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ABSTRACT: A multireference second order perturbation theory based on a
complete active space configuration interaction (CASCI) function or density
matrix renormalized group (DMRG) function has been proposed. This
method may be considered as an approximation to the CAS/A approach with
the same reference, in which the dynamical correlation is simplified with
blocked correlated second order perturbation theory based on the generalized
valence bond (GVB) reference (GVB-BCPT2). This method, denoted as
CASCI-BCPT2/GVB or DMRG-BCPT2/GVB, is size consistent and has a
similar computational cost as the conventional second order perturbation
theory (MP2). We have applied it to investigate a number of problems of
chemical interest. These problems include bond-breaking potential energy
surfaces in four molecules, the spectroscopic constants of six diatomic
molecules, the reaction barrier for the automerization of cyclobutadiene, and
the energy difference between the monocyclic and bicyclic forms of 2,6-
pyridyne. Our test applications demonstrate that CASCI-BCPT2/GVB can provide comparable results with CASPT2 (second
order perturbation theory based on the complete active space self-consistent-field wave function) for systems under study.
Furthermore, the DMRG-BCPT2/GVB method is applicable to treat strongly correlated systems with large active spaces, which
are beyond the capability of CASPT2.

I. INTRODUCTION

The single-reference (SR) post-Hartree−Fock (post-HF)
methods have achieved great success in describing electronic
structures of closed-shell molecules near their equilibrium
geometries. However, their accuracy deteriorates significantly
for bond breaking processes and diradical (or polyradical)
systems, in which the HF determinant is not a good zeroth-
order wave function. For such cases, a multireference (MR)
wave function, such as the complete active space self-
consistent-field (CASSCF) wave function, is usually taken as
the zeroth-order wave function. Since the static correlation
within the active space is adequately described with a full
configuration interaction (FCI) treatment, the CASSCF
method is able to provide qualitatively correct descriptions
for the multibond breaking processes. To further include the
dynamic correlation energy, which results from the correlation
between active electrons and inactive electrons, post-CASSCF
correlation methods1−21 should be developed. For instance,
within the many-body perturbation theory framework, several
schemes1−8 have been proposed, which include the popular
CASPT2 method (second order perturbation theory with the
CASSCF reference function)1−4 and the CAS/A method.5

However, the traditional CASSCF-based correlation schemes
are limited to systems with small active spaces. Several DMRG-
based perturbation theories have been developed22,23 to treat
systems with large active spaces. However, their computational
cost will increase quickly with the size of the active space. Thus,

less expensive approaches, which are available for systems with
large active spaces, are still needed.
In 2013, our group proposed a block correlated second order

perturbation theory based on a generalized valence bond
(GVB)24 reference function (GVB-BCPT2),25 whose computa-
tional cost is similar to that of the conventional single-reference
second-order Møller−Plesset perturbation theory (MP2). The
GVB-BCPT2 approach is demonstrated to have noticeably
better performance than MP2 for systems with significant
multireference character. However, it fails catastrophically in
multibond breaking processes, due to the inappropriate
treatment of interpair correlation.
In this work, we propose an alternative multireference

second order perturbation theory based on a complete active
space configuration interaction (CASCI) function or density
matrix renormalized group (DMRG) function.26−28 This
method can be considered as an approximation to the CAS/
A approach with the same reference, in which the dynamical
correlation is simplified with the GVB-BCPT2 approach. This
method, denoted as CASCI-BCPT2/GVB or DMRG-BCPT2/
GVB, is size-consistent, and shares a similar computational cost
as the conventional MP2 theory. The present method is
applicable to much larger systems than the CAS/A method and
can offer reasonably accurate descriptions for multibond
breaking processes.
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The paper is arranged as follows: In section II, we will give a
brief introduction to the CAS/A method and then describe the
basic formulations and computational details of CASCI-
BCPT2/GVB (or DMRG-BCPT2/GVB). In section III, the
present method is applied to investigate bond-breaking
potential energy surfaces in four systems, the spectroscopic
constants in six diatomic molecules, the reaction barrier for the
automerization of cyclobutadiene, and the energy difference
between the monocyclic and bicyclic forms of 2,6-pyridyne.
Finally, a brief summary will be given in section IV.

II. METHODOLOGY

A. A Brief Introduction to the CAS/A Method. Assume
that all orbitals of a given system can be divided into three
subgroups: closed-shell orbitals, virtual orbitals, and active
orbitals. Thus, the multireference reference function of the
CAS/A method can be formulated (in second-quantization
form) as a direct product of the ground state wave function of
each block:

|Ψ ⟩ = | ⟩| ⟩ = | ⟩| ⟩ | ⟩| ⟩| ⟩M N i j A r s... ... ...0
CAS/A

0 0 0 0 0 0 0 (1)

Here, i, j, ... (r, s, ...) represent occupied (or virtual) “single-
spin-orbital” blocks; A is the active block which consists of all
the active orbitals. In general, these blocks are denoted as M, N,
... The subscript 0 denotes the ground state. It is worth
mentioning that |A0⟩ is a linear combination of many products
of the creation operators of active orbitals (depending on the
number of active electrons), |i0⟩ is just a creation operator of a
closed-shell orbital, and |r0⟩ is a vacuum state. By construction,
any “excited” configuration function (as shown below) can be
formulated as

|Ψ ⟩ = ̂ |Ψ ⟩ = ̂ ̂ ̂ ̂ ···|Ψ ⟩+ − + −
λ η

T A A A Au u M M N N
CAS/A CAS/A

0
CAS/A

0
CAS/A

0 0

(2)

Here, T̂u
CAS/A is a block-correlated operator that produces an

“excited” configuration function from the reference function.
ÂMλ

+ is the creation operator that creates the λth excited state of

block M (denoted as |Mλ⟩) in the Fock space, while ÂM0

−

represents the annihilation operator that destroys the ground
state of block M. The subscript u is actually a compound index
(u = {Mλ, Nη, ...}). By definition, all the excited configuration
functions and the reference function are orthogonal to each
other.
The zeroth-order Hamiltonian (Ĥ0

