different set of many-electron basis functiombus, one can e
consider the reference as one of the model's parameters sub-
ject for optimization. Unlike many state-by-state approaches REA:E r,at, (27)
where the reference is chosen such that it serves as the best a
zero-order wave function for the state of interest, the optimal
reference in EOM is the one which results in the most bal- ]
anced description of the EOM target states. Moreover, wheN/hile EOM-IP/EA-CC yield the exact IP/EA only under the
one is interested in a single target sté&ay., the ground state Sa@me conditions as EOM-EE-CC, the exact description of the
of a moleculg, the optimal reference is not necessarily thetarget(ionized or attachedstates can be achieved with only
one which has the largest overlap with the target state’s wavé'® EOM operators being expanded over the complete basis.
function, but rather the one which produces a more flexibld 0" example, the EOM-IP-CC description of the lithium
and balanced set of many-electron basis functions. atom will be exact even witff=0, provided thaR,L " in-

One of the most popular applications of the EOM-CCclude up to triple electron excitations, e.g.,
theory is for calculating electronic excitation energies
(EOM-EBE).>1° The optimal reference for EOM-EE is often RP=2 ri+> ria‘ij+;> riva*bjik
the closed-shell ground-state Hartree—Fock determinant, and ! 1a tjkab
operatorsk andL conserve the number of and 3 electrons

+3 > riathrcrkjil. (28)
ijklabc
REE:% rfati, Doubly ionized/attached EOM models which target diradi-
cals have also been preserited
(26) R?EA:% rapd b™, (29

Note that open-shell excited states whose zero-order descrip-
tion requires two-determinantal wave functions are well de-
scribed by single-reference EOM mod&isidentical equa-  Similar approaches have been used in conjunction with
tions can be derived within the linear responsepropagator techniques-*?
formalism?~*3*%The EOM-EE-CC excitation energies be-  Last, in cases where target states are multiconfigura-
come exact when both the EOM operatd®ts L, and the tional due to orbital degeneracies, a high-spin reference state
operatorT from the similarity transformation include up to can be chosen. To obtain target low-spin states, the EOM
n-tuple excitations, and satisfies CC equation®5). Inter-  operators R and L should include spin-flip (EOM-SF
estingly enough, accurate values of the excitation energiegodelg'>43-4¢ So far, models based on a high-spin triplet
can be obtained witlifferenttruncation levels irR,L, and and quartet references have been implemented and
T, with higher excitations being more important in the EOM benchmarked>*3=%° however, extensions of the SF ap-
part33 proach to the higher spin references are also very promising.
More general excitations can change the number of elecAn attractive feature of the triplet and quartet reference-
trons in the system. In order to calculate transition energiebased EOM-SF models is that only a single spin-flip is re-
of such processe§.e., ionization potentials or electron af- quired to obtain targeM ;=0/M (=3 states. That is why the
finities), the EOM-IP or EOM-EA methods can be uséd®  corresponding EOM-SF equations in a spin—orbital form are
The reference states for EOM-IP/EA are determinants foidentical to those of the non-SF EOM theories. The follow-
N+1/N—1 electron states, whereas the final states areng SF models have been implemented and bench-
N-electron ones. Another class of less obvious but very sucmarked'>*3-4%(i) the SF models based on the Hartree—Fock
cessful applications of the EOM-IP/EA methods is not con-reference wave function, i.e., SF configuration interaction
cerned with electron ionization or attachment processes, buingles(SF-CIS, spin-complete SF-CIS, and SF-CI model
rather targets ground and excited states of problematic newvith single and double substitutioltiSF-CISD; (ii) the per-
tral systems. In these applications,ldr-1 orN+1 electron  turbatively corrected SF-CIS model, SF-QI8; (iii ) the SF
reference state is used in order to generate a balanced setaytimized orbitals CCD modéEOM-SF-OOCCD, or EOM-
configurations needed for a targMtelectron system. For SF-OD. Recently, the SF variant of density functional
example, to avoid the troublesome symmetry breaking irtheory has been introducé®In this work, we introduce the
doublet radicals(or to obtain spin-pure wave functions EOM-SF-CCSD model. As in the non-SF grodhdcand
EOM-IP/EA methods have been successfully apptfeti.n excited® states variants, EOM-CCSD performs very simi-
these models, the reference determinant is chosen to reprarly to EOM-OD.
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Computationally, however, EOM-CCSD is more efficient where Ec is the reference CC energy from E@®4), and
since it does not involve integral transformation at each Ccﬁso: ﬁDozo due to Eq(25). It immediately follows from

