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substitutions: Theory and application to cyclobutadiene

Sergey V. Levchenko and Anna I. Krylova)
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~Received 17 June 2003; accepted 8 October 2003!

While the equation-of-motion coupled-cluster~EOM-CC! method is capable of describing certain
multiconfigurational wave functions within a single-reference framework~e.g., open-shell type
excited states, doublet radicals, etc.!, it may fail in cases of more extensive degeneracy, e.g., bond
breaking and polyradicals. This work presents an extension of the EOM-CC approach to these
chemically important situations. In our approach, target multiconfigurational wave functions are
described as spin-flipping excitations from the high-spin reference state. This enables a balanced
treatment of nearly degenerate electronic configurations present in the target low-spin wave
functions. The relations between the traditional spin-conserving EOM models and the EOM
spin-flip method is discussed. The presentation of the formalism emphasizes the variational
properties of the theory and shows that the killer condition is rigorously satisfied in single-reference
EOM-CC theories. The capabilities and advantages of the new approach are demonstrated by its
application to cyclobutadiene. ©2004 American Institute of Physics.@DOI: 10.1063/1.1630018#

I. INTRODUCTION

The equation-of-motion~EOM! formalism is one of the
approaches used in quantum mechanics for the direct calcu-
lation of energy differences rather than total energies.1 It is
always energy differences between the states of the system
which are observed experimentally. Chemistry and spectros-
copy are often concerned about energy differences that are
many orders of magnitude smaller than total energies. This is
the crux of a major challenge faced by the electronic struc-
ture theory—tiny errors in total energies may result in very
large errors in energy differences. For example, 1 percent of
the ethylene total energy is about 21 eV, which exceeds even
the ionization potential of the molecule! That is why EOM as
well as other approaches formulated for energy differences
~e.g., electron propagator or Green function, and response
techniques! are potentially more accurate than approximate
methods of the similar complexity formulated for the states’
total energies. However, this potential can be fulfilled only if
the realization ensures a balanced treatment of the states of
interest.

Different formalisms often yield very similar working
equations1—for example, the linear response coupled-cluster
~CC! model2–4 is identical to EOM-CC.2,5–10However, each
of the approaches offers certain advantages. The most ap-
pealing property of the linear response formalism is that it
mimics optical spectroscopy, e.g., an excited state energy is
obtained as a pole of the first-order response function.4,11The
strength of EOM theory is that it makes a very clear distinc-
tion between the reference and target states. In the context of
coupled-cluster methods, this freedom in the reference state
choice has enabled extension of EOM-CC models from treat-
ing electronically excited closed-shell molecules towards

ionized and open-shell systems12–15 ~for detailed reviews,
see Refs. 16, 17!.

The focus of this work is on the EOM spin-flip~SF! CC
model, which targets bond breaking, diradicals, and triradi-
cals. The next section reviews the general EOM formalism
and explains the importance of the reference state choice.
Our derivation of EOM-CC emphasizes the variational prop-
erties of the theory and does not invoke the projective ap-
proach. We demonstrate for the first time that the killer con-
dition is rigorously satisfied in single-reference EOM-CC
theories, although, in Surja´n terms, ‘‘for the wrong
reason.’’18 The presentation employs operator algebra—see
Refs. 19, 20 for a very compact and practical summary. The
general formalism is followed by the presentation of working
equations and the implementation of the EOM-SF-CC model
with single and double excitations~EOM-SF-CCSD!. Sec-
tion III presents application of the new method to cyclobuta-
diene. Concluding remarks are given in Sec. IV.

II. THEORY

A. Equation-of-motion formalism

Consider a general~not necessarily Hermitian! operator
H̄ and two of its eigenstates,u0& andu f &, with eigenvaluesE0

andEf , respectively

H̄u0&5E0u0&, ~1!

H̄u f &5Ef u f &. ~2!

For a non-Hermitian operator, bra eigenstates are not Hermit-
ian conjugates of ket eigenstates:^kuÞ(uk&1). Moreover,
neither bra nor ket eigenstates form an orthonormal set.
However, bra’s and ket’s form a biorthogonal set,^ku l &
5dkl , provided that the corresponding eigenvalues are non-a!Electronic mail: krylov@usc.edu
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zero. A general excitation operatorR( f ) is defined such that
it promotes a system from the initial~or reference! stateu0&
into the final stateu f &

R~ f !u0&5u f &. ~3!

No assumptions are made about the nature of the initial and
final states: they can be the ground and electronically excited
states~or any two electronic states! of anN-electron system,
or states of anN-electron and an ionized or detached system,
etc. It is convenient to represent the excitation operatorR
from Eq. ~3! by the following bra-ket form:

R~ f ![u f &^0u. ~4!

The so-defined operator is of rank one21 and can act on any
reference stateu0̃&

R~ f !u0̃&5u f &^0u0̃&. ~5!

Therefore, for any stateu0̃& which has a nonzero overlap
with the exact reference state^0u

@H̄,R~ f !#u0̃&5v0 fR~ f !u0̃&, ~6!

where@H̄,R( f )#5H̄R( f )2R( f )H̄, andv0 f5Ef2E0 . The
above equation shows that if no approximations have been
made for the excitation operatorR( f ), the exact energy dif-
ferencev0 f can be computed without an explicit calculation
of the initial and final states.

By introducing the de-excitation operator22 L( f )
5u0&^ f u, the transition energyv0 f can be written as a gen-
eral expectation value of the non-Hermitian operatorH̄

v0 f5
^0̃uL~ f !@H̄,R~ f !#u0̃&

^0̃uL~ f !R~ f !u0̃&
. ~7!

In expression~7! ~as well as in the subsequent presentation!,
the bra reference state^0̃u can be chosen to be a Hermitian
conjugate of the ket reference state. Form~7! provides a
useful functional whose stationary values will coincide with
the eigenvalues of~6! when operatorR( f ) is represented in
a complete operator basis set. However, the corresponding
v’s do not provide upper bounds of the exact energy differ-
ences, even when a Hermitian operator~i.e., the bare Hamil-
tonianH) is used in Eq.~7!, and the de-excitation operator is
a Hermitian conjugate of the excitation operator~in this case
the corresponding total energies are upper bounds of the ex-
act total energies given that a linear parametrization of the
excitation operatorR( f ) is used23!.

