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ABSTRACT
Recently, we have suggested an approximate state-specific multi-reference coupled-cluster (SS-
MRCC) singles, doubles and triples method based on the CCSDT-1a+d approximation applied to the
single-reference CC approach, in which the contribution of the connected triple excitations is itera-
tively treated. Themethod, abbreviated as SS-MRCCSDT-1a+d is intruder-free and fully size-extensive.
It has been employed for geometry optimisations of various systems possessing quasi-degeneracy
of varying degrees (like N2H2 and O3) by invoking numerical gradient scheme. The method is also
applied to CH2 and square cyclobutadiene in their excited states. For all systems under study, the
computed values are in good accordance with state-of-the-art theoretical estimates indicating that
the methodmight be a promising candidate for an accurate treatment of geometrical parameters of
states plagued by electronic degeneracy in a computationally tractable manner.

1. Introduction

The multi-reference (MR) coupled-cluster (MRCC)
method is certainly one of themost successful approaches
for the treatment of molecules with a strong quasi-
degenerate character. In contrast to theMR configuration
interaction (MRCI) approach, MRCC convalesces more
correlation energy at a given level of truncation owing
to the exponential parametrisation of the wave func-
tion. Despite the various successes of the MRCC model,
development and implementation of MRCC formalisms
remain an active domain of research in the realm of elec-
tronic structure theory [1,2]. Although there are several
variants of genuineMRCCmethod according to the form
of the wave operator Ansatz, in the present work, we will
focus on the Jeziorski–Monkhorst MR generalisation of

CONTACT Sudip Chattopadhyay sudip@chem.iiests.ac.in; Uttam Sinha Mahapatra uttam.mahapatra@linuxmail.org

the CC exponential Ansatz (usually termed as Hilbert
space MRCC approach) [3]. Conventional effective
Hamiltonian-based multi-root Hilbert space MRCC,
say state-universal MRCC (SU-MRCC) [3,4] method
yields energies of various states in a single calculation,
and often suffers from several impediments such as the
intruder state problem [5] leading to divergent behaviour
of the cluster finding equations. The other objection that
can occur in practical applications stems out from the
multiplicity of the solutions (due to the nonlinear nature
of the Bloch equation and the asymmetric treatment of
the excitation manifolds associated with the different
reference configurations in the Bloch wave operator) [6].

To overcome the intruder problem, one can
exploit the intermediate Hamiltonian formalism [7].

©  Taylor & Francis
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2 D. BANERJEE ET AL.

The state-specific parametrisation of MRCC wave
function, where only one eigenvalue of the effective
Hamiltonian is identical to the original Hamiltonian
eigenvalue, avoids intruder problem in a very effective
manner and has thus attracted a great attention in the last
decade [8–16]. The state-specific or single-root MRCC
approaches based on the Jeziorski–Monkhorst (JM)
Ansatz [3] offer more optimisation parameters (clus-
ter amplitudes) per state compared to the multi-state
SU-MRCC methods. As the state-specific form of the
JM Ansatz yields a redundant number of parameters,
additional conditions are needed to obtain a unique
solution to the Schrödinger equation of the target state
and this leads to various formulations of state-specific
MRCC, including Brillouin–Wigner MRCC approach
(BW-MRCC) introduced by Hubač et al. and further
developed in various directions by Pittner et al. [9,10,13],
SS-MRCC formulations invented by Mahapatra et al.
[11] and later developed by Evangelista et al. [17] who
introduced the abbreviation MkCC, MRexpT approach
due to Hanrath [14] and single-root MRCC (sr-MRCC)
formalism of Mahapatra-Chattopadhyay [16]. The BW-
MRCC and MRexpT methods are not size-extensive.
The SS-MRCC method provides size-extensive energies,
since all terms appearing in the energy and amplitude
equations are connected in nature [1,11]. As shown
by Mahapatra and Chattopadhyay [16], the sr-MRCC
formalism is size-extensive, size-consistent, and recov-
ers a high percentage of the correlation energy, even
at the SD level. Moreover, due to structural flexibility,
SS-MRCC (Mk-MRCC) and sr-MRCC methods can be
implemented starting from an SRCC code, an advantage
over the more complex MRexpT method [14]. It should
be noted that themain objections of the JMAnsatz-based
MRCC methods are the lack of invariance with respect
to active orbital rotations (and the unfavourable scaling
with the dimension of the active space which limits their
applicability to small active spaces) [1]. SS-MRCC is thus
size-consistent only when localised orbitals are used.