iteration. Eq. (30) that: (i) the reference CCSD wave function is an
eigenvector ofH with Ro=i and R;=R,=0, the corre-
C. EOM-SF-CCSD model sponding eigenvalue beirlgcc; (ii) the reference state left

. . . ~ eigenvector ha& =1, and all other left eigenvectors have
'[h+|s work considers EOM'C_:CSD models in thEhR,. Lo=0 due to the biorthogonality condition. Since right
andL" are truncated to the single and double excitationsgigenyectors do not form an orthonormal set, the reference
and operator&k andL* conserve the total number of elec- also can be present in final EOM statés, Ro=foi, fo
trons in the system. Thus, the transformed Hamiltofh) ) However, excitation energies can be calculated by di-
is diagonalized in the subspace of the reference determmagtgonalizingﬁ in the basis of single and double excitations
(0), and the determinants generated by sirijeand double only.” Values of the so-calculate®, and R, define the
(D) electron excitations from the reference. Relative to the Y- e 2.
. . . . weight of the reference determinant in the right EOM-CC
reference, all possible singly excited determinants can be d'éigenvector
vided into the three groupséi) those which are generated by
the a— « and B— B excitations, and thus having the same
number ofa and B electrons as the reference, i.&l,(,Ng);
(ii) those which are generated by the- 8 excitations—
these have one-electron less and ong-electron more than
the reference, i.eN,— 1N+ 1); (iii) those which are gen-
erated by theB— a excitations—these have onggelectron
less and onex-electron more than the reference, i.&( ro=—(Z1-Ri+Z5-Ry). (32
+1N;z—1). Likewise, one can split the, operator into the
three componentdfl;=0, Ms=—1, andM4¢= +1, respec-
tively. In a similar fashion, doubly excited determinafesad,
respectively, thdR, operatoy can be divided into the follow- all the EOM-SF statas
I(r:\lt‘]]aJrglr?,\T;E'l)(/\l,\z;Eﬂllll\,ﬂS(NOC:_(ZITIﬁBleéI\)I/B,\; Slz)l_M 2 (Nt, After subtracting the reference energy from, the
+2Ng—2)/M¢=+2. TheM; of the corresponding determi- EOM-CCSD left and right eigenproblem reads as follows:

nants is defined by thsl, of the excitation operatoR and Hss— Ecc Hsp R R
. . . . 1 1
the M of the reference determinant and is simply their sum. (R ) = w( R )
For example, when th =0 reference is used, thd of 2 2
the excitation operatdR is equal to theM, of the determi- O iy

~ . Hss— Ecc Hsp
nants generated by acting on the reference. (L, Ly) — _

Since the nonrelativistic Hamiltonig# does not include DS Hop—Ecc
spin, the matrix ofH is block diagonal in the basis of the wherew is the energy difference relative the reference state:
so-generated determinants. Therefore, one can diagonalize= E—Ec. We present working equations and discuss de-
eachM block of H independently. In the traditional imple- tails of the implementation in the Appendix.
mentation of EOM-CCSD, only th&1,=0 block is diago-
nalized, which yields singlets ani;=0 components of Ill. RESULTS AND DISCUSSION

triplet states(in the case of a singlet reference Sléfe _ In the first set of benchmark calculations, we compared
In the SF variant of EOM-CCSD, we consider spin- co\M-SE-CCSD against EOM-SF-OD. As in the non-SF
flipping (e.g.,Ms=1 or M= —1) parts ofR. In the case of vyariant, the performance of the SF-CCSD model is very
a singlet reference, the diagonalization of tMs=*1  sjmilar to that of SF-OD. We compared both models by using
blocks yieldsMs=+1 components of triplet states which some of the benchmark systems from Ref. 47. We have
are exactly degenerate with thé;=0 counterparts calcu- found that differences in equilibrium geometries and fre-
lated by the traditional approach outlined abSvé&lowever, quencies do not exceed 10A and 10 cm'?, respectively.