Alternatively, one can consider functionals based on the
so-called commutator metric1,19,20

v0 f5
^0̃u@L~ f !,@H̄,R~ f !##6u0̃&

^0̃u@L~ f !,R~ f !#6u0̃&
. ~8!

All three functionals yield identical results in the complete
operator basis set limit, or when the so-called killer condition
is satisfied1

L~ f !u0̃&50. ~9!

The killer condition means that the reference stateu0̃& cannot
be de-excited~i.e., that the reference can be regarded as a
vacuum!. Alternatively,~9! can be interpreted as orthogonal-
ity of the reference and final states

L~ f !u0̃&5u0&^ f u0̃&50. ~10!

Note that the killer condition~10! is satisfied when the exact
initial state is used as the reference, and the operator basis is
complete with respect to the final states. Another simple case
when the killer condition is easily satisfied is when the single
Slater determinant is used as the referenceu0̃&, and the op-
eratorL is pure de-excitation operators with respect to the
referenceu0̃& ~i.e., does not annihilate electrons from the
occupied orbitals and does not create electrons in the virtual
orbitals!. For an excellent presentation of the different deri-
vations of the EOM equations, and the role of the killer
condition, see the recent work of Surja´n and co-workers.18

One of the disturbing consequences of the violation of
killer condition is that functionals~7! and ~8! become non-
equivalent. Indeed, which of the three functionals should be
employed in the derivation of working equations? All of
them give the exact result in the limit of the complete opera-
tor basis set; however, the choice between them in the case
of an approximate theory is rather arbitrary.

At this point, we depart from the textbook EOM
presentation.1 Instead of general excitation operators
R( f ),L1( f ) which generate theexactfinal stateu f & when
acting on any reference state provided that^0u0̃&Þ0, we
introduce less general operatorsR̃( f ),L̃1( f ) defined with
respect to the specific referenceu0̃&

R̃~ f !5u f &^0̃u,
~11!

L̃~ f !5u0̃&^ f u.

Unlike R( f ), R̃( f ) will not yield the exact final state when
acting on a stateug& with nonzero overlap withu0& if ^0̃ug&
50: R̃( f )ug&5u f &^0̃ug&50. Because commutator equation
~6! is no longer valid forR̃ ~unless, of course, the reference
u0̃& happens to be the exact eigenstateu0&!, functionals~7!
and~8! will not yield the exactv0 f even when the operators
R̃( f ),L̃1( f ) are expanded over the complete basis. How-
ever, thedifferencebetween the resultingv0 f and the exact
one assumes the same constant value for all the target states
u f &.24 Therefore, for an arbitrary referenceu0̃&, the exact
energy gap between any two target statesu f & and u i & will be
retrieved from functionals~7! and ~8! in the limit when the
operatorsR̃( f ),L̃1( f ) are expanded over the complete ba-
sis.

In practice, excitation and de-excitation operators are ex-
panded over a finite basis set. In the case of a linear param-
etrization, it is convenient to expand the excitation and de-
excitation operators over a set of operatorsrk andlk

R̃~ f !5(
k

r k
f rk , ~12!
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L̃~ f !5(
k

l k
f lk . ~13!

When acting on the referenceu0̃&, these operators generate a
biorthogonal set of basis functions

rku0̃&5uk̃&, ~14!

^0̃ul l5^ l̃ u, ~15!

^ l̃ uk̃&5d lk , ^k̃uÞ~ uk̃&!1. ~16!

The completeness of the operator basis set$rk ,l l% is derived
from the completeness of the Hilbert space$uk̃&,^ l̃ u%. Note
that only the completeness with respect to the target states
u f & is required for the EOM functionals to yield the exact
energy differences between the target states, while the Hil-
bert space can be incomplete with respect to other groups of
eigenstates, provided that the target states are not interacting
across the Hamiltonian with these groups~e.g., states of dif-
ferent point group or spin symmetry, or with different num-
ber of electrons!.

It is convenient~although not necessary! to choose op-
eratorsrk ,lk to be of rank one

rk5uk̃&^0̃u,
~17!

lk5u0̃&^ l̃ u.

By considering the first variation of functional~7! with
respect to the rightR̃ and left L̃ vectors, and by assuming
that variationsdR̃ and dL̃ are independent~see Ref. 20 for
the discussion of bivariational principle, an extension of
variational principle to the case of non-Hermitian Hamilto-
nians!, we arrive at a non-Hermitian secular problem for the
expansion coefficients$r k% and$ l k%

~H̄2E0!R5RV, ~18!

L~H̄2E0!5VL, ~19!

E05^0̃uH̄u0̃&, ~20!

where matricesR andL are constructed from the expansion
coefficients~12! and ~13!, e.g.,Ri f 5r i

f ; diagonal matrixV

contains the transition energies:Vkk5v0k ; andH̄ is the ma-
trix of the Hamiltonian operatorH̄ in the basis of~14! and
~15!: H̄ lk5^ l̃ uH̄uk̃&.

At this point, we can discuss choices of the reference
u0̃&, the HamiltonianH̄, and the operator basisrk ,lk . The
first applications of the EOM formalism used the bare
Hamiltonian H, and employed correlated~e.g., multirefer-
ence! wave functions as the reference stateu0̃&.25,26By anal-
ogy, the first applications of the EOM formalism to the CC
models also used the bare Hamiltonian~e.g., see Ref. 2 and
references therein!, and the CC wave function27,28as the ref-
erenceu0̃&. In this approach, the killer condition~9! is not
satisfied. Moreover, a straightforward application of func-
tional ~7! does not yieldEOM-CC equations even if one
replaces the bra reference by^F0uexp(2T) as opposed to
^F0uexp(T1). That is why a projective approach has been

traditionally used to derive the EOM equations,29,2,6although
variational properties of the EOM-CC theory have been
recognized.6,7

Alternatively, in a single-reference coupled-cluster EOM
theory, one can consider a single Slater determinantuF0& as
the reference stateu0̃& which greatly simplifies the choice of
the excitation operatorsR̃,L̃1,30 and easily satisfies the killer
condition~9!. Correlation effects are folded inH̄ through the
similarity transformation31

H̄[e2THeT, ~21!