Previous studies in SRCC have shown that for achiev-
ing high accuracy, it is imperative to refine the descrip-
tion of dynamical correlation beyond the treatment of
connected singles–doubles (i.e. one need to incorpo-
rate connected triples). It thus seems useful to study the
performance of SS-MRCC method beyond the double
excitation truncation of the cluster operator. Significant
efforts have been made to include higher excitations in
the BW-MRCC and SS-MRCC theories. The first devel-
opment in this direction was published by Evangelista
et al. [18] through an iterative inclusion of triples excita-
tions in singles–doubles truncation scheme. Later, Pittner
and co-workers [19,20] formulated a perturbative cor-
rection for the BW-MRCC and SS-MRCC (Mk-MRCC)

approach. In [20], they have also reported the develop-
ment of an efficient implementation of the full-blown
BW-MRCCSDT method. Although computational costs
of full-blown CCSDT are too demanding, it can be
used as a tool for benchmarking approximate methods.
The underlying policy behind the development of Mk-
MRCCSD(T) due to Pittner et al. [19,20] is to correct
the matrix elements of the SS-MRCC-effective Hamil-
tonian using SR-CCSD(T) scheme. Evangelista et al.
[21] proposed a systematic scheme for deriving pertur-
bative triple corrections in SS-MRCCSD/Mk-MRCCSD
method (termed as SS-MRCCSD(T)/Mk-MRCCSD(T))
through the development of a production level code. It
is worth noting that the Mk-MRCC method with per-
turbative triples [22] has been suggested by neglecting
the coupling terms in the triples amplitude equation, and
thus often suffers from intruder state effects. In the Mk-
MRCC(T) method of Evangelista et al. [23], the triples
amplitude equation includes the linear coupling terms
which requires to iterate the equation for the triple exci-
tations. Note their amplitude equation includes a denom-
inator shift and is thus insensitive to intruder states.
The Mk-MRCCSD(T) formalism of Evangelista et al. can
be viewed as a MR generalisation of the λ-CCSD(T)
[24]. The progress on SU-MRCC with triples excitations
achieved by (1) Balková and Bartlett [25], (2) Kowalski
and Piecuch [26] and (3) Li and Paldus [27] should also
be noted.

Block-correlated coupled-cluster (BCCC) method
with a CASSCF (CAS-BCCC) reference function is an
interesting variant of the intruder-free CCmethod, which
was recently introduced by Li and co-workers [28]. Apart
from its lack of core extensivity, the CAS-BCCC method
offers many beneficial properties and shows a good
numerical accuracy for ground-state and excited-state
calculations. Several formalisms have also been suggested
to incorporate MR ideas into the structure of the SRCC
method including active-space or MR state-specific CC
formulations of Adamowicz and co-workers [29] (for
other concepts based on the idea of active-space CC; see
[30]), reduced MRCC methods of Li and Paldus [31],
method of moments of CC methods (MMCC) invoking
MR perturbative/configuration interaction (CI) trial
wave functions developed by Piecuch et al. [32], renor-
malised CC (CR-CC) approaches using the formalism of
MMCC [33], tailored CC methods proposed by Bartlett
and co-workers [34] and universal state-selective MR
approach introduced by Kowalski [35]. These methods
all seek to improve the behaviour of CCSD(T) without
giving up its general structure.

Considering the advantages of SS-MRCC (vide supra),
our group have been actively pursuing the develop-
ment and application of SS-MRCC with perturbative
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MOLECULAR PHYSICS 3

