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We have recently suggested the CC(P;Q) methodology that can correct energies obtained in the
active-space coupled-cluster (CC) or equation-of-motion (EOM) CC calculations, which recover
much of the nondynamical and some dynamical electron correlation effects, for the higher-order,
mostly dynamical, correlations missing in the active-space CC/EOMCC considerations. It is shown
that one can greatly improve the description of biradical transition states, both in terms of the
resulting energy barriers and total energies, by combining the CC approach with singles, dou-
bles, and active-space triples, termed CCSDt, with the CC(P;Q)-style correction due to miss-
ing triple excitations defining the CC(t;3) approximation. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3700802]

I. INTRODUCTION

The success of coupled-cluster (CC) theory1 is often as-
sociated with the popularity of the noniterative correction due
to triply excited clusters2 added to the CC singles and doubles
(CCSD) energy,3 abbreviated as CCSD(T). This stems from
the fact that CCSD(T), which is a modification of the ear-
lier CCSD[T] approach,4 provides a highly accurate and size-
extensive description of dynamical electron correlation ef-
fects characterizing nondegenerate ground states of molecules
near the equilibrium geometries, with an ease characteriz-
ing all single-reference (SR) calculations and with relatively
low computer costs defined by the iterative n2

on
4
u and nonit-

erative n3
on

4
u CPU steps (no and nu are the numbers of oc-

cupied and unoccupied orbitals, respectively). Unfortunately,
the standard SRCC methods, such as CCSD and CCSD(T),
and their various excited state equation-of-motion (EOM;
Ref. 5) or response6 extenions have difficulties with captur-
ing nondynamical correlation effects characterizing chemical
reaction profiles involving bond breaking, biradicals, and ex-
cited states having significant two- or other many-electron
contributions.

There are two most widely explored ways of extending
the CC approach to situations involving stronger nondy-
namical correlation effects. The first one is to turn to the
multi-reference (MR) CC methods, including, for example,
the state-universal (SU; Refs. 7–26) and state-specific (SS;
Refs. 27–34) approaches based on the Jeziorski-Monkhorst
ansatz7 (cf. Refs. 35–47 for representative most recent
advances). Some other examples of the SSMRCC methods
include, to some extent, the active-space CC/EOMCC ap-
proaches exploited in this work48–58 (see Ref. 59 for a recent
review), the related complete active space CC (CASCC)
schemes,60–62 the block-correlated CC (BCCC; Refs. 63 and

a)Author to whom correspondence would be addressed. Electronic mail:
piecuch@chemistry.msu.edu.

64) theories, the internally contracted MRCC approaches
(see, e.g., Refs. 65–70), and methods combining the CC and
non-CC (e.g., configuration interaction (CI)) concepts,71–81

with the reduced MRCC (RMRCC; Refs. 79–81) and tailored
CC (TCC) schemes76–78 being particularly promising. If the
main goal is an examination of open-shell systems that differ
by one or more electrons from the corresponding closed-shell
species, one may also benefit from the valence-universal
MRCC theories, pioneered in the mid-1970s (Refs. 82–88;
see Refs. 89–92 for selected recent advances) or from the
related electron-attached (EA; Refs. 57, 58, and 93–95) and
ionized (IP; Refs. 57, 58, and 95–99) EOMCC theories, and
their multiply attached/ionized extensions.100–102 A variety
of open-shell variants103–105 of the symmetry-adapted-cluster
CI methodology,106, 107 similar to EA/IP EOMCC and useful
in some MR applications, such as electronic states of rad-
icals, as well as the canonical transformation theory,108–110

similar to the internally contracted SSMRCC, and the related
anti-Hermitian contracted Schrödinger equation (ACSE)
approach111, 112 are worth mentioning too.

The second way of handling stronger nondynamical cor-
relation effects within the CC framework, which is the subject
of this study, is to recover these effects dynamically through
higher-order components of the cluster operator T, such as
the tri- and tetra-excited clusters, T3 and T4, respectively, in
the ground-state SRCC wave function ansatz |�0〉 = eT|�〉
and, in the case of excited states, through the inclusion of the
analogous higher-order components of the linear excitation
operator Rμ (e.g., Rμ, 3 and Rμ, 4) in the EOMCC ansatz |�μ〉
= RμeT|�〉 (μ = 0 designates the ground state, μ > 0 labels
excited states, and |�〉 is the reference determinant). An ad-
vantage of the SRCC-like description is the fact that methods
of this type are characterized by an ease of application and im-
plementation that cannot be matched by the MRCC theories.
The main challenge of the SRCC methods with higher-than-
double excitations is the fact that a full incorporation of T3, T4,
Rμ, 3, Rμ, 4, etc. components in the CC/EOMCC formalism,
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although possible,51, 55, 56, 113–122 is computationally too ex-
pensive for the majority of applications, whereas the conven-
tional ways of approximating the resulting CC singles, dou-
bles, and triples (CCSDT),113, 114 CC singles, doubles, triples,
and quadruples (CCSDTQ),51, 115, 116 EOMCCSDT,55, 56, 120

EOMCCSDTQ,121, 122 etc. methods, as in the CCSD(T),
CCSDT-1,123, 124 and other iterative or noniterative
CC/EOMCC schemes that rely on many-body perturbation
theory (MBPT) to estimate the effects of higher-than-double
excitations, fail to describe electronic quasi-degeneracies.

An effort to come up with approximate CC and EOMCC
approaches that can handle stronger nondynamical corre-
lation effects within the SR framework, without running
into the prohibitive costs of the full CCSDT/EOMCCSDT,
CCSDTQ/EOMCCSDTQ, and similar calculations, has be-
come a significant part of the CC/EOMCC develop-
ment work in recent two decades. Among methods that
have emerged from this effort are the new genera-
tions of noniterative corrections to the energies result-
ing from the lower-order SRCC/EOMCC calculations, in-
cluding, for example, CCSD(T)�,125, 126 �-CCSD(T),127, 128

�-CCSD(TQf),129 CCSD(2)T,130 and CCSD(2),130–134 and
their EOMCC-based, excited-state extensions,134, 135 the com-
pletely renormalized (CR) CC and EOMCC schemes, and
other approaches resulting from the method of moments
of CC (MMCC) equations,136–152 and the spin-flip (SF)
CC/EOMCC techniques.153–156 The aforementioned active-
space CC/EOMCC theories,48–59 which are often abbreviated,
following Refs. 52 and 54, as the “little t” (CCSDt, EOM-
CCSDt), “little tq” (CCSDtq, EOMCCSDtq), etc. approaches
and which rely on selecting higher-than-two-body compo-
nents of T and Rμ relevant to the quasi-degeneracy problem
of interest should be listed here, too. Although the active-
space CC/EOMCC methods are not the black boxes of the
CCSD(T), �-CCSD(T), CCSD(2), CR-CC/EOMCC, or SF-
CC/EOMCC type, since one has to choose active orbitals to
define the T and Rμ operators, they use a single Slater deter-
minant as a reference defining the Fermi vacuum and, as such,
fall into the category of SR methods that are easier to use than
typical MRCC methods relying on multi-determinantal refer-
ence states or multiple Fermi vacua. The MMCC-based CR-
CC and active-space CC approaches are particularly relevant
to this work.

The CR-CC/EOMCC and active-space CC/EOMCC
methods have their respective advantages, but they also
have weaknesses that require further development work.
For example, none of the most practical CR-CC or
CR-EOMCC approaches, including CR-CC(2,3),145–148

CR-EOMCC(2,3),147, 149, 157 and CR-EOMCCSD(T),141, 158

which correct the CCSD/EOMCCSD energies for the effects
of triple excitations, are applicable to all MR situations.
This in itself is not the biggest problem, since, at the cost
of running more expensive calculations, one can utilize the
CR-CC/EOMCC schemes that account for higher-than-triple
excitations,136–139, 150–152, 159, 160 use the MMCC methods
exploiting the extended CC (Refs. 161–163) rather than the
normal CC theory,143, 151, 164 or turn to the externally cor-
rected MMCC approaches that use non-CC wave functions
to approximate the bra states that enter the MMCC energy

corrections.136, 140, 144, 147, 150, 151, 165–167 There is, however, a
more fundamental problem, which is addressed in this study,
namely, the CR-CC/EOMCC and, in general, all noniterative
CC/EOMCC methods always rely on a specific a priori-
defined CC (e.g., CCSD) or EOMCC (e.g., EOMCCSD)
calculation, so there is no natural mechanism to adjust the
lower-order cluster components, such as the singly and
doubly excited clusters, T1 and T2, respectively, that define
the SRCC ground-state energy formula, or their excited-state
Rμ, 1 and Rμ, 2 analogs, in the presence of the larger Tn and
Rμ, n components with n ≥ 3 that characterize stronger non-
dynamical correlations. As shown in this work, this problem
may sometimes become quite disturbing, particularly when
one examines certain classes of chemical reaction profiles
involving biradical transition states. The active-space CC
and EOMCC approaches are iterative and, as such, capable
of adjusting the lower-order T1 and T2 components, or their
excited-state Rμ, 1 and Rμ, 2 counterparts, to the effects due to
higher-than-double excitations, while allowing one to select
higher-than-two-body excitations, relevant to the quasi-
degeneracy problem of interest, via a suitable choice of active
orbitals to substantially reduce computer costs of the parent
CC/EOMCC schemes, but they are not as efficient in captur-
ing dynamical correlations as the CCSD(T), CR-CC(2,3), and
similar approaches, particularly near the equilibrium geome-
tries, where the active orbitals used in the CCSDt, CCSDtq,
and similar calculations are often no longer meaningful.

In response to this unsatisfactory situation and encour-
aged by the recent RMRCCSD(T) (Refs. 80 and 81) and
CCSD(T)-h (Refs. 168–171) work, in which one incorporates
the dynamical correlation effects due to triple excitations
missing in RMRCCSD and CCSDt using perturbative
CCSD(T)-style expressions, we have recently suggested,
as part of the broader review,152 the generalization of the
existing biorthogonal MMCC theory,145–147, 149 which enables
one to correct the CC/EOMCC energies obtained with
the arbitrary, i.e., conventional (e.g., CCSD/EOMCCSD
or CCSDT/EOMCCSDT) as well as unconventional (e.g.,
CCSDt/EOMCCSDt or CCSDtq/EOMCCSDtq) truncations
in T and Rμ for essentially any subset of the missing many-
electron correlation effects of interest. The resulting moment
expansions, defining the Flexible MMCC (Flex-MMCC) and
CC(P;Q) formalisms discussed in this work, which can be
regarded as a companion study to the review presented in
Ref. 152, enable one to contemplate a variety of new schemes.
Among them is the CC(t;3), CC(t,q;3), CC(t,q;3,4), CC(q;4),
etc. hierarchy, in which the energies obtained in the active-
space CC/EOMCC calculations, such as CCSDt, CCSDtq,
or CCSDTq, are corrected for the effects of higher-order,
primarily dynamical, correlations, such as triples (3) or triples
and quadruples (3,4) missing in the active-space CC/EOMCC
considerations using the noniterative corrections similar to
those of CR-CC/EOMCC.

The potential advantages of the Flex-MMCC and
CC(P;Q) formalisms have been illustrated in Ref. 152 by the
preliminary CC(t;3) calculations for the bond breaking in the
HF, F2, and F+

2 molecules, as described by the aug-cc-pVTZ
(Refs. 172 and 173; HF) and cc-pVTZ (Ref. 172; F2 and F+

2 )
basis sets and employing the restricted Hartree-Fock (RHF) or
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TABLE I. The maximum unsigned error (MUE) and non-parallelity error (NPE) values (in millihartree) characterizing the results of various CC calculations
for the potential energy curves of the HF, F2, and F+

2 molecules, relative to the corresponding CCSDT energies, reported in Ref. 152.