when the high spirtM =1 triplet reference is used, thds  Differences in excitation energies are about thousandths of
= —1 excitations yield theM ;=0 determinants. Therefore, gy

1 — _
ro:Z(HosRﬁ‘ HopRy). (31

Alternatively, ry can be calculated from the biorthogonality
condition by using the reference state left eigenvetaiso
known as theZ- or A-vector from the CC gradient thegry

In the SF varianfwhen the reference and excited determi-
nants have a different number of and B8 electron$, the
reference is not present in final EOM states., ro=0 for

(33

ﬁDS ﬁDD_ ECC

) =w(L; Ly), (34

the diagonalization oH producesM =0 final stategboth In order to demonstrate capabilities and advantages of
singlets and tripleds the SF-CCSD model, we apply it to calculate vertical and
In the basis of the reference, and the singly and doubhadiabatic electronic excitation energies in cyclobutadiene. As
excited determinantdy assumes the following form: explained below, the degree of orbital degeneracy and, con-
- sequently, the character of the low-lying valence states of

Ecc Hos Hop cyclobutadiene depend strongly on nuclear positions—while

A=l o gss qSD ’ (30) at the lowest triplet state equilibrium geometry the lowest

_ singlet state is two-configurational, it becomes predomi-
0  Hps Hop nantly single-configurational at its own equilibrium geom-
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TABLE |. Optimized geometries of the rectangular grou)(\EJAg state of
cyclobutadiene. The bond length alternatiadyyc, is also shown. Bond
lengths are in angstrom, angles in degrees.

C-C G=C Age CH HCE

1
EL -+ + _T'_— l l SCF/cc-pvD2 1569 1.323 025 1.079 134.9
+ I:i

€ —H— ¢y B3LYP/cc-pvVDZ 1.581 1.339 0.24 1.090 134.9
I:I CCSD[3s2p1d/2s]® 1.609 1.383 0.23 1.092 134.6
b3g CCSI:XT)/CC-pVDZb 1.583 1.364 0.22  1.095 134.9
a MCSCF/6-31G 1.553 1.366 0.22 1.068 134.8
2u b MPJ5GVB)/cc-pvVDZ° 1.580 1.336 0.24 1.068 134.9
lu MR-CCSD:[352p1d/13]f 1.570 1.367 0.20 1.103 134.7
. . * g
FIG. 1. Molecularm-orbitals derived from carbong orbitals at the £A,, gESDI;%?CSE\L/?'ZQ 1226 1223 %2;; :;%774 11?;1%

equilibrium geometry(left panej, and at theX 1Ag equilibrium geometry
(right pane). Electronic configuration of the triplet state is shown.

aThe angle between the CH bond and the longer CC bond.
bReferences 85, 86.

‘Reference 86.

9This work, basis from Ref. 77.

€CAS within the 7 system, Ref. 78.

etry. We will demonstrate that although advanced single refg?e_fefence 82. i

erence techniquete.g., EOM-EE-CCSD give reasonable 'S Work see also Fig. 3.

description of the cyclobutadiene excited states in the latter

case, they Tal.l in the former. EOM'_SF'CCSD’ however,A_ Molecular orbitals and low-lying valence states
treats both I!mlts well, z_ind t_herefore_ yields accurate resultg; cyclobutadiene

for both vertical and adiabatic energies.