CAS/A) of the CAS/A
approach is defined as the summation of the individual
Hamiltonians of all blocks:

∑ ∑ ∑ε ε̂ = + + ̂ ̂+ − + − + −

λ

λ λ λ
H a a a a E A A

i
i i i

r
r r r

A
A A A0

CAS/A

(3)

Here, the first two terms come from all “single-spin-orbital”
blocks (closed-shell and virtual orbitals) and the last term from
the active block, in which ÂAλ

+ and ÂAλ

− are block-state creation

and annihilation operators, respectively. With the CASSCF
reference, we can define the following generalized Fock
operator5,29 for closed-shell and virtual orbitals:

∑

∑

= + ⟨ || ⟩ + ⟨ | ⟩

+ ⟨ || ⟩ + ⟨ | ⟩

× ⟨ | | ⟩ + ⟨ | | ⟩α α β β
+ − + −

A h mx my mx my

xp yp xp yp

A P P A A P P A

( )

1
2

( )

( )

xy xy
m

P P
u v u v

u v u v

closed

,

act

0 0 0 0

u v

(4)

Here, h ̂ is the bare one-electron operator, (x,y) represents the
closed-shell (or virtual) orbitals, and m and Pu(v) are the spatial
orbitals of the closed-shell and active space, respectively. Then,
we diagonalize the Fock matrices (Axy) separately for closed-
shell and virtual orbital subspaces to obtain all the molecular
orbitals and their orbital energies (εi for closed-shell orbitals
and εr for virtual orbitals). While for the active block, its
Hamiltonian is defined to include two-electron interactions
within the active space:5

∑ ∑

∑ ∑

̂ = + ⟨ || ⟩

+ ⟨ || ⟩ + ⟨ | ⟩

∈

+ −

∈

+ + − −

∈

+ −

H h w x wx yz w x z y

w x wm xm wm xm

1
4

( )

A
w x A

wx
w x y z A

w x A m

, , , ,

,

closed

(5)

By diagonalizing the Hamiltonian (ĤA) within different
Hilbert subspaces, we can get the block states (Aλ) and their
block-state energies (EAλ

) for the active block. It is worth
mentioning that the CAS/A calculations based on GVB orbitals
are also possible. In such cases, the active block is defined to
include all open-shell orbitals and orbitals in all geminals.
Obviously, the reference function and all the excited

configuration functions described above are constructed to be
the eigenfunctions of Ĥ0

CAS/A. Assume that the eigenvalues of
Ĥ0

CAS/A are denoted as E0
CAS/A and {Eu

CAS/A}, the CAS/A energy
up to the second order can be computed directly as below:

∑

=

+
|⟨Ψ | ̂ − ̂ |Ψ ⟩|

−≠

E E

H H
E E
( )

u

u

u

CAS/A CASCI

0

0
CAS/A

0
CAS/A CAS/A 2

0
CAS/A CAS/A

(6)

Here, the reference function is usually taken as the complete
active space configuration interaction (CASCI) function, which
is a linear combination of all determinants from distributing
active electrons into active orbitals. It is worth mentioning that
the well-chosen reference function should describe the static
correlation well. The second term in eq 6 is responsible for
dynamical correlation. In principle, the static correlation should
be modified in the presence of dynamical correlation. But this
situation will not happen in the second order treatment of the
CAS/A method. It has been demonstrated that CAS/A has a
better performance than CASPT2 in dealing with the problem
of intruder states.5 However, since the number of the excited
configuration functions increases exponentially with the size of
the active space, the applications of the CAS/A method are
limited to systems with small active spaces.

B. The CASCI-BCPT2/GVB Method. In order to extend
the CAS/A method to systems with large active spaces, we have
to introduce some approximations to simplify the calculation of
the second term in eq 6. In fact, we can follow the ideas of the
GVB-BCPT2 approach introduced in our previous work to
achieve this goal. The basic idea is to approximate the CASCI
reference and excited functions as the GVB reference and the
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corresponding excited functions, and simplify the zeroth-order
Hamiltonian (Ĥ0

CAS/A) as the zeroth-order Hamiltonian (Ĥ0
GVB)

in computing the second term in eq 6. The resulting method is
named CASCI-BCPT2/GVB for convenience. First, the GVB
reference can be formulated as a direct product of the ground
state wave function of each block as below:

|Ψ ⟩ = | ⟩| ⟩ = | ⟩| ⟩ | ⟩| ⟩ | ⟩| ⟩M N i j P Q r s... ... ... ...0
GVB

0 0 0 0 0 0 0 0 (7)

Here, P (Q) represents a geminal block, which contains two
electrons and two orbitals. The ground state of the geminal
block can be expressed as below:

| ⟩ = + | ⟩α β α β
+ + + +P c p p c p p( ) vacP P0 1 1 2 20,1 0,2 (8)

in which p1 and p2 are the natural orbitals and cP0,1 and cP0,2 are
the pair coefficients. Since there are only two orbitals and two
electrons within each geminal, the number of the excited states
within the Fock space for each geminal is 15.25 The block
correlated operators {T̂u

GVB}, which can produce the corre-
sponding excited configuration functions {|Ψu

GVB⟩} by acting on
the GVB reference function, are listed in Appendix A. Since the
role of the second term in eq 6 is to add semiexternal and
external dynamical correlation involving active blocks and
closed-shell or virtual orbitals, the block-correlated operators
involving active blocks (geminals or open-shell spin orbitals)
only should be excluded.
Second, the zeroth-order Hamiltonian (Ĥ0

GVB) in CASCI-
BCPT2/GVB may be considered as an approximation to
Ĥ0

CAS/A in CAS/A:

∑ ∑ ∑ ∑ε ε̂ = + + ̂ ̂
λ

+ − + −

∈

+ −
λ λ λ

H a a a a E A A
i

i i i
r

r r r
P P

P P P0
GVB

(9)