Molecular systema CCSD CCSD(T) CR-CC(2,3) CCSDt CCSD(T)-h CC(t;3)

MUE
HF(R/Re = 0.75 − 5.0) 36.029 71.762 1.553 3.779 0.350 0.187
F2(R/Re = 0.75 − 5.0) 69.103 47.179 4.254 2.290 0.524 0.162
F+

2 (R/Re = 0.75 − 3.0) 89.240 22.032 14.305 1.840 0.727 0.254

NPE
HF(R/Re = 0.75 − 5.0) 29.733 71.770 1.433 1.385 0.330 0.202
F2(R/Re = 0.75 − 5.0) 57.742 47.200 4.618 0.732 0.410 0.110
F+

2 (R/Re = 0.75 − 3.0) 77.510 22.132 15.262 0.717 0.604 0.081

aIn each case, R/Re designates the range of internuclear separations, in multiples of the equilibrium distance, which was used in the MUE and NPE evaluation. The active spaces used
in the CCSDt, CCSD(T)-h, and CC(t;3) calculations consisted of the No = 3 highest-energy occupied and Nu = 10 lowest-energy unoccupied orbitals that correlate with the 1s, 2s,
and 2p shells of the H atom and the 2p, 3s, 3p, and 4s shells of the F atom in the HF case, and the No = 5 highest occupied and Nu = 9 lowest unoccupied orbitals that correlate with
the 2p, 3s, and 3p shells of the F atoms in the case of F2 and F+

2 . See Ref. 152 for further details.

restricted open-shell Hartree-Fock (ROHF) references. These
results are summarized in Table I. As we can see, CC(t;3)
improves the CCSDt and CR-CC(2,3) results, as well as the
results of the CCSD(T) and CCSD(T)-h calculations, provid-
ing potential energy surfaces (PESs) that agree with those
obtained with the parent CCSDT approach to within small
fractions of a millihartree, both in terms of the maximum un-
signed errors (MUEs) and the non-paralellity errors (NPEs)
relative to CCSDT. All of this is accomplished at the small
fraction of the costs of the CCSDT calculations, which are
characterized by the iterative n3

on
5
u steps, since the most ex-

pensive steps of CC(t;3) scale as NoNun
2
on

4
u in the underly-

ing CCSDt calculations and n3
on

4
u in the triples correction part

similar to CR-CC(2,3), where No (<no or �no) and Nu (�nu)
are the numbers of active occupied and active unoccupied or-
bitals, respectively.

The improvements offered by CC(t;3), when compared
to CCSD(T), CR-CC(2,3), CCSDt, and CCSD(T)-h, in
cases involving single bond breaking are significant. One
can also show that CC(t;3) is more robust than CCSDt and
CCSD(T)-h, when we replace the full CCSDt approach
by one of its simplified forms, in which the spin-orbital
indices defining triples are more severely constrained com-
pared to the original CCSDt ansatz of Refs. 49–56 (see
Ref. 152 for the details). There is, however, another category
of important applications, where neither CCSD(T) nor
CR-CC(2,3), nor any other existing noniterative triples CC
approach based on CCSD (�-CCSD(T), CCSD(2)T, etc.)
provide the desired improvements. This category includes
certain classes of biradical transition states, such as, for
example, the transition state characterizing the challenging
and frequently studied22, 35, 37, 64, 68, 78, 174–185 automerization
of cyclobutadiene or the equally challenging transition state
defining the disrotatory pathway for the isomerization of
bicyclo[1.1.0]butane (abbreviated as bicbut) to trans-buta-
1,3-diene (abbreviated as t-but), which is one of the two
lowest-energy pathways that we186, 187 and subsequently
others188, 189 examined in recent years in the context of the
electronic structure development work (see Refs. 190–198
for the earlier experimental and theoretical work relevant
to the bicbut→t-but isomerization). The purpose of the
present study is to show that the CC(t;3) approach is ro-

bust enough to provide substantial improvements in the
CCSD(T), �-CCSD(T), CCSD(2)T, CR-CC(2,3), CCSDt,
and CCSD(T)-h results, for total as well as relative energies,
in cases involving biradical transition states, represented here
by the cyclobutadiene and bicbut→t-but isomerizations.

We have chosen the above molecular examples, since
they have been examined before with many SRCC and
MRCC methods, since they are small enough to obtain the
accurate full CCSDT information, and since they clearly show
the types of errors the existing noniterative CCSD(T)-type or
CR-CC-type methods based on the conventional CCSD may
produce in biradical situations. Indeed, as demonstrated in
the present work and as emphasized in Ref. 78, the standard
CCSD(T) approach as well as the CR-CC and other ap-
proaches with a noniterative treatment of triple excitations on
top of CCSD, including CR-CC(2,3), CR-CCSD(T),136, 137 �-
CCSD(T), and CCSD(2)T, overestimate the small barrier for
the automerization of cyclobutadiene, which should not ex-
ceed 10 kcal/mol,174 by more than 5 and, in some calculations,
by almost 10 kcal/mol. This is a situation, where CCSD(T)
does not yet display the all-too-familiar, excessively negative,
triples correction, which is often seen for biradicals and bond
breaking, producing the transition-state energy considerably
above that of full CCSDT, but none of the new generations
of triples corrections, including CR-CC(2,3), CR-CCSD(T),
�-CCSD(T), and CCSD(2)T, improve the CCSD(T) results.
In the case of the strongly biradical disrotatory pathway
for the bicbut→t-but isomerization, where CCSD(T) fails,
placing the corresponding transition state about 20 kcal/mol
below the lowest-energy conrotatory transition state, and
where CR-CC(2,3) restores the correct pathway ordering
while providing an excellent description of the conrotatory
path,186, 187 for which the experimental activation energy is
well established,190 one observes a rather significant error in
the CR-CC(2,3) description of the disrotatory transition state.
As shown in this work, the CCSD(2)T approach, although
similar to CR-CC(2,3),145–148 does not help, worsening
the CR-CC(2,3) results for both pathways. The disrotatory
activation barrier resulting from the CR-CC(2,3) calcula-
tions with the cc-pVTZ and cc-pVQZ basis sets, reported
in Refs. 186 and 187, and its analog obtained using the
complete basis set limit (CBS) extrapolation (there is
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almost no difference between the CR-CC(2,3)/cc-pVTZ,
CR-CC(2,3)/cc-pVQZ, and CR-CC(2,3)/CBS results187)
is about 7 kcal/mol higher than the result of the care-
fully executed diffusion quantum Monte Carlo (DMC;
Refs. 199–201) calculations,189 and about 10 kcal/mol
higher than the ACSE,188 MRMBPT,186, 188, 198 and MRCI
(Ref. 198) results. Although there is no experimental in-
formation about the disrotatory pathway and it is hard to
know if other calculations, particularly MRMBPT, MRCI,
or ACSE, provide the correct values, we know from the full
CCSDT/cc-pVDZ calculations performed in this study that
the CR-CC(2,3) result for the disrotatory transition state
for the bicbut→t-but isomerization is too high by about
5 kcal/mol. Thus, although we cannot entirely agree with
the statement in Ref. 188 that “the CR-CC method may be
missing some multireference correlation that would lower
the energy of the biradical disrotatory transition state by
about 15 millihartree or 9.5 kcal/mol,” since, based on the
accurate DMC calculations reported in Ref. 189 and our own
CCSDT data, the error is in the 5–7 kcal/mol range, we agree
that, in analogy to the automerization of cyclobutadiene,
CR-CC(2,3) does not capture all of the relevant electron cor-
relations effects, producing errors in the activation energies
characterizing some biradical transition states on the order
of a few kcal/mol. In all of the above and similar cases, the
main problem lies in substantial errors in the description
of the transition-state energies, which can be, as shown in
this study, on the order of 10 millihartree at the CCSD(T),
CCSD(2)T, CR-CC(2,3), and similar levels, when compared
to a reliable full CCSDT treatment. This should be contrasted
by the behavior of the active-space CCSDt approach, which,
as shown in this work, provides excellent barrier heights
in situations involving biradical transition states, consistent
with the small NPE values observed in Table I, but rather
substantial errors in the calculated total energies relative
to full CCSDT at the reactant, product, and transition-state
structures, which can be as large as 10–30 millihartree.

The above discussion illustrates the key points which
motivate our work on the CC(P;Q) formalism and approxi-
mations such as CC(t;3). The noniterative triples CC methods
exploiting the CCSD values of T1 and T2 are not flexible
enough to provide accurate relative energetics in all biradical
situations due to their inability to couple the T1, T2, and
T3 (in general, Tn with n ≥ 3) clusters needed to describe
the strongly quasi-degenerate transition-state regions. The
active-space CC approaches, such as CCSDt, which produce
very good relative energetics in biradical cases, may fail
to provide an accurate description of dynamical correlation
effects associated with the T3 clusters. These kinds of prob-
lems are often used to advocate a MR treatment, including
MRCC or MRCC-like theories that were previously applied
to the automerization of cyclobutadiene,22, 35, 37, 64, 68, 184

but, as shown in this study, none of the above molecular
examples involving biradical transition states require a
genuine MRCC approach. One can obtain excellent results
by using full SRCCSDT and, what is most important from
the practical point of view, the inexpensive CC(t;3) approx-
imation to CCSDT utilizing the Flex-MMCC and CC(P;Q)
formalisms.

II. THEORY AND ALGORITHMIC DETAILS

A. Basic elements of the CC(P;Q) methodology

The CC(P;Q) and the underlying Flex-MMCC for-
malisms are obtained by generalizing the existing biorthog-
onal MMCC theory.145–147, 149 Normally, one uses MMCC to
correct the ground- and excited-state energies resulting from
the conventional CC/EOMCC calculations truncated at mA-
fold excitations, such as CCSD/EOMCCSD where mA = 2
or CCSDT/EOMCCSDT where mA = 3, for the remaining
correlation effects that correspond to the excited determinants
|�a1...an

i1...in
〉 = E

a1...an

i1...in
|�〉 with n > mA. The Flex-MMCC and

CC(P;Q) formalisms go one step further and enable one to
correct the CC/EOMCC energies obtained with the arbitrary,
conventional as well as unconventional, truncations in the
cluster and excitation operators T and Rμ for the missing elec-
tron correlation effects of interest. Those could be the usual
corrections due to all triples in the case of CCSD/EOMCCSD
or all quadruples in the CCSDT/EOMCCSDT case, or the
less conventional corrections due to the subsets of triples
or triples and quadruples neglected in the active-space
CCSDt/EOMCCSDt and CCSDtq/EOMCCSDtq considera-
tions. As usual, i1, i2, . . . or i, j, . . . and a1, a2, . . . or a, b, . . .
are the occupied and unoccupied spin-orbitals, respectively,
in the reference determinant |�〉 and E

a1...an

i1...in
= ∏n

κ=1 aaκ aiκ ,
with ap and ap designating the creation and annihilation op-
erators associated with the spin-orbitals p, are the n-body
particle-hole excitation operators. Because of the utilization
of the active-space CC ideas in this work, we also adopt the
notation in which bold capital-case indices represent active
spin-orbitals (I, J, . . . for the active occupied and A, B, . . .
for the active unoccupied ones) and bold lower-case indices
designate the inactive spin-orbitals outside the active subset
(i, j, . . . for the core or inactive occupied spin-orbitals and a,
b, . . . for the virtual or inactive unoccupied spin-orbitals).