T5T11¯1Tm , ~22!

whereTk arek-fold excitations fromuF0&. Regardless of the
nature ofT, similarity transformation does not change the
eigenvalues of the Hamiltonian—therefore stationary values
of functionals~7!–~8! yield exact energy differences between
the target states when the excitation operatorsR̃,L̃1 are ex-
panded over the complete operator basis set. However, the
exactv0 f can only be obtained when both the operator set is
complete andu0̃&[u0&. The latter can be achieved by an
appropriate choice ofT from the similarity transformation,
i.e., whenT is not truncated and satisfies the CC equations
for the referenceu0̃&, the single determinantu0̃& becomes an
eigenstate ofH̄.

Even in the case of the exactR̃, L̃1, andu0̃&, the corre-
sponding left and right eigenvectors ofH̄ are not Hermitian
conjugates. Eigenstates of the bare HamiltonianH can be
obtained from the eigenstates ofH̄ as follows:

uC&5R̃eTuF0&. ~23!

In the EOM-CC approach, amplitudesT are defined by the
coupled-cluster equations27,28,32for the reference state

ECC5^F0uH̄uF0&, ~24!

^F i
auH̄uF0&50, ^F i j

abuH̄uF0&50, ¯ , ~25!

whereECC is the total coupled-cluster energy for the refer-
ence state, and the so-called projective equations~25! define
amplitudes of the cluster operatorsTk . Usually2,6,10 but not
necessarily,33 the cluster operatorT is truncated at the same
level as the EOM operatorsR̃ andL̃1. When this is the case,
or whenT is truncated at the higher excitation level thanR̃,
the reference determinantuF0& is an eigenstate ofH̄ in the
subspace of up ton-tuple excited determinants, the corre-
sponding eigenvalue beingECC from Eq. ~24!.

B. Choice of the reference state

A subtle issue for discussion is the choice of the refer-
ence stateu0̃&. Formally, any reference state can be used in
Eqs. ~6!–~8! without affecting the ability of the theory to
converge to the exact answer~for the energy differences be-
tween the target states!. However, as can be seen from Eqs.
~14! and ~15!, the operator basis sets$rk% and $lk% are de-
fined with respect to the reference state. The quality of the
operator basis set can be judged by the quality of the basis of
many-electron basis functions which are generated by the

177J. Chem. Phys., Vol. 120, No. 1, 1 January 2004 Spin-flip model for cyclobutadiene



basis operators from the reference@see Eqs.~14! and ~15!#.
Therefore, the choice of the reference is directly related to
the choice of the operator basis:for different references, the
same ansatz for the excitation operators30 would result in a
different set of many-electron basis functions. Thus, one can
consider the reference as one of the model’s parameters sub-
ject for optimization. Unlike many state-by-state approaches
where the reference is chosen such that it serves as the best
zero-order wave function for the state of interest, the optimal
reference in EOM is the one which results in the most bal-
anced description of the EOM target states. Moreover, when
one is interested in a single target state~e.g., the ground state
of a molecule!, the optimal reference is not necessarily the
one which has the largest overlap with the target state’s wave
function, but rather the one which produces a more flexible
and balanced set of many-electron basis functions.

One of the most popular applications of the EOM-CC
theory is for calculating electronic excitation energies
~EOM-EE!.5–10 The optimal reference for EOM-EE is often
the closed-shell ground-state Hartree–Fock determinant, and
operatorsR̃ andL̃ conserve the number ofa andb electrons

R1
EE5(

ia
r i

aa1i ,

L1
EE5(

ia
l i
ai 1a,

¯ . ~26!

Note that open-shell excited states whose zero-order descrip-
tion requires two-determinantal wave functions are well de-
scribed by single-reference EOM models.16 Identical equa-
tions can be derived within the linear response
formalism.2–4,34,35The EOM-EE-CC excitation energies be-
come exact when both the EOM operatorsR̃, L̃, and the
operatorT from the similarity transformation include up to
n-tuple excitations, andT satisfies CC equations~25!. Inter-
estingly enough, accurate values of the excitation energies
can be obtained withdifferent truncation levels inR̃,L̃, and
T, with higher excitations being more important in the EOM
part.33

More general excitations can change the number of elec-
trons in the system. In order to calculate transition energies
of such processes~i.e., ionization potentials or electron af-
finities!, the EOM-IP or EOM-EA methods can be used.12,13

The reference states for EOM-IP/EA are determinants for
N11/N21 electron states, whereas the final states are
N-electron ones. Another class of less obvious but very suc-
cessful applications of the EOM-IP/EA methods is not con-
cerned with electron ionization or attachment processes, but
rather targets ground and excited states of problematic neu-
tral systems. In these applications, anN21 or N11 electron
reference state is used in order to generate a balanced set of
configurations needed for a targetN-electron system. For
example, to avoid the troublesome symmetry breaking in
doublet radicals~or to obtain spin-pure wave functions!,
EOM-IP/EA methods have been successfully applied.12,36 In
these models, the reference determinant is chosen to repre-

sent aclosed-shellcation or anion, and the EOM operatorsR̃

and L̃ do not conserve the number of electrons.12,13,37

R1
IP5(

i
r i i ,

R1
EA5(

a
r aa1, ~27!

¯ .

While EOM-IP/EA-CC yield the exact IP/EA only under the
same conditions as EOM-EE-CC, the exact description of the
target~ionized or attached! states can be achieved with only
the EOM operators being expanded over the complete basis.
For example, the EOM-IP-CC description of the lithium
atom will be exact even withT50, provided thatR̃,L̃1 in-
clude up to triple electron excitations, e.g.,

R̃IP5(
i

r i i 1(
i ja

r i j
a a1i j 1 1

4 (
i jkab

r i jk
aba1b1 j ik

1 1
6 (
i jklabc

r i jkl
abca1b1c1k j i l . ~28!