treatment of connected triples for SS-MRCCSD (termed
as SS-MRCCSDT-1a+d) [36] analogous to the SR-based
CCSDT-n-schemes. As the SS-MRCCSD with the SDT-
1a+d correction is derived from the SS-MRCC method
by truncation of the corresponding equations, the SS-
MRCCSDT-1a+d equations are explicitly connected and
the resulting triples correction is size-extensive. Although
a series of iterative approximations denoted as SR-
CCSDT-n (n = 1 − 4) [37] have been proposed due
to lower computational scaling, a scheme with non-
iterative inclusion of connected triples, say CCSD(T),
often referred to as the ‘gold standard’, became very
popular. At present, there is no general understand-
ing as to which of the CCSDT-n methods is the best
in terms of computational requirements and accuracy
obtained for a given problem [37]. Consequently, a trial-
and-error approach to test the applicability of a given
CCSDT-n scheme is always worthwhile. Recently, we
have implemented an approximate iterative CCSDT-n
method (called as CCSDT-1a+d) [38] in which all diag-
onal terms in VT3 (diagonal terms) have been included
in the T3 determining equation, in addition to VT2. The
CCSDT-1a+d method can be viewed as an attempt to
treat the effects of triply excited determinants upon both
single- and double-excitation operators on an equal foot-
ing. We emphasise at this point that at the CCSDT-1a+d
level, important new T3 − T3 coupling terms appear
due to the VT3 (diagonal terms). Therefore, CCSDT-
1a and CCSDT-1a+d are (approximately) equivalent
where VT3 (diagonal terms) are not significant. Illustra-
tive applications presented in [36,38] demonstrate that
the SDT-1a+d scheme is a promising approximation
to the full SDT method over the entire bond-breaking
process of alkaline-earth dimers, and isomerisation of
cyclobutadiene. The superiority of the CCSDT-1a+d
approach over other non-iterative treatments of triples in
CC theory is evident when we examine the energy curve
of the challenging Be2 molecule. Thus, it offers a more
useful avenue to treat electron correlation in the pres-
ence of configurational degeneracy than CCSDT-1a and
CCSDT-1bwhile being less expensive than the full-blown
CCSDT treatment. However, due to the iterative nature
of the method, it is also computationally demanding
with respect to the corresponding non-iterative analogue.
The choice of SDT-1a+d truncation scheme represents
a pragmatic compromise between the desire to achieve
accuracy and the computational viability of the result-
ing method. The success of the CCSDT-1a+d scheme
[38] in applications involving single bond breaking and
biradical structures on singlet energy surfaces prompt
the question of whether CCSDT-1a+d can be similarly
effective within the framework of the SS-MRCC method
(see [36]).

The goal of this communication is to examine the
performance of the SS-MRCC method to calculations
of equilibrium geometrical parameters of systems that
are MR in nature through the inclusion of complete
connected singles, doubles and partial triples (SDT-1a+d
(entails the inclusion of off-diagonal Fock matrix ele-
ments)) [36] based numerical gradient scheme. Unlike
the SR-based gradient approach, the SS-MRCCSDT-
1a+d gradient treatment is more stable near transition
states or at distorted geometries and, hence, can handle
geometry optimisation of MR states more accurately.
Although the numerical gradient scheme is inherently
less efficient than the analytic one, it is more amenable
from computational point of view. Although the gradi-
ent approach has already been well developed for the
SR-based methods [39,40], much less is known about
MR-based methods due to the greater complexity of the
MR approaches compared to the SR one. In recent years,
there has been increasing interest in the development
of analytical derivatives for MR wave functions [41].
Using the string-based many-body formalism, analytic
gradient formalism has been presented for active-space
CCmethods HF andMCSCF reference functions [42]. In
2007, Pittner and Šmydke [19] published a formulation
of analytic gradients for the BW-MRCC (uncorrected
and with iterative size-extensivity correction) and SU-
MRCC methods (using Lagrange multipliers [39])
together with a pilot application within an FCI program.
Very recently, Gauss and his co-workers [43] developed
and implemented analytic gradients for the SS-MRCC
method restricted to two closed-shell determinants and
HF orbitals based on the Lagrangian formulation of
Helgaker and Jørgensen formalism [39], later including
orbital relaxation at the MCSCF rather than the HF level
of theory. We hope BW-MRCC and Mk-MRCC gradient
methods will provide various interesting chemical appli-
cations. For an overview of recent developments in this
field, see also the review by Helgaker et al. [44].

2. Theory: A brief resumé

In SS-MRCC theory, thewave function for the target elec-
tronic stateψ is expressed by the JM [3] Ansatz and writ-
ten as a linear combination of reference-specific expo-
nential operators exp (Tμ) acting on a set of reference
functions {φμ} (span a complete active (ormodel) space),
where each term is weighted by a coefficient cμ:

|ψ〉 =
∑

μ

exp(Tμ)|φμ〉cμ. (1)

All the parameters entering the wave function
Ansatz equation (1) are optimised within the frame
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4 D. BANERJEE ET AL.

of Schrödinger equation for a specific electronic state
using the following equations (for the complete model
space):

〈χl |H̄μ|φμ〉cμ +
∑

ν

〈χl | exp(−Tμ) exp(T ν )|φμ〉H̃μνcν

= 0 ∀ l, μ (2)

It is important to note that Tμs have the property
that at least one orbital involved in them must be inac-
tive to maintain the intermediate normalisation condi-
tion. Here, the cluster operator, Tμ, induces excitations
from φμ to the various virtual functions {χ l} of the outer
space. For SS-MRCCSD, {χ l} are the singles and dou-
bles reached from a given φμ. Note that when the JM
Ansatz is invoked in the Schrödinger equation and pro-
jected on the excited functions generated by the cluster
operators appearing in Equation (1), the number of con-
ditions obtained is less than the number of unknowns
appearing in the JM wave function. As Equation (2) is
valid for eachμ and l, the number of equations is proper if
one uses as many {χ l} corresponding to the given model
function as there are number of unknowns in Tμ finding
equations. As a result of this, supplementary conditions,
the so-called sufficiency conditions, have to be imposed
when solving the equations for cluster operators. Mahap-
atra et al. used physically motivated sufficiency conditions
to construct Equation (2) starting from the JM-based
Schrödinger equation.