To introduce the Flex-MMCC and CC(P;Q) methodolo-
gies more formally, let H (P ) designate the subspace of the
N-electron Hilbert space H of interest, referred to as the P-
space and spanned by the excited determinants |�K〉 = EK|�〉,
where EK is the elementary excitation operator generating
|�K〉 from the reference |�〉, and let

T (P ) =
∑

|�K 〉∈H (P )

tKEK (1)

and

R(P )
μ = R

(P )
μ,0 + R(P )

μ,open = rμ,0 1 +
∑

|�K 〉∈H (P )

rμ,KEK (2)

be the truncated forms of T and Rμ in which tK and rμ, K are the
cluster and excitation amplitudes obtained in the CC/EOMCC
calculations in H (P ), which we subsequently want to cor-
rect for the correlation effects involving the excited deter-
minants |�K〉 from the Q-space H (Q) ⊆ (H (0) ⊕ H (P ))⊥

(H (0) is a one-dimensional subspace spanned by |�〉, which
is accounted for in the P-space CC/EOMCC calculations,
1 is a unit operator, and to incorporate the ground-state
(μ = 0) and excited-state (μ > 0) cases within a single set
of formulas, we define R

(P )
μ=0 = 1). For example, H (P ) could

be spanned by all |�a1...an

i1...in
〉 determinants with n ≤ mA and
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H (Q) by those with mA < n ≤ mB, where mB ≤ N. In this
case, the Flex-MMCC formalism would reduce to the exist-
ing biorthogonal MMCC schemes, which include the CR-
CC(mA, mB) (e.g., CR-CC(2,3)) and CR-EOMCC(mA, mB)
(e.g., CR-EOMCC(2,3)) approximations that correct the re-
sults of the CC/EOMCC calculations truncated at the mA-fold
excitations for the effects of n-fold excitations with mA < n
≤ mB. But we could also consider unconventional choices of
the P- and Q-spaces. For example, after performing the active-
space CCSDt/EOMCCSDt calculations, in which

T ≈ T (CCSDt) = T1 + T2 + t3 (3)

and

Rμ ≈ R(CCSDt)
μ = rμ,0 1 + Rμ,1 + Rμ,2 + rμ,3, (4)

where T1 and T2, and their excited-state Rμ, 1 and Rμ, 2 analogs
are the normal singly and doubly excited components of T and
Rμ, defined using all correlated spin-orbitals, and

t3 =
∑

I>j>k,a>b>C

t
Ijk

abC EabC
Ijk (5)

and

rμ,3 =
∑

I>j>k,a>b>C

r
Ijk

μ,abC EabC
Ijk (6)

are the “little t” components of T and Rμ, defined with the
help of active orbitals, we may want to correct the resulting
E(CCSDt)

μ energies for the triple-excitation effects missing in
CCSDt/EOMCCSDt. In this case, the H (P ) subspace used in
the Flex-MMCC and CC(P;Q) considerations is spanned by
the |�a

i 〉, |�ab
ij 〉, and |�abC

Ijk 〉 determinants and the correspond-

ing subspace H (Q) is spanned by the |�abc
ijk 〉, |�abC

ijk 〉, |�aBC
ijk 〉,

|�ABC
ijk 〉, |�abc

Ijk 〉, |�abc
IJk〉, and |�abc

IJK〉 determinants that have no
active indices among either i, j, and k or a, b, and c. This is
what we do in the CC(t;3) calculations reported in this work.
We are also assuming that the P-space CC calculations are
performed by solving the non-linear system

〈
�K

∣∣H̄ (P )
open

∣∣�
〉 = 0, |�K〉 ∈ H (P ), (7)

to obtain the cluster amplitudes tK defining T(P) and the corre-
sponding ground-state energy

E
(P )
0 = 〈�|H̄ (P )|�〉, (8)

where

H̄ (P ) = e−T (P )
HeT (P ) = (HeT (P )

)C (9)

is the relevant similarity-transformed Hamiltonian (with C
representing the connected operator product) and H̄ (A)

open

= H̄ (A) − E
(A)
0 1 is the open part of H̄ (A) defined by diagrams

having external Fermion lines. If we are interested in excited
states (the amplitudes rμ, K defining R(P )

μ and the correspond-
ing energies E(P )

μ ), we diagonalize H̄ (P ) in H (P ) by solving

〈�K |(H̄ (P )
open R(P )

μ,open

)
C
|�〉 = ω(P )

μ rμ,K, |�K〉 ∈ H (P ),

(10)

where ω(P )
μ = E(P )

μ − E
(P )
0 . Because of the non-Hermiticity of

H̄ (P ), if we further want to calculate properties other than en-
ergy, i.e., in addition to the ket CC/EOMCC states

∣∣�(P )
μ

〉 = R(P )
μ

∣∣�(P )
0

〉 = R(P )
μ eT (P ) |�〉, (11)

we want to know the corresponding bra states
〈
�̃(P)

μ

∣∣ = 〈�|L(P )
μ e−T (P )

, (12)

where

L(P )
μ = L

(P )
μ,0 + L(P )

μ,open ≡ δμ,01 +
∑

|�K 〉∈H (P )

lμ,K (EK )†,

(13)
we must solve the P-space variant of the left CC/EOMCC
eigenvalue problem,

δμ,0 〈�|H̄ (P )
open|�K〉 + 〈�|L(P )

μ,openH̄
(P )
open|�K〉 = ω(P )

μ lμ,K,

|�K〉 ∈ H (P ). (14)

According to the Flex-MMCC formalism, once the P-
space CC/EOMCC equations are solved and the correspond-
ing energies E(P )

μ determined, we correct energies E(P )
μ for

the correlation effects due to the Q-space excitations using
the following formula:

E(P+Q)
μ ≡ E(P )

μ + δμ(P ; Q), (15)

where

δμ(P ; Q) =
∑

|�K 〉∈H (Q)

rank(|�K 〉)≤min(N (P )
μ ,�(Q))

	μ,K (P ) Mμ,K (P ),

(16)
with

Mμ,K (P ) = 〈�K |(H̄ (P )R(P )
μ )|�〉 (17)

representing the generalized moments of the CC (μ = 0;
R

(P )
μ=0 = 1) or EOMCC (μ > 0) equations corresponding to

the calculations with T = T(P) and Rμ = R(P )
μ , associated

with the projections of these equations on the |�K〉 deter-
minants from the Q-space H (Q). The N (P )

μ symbol that en-
ters Eq. (16) is the highest many-body rank of the excited
determinant |�K〉 relative to the |�〉 vacuum, designated by
rank(|�K〉), for which the generalized moment Mμ,K (P ) of
the P-space CC/EOMCC equations calculated using Eq. (17)
is still non-zero. The �(Q) symbol in Eq. (16) is the highest
many-body rank of the excited determinant(s) |�K〉 included
in H (Q). For example, if we want to use Eq. (17) to cor-
rect the CCSDt/EOMCCSDt energies for triples missing in
CCSDt and EOMCCSDt, N (P )

μ = 10, but �(Q) = 3, so that, as
expected, min(N (P )

μ ,�(Q)) = 3.
In analogy to other MMCC expansions formulated to

date,136, 137, 140, 142, 145, 146, 150–152 Eq. (15) can be derived by
considering the asymmetric expression for the full CI ener-
gies Eμ,

Eμ = 〈�μ|HR(P )
μ eT (P ) |�〉/〈�μ|R(P )

μ eT (P ) |�〉, (18)

in which we replace the exact bra states 〈�μ| by

〈�μ| = 〈�|Lμ e−T (P )
, (19)
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where

Lμ = δμ,0 1 + L (P )
μ + δL (P )

μ , (20)

with

L (P )
μ =

∑

|�K 〉∈H (P )

	μ,K (EK )† (21)

and

δL (P )
μ =

∑

|�K 〉∈(H (0)⊕H (P ))⊥
	μ,K (EK )†. (22)

The final form of Eqs. (15) and (16), with moments Mμ,K (P )
defined by Eq. (17), emerges when, after inserting the resolu-
tion of identity in the N-electron Hilbert space H , expressed
as |�〉〈�| + P + P⊥ = 1, where P and P⊥ are the projec-
tion operators on H (P ) and (H (0) ⊕ H (P ))⊥, in the numer-
ator of Eq. (18), one limits the summation over the excited
determinants |�K〉 ∈ (H (0) ⊕ H (P ))⊥ to those that belong
to H (Q), while replacing the exact 	μ, K de-excitation ampli-
tudes, which satisfy the left eigenvalue problem

〈�|Lμ H̄ (P) = Eμ 〈�|Lμ, (23)

in the entire N-electron Hilbert space H , by their approxi-
mate 	μ, K(P) values. One obtains the latter values by restrict-
ing the eigenvalue problem represented by Eq. (23) to the sub-
space of interest, i.e., H (0) ⊕ H (P ) ⊕ H (Q), based on the
information obtained in the preceding P-space CC/EOMCC
calculations. Different ways of handling the 	μ, K(P) ampli-
tudes entering the correction δμ(P;Q), Eq. (16), lead to differ-
ent Flex-MMCC approximations. The CC(P;Q) hierarchy is
one such procedure.

In the CC(P;Q) approaches, we approximate the de-
excitation operator Lμ by splitting it into the known, a priori
determined, P-space component L(P )

μ , defined by Eq. (13) and
obtained by solving the left CC/EOMCC eigenvalue prob-
lem given by Eq. (14), and the unknown component L (Q)

μ

that provides information about the 	μ, K(P) amplitudes cor-
responding to |�K〉 ∈ H (Q), which enter δμ(P;Q), Eq. (16).
Thus, we write

Lμ ≈ L(P )
μ + L (Q)

μ , (24)

where

L (Q)
μ =

∑

|�K 〉∈H (Q)

	μ,K (P ) (EK )†. (25)

By replacing the exact Lμ operator in Eq. (23) by its approx-
imate form given by Eq. (24), followed by right projecting
the resulting equation on the |�K〉 determinants from H (Q)

while approximating the exact energy Eμ by E(P )
μ , and apply-

ing the Epstein-Nesbet-like partitioning to the linear system
that emerges from these considerations, we obtain

〈�|L(P )
μ H̄ (P )|�K〉+

∑

|�K′ 〉∈H (Q), K ′ �=K

〈�K ′ |H̄ (P )|�K〉 	μ,K ′(P )

= Dμ,K (P ) 	μ,K (P ), |�K〉 ∈ H (Q), (26)

where

Dμ,K (P ) = E(P )
μ − 〈�K |H̄ (P )|�K〉. (27)

We may attempt to solve the above system iteratively or ig-
nore the off-diagonal elements of H̄ (P ) in the Q-space, ob-
taining the noniterative CR-CC-style formula

	μ,K (P ) = 〈�|L(P )
μ H̄ (P )|�K〉/Dμ,K (P ), (28)

limiting the use of Eq. (26) to small blocks of the H̄ (P ) ma-
trix involving the degenerate Q-space determinants |�K〉 if we
want to enforce the strict invariance of the resulting energies
E(P+Q)

μ with respect to rotations among degenerate orbitals.
Here, we focus on the simplified CC(P;Q) approaches in
which the 	μ, K(P) amplitudes are determined using Eq. (28).