Here, the first two terms come from all “single-spin-orbital”
blocks, which may include some open-shell orbitals, while the
last term comes from all the geminal blocks. Now we will
discuss how to obtain orbitals and block states for CASCI-
BCPT2/GVB calculations. First, a standard GVB calculation is
done to get open-shell orbitals and geminals. Then, we
construct a generalized Fock operator (Fxy)

25,29 for each type
of orbital (closed-shell, open-shell, and virtual), as done in our
previous GVB-BCPT2 approach. However, in this work, for
open-shell orbitals the corresponding Fock operator is defined
as

∑ ∑

∑ ∑

= + ⟨ || ⟩ + ⟨ | ⟩ + ⟨ || ⟩

+ ⟨ || ⟩ + ⟨ | ⟩
=

G h mk ml mk ml nk nl

c kp lp kp lp

( )

( ) ( )

kl kl
m n

P v
P v v v v

closed open

gem

1,2

2
v0,

(10)

Here, (k, l) represents the open-shell orbitals and Pv, m, and n
are the natural orbitals of different geminals, closed-shell spatial
orbitals, and open-shell spatial orbitals, respectively. In the last
step, we diagonalize the Fock matrices separately for closed-
shell (Fxy), open-shell (Gkl), and virtual subspaces (Fxy), to
obtain all the molecular orbitals and their orbital energies.
For a geminal block P, its individual Hamiltonian is defined

as

∑ ∑

∑ ∑ ∑

∑

∑

̂ = + ⟨ || ⟩

+ × ⟨ || ⟩

+ ⟨ || ⟩ + ⟨ | ⟩

+ ⟨ || ⟩ + ⟨ | ⟩

∈

+ −

∈

+ + − −

∈

+ −

≠ ∈

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

H h w x wx yz w x z y

w x c wl xl

wm xm wm xm

wn xn wn xn

1
4

( )

1
2

( )

P
w x P

wx
w x y z P

w x P Q P l Q
Q

m

n

, , , ,

,

2

closed

open

l0,

(11)

By diagonalizing the Hamiltonian described above within
different Hilbert subspaces, we can get the block states (Pλ) and
their block-state energies (EPλ) of each geminal block.
Since the GVB reference function Ψ0

GVB and its excited
configuration functions {|Ψu

GVB⟩} are constructed to be the
eigenfunctions of Ĥ0

GVB, the corresponding eigenvalues can be
formulated as below:

∑ ∑ε= +E E
i

i
P

P0
GVB

0
(12)

∑= + − + −

+

= λ η

λ η
E E E E E E(

...)

u
u M N

M M N N
GVB

0
GVB

{ , ,...}
0 0

(13)

Thus, the CASCI-BCPT2/GVB energy can be expressed as

∑

=

+
|⟨Ψ | ̂ − ̂ |Ψ ⟩|

−

−

≠

E E

H H
E E
( )

u

u

u

CASCI BCPT2/GVB CASCI

0

0
GVB

0
GVB GVB 2

0
GVB GVB

(14)

The computation of the Hamiltonian matrix elements
involved in eq 14 is straightforward, as shown in the Appendix
B. The computational cost of the CASCI-BCPT2/GVB method
is very similar to that of the conventional MP2 theory. Like the
GVB-BCPT2 approach, the present CASCI-BCPT2/GVB
method is also expected to be size consistent. From the
discussions above, one may consider the CASCI-BCPT2/GVB
method as an approximation to the CAS/A method. Due to the
much lesser computational cost, the CASCI-BCPT2/GVB
method is expected to be applicable to systems with large active
spaces. Especially, for systems with relatively large active spaces,
the DMRG wave function may take the role of the CASCI
reference function. For such systems, one may perform
DMRG-BCPT2/GVB calculations instead.
It should be mentioned that, for systems involving breaking

of two or more covalent bonds, the ground-state and excited-
state energies of some geminals may become nearly degenerate
(EP0 ≈ EPλ), and thus the GVB-BCPT2 energy may diverge
(due to small denominators). However, CASCI-BCPT2/GVB
does not have this difficulty. A main reason is the absence of
pure active excitations among different geminals in eq 14. In
addition, in a reasonable GVB wave function, all the valence
electrons should be described with geminals or open-shell
orbitals. Hence, the energies of the orbitals in active blocks
(geminals and open-shell blocks) are lower than those of the
virtual orbitals but higher than those of the closed-shell orbitals.
Since each excited configuration function in eq 14 corresponds
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to the excitation of electrons from lower-energy blocks to
higher-energy blocks, the denominator (E0

GVB − Eu
GVB) in eq 14

will not come close to zero. Hence, with a reasonably chosen
GVB reference, the CASCI-BCPT2/GVB method can avoid
the divergence problem of the original GVB-BCPT2 method.
Our numerical results in the next section also support this
analysis.
C. Implementation Details. In the present implementa-

tion, the one-electron and two-electron integrals are obtained
by running the GAMESS30 program. Then, our own program is
used to determine the molecular orbitals with orbital energies
and the block states with block−state energies for all geminals
(for GVB-BCPT2 and CASCI-BCPT2/GVB) or a general
active block (for CAS/A). The CASCI-BCPT2/GVB method
can be easily implemented by slightly modifying the original
GVB-BCPT2 program. If the active space is small, our own
CASCI program is performed. Otherwise, the BLOCK
program31−34 from Chan’s group is performed for DMRG
calculations. The total energies within the CAS/A and CASCI-

BCPT2/GVB (or DMRG-BCPT2/GVB) frameworks are
obtained via eq 6 and eq 14, respectively.