In Equation (2), H̄μ is the reference-specific similarity-
transformed Hamiltonian (which is non-Hermitian),
defined as

H̄μ = exp(−Tμ)H exp(Tμ). (3)

The SS-MRCC energies are obtained by diagonalising
the (non-symmetric) matrix, H̃μν :

∑
ν

H̃μνcν = Ecμ, (4)

where the matrix elements of the effective operator H̃μν

are defined as H̃μν = 〈φμ|H̄ν |φν〉. Within the model
space, the reference space coefficients, cμ in Equation(2)
and the energy of the target state can be obtained by
diagonalisation of Equation (4). In SS-MRCC, all the
variables {cμ, Tμ} are computed self-consistently. Equa-
tion (2) consists of two terms: the direct term (analogous
to single-reference theory where computational cost
scales linearly with the number of references) depending
on cluster amplitudes of one particular reference and
the couplings (the cost of which scales quadratically)
that explicitly mix cluster amplitudes related to different

references. Assuming the completeness of the refer-
ence space, one can show that that the non-symmetric
(effective) Hamiltonian and the cluster operators are
connected in nature. As Equation (2) associates with the
reference coefficients for the target state, the solution of
it depends on the process of the diagonalisation of the
effective Hamiltonian through Equation (4), which must
be done in each iteration. The computational cost of the
coupling terms in SS-MRCC (and in other JM-based
MRCC methods) is much less than the direct terms. The
SS-MRCCmethod is structurally flexible in the sense that
it subsumes in it size-extensive versions of both SSMR
perturbation theory [45] and SSMR coupled electron pair
approximation [46] depending upon a suitable choice
of quasi-linearized approximation strategy. Moreover, it
is intrinsically flexible in the sense that it is constructed
in a manner that it can relax the coefficients of the ref-
erence function, or keep the coefficients frozen if we so
desire.

CCSD is the least elaborate truncation scheme which
possesses most of the important features of correlation.
After obtaining T1 and T2 using Equation (2), the equa-
tion for triples can be obtained using the scheme as dis-
cussed later.

We now delineate the derivation of the working equa-
tion for the triples by starting out with the follow-
ing partitioning of the Hamiltonian operator, H: H =
H0μ + Vμ, where the terms in the Hamiltonian, respec-
tively, represent the one- and two-electron contributions
to the overall Hamiltonian with respect to φμ as the
vacuum. The CCSDT-1a scheme retains only the con-
nected composite of H0μdTμ

3 in the T3 equation, with
H0μd being the diagonal part of the unperturbed Hamil-
tonian. Essentially, H0μd is the diagonal of an effective
Fock-like operator fμ defined with respect to φμ as the
vacuum:

〈
χl |H0μdTμ

3 |φμ

〉 + 〈
χl |VTμ

2 |φμ

〉 = 0. (5)

In this development, we implement a simple approx-
imation scheme, namely the CCSDT-1a+d, in addition
to the well-documented CCSDT-1a. In the CCSDT-1a+d
scheme, the central theme of the current work, we incor-
porate the entire share of contributions that stems out of
VμdTμ

3 , that is to say, the diagonal parts of the mono- and
bi-electronic operators:

〈
χl |H0μdTμ

3 |φμ

〉 + 〈
χl |VμdTμ

3 |φμ

〉 + 〈
χl |VTμ

2 |φμ

〉 = 0.
(6)

We then cast the triples (T3) determining equations,
Equations (5) and (6), for a triply excited functionχ l, with
l being a composite index. Thus,
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MOLECULAR PHYSICS 5

〈χl |H0μdTμ
3 |φμ〉 = ( fμ(a, a) + fμ(b, b) + fμ(c, c)

− fμ(i, i) − fμ( j, j) − fμ(k, k))t lμ,

(7)

where the orbitals a, b, c, … represent the occupied set
and i, j, k, … are the unoccupied ones in φμ. Thus,
in this notational scheme, Hμμ = 〈φμ|H|φμ〉 and Hll =
〈χ l|H|χ l〉, so that