Calculations are performed using thecHEM™ ab initio Figure 1 shows themr system of cyclobutadiene—
package, to which our programs for the EOM-SF-CCSD andnolecular orbitals derived from the four atongg orbitals of
EOM-EE-CCSD methods are linked. Additional results arecarbons Z axis is perpendicular to the molecular plant
obtained using theces Il ab initio program®® Most of the  the square D,) geometry(Fig. 1, left panel, two of the
calculations are performed in the cc-pVTZ basis®éethe  four 7 orbitals are exactly degenerate. This degeneracy is
performance of the less expensive basis set composed of tfified by a rectangular distortiofFig. 1, right panel The
cc-pVTZ basis on carbon atoms and cc-pVDZ on hydrogenéeading electronic configurations of the lowest valence states
is also investigated. Equilibrium geometries of th¢A, ~ are shown in Fig. 2. At botiD,, and Dy, structures, the
ground state and the 3929 excited state are optimized by lowest four states are derived by distributing two electrons in
the CCSDT)>” and SF-DFT®*® methods. Vertical and adia- WO (nearly degenerate molecular orbitals. Therefore, these
batic excitation energies are calculated at these geometries{ates are best described as diradical stét€s***Note
All electrons are active in the CC$D) and the EOM-CCSD  that at theD,, geometry, all the electronic states are exactly
calculations. Both UHF and ROHF references are used in thivo-configurational, while at thd,, structure the wave
EOM-SE-CCSD calculations. function of the groundX 1Ag state is dominated by a single

determinant. As it follows from the molecular orbital picture,
D, distortions are energetically favorable for the ground
X 1A, state??

The experimental structure of cyclobutadiene is not

- - + . j: available; however, there is a host of theoretical
= e ey 1'; T calculation€?~®¢Table | summarizes some of the previously
+H H reported structures of th¥ 1Ag state calculated by single-

L . reference(SR) and multireferencéMR) SCF, CC, and DFT
— - — M methods. Figure 3 presents the equilibrium geometries of the
—H—4+—+—4+—H- i) 028 j_‘I_‘ ’ o A,, and X 1A, states optimized at the CC$D/cc-pVTZ

level. For the well-behaved triplet state, the errors in the

- _ —
+ 4+ - sy 4+ :%__ - i 2
+H H H H H +
1.343
4 _H' 1B, (1'A) 3_ - 0212 i 3 1.439 1.566
T ++ #
1.073 1.074

FIG. 2. Leading electronic configurations in the EOM-SF-CCSD wave func-

tions of the valence states of cyclobutadiene at the sqlieftepane) and FIG. 3. Equilibrium geometries of the3'16\29 (left) and X 1Ag (right) refer-
rectangular(right pane] geometries. For th®,, geometries(left pane), ences, optimized at the CC8D/cc-pVTZ level of theory. Bond lengths are
D,, symmetry labels are given in parentheses. in angstroms, angles in degrees.
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TABLE Il. Total energieghartree of the groundX lAg state of cyclobuta-  TABLE lll. Total energies(hartree of the groundX 1B1g state of cyclob-
diene, and vertical excitation energied/) at theX 1Ag equilibrium geom- utadiene, and vertical excitation energi@/) at the l?’AZg equilibrium
etry. D,, symmetry, optimized at the CC$D)/cc-pVTZ level of theory. geometry.D,, symmetry, optimized at the CC$D/cc-pVTZ level of
theory.

EaX'A)*  1°By, 2'A; 1'By

EuXBig®  1%A,, 2'A; 1'By

EOM-CCSDY ~154.39346  1.353 nla 3.326

EOM-CCSDS ~154.41693 1351 nla 3319 EOM-CCSD ~154.35712 —0.592 nla 1539
EOM-CCSD ~154.38058 —0.590 n/a 1.534

UHF-EOM-SF-CCSD  ~154.40152 1661 4376 3426 yyrEOM-SF-CCSB ~ —154.38952 0369  1.826  2.145

UHF-EOM-SF-CCSD  —154.42495  1.659 4369 3420 yprFEOM-SF-CCSD — —154.41301 0.369  1.824  2.143

ROHF-EOM-SF-CCSD  —154.44254 1661 4.363 3417 RONE-EOM.SE.CCSP  — 15441342 0369 1814 2137

“For EOM-CCSD, the total CCSD energy Olf tHe'A, reference; for EOM-  acor EOM-CCSD, the total CCSD energy of tié'B, , reference; for EOM-
SF-CCSD, the total energy of the EOM"A, target state. The 1B, SF-CCSD, the total energy of the EOM'B,, target state. The 1A,
reference is employed in the SF calculations. reference is employed in the SF calculations.

PMixed basis: cc-pVTZ on carbons and cc-pVDZ on hydrogens. bMixed basis: cc-pVTZ on carbons and cc-pVDZ on hydrogens.