Equation (15) for the energies E(P+Q)
μ , in which one de-

termines the δμ(P;Q) corrections using Eq. (16), with mo-
ments Mμ,K (P ) and amplitudes 	μ, K(P) calculated using
Eqs. (17) and (28), defines the CC(P;Q) hierarchy that inter-
ests us in this work. This hierarchy contains all of the previ-
ously formulated CR-CC(mA, mB) and CR-EOMCC(mA, mB)
methods, including CR-CC(2,3) and CR-EOMCC(2,3), as
special cases. Indeed, the CR-CC(2,3) and CR-EOMCC(2,3)
methods are obtained by solving the right and left CCSD
and EOMCCSD equations in the P-space spanned by the
singly and doubly excited determinants, and by defining the
Q-space as the subspace spanned by all triply excited deter-
minants to determine the corrections δμ(P;Q) to the CCSD
and EOMCCSD energies. However, one can go beyond recon-
structing the existing CR-CC(mA, mB) and CR-EOMCC(mA,
mB) approximations from the above formulas and use the
CC(P;Q) methodology to introduce novel, unconventional
schemes, such as the CC(t;3), CC(t,q;3), CC(t,q;3,4), and
CC(q;4) methods suggested in Ref. 152. The key elements
of the CC(t;3) approach are summarized next.

B. The CC(t;3) approach

The CC(t;3) calculations begin by solving the CCSDt
equations, obtained by replacing H̄ (P ) in Eq. (7) by the
similarity-transformed Hamiltonian of CCSDt,

H̄ (CCSDt) = e−T (CCSDt)
HeT (CCSDt) = (HeT (CCSDt)

)C, (29)

and the P-space determinants |�K〉 entering the resulting non-
linear system by the |�a

i 〉, |�ab
ij 〉, and |�abC

Ijk 〉 determinants,
to obtain the T1, T2, and t3 components of T(CCSDt), Eq. (3).
The ground-state CCSDt energy is determined in an usual
way using Eq. (8), in which H̄ (P ) is replaced by H̄ (CCSDt),
Eq. (29). If we are interested in the EOMCCSDt information
about excited states, we diagonalize H̄ (CCSDt) in the P-space
spanned by the |�a

i 〉, |�ab
ij 〉, and |�abC

Ijk 〉 determinants. Once
the ground- and excited-state energies E(CCSDt)

μ of interest are
determined, we calculate the CC(t;3) energies E(CC(t;3))

μ as

E(CC(t;3))
μ = E(CCSDt)

μ + δμ(t; 3), (30)

where, according to the CC(P;Q) equations presented in
Sec. II A, the correction δμ(t;3) due to triples missing in the
CCSDt/EOMCCSDt considerations is calculated using

δμ(t; 3) =
∑

|�abc
ijk 〉∈H (T)�H (t)

	abc
μ,ijk(CCSDt) M

ijk

μ,abc(CCSDt),

(31)
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with the CCSDt (μ = 0) or EOMCCSDt (μ > 0) moments
entering Eq. (31) defined by

M
ijk

μ,abc(CCSDt) = 〈
�abc

ijk

∣∣(H̄ (CCSDt)R(CCSDt)
μ )|�〉, (32)

and the 	abc
μ,ijk(CCSDt) amplitudes that multiply these mo-

ments in Eq. (31) calculated as

	abc
μ,ijk(CCSDt)=〈�|L(CCSDt)

μ H̄ (CCSDt)
∣∣�abc

ijk

〉
/D

ijk

μ,abc(CCSDt).
(33)

The summation over the triply excited determinants |�abc
ijk 〉

in Eq. (31), which in methods such as CR-CC(2,3) or
CR-EOMCC(2,3) would span the subspace of all triples,
designated by H (T) (H (T) = span{|�abc

ijk 〉, i > j > k,

a > b > c}), excludes those determinants |�abc
ijk 〉 that are

already included in CCSDt/EOMCCSDt, designated by
H (t) = span{|�abC

Ijk 〉, I > j > k, a > b > C}. The L(CCSDt)
μ

de-excitation operator, entering Eq. (33) and defined as

L(CCSDt)
μ = δμ,0 1 + Lμ,1 + Lμ,2 + lμ,3, (34)

where Lμ, 1 and Lμ, 2 are the corresponding one- and two-body
components, and

lμ,3 =
∑

I>j>k,a>b>C

labC
μ,Ijk E

Ijk

abC (35)

is obtained by solving the left eigenvalue problem of
CCSDt/EOMCCSDt (Eq. (14) in which T(P) = T(CCSDt)

and H (P ) = H (CCSDt)). Finally, the Epstein-Nesbet-style
D

ijk

μ,abc(CCSDt) denominator, needed in Eq. (33) as well, is
calculated using (cf. Eq. (27))

D
ijk

μ,abc(CCSDt) = E(CCSDt)
μ − 〈

�abc
ijk

∣∣H̄ (CCSDt)
∣∣�abc

ijk

〉
. (36)

If one wants to be more explicit about the summation over
triples defining the H (T) � H (t) subspace in Eq. (31), we can
also write

δμ(t; 3) =
∑

i>j>k,a>b>c

	abc
μ,ijk(CCSDt) M

ijk
μ,abc(CCSDt)

+
∑

I>j>k,a>b>c

	abc
μ,Ijk(CCSDt) M

Ijk

μ,abc(CCSDt). (37)

We refer the reader to Ref. 152 for the formulas for other
types of the CC(t;3) approximations, in which we con-
strain triple excitations in CCSDt/EOMCCSDt in a differ-
ent way than the one exploited here. One can develop sim-
ilar equations for other approximations resulting from the
CC(P;Q) formalism, where one corrects the results of the
CCSDtq/EOMCCSDtq or CCSDTq/EOMCCSDTq calcula-
tions for the missing triples (CC(t,q;3)), triples and quadru-
ples (CC(t,q;3,4)), and quadruples (CC(q;4)).152

The CC(t;3) method offers considerable sav-
ings in the computer effort compared to the parent
CCSDT/EOMCCSDT approach, replacing the expen-
sive, iterative, n3

on
5
u steps of CCSDT/EOMCCSDT by the

NoNun
2
on

4
u steps of CCSDt/EOMCCSDt, equivalent to the

costs of CCSD calculations multiplied by a small prefactor
equal to the number of single excitations in the active space,
and the noniterative n3

on
4
u steps similar to the costs of the

CCSD(T) or CR-CC(2,3) calculations. Similar applies to
disk storage, which is reduced from the ∼ n3

on
3
u requirements

of CCSDT/EOMCCSDT, related to the need to store all
triply excited amplitudes, to the much more manageable
∼ NoNun

2
on

2
u requirements of CC(t;3).

So far, we have implemented the ground-state CC(t;3)
method, which we have interfaced with the RHF, ROHF,
and integral transformation routines available in the GAMESS

package.202, 203 Since we have not yet developed the codes
that could solve the left-eigenstate CCSDt equations, which
would normally be needed to determine the 	abc

0,ijk(CCSDt)
amplitudes for the ground-state correction δ0(t;3), we have
introduced a few simplifications in the CC(t;3) routines
exploited in this work. Thus, we have approximated the
similarity-transformed Hamiltonian of CCSDt, Eq. (29),
which enters the ground-state moments M

ijk

0,abc(CCSDt)
= 〈�abc

ijk |H̄ (CCSDt)|�〉 and amplitudes 	abc
0,ijk(CCSDt), by the

CCSD-like

H̄ (CCSDt)(2) = e−T1−T2HeT1+T2 = (HeT1+T2 )C, (38)

in which the t3 component of T(CCSDt) is neglected, although—
and this needs to be emphasized—the T1 and T2 amplitudes
entering Eq. (38) originate from the true CCSDt calculations.
Moreover, we have replaced L

(CCSDt)
0 , Eq. (34), that enters

	abc
0,ijk(CCSDt) by

L
(CCSDt)
0 (2) = 1 + L0,1 + L0,2, (39)

in which the l0, 3 component of L
(CCSDt)
0 is neglected and the

one- and two-body components, L0, 1 and L0, 2, respectively,
are obtained by solving the left eigenvalue problem involving
H̄ (CCSDt)(2), Eq. (38), in the space of single and double exci-
tations. In this way, we account for the relaxation of the T1,
T2, L0, 1, and L0, 2 amplitudes in the presence of the t3 compo-
nent of the CCSDt cluster operator T(CCSDt), which becomes
significant when t3 is larger, as is the case in the biradical
and bond breaking regions of the PES, while taking advan-
tage of our efficient CR-CC(2,3) codes145, 148 in calculations
of the relevant M

ijk

0,abc(CCSDt) moments and 	abc
0,ijk(CCSDt)

amplitudes. We followed a similar computational strategy in
the initial numerical tests presented in Ref. 152 and summa-
rized in Table I. Since the CC(t;3) results match the total and
relative energetics of full CCSDT almost exactly, the changes
in the ground-state CC(t;3) energies resulting from replac-
ing the true similarity-transformed Hamiltonian of CCSDt by
H̄ (CCSDt)(2) and the true de-excitation operator L

(CCSDt)
0 by

L
(CCSDt)
0 (2) cannot be substantial, although we will examine

this aspect of CC(t;3) in the future.

III. NUMERICAL RESULTS

In order to demonstrate the benefits offered by combining
the active-space CCSDt methodology with the CR-CC(2,3)-
style corrections defining the CC(t;3) approach in MR sit-
uations involving biradical transition states, we applied the
CC(t;3) method to the automerization of cyclobutadiene and
the conrotatory and disrotatory isomerization pathways of bi-
cyclobutane to butadiene. In each case, we used the cc-pVDZ
and cc-pVTZ basis sets, employed in the earlier CC cal-
culations for the same systems,35, 37, 64, 68, 78, 186, 187 which en-
abled us to perform the reference CCSDT calculation in the
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former case and a number of other SRCC calculations in both
cases. The CCSDT total and relative energies are particularly
important, since they allow us to make judgments regarding
various approximate triples SRCC approaches, including the
CCSD(T), CCSD(2)T, CR-CC(2,3), CCSDt, CCSD(T)-h, and
CC(t;3) methods used in our calculations. Moreover, as shown
in this work, full CCSDT provides a highly accurate descrip-
tion of the above isomerization reactions, so that any afford-
able approximate triples CC approach that matches the qual-
ity of the CCSDT results has a potential to become valuable
in practice. The CCSDT/cc-pVTZ calculations for the iso-
merization pathways of bicyclobutane to butadiene turned out
to be too expensive for us, but we managed to perform the
CCSDT/cc-pVDZ calculations for this system, again needed
to define the reference energy values for other SRCC triples
methods, while carrying out the CCSD(T), CCSD(2)T, CR-
CC(2,3), CCSDt, CCSD(T)-h, and CC(t;3) calculations with
both basis sets employed in this study. As shown, for example,
in Refs. 184 and 187, the cc-pVTZ basis set is large enough to
provide the results which are reasonably converged (to within
a fraction of kcal/mol) with the basis as far as the relative
energetics are concerned, so that the results of the CC(t;3)/cc-
pVTZ calculations presented in this work are quite realistic.
The CCSD, CCSD(T), CCSD(2)T, and CR-CC(2,3) calcu-
lations were performed using the CC routines developed in
Refs. 145, 148, 158, and 204, available in GAMESS, whereas
the CCSDt, CCSD(T)-h, and CCSDT calculations were car-
ried out by adopting the codes described in Ref. 168, inter-
faced with the GAMESS RHF/ROHF and integral transforma-
tion routines. The CC(t;3) calculations were performed with
the computer programs developed in this and the earlier152

work, described in Sec. II and interfaced with GAMESS as
well. In all of the SRCC calculations carried out in this study,
which relied on the RHF reference, the core orbitals correlat-
ing with the 1s shells of the carbon atoms were kept frozen
and the spherical components of the d and f functions were
employed throughout.