〈χl |VμdTμ
3 |φμ〉 = (Hμμ − Hll )t lμ. (8)

To proceed further, we express the cluster-amplitude-
determining equations for the triply excited (with respect
to φμ) function |χ l〉 in an attempt to generalise the
CCSDT-1a scheme [47] in the shape of an explicitly
connected cluster amplitude equation for SS-MRCC as
follows:

〈
χl |H0μdTμ

3 |φμ

〉
cμ + 〈

χl |VμTμ
2 |φμ

〉
cμ

+
∑

ν

〈
χl |T ν

3 − Tμ
3 + T ν

2 T
ν
1 + Tμ

2 T
μ
1 − Tμ

2 T
ν
1

−Tμ
1 T

ν
2 + · · · |φμ

〉
H̃μνcν = 0 ∀ l, μ. (9)

In the CCSDT-1a+d variant, the corresponding equation
reads as
〈
χl |H0μdTμ

3 |φμ

〉
cμ + 〈

χl |VμdTμ
3 |φμ

〉
cμ

+〈
χl |VμTμ

2 |φμ

〉
cμ +

∑
ν

〈
χl |T ν

3 − Tμ
3 + T ν

2 T
ν
1

+Tμ
2 T

μ
1 − Tμ

2 T
ν
1 −Tμ

1 T
ν
2 + · · · |φμ

〉
H̃μνcν = 0 ∀ l, μ.

(10)

The intruder avoidance of this equation becomes quite
evident once we rewrite it in the following form (by
invoking (4)):

(Hll − Hμμ + Hμμ − E)t lμcμ + 〈
χl |VTμ

2 |φμ

〉
cμ

+
ν �=μ∑

ν

〈
χl |T ν

3
〉
H̃μνcν +

∑
ν

〈
χl |T ν

2 T
ν
1 + Tμ

2 T
μ
1

−Tμ
2 T

ν
1 − Tμ

1 T
ν
2 + · · · |φμ

〉
H̃μνcν = 0 ∀ l, μ.

(11)

The merits of the above equation become quite obvi-
ous once we realise the fact that the gap (Hμμ − E) is nec-
essarily positive for the lowest energy state of interest of
a particular space-spin symmetry so that the difference
(Hll −Hμμ) gets widened up and thus allows for an effec-
tive avoidance of intruders even if some virtual functions
become energetically proximate to one or some of the
model space functions. It is noteworthy that this aspect

for the avoidance of intruder states can almost always be
met for ground state (as this is a difference of an uncor-
related excited state energy and a correlated ground state
energy), but is a much trickier issue for the computation
of the excited states. In the case of the excited state(s),
more iteration steps are required (which are application
specific) to obtain convergence of the equations as com-
pared to the ground state. Convergence of the iterative
steps required is reasonably fast for all cases reported
here. Such a manifest exploitation of the full capabil-
ity to bypass intruder states introduces (Hll − E) if we
adopt a nonlinear expansion containing powers of cluster
operator in the corresponding cluster amplitude finding
equation. One major contribution arising from fμTμ

3 is
omitted in the SS-MRCCSDT-1a+d (and SS-MRCCSDT-
1a) scheme since its presence would have introduced
a direct coupling between amplitudes of different φμ

amounting to the storage of Tμ
3 amplitudes. As the off-

diagonal parts of the occupied–occupied and virtual–
virtual blocks of the Fockmatrices have been ignored, the
storage of the triples amplitudes is no longer required for
the SS-MRCCSDT-nmethods considered here. Thus, the
T3 equations can be solved by simultaneously computing
the T3 amplitudes for all references within a loop over
all orbital indices. Akin to the CCSDT-1a, the CCSDT-
1a+d approximation too includes the effect of connected
triples in the T3 determining equation itself, and it does
not pose any extra computational cost. In the SDT-1a type
approximation, the triples amplitudes are determined via
a Møller–Plesset type denominator, whereas, in the SDT-
1a+d scheme, the denominator reflects the energy differ-
ence between two configurations. This is quite evident in
the relative performance of the two schemes as we will
envisage soon [36]. The CCSDT-1a+d bears a signature
of the configurational degeneracy that becomes obvious
from its numerical behaviour at the point of strong con-
figurational degeneracy (for details, see [36]).