III. RESULTS AND DISCUSSIONS

In this section, we will apply the CASCI-BCPT2/GVB (or
DMRG-BCPT2/GVB) method to a number of systems to
demonstrate its accuracy and applicability. For these systems,
we will also compare the results from our methods with those
from other theoretical methods or the experimental data. To
obtain results from other theoretical methods, we have
performed CASPT235−37 calculations with the MOLRPO
program,38 and CCSD (coupled cluster singles and dou-
bles)39−42 and CCSD(T) (coupled cluster singles, doubles and
perturbative triples)43 calculations with the GAMESS program.
For convenience, (ne, no) is used to represent the active space
with ne active electrons in no active orbitals employed in
CASSCF, CASCI, CAS/A, and DMRG calculations. For a given
system, the orbitals employed in GVB-BCPT2, CASCI-
BCPT2/GVB (or DMRG-BCPT2/GVB), and CAS/A calcu-
lations are derived from a standard GVB calculation. In some

Table 1. Ground-State Energies Obtained Using Various Theoretical Methods with the Cartesian cc-pVDZ Basis Set for
Simultaneous Bond Dissociation in H2O

a

R (Re) GVB GVB-BCPT2 CASCI-BCPT2/GVB CAS/Ab CASSCF CASPT2 DMRG

1.0 178.60 10.17 10.10 15.49 (16.08) 169.19 13.31 −76.24549
1.5 164.31 10.99 10.71 13.89 (13.96) 156.31 11.53 −76.07575
2.0 147.30 10.50 14.24 15.35 (15.36) 137.91 8.45 −75.95484
2.5 145.89 −34.45 14.07 15.46 (15.44) 129.56 8.08 −75.92100
3.0 146.55 −309.62 13.26 14.54 (14.51) 126.88 7.42 −75.91411
5.0 147.80 −5.31E5 14.05 15.26 (15.23) 127.12 8.27 −75.91326
MAE 178.60 5.31E5 14.24 15.49 (16.08) 169.19 13.31
NPE 32.71 5.31E5 4.14 1.60 (2.12) 42.31 5.89

aThe bond angle is fixed at ∠HOH = 110.6°, and Re = 0.97551 Å. DMRG(2000) energies (hartree) are taken as the reference data. The values for
GVB, GVB-BCPT2, CASCI-BCPT2/GVB, CAS/A, CASSCF, and CASPT2 are the deviations with respect to the reference data in millihartree
(mH). bThe CAS/A values based on the CASSCF orbitals are included in parentheses.

Table 2. Ground-State Energies Obtained Using Various Theoretical Methods with the cc-pVDZ and cc-pVTZ Basis Sets for the
Triple Bond Breaking Process in N2

a

cc-pVDZ

R (bohr) GVB CASCI-BCPT2/GVB CAS/Ab CASSCF CASPT2 DMRG

2.118 253.94 23.94 34.20 (33.98) 191.60 22.57 −109.28287
2.4 263.60 24.19 34.31 (33.58) 195.26 22.91 −109.24271
2.7 268.40 24.00 33.62 (33.02) 198.63 22.25 −109.16447
3.0 267.49 24.42 32.83 (32.77) 200.79 20.21 −109.09015
3.6 264.31 26.36 33.41 (33.74) 197.64 14.58 −108.99805
4.5 278.63 25.90 33.68 (33.54) 187.39 13.53 −108.96551
MAE 278.63 26.36 34.31 (33.98) 200.79 22.91
NPE 24.69 2.42 1.48 (1.21) 13.40 9.38

cc-pVTZ

R (bohr) GVB CASCI-BCPT2/GVB CAS/Ab CASSCF CASPT2 DMRG

2.118 319.15 29.85 40.47 (39.56) 257.50 24.71 −109.37691
2.4 326.13 29.60 40.04 (38.54) 258.60 24.40 −109.32994
2.7 329.29 28.22 38.52 (37.36) 260.15 22.76 −109.24839
3.0 327.38 27.21 36.97 (36.76) 261.02 19.72 −109.17231
3.6 320.71 26.28 36.61 (37.20) 254.73 11.82 −109.07482
4.5 330.67 23.62 36.53 (36.26) 240.68 10.23 −109.03653
MAE 330.67 29.85 40.04 (39.56) 261.02 24.71
NPE 11.52 6.23 3.94 (3.30) 20.34 14.48

aDMRG(2000) energies (hartree) are taken as the reference data at both basis sets. The values for GVB, CASCI-BCPT2/GVB, CAS/A, CASSCF,
and CASPT2 are the deviations with respect to the reference data in mH. bThe CAS/A values based on the CASSCF orbitals are included in
parentheses.
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cases, we also performed CAS/A calculations based on the
CASSCF orbitals. A comparison of the CAS/A results based on
GVB and CASSCF orbitals may be used to judge whether the
GVB orbitals are good approximations to CASSCF orbitals.
A. Bond Breaking Potential Energy Surfaces. In this

subsection, we will investigate the performance of the CASCI-
BCPT2/GVB (or DMRG-BCPT2/GVB) method on multi-
bond dissociation processes in four typical systems. The first
example is the simultaneous dissociation of two O−H bonds in
H2O. In our calculations, the H−O−H angle is fixed at 110.6°,
and the O−H bond is set to be at the equilibrium distance (Re
= 0.97551 Å). We have calculated the ground-state energies
with several methods at a series of O−H bond distances at
Cartesian cc-pVDZ basis set. The orbitals from GVB(2)
calculations are employed in GVB-BCPT2, CASCI-BCPT2/
GVB, and CAS/A calculations, and the CASSCF(4,4) wave
function is employed as the reference for CASPT2 calculations.
The maximum absolute errors (MAEs) and the nonparallelity
errors (NPEs) of GVB(2), GVB(2)-BCPT2, CASCI-BCPT2/
GVB(2), CASSCF(4,4), CAS/A(4,4), and CASPT2(4,4) with
respect to the DMRG energies are listed in Table 1. Here,
DMRG results obtained with 2000 states [DMRG(2000)] are
correct to four decimal places to the full CI results. It can be
seen from Table 1 that GVB(2)-BCPT2 breaks down when the
O−H distance is larger than 2.5 Re. The NPE value of GVB(2)-
BCPT2 is as large as 5.3E5 milihartree (mH). However, one
can notice that the CAS/A values based on GVB and CASSCF
orbitals are very close to each other, with the NPE values of
only 1.60 and 2.12 mH, respectively. In addition, the largest
deviation between CASSCF and CASCI (based on GVB
orbitals) energies is only 1.03 mH. These results suggest that
GVB orbitals are quite good approximations to CASSCF
orbitals. The CASCI-BCPT2/GVB(2) approach is a good
approximation to the CAS/A method, with the NPE value of
4.14 mH. The CASPT2(4,4) method has a slightly larger NPE
value (5.89 mH).
The second example is the triple bond breaking process in