A. Automerization of cyclobutadiene

We begin our discussion with the CC(t;3)
and other CC results obtained for the frequently
studied22, 35, 37, 64, 68, 78, 174–185 case of the automerization
of cyclobutadiene (see Tables II and III). This prototypical
anti-aromatic, π -electron, and highly reactive system (see

FIG. 1. Automerization of cyclobutadiene. The leftmost and rightmost struc-
tures correspond to the degenerate reactant/product minima, whereas the
structure in the middle represents the transition state.

Fig. 1) represents a significant challenge for both experiment
and theory. In particular, in order for a given electronic
structure method to be useful in this case, it has to provide
an accurate description of the strongly quasi-degenerate,
biradical transition state (a square configuration in Fig. 1),
which has to be balanced with the description of the nonde-
generate closed-shell reactant (or product) region of the PES.
According to the available experimental data, the activation
energy for the automerization of cyclobutadiene falls into
the 1.6–10 kcal/mol range.174, 175 The results collected in
Tables II and III clearly indicate that the requirement of
producing a balanced description of the reactant/product and
transition-state regions that would lead to reasonable values
of the activation energy is far from trivial, particularly when
the SR approaches are employed. Indeed, the most practical
black-box SRCC approaches, such as CCSD, CCSD(T),
�-CCSD(T), and CR-CC(2,3), produce activation energies
that are much too high, even when one includes the best
estimates of the zero-point vibrational energy (�ZPVE), such
as that given in Ref. 184 (−2.5 kcal/mol). This is exactly the
problem this paper is trying to address.

Because of the apparently MR character of the transition
state, which involves, in the minimum-level description, two
reference determinants corresponding to two active molecular
orbitals (MOs), namely, the highest-energy occupied MO
(HOMO) and the lowest-energy unoccupied MO (LUMO),
and two active electrons spanning the (2,2) complete active
space (CAS), which in the language of active-space CC
approaches examined in this study would correspond to
choosing No = 1 and Nu = 1, the automerization of cyclobu-
tadiene is often regarded as a problem that must be treated
with MR methods. This includes methods based on CC theory
and, in fact, several MRCC approaches have already been
applied to examine it. Table III provides some of the most rep-
resentative examples, including SUMRCC,7–26 abbreviated in

TABLE II. A comparison of various CC ground-state energies for the reactant and transition-state species defining the automerization of cyclobutadiene, based
on the geometries optimized in the MR-AQCC calculations reported in Ref. 184.a

Species CCSD CCSD(T) CCSD(2)T CR-CC(2,3) CCSDt CCSD(T)-h CC(t;3) CCSDT

cc-pVDZ
Reactant 26.827 1.123 4.764 0.848 20.786 −0.371 − 0.137 −154.244157
Transition state 47.979 14.198 20.080 14.636 20.274 −4.548 0.071 −154.232002

cc-pVTZ
Reactant 36.016 0.278 4.813 0.941 30.007 −1.232 − 0.141 −154.390763
Transition state 55.205 12.291 18.741 13.793 28.259 −7.298 − 1.038 −154.373902

aThe CCSDT values are total energies, in hartree. The remaining energies represent errors relative to CCSDT, in millihartree. The active space used in the CCSDt, CCSD(T)-h, and
CC(t;3) calculations consisted of the one highest-energy occupied and one lowest-energy unoccupied orbitals.
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TABLE III. Purely electronic barrier heights (in kcal/mol) for the au-
tomerization of cyclobutadiene resulting from various SRCC and MRCC
calculations.

Method cc-pVDZ cc-pVTZ

CCSD 20.9 22.6
CCSD(T) 15.8 18.1
CCSD(2)T 17.2 19.3
CR-CC(2,3) 16.3 18.6
CCSDt 7.3 9.5
CCSD(T)-h 5.0 6.8
CC(t;3) 7.8 10.0
CCSDT 7.6 10.6
�CCSD(T)a 16.8 19.2
TCCSDa 9.4 12.9
TCCSD(T)a 4.6 7.0
CAS-BCCC4b 7.6 8.7
SUCCSDc 7.0 8.7
MkCCSDc 7.8 9.6
RMRCCSDc 10.4 13.0
SUCCSD(T)c 4.8 5.9
RMRCCSD(T)c 7.2 9.5
SUCCSD/mcscfc 7.2 8.9
MkCCSD/mcscfc 7.9 9.7
RMRCCSD/mcscfc 9.5 11.4
SUCCSD(T)/mcscfc 5.7 7.2
RMRCCSD(T)/mcscfc 5.9 7.5
TD MRCCSD(T)d 6.6
MR BWCCSD(a.c.)e 6.5 7.6
MR BWCCSD(i.c.)e 6.2 7.4
MR BWCCSD(T)(a.c.)e 6.1 7.0
MR BWCCSD(T)(i.c.)e 5.7 6.8
MR MkCCSDe 7.8 9.1
MR MkCCSD(T)e 7.8 8.9
MRAQCC/SS-CASSCFf 7.7 8.9
MRAQCC/SA-2-CASSCFf 7.3 8.4
DIP-EOM-CCSDa 8.3 10.7
SS-EOM-CCSD[+2]g 8.3 9.5
Experimental rangeh 1.6–10
�ZPVEi −2.5

aFrom Ref. 78.
bFrom Ref. 64.
cFrom Ref. 37.
dFrom Ref. 22, using a split-valence[3s2p1d/1s] basis set.
eFrom Ref. 35; “a.c.” stands for the a posteriori size-extensivity correction and “i.c.” for
the iterative one.
fFrom Ref. 184.
gFrom Ref. 68.
hFrom Ref. 174.
i�ZPVE is the zero-point vibrational energy correction, as estimated in Ref. 184.

Table III, following Refs. 22 and 37 where the calculations of
this type were reported, as SUCC (Ref. 37) and TD MRCC,22

Mukherjee’s SSMRCC,27, 28 designated in Table III, following
Refs. 35 and 37 where such calculations were performed,
by MR MkCC or MkCC, Brillouin-Wigner MRCC,29–32

abbreviated in Table III, following Ref. 35 where such
calculations were carried out, as MR BWCC, the internally
contracted SSMRCC approach employing elements of
EOMCC exploited in Ref. 68, designated in Ref. 68 and
Table III by SS-EOM-CCSD[+2], and the BCCC theory,63

abbreviated in Ref. 64 where such calculations were reported,
as CAS-BCCC4. In addition to the purely MRCC approaches,

a variety of hybrid CC methods mixing the SR and MR con-
cepts, including the MRCI-corrected RMRCC theory79–81

and the CASSCF-based TCC formalism,76–78 have been
used to examine the automerization of cyclobutadiene.37, 78

Last, but not least, the automerization of cyclobutadiene has
been examined78 with the doubly ionized (DIP) EOMCC
approach,100–102 which can be regarded as an “easy way” of
introducing MR concepts into the CC theory,102 and the MR
average-quadratic CC (MR-AQCC) method,184 which is a
MRCI-like diagonalization scheme designed using elements
of CC to approximately restore size extensivity.205, 206

Not surprisingly, several of the above MRCC-level
studies report information about the poorly performing
SRCC methods, such as CCSD,22, 37, 78 CCSD(T),22, 37, 78

�-CCSD(T),78 and CR-CCSD(T),78 often to argue the need
for a MR treatment of the automerization of cyclobutadiene.
It is clear, however, from a comprehensive study involving
a variety of SRCC and MRCC methods by Balková and
Bartlett22 that one can obtain a reasonable description of
the activation energy characterizing the automerization of
cyclobutadiene with full CCSDT. It is apparent from Table III
that the activation energies resulting from the CCSDT calcu-
lations are not only within the experimental range but also in
almost perfect agreement (to within 1 kcal/mol or so) with the
results of the best MRCC or MRCC-level calculations, such
as those performed using the MkCCSD(T),35 CAS-BCCC4,64

RMRCCSD(T),37 MRAQCC,184 and SS-EOM-CCSD[+2]
(Ref. 68) approaches, to mention a few examples. The only
problem with CCSDT is that it is too expensive for the
majority of applications. An approximate treatment of triples
that would reduce the costs of the CCSDT calculations, while
preserving the accuracy of CCSDT for both the relative and
total energies, would clearly be useful in this case. We show
that CC(t;3) is such an approach.

The information about the performance of a variety
of SRCC approaches, including our own CCSD, CCSD(T),
CCSD(2)T, CR-CC(2,3), CCSDt, CCSD(T)-h, CC(t;3), and
CCSDT calculations and the �-CCSD(T) calculations re-
ported in Ref. 78, can be found in Tables II (total ener-
gies) and III (electronic barrier heights). Since our main ob-
jective is to make comparisons with full CCSDT, regarded
in the present study as a benchmark and parent method
for CCSD(T), CCSD(2)T, CR-CC(2,3), �-CCSD(T), CCSDt,
CCSD(T)-h, and CC(t;3), which also provides a reasonable
description, and in analogy to some of the earlier papers on
the same topic, we rely on the reactant/product and transition-
state geometries optimized elsewhere. As in Ref. 64, we use
the MRAQCC geometries reported in Ref. 184.

It is clear from Table II that the main reason for the fail-
ure of methods employing the CCSD values of T1 and T2,
when determining the a posteriori corrections due to triples,
such as CCSD(T), or its newer CCSD(2)T, CR-CC(2,3), and
�-CCSD(T) analogs, is the neglect of the coupling between
the T3 clusters and their lower-order T1 and T2 counterparts,
which is present in full CCSDT but absent in the noniterative
methods such as CCSD(T). This results in the rather large,
∼12 − 20 millihartree, errors relative to the CCSDT ener-
gies in the quasi-degenerate transition-state region that do
not balance the much smaller errors, ranging from less than
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1 millihartree in the case of CCSD(T) and CR-CC(2,3) to
about 5 millihartree in the case of CCSD(2)T, in the reac-
tant/product closed-shell regions.

The CCSDt approach works in a different way. Like full
CCSDT, it couples the T1 and T2 clusters with their triply ex-
cited t3 counterparts, selected via active orbitals, as in Eq. (3),
adjusting their values accordingly when solving the CCSDt
equations, which greatly helps the relative energetics, but the
selection of triples characterizing CCSDt may lead to substan-
tial errors in total energies relative to the corresponding full
CCSDT energies. As shown in Tables II and III, the CCSDt
calculations employing one active occupied and one active
unoccupied orbitals relevant to the problem of the automeriza-
tion of cyclobutadiene, corresponding to HOMO and LUMO
(No = 1 and Nu = 1), provide an excellent description of
the barrier heights, which agree with those obtained with full
CCSDT to within 0.3 kcal/mol in the cc-pVDZ case and 1.1
kcal/mol in the case of cc-pVTZ, but it is clear, when examin-
ing Table II, that these small differences between the CCSDt
and CCSDT activation energies are a result of the cancella-
tion of the uncomfortably large errors due to the triple ex-
citations missing in the CCSDt calculations. The differences
between the CCSDt and CCSDT total energies, although al-
most independent of the nuclear geometry, are on the order
of 20–21 millihartree in the case of the cc-pVDZ basis set
and approximately 28–30 millihartree in the cc-pVTZ case.
In other words, quite a bit of information about triples, partic-
ularly of the dynamical type, is still missing when the CCSDt
approach relying on small number of active orbitals is em-
ployed. We could increase the number of active orbitals in the
CCSDt calculations to bring the resulting total energies closer
to their CCSDT values, but this would make the CCSDt cal-
culations a lot more expensive.