3. Results and discussion

In the present section, the effectiveness of the SS-
MRCCSDT-1a+d is demonstrated via computation of
optimised molecular properties of spectroscopic interest
of N2H2, O3, CH2 and square cyclobutadiene molecules.
The small size of these systems has made them acces-
sible to high-level electronic structure calculations for
more than two decades and hence appear as popular
benchmark systems. To judge the applicability of the
SS-MRCCSDT-1a+d scheme, whenever possible, we
compare its performance with that of results provided
by previously published current generation methods in
a variety of basis sets. If FCI data are not available for
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6 D. BANERJEE ET AL.

the equilibrium structures, more appropriate reference
points should be the most accurate available ab initio
calculations, as experimental data include effects such
as relativistic and non-adiabatic that are not taken into
account in the present study. However, we have cited the
experimental results here just as reference values so that
one can judge whether our results are directed towards
the experimental predictions or not. To assess the com-
parative performances of electronic structure methods
from a perfectly quantitative standpoint, one needs to use
the same basis, the same kind of orbitals and the same
freezing scheme of orbitals. Thereby, one can avoid, or
at least attenuate, differences stemming out of the theo-
retical artifacts while comparing the results, nevertheless
such a comparison in this context only represents the
effectiveness of themethod in a truly qualitative sense and
is not intended for carrying any quantitative prediction
whatsoever. For this reason, the quality of our compar-
ison may not be appropriate. It should be noted that, in
this article, our aim is not to look at our method only
from the quantitative standpoint. Instead, we attempt to
put forth the more qualitative aspect of the method in
terms of its predictive power vis-á-vis other standard and
established methods in routine use. In view of this, we
have also collected the values provided by various meth-
ods with different basis and orbitals. To judge our results
qualitatively, we also consider the results of various
methods with different schemes just as a reference.

Here, we have explored the capability of the
SSMRCCSDT-1a+d approach to yield optimise geomet-
rical parameters for the ground and first singlet-excited
states. The computation of energy for the excited state at
the SD or SDT-1a+d level of SS-MRCC method is done
by converging (i.e. root-homing) on the higher root of
the effective Hamiltonian. Although, the SS-MRCC has
been suited to the calculation of the ground-state energy,
as far as calculations for excited states are concerned, the
possibility of convergence problems cannot be excluded.
We also point out that root-homing scheme used here
might seem to be useful for the kind of systems that have
been dealt with in this work; however, the generality of
the approach is lost in cases where the coefficients rapidly
change sign, viz. ‘mixed electronic states’. Here, it is worth
noting that, for excited states, the problems of choosing
the appropriate eigenvalue of the effective Hamiltonian
from several eigenvalues is not an ambiguous matter in
our SS-MRCC case as that of other single-root MRCC
methods.

.. Diazene/diimide(NH)
As the first example, we consider the cis–trans isomeri-
sation reaction of 1,2-diazene (N2H2) which has been

intensively studied by various state-of-the-art ab ini-
tio methods [48–56]. 1,2-Diazene, the simplest form of
the azo-compounds, is a very useful candidate to stere-
ospecifically reduce olefinic bonds. Azo compounds, con-
taining –N=N– functional group, undergo a reversible
cis–trans isomerisation either thermally or photochem-
ically and act as powerful selective reducing agents and
sources of free radicals which makes them potential sys-
tems for molecular switches or for optical data storage
systems [57]. Regarding previous work on the energy sur-
face of N2H2 (considering also reaction paths for diazene
formation), the most detailed studies have been per-
formed by Biczysko et al. [53]. Although different mech-
anisms have been proposed for this cis–trans isomeri-
sation, the inversion process is the preferable path for
the cis–trans isomerisation of diazene as demonstrated
by Sokalski et al. [58]. A very recent study of Varandas
and co-workers [53] reported rotational barrier heights
of 54.96 kcal/mol and barrier heights of 51.07 kcal/mol
for inversion using MRCI+Q/aug-cc-pVQZ along the
MCSCF minimum energy pathway. However, the para-
metric 2-RDM (two-electron reduced density matrix)
method with theM functional predicts that the rotational
barrier for 1,2-diazene is lower than the inversional bar-
rier by 3.1 kcal/mol in the extrapolated basis set limit
(EBSL) [59]. The M parametric 2-RDM level of occupa-
tion number calculation predicts that the transition state
in the rotational isomerisation is a strongly correlated sys-
tem – a diradical – in agreement with MR methods. In
fact, MR wave function methods support the rotational
mechanism to be more energetically favourable, while
SR methods suggest the inversional pathway to be more
favourable [59]. With this knowledge in mind, the aim of
the present study is to investigate the applicability of the
SS-MRCCSDT-1a+d theory towards a correct descrip-
tion of energy curves of a strongly correlated rotational
pathway (example of a rotation about a double bond)
rather than amoderately correlated inversion pathway for
the ground and excited states of the 1,2-diazene molecule
(rigid rotation of the molecule).