Doubly ionized/attached EOM models which target diradi-
cals have also been presented14

R1
DIP5(

i j
r i j j i ,

R1
DEA5(

ab
r aba

1b1, ~29!

¯ .

Similar approaches have been used in conjunction with
propagator techniques.38–42

Last, in cases where target states are multiconfigura-
tional due to orbital degeneracies, a high-spin reference state
can be chosen. To obtain target low-spin states, the EOM
operators R̃ and L̃ should include spin-flip ~EOM-SF
models!15,43–46 So far, models based on a high-spin triplet
and quartet references have been implemented and
benchmarked;15,43–49 however, extensions of the SF ap-
proach to the higher spin references are also very promising.
An attractive feature of the triplet and quartet reference-
based EOM-SF models is that only a single spin-flip is re-
quired to obtain targetMs50/Ms5

1
2 states. That is why the

corresponding EOM-SF equations in a spin–orbital form are
identical to those of the non-SF EOM theories. The follow-
ing SF models have been implemented and bench-
marked:15,43–49~i! the SF models based on the Hartree–Fock
reference wave function, i.e., SF configuration interaction
singles~SF-CIS!, spin-complete SF-CIS, and SF-CI model
with single and double substitutions~SF-CISD!; ~ii ! the per-
turbatively corrected SF-CIS model, SF-CIS~D!; ~iii ! the SF
optimized orbitals CCD model~EOM-SF-OOCCD, or EOM-
SF-OD!. Recently, the SF variant of density functional
theory has been introduced.46 In this work, we introduce the
EOM-SF-CCSD model. As in the non-SF ground50 and
excited51 states variants, EOM-CCSD performs very simi-
larly to EOM-OD.
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Computationally, however, EOM-CCSD is more efficient
since it does not involve integral transformation at each CC
iteration.

C. EOM-SF-CCSD model

This work considers EOM-CCSD models in whichT, R̃,
and L̃1 are truncated to the single and double excitations,
and operatorsR̃ and L̃1 conserve the total number of elec-
trons in the system. Thus, the transformed Hamiltonian~21!
is diagonalized in the subspace of the reference determinant
~O!, and the determinants generated by single~S! and double
~D! electron excitations from the reference. Relative to the
reference, all possible singly excited determinants can be di-
vided into the three groups:~i! those which are generated by
the a→a and b→b excitations, and thus having the same
number ofa andb electrons as the reference, i.e. (Na ,Nb);
~ii ! those which are generated by thea→b excitations—
these have onea-electron less and oneb-electron more than
the reference, i.e. (Na21,Nb11); ~iii ! those which are gen-
erated by theb→a excitations—these have oneb-electron
less and onea-electron more than the reference, i.e. (Na

11,Nb21). Likewise, one can split theR1 operator into the
three components:Ms50, Ms521, andMs511, respec-
tively. In a similar fashion, doubly excited determinants~and,
respectively, theR2 operator! can be divided into the follow-
ing groups: (Na ,Nb)/Ms50, (Na21,Nb11)/Ms521,
(Na11,Nb21)/Ms511, (Na22,Nb12)/Ms522, (Na

12,Nb22)/Ms512. TheMs of the corresponding determi-
nants is defined by theMs of the excitation operatorR̃ and
the Ms of the reference determinant and is simply their sum.
For example, when theMs50 reference is used, theMs of
the excitation operatorR̃ is equal to theMs of the determi-
nants generated byR̃ acting on the reference.

Since the nonrelativistic HamiltonianH does not include
spin, the matrix ofH̄ is block diagonal in the basis of the
so-generated determinants. Therefore, one can diagonalize
eachMs block of H̄ independently. In the traditional imple-
mentation of EOM-CCSD, only theMs50 block is diago-
nalized, which yields singlets andMs50 components of
triplet states~in the case of a singlet reference state!.52

In the SF variant of EOM-CCSD, we consider spin-
flipping ~e.g.,Ms51 or Ms521) parts ofR̃. In the case of
a singlet reference, the diagonalization of theMs561
blocks yieldsMs561 components of triplet states which
are exactly degenerate with theMs50 counterparts calcu-
lated by the traditional approach outlined above.53 However,
when the high spinMs51 triplet reference is used, theMs

521 excitations yield theMs50 determinants. Therefore,
the diagonalization ofH̄ producesMs50 final states~both
singlets and triplets!.

In the basis of the reference, and the singly and doubly
excited determinants,H̄ assumes the following form:

H̄5S ECC H̄OS H̄OD

0 H̄SS H̄SD

0 H̄DS H̄DD

D , ~30!

where ECC is the reference CC energy from Eq.~24!, and
H̄SO5H̄DO50 due to Eq.~25!. It immediately follows from
Eq. ~30! that: ~i! the reference CCSD wave function is an
eigenvector ofH̄ with R051̂ and R15R250, the corre-
sponding eigenvalue beingECC; ~ii ! the reference state left
eigenvector hasL051̂, and all other left eigenvectors have
L050 due to the biorthogonality condition. Since right
eigenvectors do not form an orthonormal set, the reference
also can be present in final EOM states~i.e, R05r 01̂, r 0

Þ0). However, excitation energies can be calculated by di-
agonalizingH̄ in the basis of single and double excitations
only.7 Values of the so-calculatedR1 and R2 define the
weight of the reference determinant in the right EOM-CC
eigenvector

r 05
1

v
~H̄OSR11H̄ODR2!. ~31!

Alternatively, r 0 can be calculated from the biorthogonality
condition by using the reference state left eigenvector~also
known as theZ- or L-vector from the CC gradient theory!

r 052~Z1•R11Z2•R2!. ~32!

In the SF variant~when the reference and excited determi-
nants have a different number ofa and b electrons!, the
reference is not present in final EOM states~i.e., r 050 for
all the EOM-SF states!.

After subtracting the reference energy fromH̄, the
EOM-CCSD left and right eigenproblem reads as follows:

S H̄SS2ECC H̄SD

H̄DS H̄DD2ECC
D S R1

R2
D5vS R1

R2
D , ~33!