The CCSD(T)-h approach, which corrects the CCSDt
energies for the missing triples using the conventional (T)
correction of CCSD(T), improves the above situation but
not as effectively as CC(t;3). The CCSD(T)-h calculations
bring the total energies at the reactant/product and transition-
state structures to a better agreement with full CCSDT than
in the CCSDt case, and improve the CCSD(T), CCSD(2)T,
and CR-CC(2,3) energies in the transition-state region at the
same time, but the total and activation energies obtained with
CCSD(T)-h, shown in Tables II and III, are not as accurate as
those produced by CC(t;3). Indeed, the differences between
the CCSD(T)-h and CCSDT energies in the transition-state
region are −4.548 millihartree, when the cc-pVDZ basis set is
used, and −7.298 millihartree, when the cc-pVTZ basis is em-
ployed, as compared to only 0.071 and −1.038 millihartree,
respectively, obtained with CC(t;3). This is a consequence of
adopting a robust, CR-CC(2,3)-style, form of the triples cor-
rection in the CC(t;3) considerations instead of the (T) correc-
tion of CCSD(T) exploited in CCSD(T)-h. It is possible that
the activation energy lowering when going from TCCSD to
TCCSD(T), as reported in Ref. 78, by almost 5 kcal/mol in
the cc-pVDZ case and by nearly 6 kcal/mol in the case of the
cc-pVTZ basis set, is too large as well because of the use of
the (T)-style correction in the TCCSD(T) design.

Unlike CC(t;3), the CCSD(T)-h approach does not pro-
vide a uniformly accurate description of the stationary point

energetics, since the differences between the CCSD(T)-h and
CCSDT energies at the reactant/product geometries, which
are −0.371 millihartree in the cc-pVDZ case and −1.232
millihartree in the case of the cc-pVTZ basis, are much
smaller than the corresponding differences in the transition-
state region. This affects the quality of the activation energies
resulting from the CCSD(T)-h calculations, which instead
of going up relative to CCSDt toward the corresponding
CCSDT barrier heights, go down, by 2.3 kcal/mol when the
cc-pVDZ basis set is employed and 2.7 kcal/mol when the
cc-pVTZ basis is used. As in the case of CCSDt, we could try
to improve the CCSD(T)-h results by increasing the number
of active orbitals used in the underlying CCSDt calculations,
but this would again diminish the computational advantages
of CCSD(T)-h when compared to the parent full CCSDT
approach. The CC(t;3) method addresses all of these concerns
by providing a highly and uniformly accurate description of
the reactant/product and transition-state regions that guaran-
tees that the CC(t;3) total and activation energies match those
resulting from the full CCSDT calculations almost perfectly
in spite of the use of the very small active space in the under-
lying CCSDt calculations. As already mentioned, the CC(t;3)
method provides very small errors relative to full CCSDT in
the total energies characterizing the transition-state region.
The errors in the reactant/product region, which are on the
order of 0.1 millihartree, are very small as well. As a result,
the CC(t;3) calculations bring the CCSDt activation energies
closer to their CCSDT counterparts, which is a desired
behavior. Indeed, the CC(t;3) values of the barrier heights, of
7.8 kcal/mol in the case of the cc-pVDZ basis set and 10.0
kcal/mol, when the cc-pVTZ basis set is used, are in excellent
agreement with the corresponding CCSDT activation ener-
gies of 7.6 and 10.6 kcal/mol, respectively. After correcting
the CC(t;3)/cc-pVTZ electronic barrier height for the ZPVE
contributions, estimated in Ref. 184 at −2.5 kcal/mol, we
obtain 7.5 kcal/mol, in almost perfect agreement with the
best MRCC data, which place it around 6–7 kcal/mol when
the MkCCSD(T), CAS-BCCC4, RMRCCSD(T), MRAQCC,
and SS-EOM-CCSD[+2] calculations are performed.

B. Isomerization of bicyclo[1.1.0]butane
to trans-buta-1,3-diene

Our second example is the pericyclic rearrangement
of bicyclo[1.1.0]butane (bicbut) to trans-buta-1,3-diene
(t-but). The early experimental studies of the bicbut→t-but
isomerization190–194 suggested that this process proceeds
by concerted conrotatory movement of the methylene
groups,193, 194 in agreement with the Woodward-Hoffman
symmetry rules.207 Computational studies using the MR
approaches of the MRMBPT (Refs. 186, 188, and 198) and
MRCI (Ref. 198) types, the SRCC methods of the CR-CC
type, including CR-CCSD(T) and CR-CC(2,3),186, 187 and,
most recently, the ACSE (Ref. 188) and DMC (Ref. 189)
methodologies, have all confirmed this, while demonstrating
that near the end the reaction pathway passes through the
gauche-buta-1,3-diene intermediate (abbreviated as g-but)
before reaching the final t-but configuration.186, 187, 189, 198

Theoretical studies have also considered the concerted
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disrotatory186–189, 197, 198 and nonconcerted196, 198 pathways,
finding the concerted disrotatory transition state (abbreviated
as dis_TS) to be ∼15 − 25 kcal/mol higher in energy than
the conrotatory transition state (abbreviated as con_TS), and
placing the nonconcerted pathway even higher than that.
Thus, the current consensus, reconfirmed by the CCSDt,
CC(t;3), and CCSDT calculations performed in this work,
is that the bicbut→t-but isomerization proceeds along the
conrotatory concerted path, characterized, according to the
available experimental data, by the activation enthalpy of
40.6 ± 2.5 kcal/mol,190 and that both concerted pathways,
after passing through the corresponding conrotatory and
disrotatory transition states, con_TS and dis_TS, respectively,
converge at the local minimum defining the intermediate
g-but configuration. The g-but intermediate isomerizes via a
low-energy rotational barrier, defined by the transition-state
gt_TS structure, before the t-but product is finally reached.

The conrotatory and disrotatory concerted pathways for
the bicbut→t-but isomerization, as described above, are
shown in Fig. 2. The corresponding numerical data relevant
to the objectives of the present work, including the total
electronic and ZPVE-corrected activation energies (i.e., en-
thalpies at 0 K) obtained in the CCSDt, CC(t;3), and full
CCSDT calculations, as well as the corresponding CCSD,
CCSD(T), CCSD(2)T, and CR-CC(2,3) results, can be found
in Tables IV and V. As in the case of the automerization
of cyclobutadiene, we used the cc-pVDZ (all methods) and
cc-pVTZ (all methods but CCSDT) basis sets. We com-
pare the SRCC calculations among themselves, with the full
CCSDT energies serving as benchmark values, and with the
ZPVE-corrected activation energies resulting from the most
recent optimized MR DMC (OMR-DMC) calculations based
on the CASSCF(10,10)-type guide functions,189 focusing on
the highest-level OMR3-DMC data. We also compare our
CC(t;3) results with the recent ACSE calculations reported
in Ref. 188, which are in good agreement with the MRMBPT
(Refs. 186, 188, and 198) and MRCI (Ref. 198) calculations
(listed in Table V as well), but in some disagreement with our
previously reported186, 187 CR-CC(2,3) data, questioning the
accuracy of CR-CC(2,3) in describing the disrotatory path-
way. As in our earlier CR-CC studies,186, 187 the geometries of
the stationary points defining the conrotatory and disrotatory
pathways of the bicbut→t-but isomerization and the corre-
sponding ZPVE values were taken from the CASSCF(10,10)

en
er

gy
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FIG. 2. Schematic representation of the conrotatory and disrotatory path-
ways describing the isomerization of bicyclo[1.1.0]butane to trans-buta-1,3-
diene.

calculations performed in Ref. 186, employing five doubly oc-
cupied MOs and the corresponding five antibonding MOs in-
volved in the bond rearrangements characterizing these path-
ways. The OMR3-DMC calculations reported in Ref. 189,
used in this work to judge the accuracy of other methods in de-
termining relative energies, utilized the same geometries and
ZPVEs. The ACSE calculations reported in Ref. 188 utilized
the CASSCF(10,10) geometries and ZPVE values as well, but
they were obtained independently. To be consistent with the
choice of the active space in the above CASSCF calculations,
the active orbitals used in obtaining the CCSDt, CCSD(T)-h,
and CC(t;3) results included the No = 5 highest occupied and
Nu = 5 lowest unoccupied MOs.

As emphasized in the Introduction, the bicbut→t-but
isomerization creates a number of challenges for theory. This
is particularly true in the case of the higher-energy disrotatory
pathway characterized by the strongly biradical transition-
state dis_TS. According to Ref. 186, the dis_TS structure has
a ∼90% biradical character, as opposed to only ∼24% for
the conrotatory transition state, and less than 10% for the re-
maining stationary points along the lowest two isomerization
pathways shown in Fig. 2. As a result and as demonstrated in
Ref. 186 (see, also, Table V), the conventional CCSD(T)
approach fails, placing the disrotatory transition state about

TABLE IV. A comparison of various CC ground-state energies for the stationary points that define the conrotatory and disrotatory pathways characterizing
the isomerization of bicyclo[1.1.0]butane to trans-buta-1,3-diene, obtained in the calculations with the cc-pVDZ basis set.a

Speciesb CCSD CCSD(T) CCSD(2)T CR-CC(2,3)c CCSDt CCSD(T)-h CC(t;3) CCSDT

bicbut 21.863 0.450 3.107 0.134 14.427 − 0.200 − 0.263 − 155.493418
con_TS 30.130 0.573 5.305 0.968 14.024 − 0.826 − 0.418 − 155.425760
dis_TS 50.760 − 69.648 14.052 7.345 11.487 − 5.918 − 0.491 − 155.395697
g-but 23.259 1.009 3.786 0.794 11.377 − 0.183 − 0.065 − 155.533880
gt_TS 22.836 0.964 3.658 0.782 11.402 − 0.139 − 0.028 − 155.528927
t-but 23.396 1.036 3.837 0.840 10.963 − 0.192 − 0.056 − 155.538628

aThe CCSDT values are total energies, in hartree. The remaining energies represent errors relative to CCSDT, in millihartree. The active spaces used in the CCSDt, CCSD(T)-h, and
CC(t;3) calculations consisted of the No = 5 highest-energy occupied and Nu = 5 lowest-energy unoccupied orbitals.
bGeometries of all species, as optimized in the CASSCF(10,10)/cc-pVDZ calculations, were taken from Ref. 186.
cFrom Ref. 187.
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TABLE V. The electronic energies corrected for the zero-point vibrational
energies taken from Ref. 186 (i.e., enthalpies at 0 K) of the conrotatory and
disrotatory transition states, con_TS and dis_TS, respectively, the g-but inter-
mediate, the transition state connecting g-but and t-but (gt_TS), and the t-but
final product, relative to the bicbut reactant, at several levels of theory.