N2. Two Cartesian basis sets (cc-pVDZ and cc-pVTZ) are
employed. With orbitals from GVB(3) calculations, the (6,6)
active space is used in CASCI and CAS/A calculations. The
core orbitals are frozen in correlation calculations. The MAEs
and NPEs of several approaches at various N−N bond lengths
with respect to the DMRG(2000) energies are listed in Table 2.
The CASCI-BCPT2/GVB(3) approach is able to provide
satisfactory descriptions, with the NPE values being only 2.4

and 6.2 mH at cc-pVDZ and cc-pVTZ basis sets, respectively.
The performance of the CAS/A method (with both GVB and
CASSCF orbitals) is still the best, with the NPE values of less
than 1.5 and 4.0 mH at cc-pVDZ and cc-pVTZ basis sets,
respectively. The CAS/A results based on GVB orbitals are
excellent approximations to those based on CASSCF orbitals.
The CASCI-BCPT2/GVB(3) approach has a smaller NPE
value than the CASPT2(6,6) method at both basis sets.
The third example is the simultaneous bond dissociation of

four single bonds in methane. The Cartesian 6-31G** basis set
is employed. The potential energy surface of this molecule at a
series of C−H bond distances from 1.0 to 3.3 Å (all the bond
angels are fixed) is investigated with several methods. With
orbitals from GVB(4) calculations, the (8,8) active space is
used in CASCI and CAS/A calculations. The CASSCF(8,8)
wave function is employed as the reference for CASPT2
method. The MAEs and NPEs of several methods at various
C−H bond distances with respect to the DMRG(2000)
energies are listed in Table 3. The CASCI-BCPT2/GVB(4)
approach is able to provide reasonable descriptions, with the
NPE value of 13.2 mH. The CASPT2(8,8) method has the best
performance, with the NPE value of 10.5 mH. The CAS/A
results based on GVB and CASSCF orbitals are also in good
agreement with each other, and the performance of the CAS/A
method is similar to that of the CASCI-BCPT2/GVB(4)
method.
The last example is the simultaneous bond dissociation of 13

single bonds in an n-butane molecule. The equilibrium
geometry of this molecule is optimized with the B3LYP
method at the 6-31G basis set. Then, the potential energy
surface of this molecule with all the bond distances
simultaneously stretched from their 0.8 Re to 1.8 Re (all the
bond angels are fixed at their equilibrium values) is investigated
with several methods. The equilibrium geometry and its
distorted structure with all bond distances being 1.8 Re are
shown in Figure 1. The ground-state energies of this system at
various bond distances at the 6-31G basis set are calculated
from DMRG calculations with 2000 states, in which 26
electrons are distributed into 52 orbitals (four core orbitals are
frozen in correlation calculations and the remaining occupied
and virtual orbitals are localized separately). To describe the
dissociation of all C−C and C−H bonds, we have to perform
GVB(13) calculations to get the orbitals and geminals. It
should be mentioned that at bond distances beyond 1.8 Re, we
could not obtain converged GVB energies for this molecule.

Table 3. Ground-State Energies Obtained Using Various Methods at the Cartesian 6-31G** Basis Set for a Methane Moleculea

R (Å) GVB CASCI-BCPT2/GVB CAS/Ab CASSCF CASPT2 DMRG

1.0 140.22 27.22 26.75 (26.00) 119.05 15.93 −40.37160
1.2 125.39 22.21 22.03 (21.06) 102.78 13.84 −40.36825
1.5 110.64 15.82 15.76 (14.34) 81.57 10.05 −40.17464
1.8 113.16 14.02 12.89 (11.33) 69.39 7.42 −39.97766
2.1 141.62 17.94 13.45 (11.32) 65.97 5.95 −39.85028
2.4 190.67 23.33 14.43 (11.99) 65.11 5.41 −39.78936
2.7 239.35 25.28 14.19 (12.36) 63.72 5.48 −39.76485
3.0 274.01 25.62 13.62 (12.44) 62.66 5.74 −39.75562
3.3 292.72 26.14 13.29 (12.46) 62.10 5.92 −39.75212

MAE 303.92 27.22 26.75 (26.00) 119.05 15.93
NPE 193.28 13.20 13.87 (14.68) 58.48 10.52

aThe bond angles are fixed when all the bond distances are stretched from 1.0 to 3.3 Å. The DMRG(2000) energies (hartree) are taken as the
reference data. The values for GVB, CASCI-BCPT2/GVB, CAS/A, CASSCF, and CASPT2 are the deviations with respect to the reference data in
mH. bThe CAS/A values based on the CASSCF orbitals are included in parentheses.
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Since CASSCF, CASPT2, and CAS/A calculations are not
feasible for this system, only DMRG(26,26), GVB(13)-BCPT2,
and DMRG(26,26)-BCPT2/GVB(13) results are listed in
Table 4. Here, 1000 states are used in DMRG(26,26)
calculations, in which 13 pairs of electrons are distributed
into 26 geminal orbitals from GVB(13) calculations. One can
see that during the bond breaking process of this molecule,
GVB(13)-BCPT2 is not able to provide satisfactory descrip-
tions, with the NPE value being 102.8 mH. However, the
DMRG(26,26)-BCPT2/GVB(13) approach can provide rea-
sonably accurate results, with the NPE value of 16.3 mH. The
performance of DMRG(26,26) is much worse than that of
DMRG(26,26)-BCPT2/GVB(13). This result indicates that
DMRG-BCPT2/GVB is effective in evaluating the dynamical
correlation. To conclude from this subsection, one can see that
the CASCI-BCPT2/GVB method can provide reasonably
accurate descriptions for dissociation of multiple bonds and
simultaneous dissociation of many single bonds.
B. Equilibrium Distances and Spectroscopic Con-