~L1 L2!S H̄SS2ECC H̄SD

H̄DS H̄DD2ECC
D 5v~L1 L2!, ~34!

wherev is the energy difference relative the reference state:
v5E2ECC. We present working equations and discuss de-
tails of the implementation in the Appendix.

III. RESULTS AND DISCUSSION

In the first set of benchmark calculations, we compared
EOM-SF-CCSD against EOM-SF-OD. As in the non-SF
variant, the performance of the SF-CCSD model is very
similar to that of SF-OD. We compared both models by using
some of the benchmark systems from Ref. 47. We have
found that differences in equilibrium geometries and fre-
quencies do not exceed 1024 Å and 10 cm21, respectively.
Differences in excitation energies are about thousandths of
eV.

In order to demonstrate capabilities and advantages of
the SF-CCSD model, we apply it to calculate vertical and
adiabatic electronic excitation energies in cyclobutadiene. As
explained below, the degree of orbital degeneracy and, con-
sequently, the character of the low-lying valence states of
cyclobutadiene depend strongly on nuclear positions—while
at the lowest triplet state equilibrium geometry the lowest
singlet state is two-configurational, it becomes predomi-
nantly single-configurational at its own equilibrium geom-
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etry. We will demonstrate that although advanced single ref-
erence techniques~e.g., EOM-EE-CCSD! give reasonable
description of the cyclobutadiene excited states in the latter
case, they fail in the former. EOM-SF-CCSD, however,
treats both limits well, and therefore yields accurate results
for both vertical and adiabatic energies.

Calculations are performed using theQ-CHEM54 ab initio
package, to which our programs for the EOM-SF-CCSD and
EOM-EE-CCSD methods are linked. Additional results are
obtained using theACES II ab initio program.55 Most of the
calculations are performed in the cc-pVTZ basis set.56 The
performance of the less expensive basis set composed of the
cc-pVTZ basis on carbon atoms and cc-pVDZ on hydrogens
is also investigated. Equilibrium geometries of theX 1Ag

ground state and the 13A2g excited state are optimized by
the CCSD~T!57 and SF-DFT46,58 methods. Vertical and adia-
batic excitation energies are calculated at these geometries.
All electrons are active in the CCSD~T! and the EOM-CCSD
calculations. Both UHF and ROHF references are used in the
EOM-SF-CCSD calculations.

A. Molecular orbitals and low-lying valence states
of cyclobutadiene

Figure 1 shows thep system of cyclobutadiene—
molecular orbitals derived from the four atomicpz orbitals of
carbons (Z axis is perpendicular to the molecular plane!. At
the square (D4h) geometry~Fig. 1, left panel!, two of the
four p orbitals are exactly degenerate. This degeneracy is
lifted by a rectangular distortion~Fig. 1, right panel!. The
leading electronic configurations of the lowest valence states
are shown in Fig. 2. At bothD4h and D2h structures, the
lowest four states are derived by distributing two electrons in
two ~nearly! degenerate molecular orbitals. Therefore, these
states are best described as diradical states.47,48,59–61Note
that at theD4h geometry, all the electronic states are exactly
two-configurational, while at theD2h structure the wave
function of the groundX 1Ag state is dominated by a single
determinant. As it follows from the molecular orbital picture,
D2h distortions are energetically favorable for the ground
X 1Ag state.62

The experimental structure of cyclobutadiene is not
available; however, there is a host of theoretical
calculations.62–86Table I summarizes some of the previously
reported structures of theX 1Ag state calculated by single-
reference~SR! and multireference~MR! SCF, CC, and DFT
methods. Figure 3 presents the equilibrium geometries of the
3A2g and X 1Ag states optimized at the CCSD~T!/cc-pVTZ
level. For the well-behaved triplet state, the errors in the

FIG. 1. Molecularp-orbitals derived from carbons’p orbitals at the 13A2g

equilibrium geometry~left panel!, and at theX 1Ag equilibrium geometry
~right panel!. Electronic configuration of the triplet state is shown.

FIG. 2. Leading electronic configurations in the EOM-SF-CCSD wave func-
tions of the valence states of cyclobutadiene at the square~left panel! and
rectangular~right panel! geometries. For theD4h geometries~left panel!,
D2h symmetry labels are given in parentheses.

FIG. 3. Equilibrium geometries of the 13A2g ~left! andX 1Ag ~right! refer-
ences, optimized at the CCSD~T!/cc-pVTZ level of theory. Bond lengths are
in angstroms, angles in degrees.

TABLE I. Optimized geometries of the rectangular groundX 1Ag state of
cyclobutadiene. The bond length alternation,DCC, is also shown. Bond
lengths are in angstrom, angles in degrees.

C–C CvC DCC CH HCCa

SCF/cc-pVDZb 1.569 1.323 0.25 1.079 134.9
B3LYP/cc-pVDZc 1.581 1.339 0.24 1.090 134.9
CCSD/@3s2p1d/2s#d 1.609 1.383 0.23 1.092 134.6
CCSD~T!/cc-pVDZb 1.583 1.364 0.22 1.095 134.9
MCSCF/6-31Ge 1.553 1.366 0.22 1.068 134.8
MPJ5~GVB!/cc-pVDZc 1.580 1.336 0.24 1.068 134.9
MR-CCSD/@3s2p1d/1s# f 1.570 1.367 0.20 1.103 134.7
SF-DFT/6-311G** g 1.56 1.33 0.23 1.07 134.9
CCSD~T!/cc-pVTZg 1.566 1.343 0.22 1.074 134.9

aThe angle between the CH bond and the longer CC bond.
bReferences 85, 86.
cReference 86.
dThis work, basis from Ref. 77.
eCAS within thep system, Ref. 78.
fReference 82.
gThis work, see also Fig. 3.
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CCSD~T!/cc-pVTZ geometry should not exceed 0.002 Å.87

However, the accuracy of the CCSD~T! model for theX 1Ag

state may deteriorate due to the anticipated multiconfigura-
tional character of this state. To clarify this, we performed
geometry optimization with the SF-DFT method which was
shown to yield very accurate structures for diradicals and
triradicals.46,48,49 An excellent agreement between the SF-
DFT and CCSD~T! geometries suggests relatively minor
multiconfigurational character in theX 1Ag state. This is also
confirmed by the EOM-SF-CCSD amplitudes~see Fig. 2!.