*Full cc-pVTZ basis. °Full cc-pVTZ basis.

CCSD(T)/cc-pVTZ geometry should not exceed 0.0027A.

However, the accuracy of the CCSD model for theX 1Ag scription of the excited states, i.e., singlet—triplet ordering at

the singlet geometry. Quantitatively, however, the difference
Fetween the EOM-EE-CCSD and the EOM-SF-CCSD exci-

tional character of this state. To clarify this, we performed__. . o
L : ) . tation energies equals 0.308 eV, which is beyond the EOM-
geometry optimization with the SF-DFT method which was CSD error bars of 0.1-0.3 &%, Therefore, even at the

shown to yield very accurate structures for diradicals anddcistorted eometry the ground state is sufficiently multicon-
triradicals?®849 An excellent agreement between the SF- 9 yihe g y

. : .~ figurational for the EOM-CCSD to failsee Fig. 2, right
DFT. and_ CCS.'DT) geometne; suglgests relatl\{ely minor pane). The EOM-CCSD errors for the second closed-shell
multiconfigurational character in th¢*A state. This is also sinalet are much larger due to substantial doublv excited
confirmed by the EOM-SF-CCSD amplitudesee Fig. 2 9 9 y

. ._character.
As it follows from Table |, the ground-state structure is
rather sensitive to the theoretical method employed. First At the square geometry, where HOMO and LUMO are

including dynamical correlation effects results in longer Ccéxactly degenerate, the EOM-CCSD model fails more dra-

o i atically, e.g., singlet—triplet ordering is reversed due to the
and CH bonds—compare, for example, the SCF/cc pVDilTnbalanced treatment of the two leading determinéses

and CCSDT)/cc-pvDZ resu_lts. _Second, a basis set of a bet Fig. 2, left panel The EOM-SF-CCSD model, however,
ter than cc-pvVDZ quality is required for accurate . . . .
. . gives the correct singlet—triplet ordering because both degen-
geometries—comparison between the CCBIc-pVDZ ! . . N
erate configurations are formally single excitatiqmsth a

and CCSDT)/cc-pVTZ results shows that the increase in thespin—flip) from the high-spin triplet reference, and therefore

basis set size results in considerably shorter bond Iengthgl.re treated on an equal footing by the SF methods.

Finally, nondynamical correlation leads to more square struc- Finally, the EOM-EE-CCSD and EOM-SF-CCSD adia-

tures, e.g., compare the bond alternation for the SCF and. ;"o iavion energies for thi\,,— X A, transition are
MCSCF methods, or for CCSD and MR-CCSD. Overall, we . 9 9
0.399 and 0.694 eV, respectively.

conclude that the CCSD)/cc-pVTZ geometries present the
best estimates of the equilibrium structures, and we employ
these geometries in our calculations of vertical and adiabatic

excitation energies. Of course, the lowest singlet at square 45 | oA
geometries is multiconfigurational, and would not be cor- 4l // & |
rectly described by the traditional single-reference methods. s

35 /// — lBlg b
B. Vertical and adiabatic excitation energies . 3} ////,//’/ i
of cyclobutadiene :a; - ///4///

Calculated vertical excitation energies at the singlet and g 2 : 2g::/

triplet geometries are presented in Tables Il and Ill, respec- £ 2 g , .
tively. The EOM-SF-CCSD results are also shown in Fig. 4. 3 _— B,
One of the many nontrivial features of cyclobutadiene is the M5 - )
violation of Hund’s rule—the singlet state is below the triplet 1 i , ////”/ |
even at the triplet equilibrium geometry, when HOMO and Azg_,///
LUMO are exactly degenerat&®°Although Hund's rule al- 05 T
ways works for atoms, it can be violated in molecules [ Blgd ____________ 1Ag
through the effect of dynamic spin-polarizatith. 0 D D