stants in Diatomic Molecules. For five diatomic molecules
including C2 (

1Σg
+),44 CN (2Σ+),44 ScO (2Σ+),45 TiN (2Σ+),46,47

and VN (3Δ),48 we have calculated their ground-state
equilibrium distances (Re), vibration frequencies (ωe), and
anharmonicity constants (ωexe) with GVB-BCPT2, CASCI-
BCPT2/GVB, and CASPT2 methods. The Cartesian cc-pVTZ
basis set is employed, and all electrons are correlated in
calculations. In the GVB reference, there are four geminals for
C2, and three geminals for the other four molecules. The values
obtained by fitting the potential energy profiles (around the
equilibrium distance) as a sixth degree polynomial potential are
listed in Table 5. One can see that the overall performance of
CASCI-BCPT2/GVB is noticeably better than GVB-BCPT2,
especially for CN. The deviations of GVB-BCPT2 vibration
frequencies and anharmonicity constants (relative to the
experimental data) in CN reach up to 196 and 110.6 cm−1,

respectively, while the deviations from CASCI-BCPT2/GVB
are only 1 and 0.6 cm−1, respectively. Among the three
methods, the CASPT2 method shows the best overall
performance. Nevertheless, without using the IP-EA (ionization
potential-electron affinity) shift, the CASPT2 method imple-
mented in MOLPRO cannot give converged results for TiN
and VN molecules.
The CASCI-BCPT2/GVB method is also employed to study

the spectroscopic properties for the ground state of Cr2
(1Σg

+).49−53 For this system, six geminals are employed to
describe the hextuple bonds in Cr2. The Cartesian cc-pVTZ
basis set is employed, and all electrons are correlated in our

Figure 1. Equilibrium geometry of n-butane (optimized at the B3LYP/
6-31G level) and its distorted structure. In the distorted structure, all
the bond distances are stretched from their equilibrium distances to
1.8 Re, while all the bond angels are fixed during this process.

Table 4. Ground-State Energies Obtained Using Various Methods at the 6-31G Basis Set for a n-Butane Moleculea

R (Re) GVB(13) DMRG(26,26) GVB(13)-BCPT2 DMRG(26,26)-BCPT2/GVB(13) DMRG(26,52)

0.8 234.12 164.14 41.37 35.77 −156.87679
0.9 237.68 159.02 36.22 32.01 −157.50490
1.0 239.26 149.75 30.80 27.78 −157.67025
1.2 246.53 129.56 24.06 21.34 −157.40186
1.4 271.97 118.59 30.15 19.43 −156.92275
1.6 327.91 119.75 59.89 21.34 −156.50091
1.8 427.45 129.37 126.88 26.44 −156.20666
MAE 427.45 164.14 126.88 35.77
NPE 188.19 45.55 102.82 16.34

aThe bond angles are fixed when all the bond distances are stretched from 0.8 Re to 1.8 Re. The DMRG(26,52) energies (hartree) are taken as the
reference data. The values for GVB(13), DMRG(26,26), GVB(13)-BCPT2, and DMRG(26,26)-BCPT2/GVB(13) are the deviations with respect to
the reference data in mH.

Table 5. Equilibrium Distances (Re), Vibration Frequencies
(ωe) and Anharmonicity Constants (ωexe) Calculated with
Different Methods for the Ground State of Several Diatomic
Moleculesa

GVB-BCPT2 CASCI-BCPT2/GVB CASPT2 exptl.b

Re (Å)
C2 1.257 1.247 1.245 1.243
CN 1.172 1.175 1.178 1.172
ScO 1.663 1.659 1.664 1.668
TiN 1.572 1.58 1.584 1.583
VN 1.555 1.556 1.564 1.574
max 0.019 0.018 0.010
mean 0.007 0.005 0.003

ωe (cm
−1)

C2 1853 1859 1871 1855
CN 2265 2070 2038 2069
ScO 1023 1029 997 965
TiN 1107 1093 1048 1050
VN 1055 1081 1031 1033
max 196 64 32
mean 48 23 12

ωexe (cm
−1)

C2 9.5 14 13 13.3
CN −97.5 12.5 12.9 13.1
ScO 9 7.3 4.6 4.2
TiN 8.5 3 5.2 5.1
VN 7.4 5.5 6.9 6.7
max 110.6 3.1 0.4
mean 17.6 1.1 0.2

aThe cc-pVTZ basis set is employed. There are four geminals for C2
and three geminals for CN, ScO, TiN, and VN. All the electrons are
correlated in correlation calculations. bRef 44 for C2 and CN, ref 45 for
ScO, refs 46 and 47 for TiN, and ref 48 for VN.
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calculations. Unfortunately, GVB(6)-BCPT2 cannot provide
the spectroscopic data of this molecule, since the GVB(6)-
BCPT2 energy diverges. This fact reflects that the intergeminal
correlation is very strong in Cr2 even around its equilibrium
geometry. The CASCI-BCPT2/GVB(6) approach, in which
the intergeminal correlation is described with CASCI(12,12), is
able to provide acceptable equilibrium distance Re (1.605 Å)
and vibration frequency ωe (624 cm

−1), and dissociation energy
De (1.56 eV), as shown in Table 6. The performance of