The ground-state 1,2-diazene is dominated by a
single configuration in the regions of local minima
around cis and trans states. These configurations are
φ1 = 1a21b22a22b23a23b24a24b2 for cis and φ2 =
1a21b22a22b23a23b24a25a2 for trans (as per the C2
subgroup) As we can see, φ1 and φ2 differ by double exci-
tation. In the region of the twisted geometries, both con-
figurations are important and then we have a typical two-
configuration closed-shell reference problem. Thus, the
cis–trans isomerisation reaction of 1,2-diazene represents
a typical two-state problem in which the contribution of
the coefficients of reference configurations can change
from 0 to 1 in a continuousmanner and, in contrast to the
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MOLECULAR PHYSICS 7

Figure . (Colour online). NH torsional energy surfaces obtained with SS-MRCCSD and SS-MRCCSDT-a+d methods for the ground and
first biexcited states in cc-pVDZ basis set.

H4 models [60], it represents a real system. This shows
that a method characterising the cis/trans isomerisation
of 1,2-diazene must have a balanced description of both
SR and MR states. It, therefore, can serve as a good prob-
ing ground for any electronic structure methodology
tailored to treat quasi-degeneracies with varying degrees.
In energy vs. dihedral angle plot, RHF-CCSD calculations
show cusp around dihedral angle of 90° due to the con-
figurational degeneracy, although the method provides a
reliable description in the region from 0° to 70° [50]. It
should be noted that a highly established current gener-
ation SRCC method, say CR-CCSD(T)L (also known as
CR-CC(2,3)) [33,61], also yields a pronounced cusp for a
twisted conformation (about 90°) arising from an abrupt
change in theHartree–Fock reference determinant. How-
ever, as illustrated in several examples [33], the presence
of the overlap-like denominator in the formula for the
triples correction in CR-CC almost completely offsets the
non-physical humps on energy surface produced by the
CCSD(T) approach. Musiał et al. [56] demonstrated that
the position of CCSD cusp also depends on the size of the
basis sets. A correct curve should be smooth as it passes
through the 90° point without a cusp. The sr-MRCCSD
[16] as well as SU-MRCCSD and sr-BWMRCCSD [50]
methods yield the correct shape of the rotational energy
surface over the whole range of the dihedral angles with-
out producing any cusp-like shape around the top of the
barrier (i.e. transition region). All these facts indicate the
clear benefit of using an MR-based method.

We employ a cc-pVDZ basis set and CASSCF(2,2) as
the reference function. In φ1 and φ2, two active orbitals
a and b belong to different symmetries, and hence the
model space CAS(2,2) used in our applications is com-
plete. The reaction paths connecting trans-1,2-diazene
to the cis-1,2-diazene for the ground and first biexcited
states are shown in Figure 1. As is apparent from the fig-
ure, the SS-MRCCmethod with both truncation schemes
provides a very smooth and correct shape of the cis–
trans isomerisation energy surface over the entire range
of the dihedral angles for both the ground and excited
states. TheDIP-EOM-CCSDT′ method [62] can also pro-
vide the smooth cusp-free barrier surfaces of correct
shapes for all dihedral angles [56] for these two states. The
important thing is that the ground and biexcited 1A1 SS-
MRCC energy curves are completely cusp-free. We see
that the lowest singlet-excited state, 1A1 state PEC pro-
vided by the SS-MRCC approach, exhibits a very deep
minimumaround 90° similar to theDIP–EOM–CCSDT′.
It is to be noted that in the close vicinity of 90°, switching
of the ground and excited 3B states occur. In the recent
work due to Musiał et al. [56], it is seen that two states
1A and 3A show cusps in the vicinity of 100° in the EE–
EOM–CCSD/cc-pVDZ level of calculations. Note that
changing the dihedral angle near transition state in the
parametric 2-RDM method with the M functional does
not generate a cusp. From this fact, one can say that the
parametric 2-RDM method with the M functional [59]
has the ability to handle the configurational degeneracy of
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8 D. BANERJEE ET AL.

Table . Equilibrium geometries for the ground state of ,-diazene (NH). Bond lengths
and bond angles are given in Angstroms (Å) and degrees (°), respectively.

Conformers Reference Basis Methods RNN RNH � HNN

cis Present work cc-pVDZ SS-MRCCSD . . .
SS-MRCCSDT-1a+d . . .

[] aug-cc-pVDZ MRCI(,) . . .
[] aug-cc-pVTZ MRCI(,) . . .
[] cc-pVDZ CCSD(T) . . .
[] Best cal. CCSD(T) . . .
[] aug-cc-pVDZ M--RDM . . .