As it follows from Table I, the ground-state structure is
rather sensitive to the theoretical method employed. First,
including dynamical correlation effects results in longer CC
and CH bonds—compare, for example, the SCF/cc-pVDZ
and CCSD~T!/cc-pVDZ results. Second, a basis set of a bet-
ter than cc-pVDZ quality is required for accurate
geometries—comparison between the CCSD~T!/cc-pVDZ
and CCSD~T!/cc-pVTZ results shows that the increase in the
basis set size results in considerably shorter bond lengths.
Finally, nondynamical correlation leads to more square struc-
tures, e.g., compare the bond alternation for the SCF and
MCSCF methods, or for CCSD and MR-CCSD. Overall, we
conclude that the CCSD~T!/cc-pVTZ geometries present the
best estimates of the equilibrium structures, and we employ
these geometries in our calculations of vertical and adiabatic
excitation energies. Of course, the lowest singlet at square
geometries is multiconfigurational, and would not be cor-
rectly described by the traditional single-reference methods.

B. Vertical and adiabatic excitation energies
of cyclobutadiene

Calculated vertical excitation energies at the singlet and
triplet geometries are presented in Tables II and III, respec-
tively. The EOM-SF-CCSD results are also shown in Fig. 4.
One of the many nontrivial features of cyclobutadiene is the
violation of Hund’s rule—the singlet state is below the triplet
even at the triplet equilibrium geometry, when HOMO and
LUMO are exactly degenerate.60,65Although Hund’s rule al-
ways works for atoms, it can be violated in molecules
through the effect of dynamic spin-polarization.60

Since the HOMO–LUMO degeneracy is lifted by the
rectangular distortion from the square geometry~Fig. 2, right
panel!, the EOM-CCSD provides qualitatively correct de-

scription of the excited states, i.e., singlet–triplet ordering at
the singlet geometry. Quantitatively, however, the difference
between the EOM-EE-CCSD and the EOM-SF-CCSD exci-
tation energies equals 0.308 eV, which is beyond the EOM-
CCSD error bars of 0.1–0.3 eV.88 Therefore, even at the
distorted geometry the ground state is sufficiently multicon-
figurational for the EOM-CCSD to fail~see Fig. 2, right
panel!. The EOM-CCSD errors for the second closed-shell
singlet are much larger due to substantial doubly excited
character.

At the square geometry, where HOMO and LUMO are
exactly degenerate, the EOM-CCSD model fails more dra-
matically, e.g., singlet–triplet ordering is reversed due to the
unbalanced treatment of the two leading determinants~see
Fig. 2, left panel!. The EOM-SF-CCSD model, however,
gives the correct singlet–triplet ordering because both degen-
erate configurations are formally single excitations~with a
spin-flip! from the high-spin triplet reference, and therefore
are treated on an equal footing by the SF methods.

Finally, the EOM-EE-CCSD and EOM-SF-CCSD adia-
batic excitation energies for the3A2g←X 1Ag transition are
0.399 and 0.694 eV, respectively.

FIG. 4. Excitation energies of the valence states of cyclobutadiene relative
to the groundX 1Ag state at the CCSD~T!/cc-pVTZ optimized geometries.

TABLE II. Total energies~hartree! of the groundX 1Ag state of cyclobuta-
diene, and vertical excitation energies~eV! at theX 1Ag equilibrium geom-
etry. D2h symmetry, optimized at the CCSD~T!/cc-pVTZ level of theory.

Etot(X
1Ag)

a 1 3B1g 2 1Ag 1 1B1g

EOM-CCSDb 2154.393 46 1.353 n/a 3.326
EOM-CCSDc 2154.416 93 1.351 n/a 3.319

UHF-EOM-SF-CCSDb 2154.401 52 1.661 4.376 3.426
UHF-EOM-SF-CCSDc 2154.424 95 1.659 4.369 3.420
ROHF-EOM-SF-CCSDc 2154.442 54 1.661 4.363 3.417

aFor EOM-CCSD, the total CCSD energy of theX 1Ag reference; for EOM-
SF-CCSD, the total energy of the EOM 11Ag target state. The 13B1g

reference is employed in the SF calculations.
bMixed basis: cc-pVTZ on carbons and cc-pVDZ on hydrogens.
cFull cc-pVTZ basis.

TABLE III. Total energies~hartree! of the groundX 1B1g state of cyclob-
utadiene, and vertical excitation energies~eV! at the 13A2g equilibrium
geometry.D4h symmetry, optimized at the CCSD~T!/cc-pVTZ level of
theory.

Etot(X
1B1g)

a 1 3A2g 2 1A1g 1 1B2g

EOM-CCSDb 2154.357 12 20.592 n/a 1.539
EOM-CCSDc 2154.380 58 20.590 n/a 1.534
UHF-EOM-SF-CCSDb 2154.389 52 0.369 1.826 2.145
UHF-EOM-SF-CCSDc 2154.413 01 0.369 1.824 2.143
ROHF-EOM-SF-CCSDc 2154.413 42 0.369 1.814 2.137

aFor EOM-CCSD, the total CCSD energy of theX 1B1g reference; for EOM-
SF-CCSD, the total energy of the EOMX 1B1g target state. The 13A2g

reference is employed in the SF calculations.
bMixed basis: cc-pVTZ on carbons and cc-pVDZ on hydrogens.
cFull cc-pVTZ basis.
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We found that the EOM-SF-CCSD excitation and total
energies are rather insensitive to the reference employed; for
example, the difference between the UHF and ROHF excita-
tion energies does not exceed 0.01 eV. This is consistent with
the recent study of Searset al.45 On a more technical side,
Tables II and III demonstrate that the excitation energies cal-
culated with the full cc-pVTZ basis and a smaller basis com-
posed of the cc-pVTZ basis on carbons and the cc-pVDZ
basis on hydrogen are very close.