CASPT2(12,12)54 is somewhat better than that of CASCI-
BCPT2/GVB(6). There are two directions for improving the
descriptions. First, one may employ larger active spaces (by
adding more virtual orbitals into the active space). As shown
previously, DMRG-CASPT2(12,28)55 calculations can offer
better results than CASPT2(12,12) calculations (see Table 6).
Second, the active space maintains the original size, but the
dynamical correlation is described with a more accurate
method. The MR-AQCC(12,12) (multireference average-
quadratic coupled cluster)56 method is also demonstrated to
be more accurate than CASPT2(12,12). Along this direction,
higher order perturbation corrections within the CASCI-
BCPT2/GVB framework may be considered in the future.
C. The Barrier Height of the Automerization Reaction

of Cyclobutadiene. We have applied the CASCI-BCPT2/
GVB method to calculate the barrier height of the
automerization reaction of cyclobutadiene. The geometries of
the reactant and the transition state optimized with the MR-
AQCC method57 at the cc-pVTZ basis set are displayed in
Figure 2. With orbitals from GVB(2) calculations, the (4,4)
active space, which contains four π electrons in four π orbitals,
is used in CASCI and CAS/A calculations. With zero-point
energy (ZPE) corrections (−2.5 kcal/mol at the MR-AQCC/
cc-pVDZ level), the calculated energy barriers obtained with
different methods are listed in Table 7. The core orbitals are
frozen in all electron correlation calculations. It can be seen
from Table 7 that GVB(2)-BCPT2 predicts a much higher
barrier height (18.6 kcal/mol) than the experimental estimate
(1.6−10.0 kcal/mol),58 while CASCI-BCPT2/GVB(2) predicts
a barrier of 11.8 kcal/mol, being close to the CAS/A barrier
with GVB orbitals (10.3 kcal/mol). The CAS-BCCC459 and
MR-AQCC methods provide similar barrier heights. If we
consider their values as the reference data, the deviations of
CASCI-BCPT2/GVB and CASPT2 barriers are quite similar.
Surprisingly, the CAS/A barrier based on the CASSCF orbitals
(6.92 kcal/mol) is much closer to the reference data than that
with the GVB orbitals (10.33 kcal/mol). This result indicates
that GVB orbitals are not good mimics of CASSCF orbitals. By
analyzing the components of GVB orbitals, we find that for this
system GVB orbitals in the transition state are noticeably
delocalized compared to those in the reactant. Thus, our

calculations on this reaction reveal that the accuracy of the
CASCI-BCPT2/GVB method may decrease to some extent if
the delocalization of GVB orbitals is significant.

D. The Energy Difference between the Monocyclic
and Bicyclic Forms of 2,6-Pyridyne. The 2,6-isomers of
didehydropyridine (pyridyne) are a very interesting class of
compounds as they exhibit a wide range of multireference
character, depending on the distance between the two radical
centers. The geometries of the monocyclic and bicyclic forms of
2,6-pyridyne are taken from ref 60 (displayed in Figure 2),
which are optimized with the Mk-MRCCSD (state-specific
multireference coupled cluster singles and doubles) method
developed by Mukherjee and co-workers at the cc-pCVTZ basis
set. The Mk-MRCCSD and corresponding Mk-MRCCSD(T)
(Mk-MRCCSD method with perturbative triples)61 employ the
restricted HF (RHF) determinant as the reference. Our GVB-
BCPT2 and CASCI-BCPT2/GVB calculations are based on the
GVB(4) orbitals, in which three geminals contain six π
electrons in six π orbitals and the fourth geminal describes
the σ bond between the radical centers. The calculated energy
differences with various methods are listed in Table 8. The
CCSD method incorrectly predicts the bicyclic structure to be

Table 6. Calculated and Experimental Spectroscopic Data
for the Ground State of Cr2

methods Re (Å) ωe (cm
−1) De (eV)

CASCI-BCPT2/GVB(6)a 1.605 624 1.56
CASPT2(12,12)b 1.695 534 1.66
DMRG-CASPT2(12,28)c 1.682 471 1.56
MR-AQCC(12,12)d 1.685 459 1.36
exptl. 1.679e 481f 1.45−1.56g

aCartesian cc-pVTZ basis set is employed and all electrons are
correlated. bRef 54. cRef 55. dRef 56. eRef 49. fRef 50. gRefs 51−53.

Figure 2. Structures of the reactant and the transition state of
cyclobutadiene and the monocyclic and bicyclic forms of 2,6-pyridyne.
The structural parameters of these species are taken from refs 57 and
60, respectively.

Table 7. ZPE-Corrected Energy Barriers (kcal/mol) for the
Automerization of Cyclobutadiene Calculated with Different
Methods at the Cartesian cc-pVTZ Basis Seta

methods barriers (kcal/mol)

GVB(2)-BCPT2 18.59
CASCI-BCPT2/GVB(2) 11.81
CAS/Ab 10.33 (6.92)
CASPT2 1.30
CAS-BCCC4c 6.21
MR-AQCCd 6.40
exptl.e 1.6−10.0

aThe CASPT2, CAS-BCCC4, and MR-AQCC methods are calculated
with the CASSCF(4,4) reference. bThe CAS/A value based on the
CASSCF orbitals is included in parentheses. cRef 59. dRefs 57
(calculated with the spherical cc-pVTZ basis set). eRef 58.
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more stable by about 3.6 kcal/mol, while the other methods
favor the monocyclic form to be the lowest-energy structure.
Since the Mk-MRCCSD(T) method should be the most
accurate method among these methods, the Mk-MRCCSD(T)
value (8.8 kcal/mol) may be taken as the reference data. One
can see that CASCI-BCPT2/GVB(4) predicts the energy
difference to be 4.9 kcal/mol, being close to the CCSD(T)
value (5.5 kcal/mol). The CAS/A energy differences based on
the GVB and CASSCF orbitals are 6.4 and 5.4 kcal/mol,
respectively. The analysis of the GVB orbitals shows that for
these two structures the GVB orbitals are somewhat
delocalized, but the delocalization extent of these GVB orbitals
in both structures is quite similar.