Since the HOMO-LUMO degeneracy is lifted by the

rectangular distortion from the_ square g_eoméﬁiﬂ- 2,1ight  FiG. 4. Excitation energies of the valence states of cyclobutadiene relative
pane), the EOM-CCSD provides qualitatively correct de- to the groundX A, state at the CCS@)/cc-pVTZ optimized geometries.
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TABLE IV. Vertical excitation energiegeV) at rectangular singléRS) and tonian (H’) method®® Note that the geometries employed in
square tripletST) geometries. The geometries are specified in the footnotesthese calculations are verv close to the geometries used in
D4, Symmetry labels are shown in parentheses. XHé\y(X 'B,y) is the . . Y . g

lowest state at both geometries. this work. While the PPP-CI method is not an accurate struc-
tural tool because onlyr electrons are considered, it may

1°B1g(*Azg)  27Ag("A1g) 1'Big('Bzg)  still yield reasonably accurate excitation energies within

RS (D,,) geometry systems due to the high degree of parametrization.

PPP-CI} 4.351 3.523 There is an interesting relation between the rHethod
SCF-CI'[SSSIO/SS]'C’ 1.622 4.767 5.984 and EOM-SF-CCSD. In both cases, the effective Hamil-
SCF-CI/3-21(+)G 112 4.90 3.46 tonian which includes dynamical correlation effects is diago-
MCSCF/SVPF 1.274 3.715 4.138 lized | I f tional sub While i
H/(4s5p1d/2s1p)® 144 106 339 nalized in a smaller configurational subspace. ile in
EOM-CCSD/4-316 112 5.36 3.67 EOM-SF-CCSD the reference and excited state spaces are
EOM-CCSD/cc-pVT2 1.351 n/a 3.319 separated by their spin-projection valudés =1 for the trip-
EOM-SF-CCSD/cc-pVTZ  1.659 4.369 3.420 let reference, and,=0 for target statgs in the H' ap-

ST (D) geometry proach total' configuration space.is dividgd to valence sub-
SCF-CIf 5s5p/5s]" 0.590 2.754 4.914 space and its orthogonal comphm@ﬁt‘.l’hls allows us to
ROKS(BLYP)/TZ2P —0.208 1.040 0.797 separate the degenerate configuratibmssystem from the
EOM-CCSD/cc-pVT2 —0.590 nfa 1.534 rest of the configurational spa¢e system and treat them in
EOM-SF-CCSD/cc-pVTZ  0.369 1.824 2.143

a reasonably balanced fashion without sacrificingo and
aReference 89; at the geometry from Ref. 70z R=157 A, R_c o—o dynamical correlation. This explains the fairly good

b=1.34 A, Ry=1.085 A, 6cc=135°. agreement between the’ldnd EOM-SF-CCSD results.
Refggfnce 65, Rc=1514A, R_c=1338A, Ry=1059A, fycc The importance of ther—o correlation is confirmed by

N ' the comparison of SCF-CI results for the open-shell singlet
°Ref 73; =1526A, R_.=1.316A, =1.08A, ¢ . ’

bty Be fec Fn "¢ 1By, state obtained by Buenker and Peyerimfiéfgnd by
‘Reference 75, Rc=1.548A, R_.=1.375A, Ry=1.085A, 6ycc Fratevet al.® (see Table IV. Buenker and Peyerimhoff in-
=135°. cluded in their ClI all configurations derived from distributing

*Reference 98; at the geometry from Ref. 77;_R=1.567 A, R_
=1.346 A, R;=1.084 A, 0,cc=134.9°.
'Reference 67; Rc=1.581A, R_c=1.323A, Ry=1.067 A, O.cc

the four 7 electrons among the eight spin-orbitals. The
resulting energy of théBlgHX 1Ag transition(5.984 eV is

—134.7°. 2.56 eV higher than the corresponding EOM-SF-CCSD
EThis work; geometry is shown in Fig. 3. value. Moreover, contrary to the EOM-SF-CCSD results, this
Reference 65; B=1.424 A, R,=1.059 A. state is placed above the'2 state. The Cl space employed

i : 24 A,
Reference 99; unspecified triplet geometry. by Fratev etal. included only single excitations from