Method con_TS dis_TS g-but gt_TS t-but

cc-pVDZ
CCSD 45.0 75.7 −25.6 −23.1 −28.5
CCSD(T) 39.9 13.5 −26.1 −23.4 −29.0
CCSD(2)T 43.9 68.3 −25.0 −22.0 −28.0
CR-CC(2,3)a 40.3 62.1 −26.1 −23.3 −29.0
CCSDt 39.5 55.7 −28.4 −25.6 −31.6
CCSD(T)-h 39.4 53.9 −26.5 −23.7 −29.4
CC(t;3) 39.7 57.4 −26.4 −23.6 −29.3
CCSDT 39.8 57.5 −26.5 −23.7 −29.4
MCQDPT2b 37.0 53.7 −26.4 −23.4 −29.4

cc-pVTZ
CCSD 45.6 78.9 −24.8 −22.2 −27.6
CCSD(T)a 40.4 21.8 −25.1 −22.3 −28.0
CCSD(2)T 41.7 67.8 −25.0 −22.3 −27.9
CR-CC(2,3)a,b 41.1 66.1 −24.9 −22.1 −27.9
CCSDt 40.1 59.0 −27.2 −25.3 −31.1
CCSD(T)-h 39.7 53.6 −25.4 −22.6 −28.4
CC(t;3) 40.2 60.1 −25.3 −22.6 −28.3

MRMP2/6-31G(d)c 38.0 54.0 −26.6
MRMP2/6-311G(d,p)c 35.7 52.2 −27.0
CASPT2/6-31G(d)d 41.5 56.3 −23.2 −26.0
MRCI(Q)/6-31G(d)d 41.5 56.7 −29.8 −32.4
ACSE/6-31G(d)c 41.8 56.4 −24.2
ACSE/6-311G(d,p)c 41.2 55.7 −23.8
OMR3-DMCe 40.4(5) 58.6(5) −25.2(5) −22.2(5) −27.9(5)
Experiment 40.6 ± 2.5f −25.9 ± 0.4g

aFrom Ref. 187.
bFrom Ref. 186.
cFrom Ref. 188.
dFrom Ref. 198.
eFrom Ref. 189.
fFrom Ref. 190.
gThe reaction enthalpy at 298 K based on the enthalpies of formation of bicy-
clo[1.1.0]butane and buta-1,3-diene reported in Ref. 195.

20 kcal/mol below the conrotatory one. The MRMBPT
approaches of the CASPT2,208, 209 MRMP2,210, 211 and MC-
QDPT2 (Refs. 212 and 213) types, used in Refs. 186, 188,
and 198, the MRCI(Q) method214, 215 used in Ref. 198, and
the CR-CC(2,3) approach exploited in our earlier work,186, 187

as well as the ACSE (Ref. 188) and DMC (Ref. 189) calcu-
lations restore the correct pathway ordering, while providing,
in most cases, an accurate description of the conrotatory
path (see Table V), but, as noted in the Introduction, claims
have been made in the literature regarding the accuracy
of the CR-CC(2,3) description of the disrotatory transition
state,188 which seems higher in energy than the available
CASPT2,188, 198 MRMP2,188 MCQDPT2,186 MRCI(Q),198

and ACSE (Ref. 188) data by about 10 kcal/mol.
Normally, it would be hard to reconcile such differences

in the absence of the experimental information, which is
only available for the lowest-energy conrotatory pathway (cf.,
e.g., Table V). However, Berner and Lüchow have recently
published the definitive and well-converged OMR-DMC re-
sults for the stationary point energetics of the conrotatory

and disrotatory pathways,189 with the aforementioned OMR3-
DMC calculations, summarized in Table V, representing the
highest-level results. We use their results as well as our own
CC(t;3) calculations, which almost perfectly reproduce the to-
tal and relative energetics of the high-level full CCSDT ap-
proach, when the cc-pVDZ basis set is employed, and the rel-
ative energetics of the OMR3-DMC method of Berner and
Lüchow, when the cc-pVTZ basis set is used in the CC(t;3)
calculations, to claim that while CR-CC(2,3) overestimates
the activation energy characterizing the biradical disrotatory
transition state by about 5–7 kcal/mol, the recent ACSE and
the previously reported MRMBPT and MRCI activation ener-
gies characterizing the same transition state are somewhat too
low.

Indeed, as shown in Table IV, the CC(t;3) approach
yields a uniformly and highly accurate description of both
pathways, reproducing the corresponding full CCSDT ener-
gies at the six stationary points defining the conrotatory and
disrotatory bicbut→t-but isomerization paths to within less
than 0.5 millihartree, when the cc-pVDZ basis set is used.
This is an outstanding result, particularly when compared
with other SRCC methods with an approximate treatment of
triple excitations, including CCSD(2)T, CR-CC(2,3), CCSDt,
and CCSD(T)-h, which successfully address an issue of the
incorrect energy ordering of the conrotatory and disrotatory
transition states by the CCSD(T) approach but are not as ef-
fective in capturing the relevant correlation effects as CC(t;3).
In particular, the CR-CC(2,3) method works very well in the
PES regions characterized by the small to moderate biradi-
cal character, represented by the bicbut, con_TS, g-but, gt_TS,
and t-but structures, reducing the ∼3–5 millihartree errors rel-
ative to CCSDT obtained in the corresponding CCSD(2)T cal-
culations to less than 1 millihartree, but the ∼7 millihartree
difference between the CR-CC(2,3) and CCSDT energies at
the dis_TS geometry, although much smaller than ∼14 milli-
hartree obtained with CCSD(2)T, is far from the CC(t;3) level.
It is exactly this difference that makes the CR-CC(2,3) esti-
mate of the disrotatory activation energy too high, by almost
5 kcal/mol relative to the corresponding full CCSDT energy
when the cc-pVDZ basis set is employed, and by about 7
kcal/mol relative to OMR3-DMC, when the CR-CC(2,3)/cc-
pVTZ calculations are performed (see Table V; as already
pointed out, the use of basis sets larger than cc-pVTZ has very
small effect on the relative energetics of the stationary points
characterizing the conrotatory and disrotatory pathways of the
bicbut→t-but isomerization186, 187).

As shown in Table V, the active-space CCSDt calcula-
tions provide the relative energetics of both bicbut→t-but iso-
merization pathways examined here, which is in very good
agreement with the full CCSDT data, when the cc-pVDZ ba-
sis set is examined, and with the OMR3-DMC results, when
the cc-pVTZ basis set is used, improving the CR-CC(2,3) de-
scription of the disrotatory transition state, but this is a result
of the cancellation of the rather large errors due to the triple
excitations missing in the CCSDt considerations, which range
from 10.963 to 14.427 millihartree in the cc-pVDZ case (see
Table IV). Although these large errors in the calculated total
energies cancel out quite well, often to within a fraction of
kcal/mol, there are a few cases, such as the g-but, gt_TS, and
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t-but structures, where the relative energies resulting from the
CCSDt/cc-pVDZ and CCSDT/cc-pVDZ or CCSDt/cc-pVTZ
and OMR3-DMC calculations differ by about 2–3 kcal/mol.
Clearly, one cannot expect that the active-space CC methods,
such as CCSDt, using smaller numbers of active orbitals, will
always guarantee perfect error cancellation in determining the
relative energetics, when the dynamical correlation effects
due to neglected excitations (missing triples in the CCSDt
case) exceed 10 millihartree. One can, of course, address this
concern, at the cost of making the CCSDt calculations more
expensive, by using larger numbers of active orbitals, but our
preferred solution is to correct the CCSDt energies, obtained
with smaller numbers of active orbitals, for the missing triples
using the CC(t;3) corrections.

As already explained, the CC(t;3)/cc-pVDZ approach us-
ing only five highest-energy occupied MOs and five lowest-
energy unoccupied MOs in the underlying CCSDt calcula-
tions reproduces the corresponding CCSDT/cc-pVDZ total
energies at all six stationary points defining the conrotatory
and disrotatory pathways of the bicbut→t-but isomerization
to within 0.5 millihartree. As a result and as shown in Table V,
the relative energies characterizing all these points, obtained
in the CC(t;3) and CCSDT calculations with the cc-pVDZ ba-
sis set, agree to within 0.1 kcal/mol. For comparison, the anal-
ogous attempt to improve the total and relative energetics of
CCSDt via the CCSD(T)-h approach produces errors relative
to CCSDT that are in some cases much larger. This is particu-
larly true in the case of the disrotatory transition state, where
the difference between the CCSD(T)-h and CCSDT energies
obtained with the cc-pVDZ basis set is −5.918 millihartree,
as opposed to only −0.491 millihartree obtained with CC(t;3)
(see Table IV). In consequence, the CCSD(T)-h approach,
instead of bringing the CCSDt result for the disrotatory ac-
tivation barrier closer to the corresponding CCSDT value,
changes the CCSDt energy in an opposite direction, resulting
in a 3.6 kcal/mol difference between the disrotatory activation
barriers obtained in the CCSDT and CCSD(T)-h calculations
with the cc-pVDZ basis set. The CC(t;3) method, which re-
lies on a more robust form of the correction due to triples
missing in CCSDt, when compared to CCSD(T)-h, reduces
this difference to 0.1 kcal/mol. The same applies to compar-
isons of the CCSD(T)-h and CC(t;3) relative energies, result-
ing from the calculations with the larger cc-pVTZ basis set,
with the OMR3-DMC data. Again, as shown in Table V, the
CCSD(T)-h approach, instead of bringing the CCSDt result
for the ZPVE-corrected disrotatory activation barrier of 59.0
kcal/mol closer to the OMR3-DMC value of 58.6(5) kcal/mol,
moves it away from the latter value, to 53.6 kcal/mol. CC(t;3)
does not do it, producing 60.1 kcal/mol, in excellent agree-
ment with OMR3-DMC.

In general, the CC(t;3)/cc-pVTZ values of the relative
energies characterizing the stationary points along the
conrotatory and disrotatory pathways of the bicbut→t-but
isomerization agree with the OMR3-DMC calculations of
Ref. 189 to within 0.1–0.4 kcal/mol for the con_TS, g-but,
gt_TS, and t-but points and 1.5 kcal/mol for the challenging
dis_TS structure. No other calculation performed to date has
accomplished such accuracy level. For example, the most
accurate ACSE/6-311G(d,p) calculations reported in Ref. 188

produce errors relative to OMR3-DMC that range from
0.8 kcal/mol in the case of the con_TS structure to
2.9 kcal/mol in the dis_TS case. Similar errors are obtained
when the previously reported186, 188, 198 MRMBPT and MRCI
data are analyzed (see Table V). Our earlier CR-CC(2,3)
studies using the cc-pVTZ and cc-pVQZ bases, and CBS
extrapolations187 suggest that the CC(t;3)/cc-pVTZ relative
energies are within 1 kcal/mol from their CBS analogs.

It is also encouraging to see the agreement between our
best CC(t;3)/cc-pVTZ and the available experimental data. As
shown in Table V, the activation enthalpy resulting from the
CC(t;3)/cc-pVTZ calculations corresponding to the conrota-
tory transition state is 40.2 kcal/mol, in excellent agreement
with the experimental value of 40.6 ± 2.5 kcal/mol. Although
the experimental error bars are relatively large in this case,
making all of the approximate triples SRCC methods exam-
ined in this work look reasonable, CC(t;3) is the only method
among the approximate triples SRCC approaches examined
here that provides an excellent agreement with both the total
and relative energies resulting from the full CCSDT calcu-
lations, independent of the stationary point on the PES. The
CC(t;3)/cc-pVTZ value of the enthalpy of isomerization of
bicyclo[1.1.0]butane to buta-1,3-diene, the experimental esti-
mate of which is −25.9 ± 0.4 kcal/mol,195 −28.3 kcal/mol,
when the t-but structure is used as a product, and −25.3
kcal/mol, when the nearly isoenergetic g-but rotamer is used
instead. Both of these results are very accurate. They agree
with the corresponding OMR3-DMC data to within the nu-
merical accuracy of the OMR3-DMC calculations.