IV. CONCLUSIONS
In this paper, we propose an alternative multireference
perturbation theory based on a complete active space
configuration interaction (CASCI) function or density matrix
renormalized group (DMRG) function as the reference. The
method may be considered as an approximation to the CAS/A
approach with the same reference, in which the dynamical
correlation is simplified with blocked correlated second order
perturbation theory based on the generalized valence bond
(GVB) reference. The present method, named CASCI-
BCPT2/GVB or DMRG-BCPT2/GVB, is size consistent, and
has a similar computational cost as the conventional MP2
method. We have applied the present method to investigate the
bond-breaking potential energy surfaces in four molecules
(H2O, N2, methane, and n-butane), the spectroscopic constants
of six diatomic molecules, and the reaction barrier for the
automerization of cyclobutadiene and the energy difference
between the monocyclic and bicyclic forms of 2,6-pyridyne.
Our test applications demonstrate that this method can provide
comparable results as CASPT2 for multibond dissociation
processes (when CASPT2 calculations are feasible) and much
better results than GVB-BCPT2, especially when systems
exhibit strong multireference character. Our calculations also
show that the CASCI-BCPT2/GVB method would be a good
approximation to the CAS/A method with the same GVB
reference orbitals. However, when the GVB orbitals are quite
delocalized in some systems, the performance of the CASCI-
BCPT2/GVB method may become less satisfactory, since in
such cases GVB orbitals may be not good approximations to
the corresponding CASSCF orbitals. Furthermore, DMRG-
BCPT2/GVB is applicable to strongly correlated systems with
large active spaces, which are beyond the capability of CASPT2.

DMRG-BCPT2/GVB has the potential to be a promising
approach for describing the electronic structures of certain large
systems, in which both the static correlation and dynamical
correlation are very important.
It is worthwhile to mention how the perturbation approach

described in this work can be further improved. In the present
approach, the dynamical correlation is treated at the GVB-
BCPT2 level. An obvious improvement is to treat the
dynamical correlation up to the third-order block correlated
perturbation theory. Other improvements on this method are
also possible.

■ APPENDIX A: BLOCK-CORRELATED EXCITED
OPERATORS REQUIRED IN THE CASCI-BCPT2/GVB
METHOD

Three categories of block-correlated excitation operators (two-,
three-, and four-block correlated operators) are needed in
constructing the first-order wave function. The expressions of
these block-correlated excitation operators are given for each
category separately.
Two-block correlated operators:
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Three-block correlated operators:
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Four-block correlated operators:

Table 8. Relative Energies (kcal/mol) of the Monocyclic
Form of 2,6-Pyridyne with Respect to the Bicyclic Form
Calculated with Various Methods at the cc-pCVTZ Basis
Seta

methods energy difference (kcal/mol)

GVB(4)-BCPT2 3.4
CASCI-BCPT2/GVB(4) 4.9
CAS/Ab 6.4 (5.4)
CCSDc −3.6
CCSD(T)c 5.5
Mk-MRCCSDc 3.6
Mk-MRCCSD(T)c 8.8

aThe Mk-MRCCSD and Mk-MRCCSD(T) calculations are based on
a closed-shell HF reference. bThe CAS/A value based on the CASSCF
orbitals is included in parentheses. cRef 61.
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In the formulations above, N0 represents the number of
electrons in the ground state of each geminal block. In the GVB
reference, N0 is always equal to 2.
In CASCI-BCPT2/GVB, the orbital indices in T̂u

GVB also
include the open-shell orbitals, in addition to closed-shell and
virtual orbitals. However, the block correlated operators only
involving active blocks (geminals or open-shell orbitals) should
be excluded. While in CAS/A, since the active block consists of
all geminals and open-shell orbitals, only T̂2A, T̂2B, T̂2C, T̂3E, T̂3F,
T̂3G, T̂4F, T̂4G, and T̂4H operators are needed. For CAS/A, N0 is
just the number of active electrons.

■ APPENDIX B: THE COMPUTATION OF THE MATRIX
ELEMENTS ⟨Ψ0

GVB|(Ĥ − Ĥ0
GVB)|ΨU

GVB⟩

In the following, we will give some details on how to compute
the matrix elements, ⟨Ψ0

GVB|(Ĥ − Ĥ0
GVB)|Ψu

GVB⟩, involved in eq
13.
Since both |Ψ0

GVB⟩ and {|Ψu
GVB⟩} are the eigenfunctions of
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GVB, we have

⟨Ψ | ̂ |Ψ ⟩ =H 0u0
GVB

0
GVB GVB

(B1)

Then,
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Using the second-quantized form of the electronic
Hamiltonian, we have developed a computer program to
generate the expressions of ⟨Ψ0

GVB|Ĥ|Ψu
GVB⟩ for all excited

configurations. For instance, some matrix elements can be
computed as listed below:

∑ ∑ ∑ ∑ ∑ ∑ ∑

∑

̂ Ψ = ̂ ̂ ̂

× ̂ ̂ ̂ Ψ = Ψ

λ σ ω∈

−

≠ ∈

+

≠ ∈

+
+ − +

− + − −

λ σ

ω

T A A A

A A A i

1
2

1
2

P P

N

Q P Q

N

R P Q R

N

i
P P Q

Q R R
u

u

4B 0
GVB

gem 1 gem 1

,

gem 1 occ

0
GVB GVB

0 0 0

0

0 0
(B3)

Ψ = ̂ ̂ ̂ ̂ ̂ ̂ Ψ+ − + − + − −
λ σ ω

A A A A A A iu P P Q Q R R
GVB

0
(0)

0 0 0 (B4)

∑ ∑ ∑⟨Ψ | ̂ |Ψ ⟩ = ⟨ || ⟩ × ⟨ | | ⟩

× ⟨ | | ⟩ × ⟨ | | ⟩

λ

σ ω

∈ ∈ ∈

+

− −

H iw xy P w P

Q x Q R y R

u
w P x Q y R

0
GVB GVB

0

0 0 (B5)
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■ NOTE ADDED AFTER ASAP PUBLICATION
This article was posted ASAP on September 15, 2015. In Table
2, the DMRG data for N2 for the distance Re = 3.6 and 4.5 in
cc-PVTZ basis has been corrected. The corrected version was
published on September 25, 2015.
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