HOMO, but these excitations were not limited to thesys-

We found that the EOM-SF-CCSD excitation and totalt€M. Inclusion of the excitations te-antibonding orbitals
energies are rather insensitive to the reference employed; f6gSults in much better agreement between SCF-Cl and EOM-
example, the difference between the UHF and ROHF excitaSF-CCSD(3.46 and 3.42 eV, respectively
tion energies does not exceed 0.01 eV. This is consistent with 10 conclude, a large basis set and a high level of corre-
the recent study of Seart al*® On a more technical side, Ia.tlon is required for a proper descrlptlor_1 of cyclobutadlepe.
Tables Il and Il demonstrate that the excitation energies caltligh degeneracy in the system, along with strong dynami-
culated with the full cc-pVTZ basis and a smaller basis com @l 7—o and o—o correlation, require well-balanced treat-
posed of the cc-pVTZ basis on carbons and the cc-pVDZnent of all electrons. This is easﬂy achieved in the presented
basis on hydrogen are very close. 'SF'vanant of EOM-CCS'D. Dgsplte the fact that degengracy

The experimental data on the electronic spectrum ofS lifted by rectangular distortions, the grouddA, state is
C,H, are scarce and contradict§¥?® The most recent s_t|II cor_1$|derably_ mult_|conf|gurat|onal. This causes tr_a_dl-
measurement of the UV absorption spectrum of argon-matriJ('O”al _S|ngle-c0nf|gL_1rat|0naI appro_aches to fail for transition
isolated cyclobutadiene was reported by Michl's grétiit. ~ energies, although it has only a minor effect on the geometry
shows only one intense peak around 200 (@2 e\); how-  ©f the ground state.
ever, a weak absorption tail extends up to about 50026
eV). Note that the only spin- and symmetry-allowed transi-
tion from Table Il is'B;g— X 'Ag at 3.42 eV.

The electronic spectrum of cyclobutadiene has been The EOM formalism is a versatile tool for treating a
serving as a sharpening stone for electronic structurevide range of chemically important situations. When com-
methodology3-67:69.71.73.75.7882.94-9 4, 3 comprehensive bined with the single-reference coupled-cluster approach, it
review of earlier results, see Ref. 89. Table IV summarizeyields a hierarchy of size-consistent models of increasing
some of the theoretical results for the vertical excitation enaccuracy. The EOM-CC models for excitation energies
ergies of cyclobutadiene at the singlet and triplet equilibrium(EOM-EE) and ionized stateEOM-EA/IP) have been ex-
geometries. The best agreement between the EOM-SEensively used over the last decade, and it is now well rec-
CCSD valence transitions is with the semiempirical Parr—-ognized that EOM-CC is capable of describing certain mul-
Pariser—Pople(PPBH model with the full Cl in thes ticonfigurational wave functions within a single-reference
systent® as well as with the effective valence shell Hamil- framework(e.g., open-shell type excited states, doublet radi-

IV. CONCLUSIONS
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cals, eto.’®!” This work presents an extension of the Uﬁb=(ﬁDsR1)ﬁb+([ﬁDD— Ecd] Rz)ﬁb
EOM-CC methods to situations with more extensive degen-
eracy, i.e., bond breaking, and di- and triradicals. In our ap-

proach, target multiconfigurational wave functions are de- 9 = (LilHss=Ecc?+ (LoHpg)? (A2)
scribed as spin-flipping excitations from the high spin
reference. The relations between the EOM-SF, EOM-EE, and ';,ﬁb: (LlHSD)f}b+ (Lo[Hpp— Ecc])ﬁb (A3)

EOM-IP/EA models are discussed. The capabilities and ad-

vantages of the new approach are demonstrated by its applyogrammable expressions for rightand lefts are
cation to cyclobutadiene.

([ﬁss_ Eccl Rl)ia: <<D|a| H— Ecc| R1<I)0>
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APPENDIX: PROGRAMMABLE EOM-CCSD (HpsR1)2P= (P3| H|R, ()
EQUATIONS

We solve Egs.(33) and (34) by using a generalized =; (ril fep—r I,Jka)+2 (a1 ivan)
Davidson’s iterative diagonalization procedd?&;%2which
requires calculation of products of the transformed Hamil-

. JeLiation 1,ab_ T1ab bd_ 2 ,ad
tonian matrix with trial vectors +2| (TRt —Tjt] HE (Tadts = Toats Y,

7= ([Hss~ EcclRy){+ (HsoRo)T (A1) (6)

TABLE V. Intermediates used in Eq6A4)—(A11). To avoid storage of large 6-index quantities, intermediates which have to be updated at each iteration of
diagonalization procedure were introduced.