The experimental data on the electronic spectrum of
C4H4 are scarce and contradictory.89–93 The most recent
measurement of the UV absorption spectrum of argon-matrix
isolated cyclobutadiene was reported by Michl’s group.93 It
shows only one intense peak around 200 nm~6.2 eV!; how-
ever, a weak absorption tail extends up to about 500 nm~2.5
eV!. Note that the only spin- and symmetry-allowed transi-
tion from Table II is1B1g←X 1Ag at 3.42 eV.

The electronic spectrum of cyclobutadiene has been
serving as a sharpening stone for electronic structure
methodology.63–67,69,71,73,75,78,82,94–99For a comprehensive
review of earlier results, see Ref. 89. Table IV summarizes
some of the theoretical results for the vertical excitation en-
ergies of cyclobutadiene at the singlet and triplet equilibrium
geometries. The best agreement between the EOM-SF-
CCSD valence transitions is with the semiempirical Parr–
Pariser–Pople~PPP! model with the full CI in the p
system,89 as well as with the effective valence shell Hamil-

tonian (Hn) method.98 Note that the geometries employed in
these calculations are very close to the geometries used in
this work. While the PPP-CI method is not an accurate struc-
tural tool because onlyp electrons are considered, it may
still yield reasonably accurate excitation energies withinp
systems due to the high degree of parametrization.

There is an interesting relation between the Hn method
and EOM-SF-CCSD. In both cases, the effective Hamil-
tonian which includes dynamical correlation effects is diago-
nalized in a smaller configurational subspace. While in
EOM-SF-CCSD the reference and excited state spaces are
separated by their spin-projection values (Ms51 for the trip-
let reference, andMs50 for target states!, in the Hn ap-
proach total configuration space is divided to valence sub-
space and its orthogonal compliment.98 This allows us to
separate the degenerate configurations~p system! from the
rest of the configurational space~s system! and treat them in
a reasonably balanced fashion without sacrificingp–s and
s–s dynamical correlation. This explains the fairly good
agreement between the Hn and EOM-SF-CCSD results.

The importance of thep–s correlation is confirmed by
the comparison of SCF-CI results for the open-shell singlet
1B1g state obtained by Buenker and Peyerimhoff,65 and by
Fratevet al.73 ~see Table IV!. Buenker and Peyerimhoff in-
cluded in their CI all configurations derived from distributing
the four p electrons among the eightp spin-orbitals. The
resulting energy of the1B1g←X 1Ag transition~5.984 eV! is
2.56 eV higher than the corresponding EOM-SF-CCSD
value. Moreover, contrary to the EOM-SF-CCSD results, this
state is placed above the 21Ag state. The CI space employed
by Fratev et al. included only single excitations from
HOMO, but these excitations were not limited to thep sys-
tem. Inclusion of the excitations tos-antibonding orbitals
results in much better agreement between SCF-CI and EOM-
SF-CCSD~3.46 and 3.42 eV, respectively!.

To conclude, a large basis set and a high level of corre-
lation is required for a proper description of cyclobutadiene.
High degeneracy in thep system, along with strong dynami-
cal p–s and s–s correlation, require well-balanced treat-
ment of all electrons. This is easily achieved in the presented
SF variant of EOM-CCSD. Despite the fact that degeneracy
is lifted by rectangular distortions, the groundX 1Ag state is
still considerably multiconfigurational. This causes tradi-
tional single-configurational approaches to fail for transition
energies, although it has only a minor effect on the geometry
of the ground state.

IV. CONCLUSIONS

The EOM formalism is a versatile tool for treating a
wide range of chemically important situations. When com-
bined with the single-reference coupled-cluster approach, it
yields a hierarchy of size-consistent models of increasing
accuracy. The EOM-CC models for excitation energies
~EOM-EE! and ionized states~EOM-EA/IP! have been ex-
tensively used over the last decade, and it is now well rec-
ognized that EOM-CC is capable of describing certain mul-
ticonfigurational wave functions within a single-reference
framework~e.g., open-shell type excited states, doublet radi-

TABLE IV. Vertical excitation energies~eV! at rectangular singlet~RS! and
square triplet~ST! geometries. The geometries are specified in the footnotes.
D4h symmetry labels are shown in parentheses. TheX 1Ag(X 1B1g) is the
lowest state at both geometries.

1 3B1g(3A2g) 2 1Ag(1A1g) 1 1B1g(1B2g)

RS (D2h) geometry
PPP-CI/a 4.351 3.523
SCF-CI/@5s5p/5s#b 1.622 4.767 5.984
SCF-CI/3-21(1)Gc 1.12 4.90 3.46
MCSCF/SVPd 1.274 3.715 4.138
Hn/(4s5p1d/2s1p)e 1.44 4.06 3.39
EOM-CCSD/4-31Gf 1.12 5.36 3.67
EOM-CCSD/cc-pVTZg 1.351 n/a 3.319
EOM-SF-CCSD/cc-pVTZg 1.659 4.369 3.420

ST (D4h) geometry
SCF-CI/@5s5p/5s#h 0.590 2.754 4.914
ROKS~BLYP!/TZ2Pi 20.208 1.040 0.797
EOM-CCSD/cc-pVTZg 20.590 n/a 1.534
EOM-SF-CCSD/cc-pVTZg 0.369 1.824 2.143

aReference 89; at the geometry from Ref. 70: RC–C51.57 Å, RCvC

51.34 Å, RCH51.085 Å, uHCC5135°.
bReference 65; RC–C51.514 Å, RCvC51.338 Å, RCH51.059 Å, uHCC

5130°.
cReference 73; RC–C51.526 Å, RCvC51.316 Å, RCH51.08 Å, uHCC

5135°.
dReference 75; RC–C51.548 Å, RCvC51.375 Å, RCH51.085 Å, uHCC

5135°.
eReference 98; at the geometry from Ref. 77: RC–C51.567 Å, RCvC

51.346 Å, RCH51.084 Å, uHCC5134.9°.
fReference 67; RC–C51.581 Å, RCvC51.323 Å, RCH51.067 Å, uHCC