IV. CONCLUSIONS

The conventional, MBPT-based, noniterative SRCC
methods, including CCSD(T) and its various higher-order
and excited-state, EOMCC-based, extensions, have difficul-
ties with handling MR electronic states. The newer gener-
ations of such methods, including �-CCSD(T), CCSD(2)T,
and CR-CC(2,3), and their higher-order and excited-state
analogs, alleviate some of these problems, but all noniterative
SRCC/EOMCC methods have one fundamental flaw, namely,
they always rely on a specific, a priori-defined SRCC (e.g.,
CCSD) or EOMCC (e.g., EOMCCSD) calculation, so there is
no mechanism to adjust the lower-order cluster components,
such as T1 and T2, in the presence of the larger Tn components
with n ≥ 3 that characterize systems with stronger nondynam-
ical electron correlation effects. By neglecting the coupling of
the higher-order Tn components with n ≥ 3 with their lower-
order T1 and T2 counterparts, the noniterative SRCC meth-
ods, even those belonging to the more robust �-CCSD(T),
CCSD(2), and CR-CC categories, may not be flexible enough
to provide an accurate description of certain classes of chem-
ical reaction profiles involving biradical transition states. The
active-space SRCC approaches, such as CCSDt, CCSDtq,
etc., which describe the coupling of the higher-order Tn com-
ponents with n ≥ 3, selected with the help of active orbitals,
with the lower-order T1 and T2 clusters, provide reasonable
relative energetics in many biradical cases, but they usually
fail to provide accurate total energies relative to the parent
SRCC approximations, such as CCSDT, CCSDTQ, etc., due
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to the neglect of higher-order Tn components that do not in-
volve active orbitals. These kinds of problems are often used
to advocate a genuine MR (e.g., MRCC) treatment.

This paper has discussed a different and, in our view, sim-
pler solution by exploring the recently suggested CC(P;Q) hi-
erarchy and the underlying Flex-MMCC formalism that en-
able one to contemplate a variety of novel low-cost SRCC
and EOMCC schemes, such as CC(t;3). In the ground-
state CC(t;3) method, the energies obtained in the active-
space CCSDt calculations are corrected for the effects of
triples missing in the CCSDt considerations using the ro-
bust noniterative corrections derived from the CC(P;Q) ex-
pansions, which are similar to those defining the existing CR-
CC(2,3) theory. We have discussed the key elements of the
CC(P;Q) and CC(t;3) approaches and, by examining the au-
tomerization of cyclobutadiene and the isomerization of bicy-
clo[1.1.0]butane to trans-buta-1,3-diene, which involve birad-
ical transition states and which pose serious challenges to the
CCSD(T), �-CCSD(T), CCSD(2)T, and CR-CC(2,3) meth-
ods, demonstrated that one can recover the total and relative
energies of full CCSDT to within less than 1 millihartree and
a fraction of kcal/mol, respectively, with a relatively small
effort compared to CCSDT. For comparison, the CCSD(T),
CCSD(2)T, CR-CC(2,3), and similar levels produce substan-
tial errors in the description of the transition-state energies,
on the order of 10 millihartree for total energies and sev-
eral kcal/mol for relative energies. We have also demonstrated
that the CC(t;3) approach improves the results of the active-
space CCSDt calculations, which produce accurate barrier
heights in situations involving biradical transition states, but
which are also characterized by rather substantial errors, on
the order of 10–30 millihartree, in the calculated total en-
ergies relative to CCSDT. The CC(t;3)-style corrections to
the CCSDt energies reduce these errors to less than 1 mil-
lihartree, further improving the relative energetics. We have
shown that the CC(t;3) approach, which employs the robust
corrections derived from the CC(P;Q) considerations, resem-
bling the triples corrections of CR-CC(2,3), is a lot more ef-
fective in capturing the effects due to the triple excitations
missing in CCSDt than the CCSD(T)-h method that attempts
to do the same through the use of the conventional (T) expres-
sions. In fact, the conventional (T) correction applied within
the CCSD(T)-h framework can worsen the CCSDt results,
when the automerization of cyclobutadiene and the isomer-
ization of bicyclo[1.1.0]butane to trans-buta-1,3-diene are ex-
amined, moving them away from the corresponding CCSDT
energies.

Finally, based on the excellent agreement between the
CC(t;3) and CCSDT total and relative energies obtained with
the cc-pVDZ basis set, and the CC(t;3)/cc-pVTZ relative en-
ergies obtained in this work and their OMR3-DMC counter-
parts obtained in Ref. 189, we have resolved the issues raised
in Ref. 188 related to the relative performance of the ACSE
and CR-CC(2,3) approaches in describing the concerted dis-
rotatory pathway of the isomerization of bicyclo[1.1.0]butane
to trans-buta-1,3-diene. We have provided evidence that while
CR-CC(2,3) overestimates the activation energy characteriz-
ing the biradical disrotatory transition state of this isomeriza-
tion, the ACSE and the previously reported MRMBPT and

MRCI activation energies characterizing the same transition
state are somewhat too low.
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(1990).
73J. Paldus and J. Planelles, Theor. Chim. Acta 89, 13 (1994).
74L. Stolarczyk, Chem. Phys. Lett. 217, 1 (1994).
75P. Piecuch, R. Toboła, and J. Paldus, Phys. Rev. A 54, 1210 (1996).
76T. Kinoshita, O. Hino, and R. J. Bartlett, J. Chem. Phys. 123, 074106

(2005).
77O. Hino, T. Kinoshita, G. K.-L. Chan, and R. J. Bartlett, J. Chem. Phys.

124, 114311 (2006).
78D. I. Lyakh, V. F. Lotrich, and R. J. Bartlett, Chem. Phys. Lett. 501, 166

(2011).
79X. Li and J. Paldus, J. Chem. Phys. 107, 6257 (1997).
80X. Li and J. Paldus, J. Chem. Phys. 124, 174101 (2006).
81X. Li and J. Paldus, J. Chem. Phys. 129, 054104 (2008).
82D. Mukherjee, R. K. Moitra, and A. Mukhopadhyay, Indian J. Phys. 48,

472 (1974).
83I. Lindgren, J. Phys. B 7, 2441 (1974).
84D. Mukherjee, R. K. Moitra, and A. Mukhopadhyay, Mol. Phys. 30, 1861

(1975).
85D. Mukherjee, R. K. Moitra, and A. Mukhopadhyay, Pramana 4, 247

(1975).
86D. Mukherjee, R. K. Moitra, and A. Mukhopadhyay, Mol. Phys. 33, 955

(1977).
87I. Lindgren and D. Mukherjee, Phys. Rep. 151, 93 (1987).
88D. Mukherjee and S. Pal, Adv. Quantum Chem. 20, 291 (1989).
89L. Meissner, J. Chem. Phys. 108, 9227 (1998).
90M. Musiał and R. J. Bartlett, J. Chem. Phys. 129, 044101 (2008).
91M. Musiał and R. J. Bartlett, J. Chem. Phys. 129, 244111 (2008).
92M. Musiał and R. J. Bartlett, J. Chem. Phys. 135, 044121 (2011).
93M. Nooijen and R. J. Bartlett, J. Chem. Phys. 102, 3629 (1995).
94M. Musiał and R. J. Bartlett, J. Chem. Phys. 119, 1901 (2003).
95M. Kamiya and S. Hirata, J. Chem. Phys. 125, 074111 (2006).
96R. J. Bartlett and J. F. Stanton, in Reviews in Computational Chemistry,

edited by K. B. Lipkowitz and D. B. Boyd (VCH, New York, 1994), Vol.
5, pp. 65–169.

97J. F. Stanton and J. Gauss, J. Chem. Phys. 101, 8938 (1994).
98M. Musiał, S. A. Kucharski, and R. J. Bartlett, J. Chem. Phys. 118, 1128

(2003).
99M. Musiał and R. J. Bartlett, Chem. Phys. Lett. 384, 210 (2004).

100M. Nooijen and R. J. Bartlett, J. Chem. Phys. 106, 6441 (1997).
101M. Nooijen, Int. J. Mol. Sci. 3, 656 (2002).
102M. Musiał, A. Perera, and R. J. Bartlett, J. Chem. Phys. 134, 114108

(2011).
103H. Nakatsuji and K. Hirao, Int. J. Quantum Chem. 20, 1301 (1981).

104H. Nakatsuji, K. Ohta, and T. Yonezawa, J. Phys. Chem. 87, 3068 (1983).
105H. Nakatsuji, Chem. Phys. Lett. 177, 331 (1991).
106H. Nakatsuji and K. Hirao, Chem. Phys. Lett. 47, 569 (1977).
107H. Nakatsuji, Chem. Phys. Lett. 59, 362 (1978).
108T. Yanai and G. K.-L. Chan, J. Chem. Phys. 124, 194106 (2006).
109T. Yanai and G. K.-L. Chan, J. Chem. Phys. 127, 104107 (2007).
110E. Neuscamman, T. Yanai, and G. K.-L. Chan, J. Chem. Phys. 132, 024106

(2010).
111D. A. Mazziotti, Phys. Rev. Lett. 97, 143002 (2006).
112D. A. Mazziotti, Phys. Rev. A 75, 022505 (2007).
113J. Noga and R. J. Bartlett, J. Chem. Phys. 86, 7041 (1987); 89, 3401

(1988) (Erratum).
114G. E. Scuseria and H. F. Schaefer III, Chem. Phys. Lett. 152, 382

(1988).
115N. Oliphant and L. Adamowicz, J. Chem. Phys. 95, 6645 (1991).
116S. A. Kucharski and R. J. Bartlett, J. Chem. Phys. 97, 4282 (1992).
117M. Musiał, S. A. Kucharski, and R. J. Bartlett, J. Chem. Phys. 116, 4382

(2002).
118M. Kállay and P. R. Surján, J. Chem. Phys. 115, 2945 (2001).
119J. Olsen, J. Chem. Phys. 113, 7140 (2000).
120S. A. Kucharski, M. Włoch, M. Musiał, and R. J. Bartlett, J. Chem. Phys.

115, 8263 (2001).
121S. Hirata, J. Chem. Phys. 121, 51 (2004).
122M. Kállay and J. Gauss, J. Chem. Phys. 121, 9257 (2004).
123Y. S. Lee and R. J. Bartlett, J. Chem. Phys. 80, 4371 (1984).
124Y. S. Lee, S. A. Kucharski, and R. J. Bartlett, J. Chem. Phys. 81, 5906

(1984); 82, 5761 (1985) (Erratum).
125J. F. Stanton, Chem. Phys. Lett. 281, 130 (1997).
126S. A. Kucharski and R. J. Bartlett, J. Chem. Phys. 108, 5243 (1998).
127A. G. Taube and R. J. Bartlett, J. Chem. Phys. 128, 044110 (2008).
128A. G. Taube and R. J. Bartlett, J. Chem. Phys. 128, 044111 (2008).
129M. Musiał and R. J. Bartlett, J. Chem. Phys. 133, 104102 (2010).
130S. Hirata, P.-D. Fan, A. A. Auer, M. Nooijen, and P. Piecuch, J. Chem.

Phys. 121, 12197 (2004).
131S. R. Gwaltney and M. Head-Gordon, Chem. Phys. Lett. 323, 21

(2000).
132S. R. Gwaltney, C. D. Sherrill, M. Head-Gordon, and A. I. Krylov,

J. Chem. Phys. 113, 3548 (2000).
133S. R. Gwaltney and M. Head-Gordon, J. Chem. Phys. 115, 2014 (2001).
134S. Hirata, M. Nooijen, I. Grabowski, and R. J. Bartlett, J. Chem. Phys.

114, 3919 (2001); 115, 3967 (2001) (Erratum).
135T. Shiozaki, K. Hirao, and S. Hirata, J. Chem. Phys. 126, 224106

(2007).
136P. Piecuch and K. Kowalski, in Computational Chemistry: Reviews of Cur-
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