Fla*flaJrzjbtb('JHab)
Fij = fij + Zat{fja+ Zeat 2(ikllia)+ SiapttE( K] |ab) + 3 Syt jk|be)
ab fab z"taflb E|ctc<|a||bc>+E|Jct|ctja<”Hbc> ZEchtac“kHbC)
liajp=(ialljb)— Ektk<1kllla> Et°<JbHaC>+2kc°tk<1klla0> EKC k (ikllac)
Il]ka <|J||ka>+22t Iljk|+2b(t (<Jkaa> ZI(:t <kIHbC>)_t (<|b||ka>
2 1t5%(kI[[be))) — SpctPtf(kal[be) = et btac(lebCHthcfkc %chth(kaCdHEm(tbC(JCHkl) thic|[kly)
Ilscab <'C||ab>+22dt)| bead™ Zj(t] (('a||JC> (k| [ad)) — t5((ial[jb)
— Sy qth(jk|[ad))) — ijtbtkﬂkH'a) EJkdt?t.bkc(Jk||ad>+2kt fre— 22|tﬁl|b<'c||k|>“‘2kd(t Y(kb|cd)—th(kal[cd))
.,k|—2<ll||k|>+ S(tf(kl]lia) —tf (klllja)) +73 Eabtatb<k|||ab>+ chth(k|||Cd>
13heq=3 (abl|cd)— 22(ta<'b||0d>—tb<'a||Cd>)+ St l[cd)+ 7 Emtkf’(leCd)
|ka (Iijﬁ} 2t<|]||ac)
|abc <|a||bc) EJ <I]||bC>

T ch"k'j]klc
sz ch klkabc
le_ ZEder|k<Jk||Cd>
Ton= zEklcrm(lebC)
le - % 2kabI |akbtjakb
T ZEuc actbc

1
rO*_(Elarafa+le.slbratbmHa~b>+ 2uabr <”Hab>
*_Eiariz 42|jabrlajb 3b
Alala Faa F Illala

. 1 . y
Dijab.ijab=— Fii = Fjj+ Faa® Fop— (Iipin+ |jlbjb+|i1a|a+|11aja)+ Iﬁu +|5bab 5 2|(<J| ||ab)t P+ (il |ab)ti®) — 5 Sq((i] ||bd>tit}d+<'1 ||ad)tﬁd)
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([Hop—Ecdl Rz)ﬁb

= <(Dﬁb| H—Ecd Ry®o)

_z (r Flk |k ]k +E (r I:bc

IJ ac)

+E (riy

cil
|ckb |k jckb+rikljcka_r1k||cka)

by 4 5 3.ab_ T3.ab
+% r%'ijkﬁ% ri Iabcd+2| (TR =Tt

+E (Tagtho—Tagtad), (A7)
(La[Hss— Eccl)?=(®@oL1|H—Ecd ®F)
:Eb: Iil)Fba_zj: I?Fji_% |jb|j1aib, (A8)

(LoHpg)2=(DoL,|H|DF)

12 I Ijklb+ lz IbCljabc

+E T I|kla+z TdCIIdaC’ (A9)
(Llﬁs&ﬁb:(q’o'—ﬂmq’?b
:llaFJb |an+| Fla IF]a
+E (I ||Jka alljkb)+2 (lj icab™ |j70ab)1
(A10)
(LZ[ﬁDD_ECC])ﬁb
:<¢0L2|H_Ecc|¢ﬁb
=2 (§Fa= 1R+ 2 (1 Fep— 1 Fea)
+% lﬁlblﬁlij'i_cE |Cd|cdab+z( 1T 1) kbic

+18 |kaw)+2 (Th(jll|ab)—T5(il||ab))

IkaJc

+E (Tou(ij|[od)y—Toij|lad)). (A11)

Intermediates used in EqA4)—(All) are given in Table V.
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