5134.7°.
gThis work; geometry is shown in Fig. 3.
hReference 65; RCC51.424 Å, RCH51.059 Å.
iReference 99; unspecified triplet geometry.
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cals, etc.!.16,17 This work presents an extension of the
EOM-CC methods to situations with more extensive degen-
eracy, i.e., bond breaking, and di- and triradicals. In our ap-
proach, target multiconfigurational wave functions are de-
scribed as spin-flipping excitations from the high spin
reference. The relations between the EOM-SF, EOM-EE, and
EOM-IP/EA models are discussed. The capabilities and ad-
vantages of the new approach are demonstrated by its appli-
cation to cyclobutadiene.
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APPENDIX: PROGRAMMABLE EOM-CCSD
EQUATIONS

We solve Eqs.~33! and ~34! by using a generalized
Davidson’s iterative diagonalization procedure,100–102which
requires calculation of products of the transformed Hamil-
tonian matrix with trial vectors

s i
a5~@H̄SS2ECC#R1! i

a1~H̄SDR2! i
a ~A1!

s i j
ab5~H̄DSR1! i j

ab1~@H̄DD2ECC#R2! i j
ab

s̃ i
a5~ L̄1@HSS2ECC# ! i

a1~L2H̄DS! i
a ~A2!

s̃ i j
ab5~L1H̄SD! i j

ab1~L2@H̄DD2ECC# ! i j
ab ~A3!

Programmable expressions for rights and left s̃ are

~@H̄SS2ECC#R1! i
a5^F i

auH̄2ECCuR1F0&

5(
b

r i
bFab2(

j
r j

aFi j 2(
jb

r j
bI ib ja

1 ,

~A4!

~H̄SDR2! i
a5^F i

auH̄uR2F0&

5(
jb

r i j
abF jb2 1

2 S (
jkb

r jk
abI ib jk

6 1(
jbc

r i j
bcI jabc

7 D ,

~A5!

~H̄DSR1! i j
ab5^F i j

abuH̄uR1F0&

5(
k

~r k
aI i jkb

2 2r k
bI i jka

2 !1(
c

~r i
cI jcab

3 2r j
cI icab

3 !

1(
l

~Til
1 t j l

ab2Tjl
1 t i l

ab!1(
d

~Tad
2 t i j

bd2Tbd
2 t i j

ad!,

~A6!

TABLE V. Intermediates used in Eqs.~A4!–~A11!. To avoid storage of large 6-index quantities, intermediates which have to be updated at each iteration of
diagonalization procedure were introduced.
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75H. Årgen, N. Correia, A. Flores-Riveros, and H.J.A.A. Jensen, Int. J.

Quantum Chem., Quantum Chem. Symp.19, 237 ~1986!.
76S.S. Shaik, P.C. Hiberty, J.-M. Lefour, and G. Ohanessian, J. Am. Chem.

Soc.109, 363 ~1987!.
77P. Carsky, R.J. Bartlett, G. Fitzgerald, J. Noga, and V. Spirko, J. Chem.

Phys.89, 3008~1988!.
78K. Nakamura, Y. Osamura, and S. Iwata, Chem. Phys.136, 67 ~1989!.
79P.C. Hiberty, Top. Curr. Chem.153, 27 ~1990!.
80P.C. Hiberty, G. Ohanessian, S.S. Shaik, and J.P. Flament, Pure Appl.

Chem.65, 35 ~1993!.
81Y. Mo, W. Wu, and Q. Zhang, J. Phys. Chem.98, 10048~1994!.
82A. Balkova and R.J. Bartlett, J. Chem. Phys.101, 8972~1994!.
83M.N. Glukhovtsev, S. Laiter, and A. Pross, J. Phys. Chem.99, 6828

~1995!.
84R.L. Redington, J. Chem. Phys.109, 10781~1998!.
85J.C. Sancho-Garcia, J. Pittner, and P. Carsky, J. Chem. Phys.112, 8785

~2000!.
86J.C. Sancho-Garcia, A.J. Perez-Jimenez, and F. Moscardo, Chem. Phys.

Lett. 317, 245 ~2000!.
87T. Helgaker, P. Jørgensen, and J. Olsen,Molecular Electronic Structure

Theory~Wiley, New York, 2000!.
88H. Larsen, K. Hald, J. Olsen, and P. Jørgensen, J. Chem. Phys.115, 3015

~2001!.
89T. Bally and S. Masamune, Tetrahedron36, 343 ~1980!.
90S. Masamune, M. Suda, H. Ona, and L.M. Leichter, J. Chem. Soc.,

Chem. Commun., 1268~1972!.
91Y. Lin and A. Krantz, JCS Chem. Comm.1111 ~1972!.
92S. Masamune, Y. Sugihara, K. Morio, and J.E. Bertie, Can. J. Chem.54,

2679 ~1976!.
93B.R. Arnold and J. Michl, J. Phys. Chem.97, 13348~1993!.
94D.P. Craig, Proc. R. Soc. London, Ser. A202, 498 ~1950!.
95L.C. Snyder, J. Phys. Chem.66, 2299~1962!.
96W.T. Borden and E.R. Davidson, J. Am. Chem. Soc.99, 4587~1977!.
97A.F. Voter and W.A. Goddard, III, J. Am. Chem. Soc.108, 2830~1986!.
98C.H. Martin, R.L. Graham, and K.F. Freed, J. Chem. Phys.99, 7833

~1993!.
99M. Filatov and S. Shaik, J. Chem. Phys.110, 116 ~1999!.

100E.R. Davidson, J. Comput. Phys.17, 87 ~1975!.
101K. Hirao and H. Nakatsuji, J. Comput. Phys.45, 246 ~1982!.
102S. Rettrup, J. Comput. Phys.45, 100 ~1982!.

185J. Chem. Phys., Vol. 120, No. 1, 1 January 2004 Spin-flip model for cyclobutadiene