CR-CC(,) . . .

trans Present work cc-pVDZ SS-MRCCSD . . .
Present work SS-MRCCSDT-1a+d . . .

[] aug-cc-pVTZ MRCI(,) . . .
[] aug-cc-PVQZ MRCI(,) . . .
[] cc-pVDZ CCSD(T) . . .

Best cal. CCSD(T) . . .
[] cc-pVDZ MRSDCI . .

MRAQCC . .
cc-pVTZ MRSDCI . .

MRAQCC . .
�Z MRAQCC . .

[] aug-cc-pVDZ M--RDM . . .
CR-CC(,) . . .

Expt. [] . . .

φ1 and φ2 in the vicinity of the transition region and thus
prevents an abrupt change in the rigid rotational energy
curve.

The optimised geometries of the trans-1,2-diazene and
cis-1,2-diazene provided by our SS-MRCC calculations
are shown in Table 1. The geometries optimised by the
other advanced methods are also included for the sake of
comparison. It is perhaps worth mentioning that only for
trans-1,2-diazene experimental geometric data are avail-
able [63]. Data assembled in the table indicate that the
performance of the SS-MRCCSDT-1a+d numerical gra-
dient approach is very satisfactory for the geometrical iso-
mers of N2H2 molecule. For both cis and trans isomers,
the ground-state geometrical parameters like bond length
and angle are of comparable quality as the standard high-
level CC schemes. It has been shown that geometries of cis

and trans configurations calculated at SS-MRCCSD and
SS-MRCCSDT-1a+d levels agree well with the current
generation theoretical estimates such asMRCI,MRCI+Q,
MRAQCC and M-2-RDM. For the sake of completeness,
we have also mentioned the experimental values for trans
structure, keeping in mind the question of the size of an
adequate basis set.

The accuracy of the calculations of the present work
may further be assessed by comparing with the results of
the relative energy gaps and barrier height of the cis–trans
isomers. In Table 2, we have assembled the relative ener-
gies of the cis and trans isomers and the barrier height
provided by the SS-MRCCcalculationswith SD and SDT-
1a+d truncation schemes along with the other results
obtained with established CI and CCmethods. It is worth
pointing out that predicting accurate barrier heights for

Table . Relative stability and barrier height (kcal/mol) with respect to
trans-NH.

Reference Basis Method TS-NH cis-NH

Present work cc-pVDZ SS-MRCCSDT-1a+d . .
Present work cc-pVDZ SS-MRCCSD . .
Ref.  cc-pVDZ DIP-EOM-CCSDT′ . .
Ref.  cc-pVTZ DIP-EOM-CCSDT′ . .
Ref.  aug-cc-pVQZ MRCI . .
Ref.  aug-cc-pVQZ MRCI+Q . .
Ref.  cc-pVQZ CCSD(T) – .
Ref.  aug-cc-pVDZ -RDM .

CR-CCSD(T) .
EBSL -RDM .

CCSD(T) .
CR-CCSD(T) .
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chemical reactions is a challenge in quantum chemistry
as the transition states usually have pronouncedMR char-
acter. A comparison with the experimental estimates is
not possible as we do not have reliable reference data.
We observe significant deviations across methods for
the strongly correlated rotational energy barrier. Table 2
clearly indicates that the quality of SS-MRCCSDT-1a+d
results are acceptably good and very close to the previ-
ously published stae-of-the-art results. Both SS-MRCCSD
and SS-MRCCSDT-1a+d methods yield a consistent set
of data. The table indicates that the trans form ismore sta-
ble and the cis is higher only by 3 kcal/mol. After incorpo-
rating corrections due to connected triples, this difference
is enhanced to 5 kcal/mol. The SS-MRCCSDT-1a+d rota-
tional barrier energy of 54 kcal/mol using the cc-pVDZ
basis is similar to that previously calculated by Biczysko
et al. using MRCI + Q/augcc-pVQZ [53], while the CC
methods such as CCSD(T) and CR-CC(2,3) [33] pro-
vide slightly higher rotational barriers of 60.04 and 62.64
kcal/mol in the EBSL, respectively (see [59] for details].
At the DIP–EOM–CCSDT′ level, the barrier heights are
63.6 kcal/mol with cc-pVDZ basis and 64.8 kcal/mol for
the cc-pVTZ one. The DIP–EOM–CCSDT′ calculations
(due to Musiał et al. [56]) provide a consistent set of val-
ues with the energy of the cis configuration being higher
by 6.4 and 7.7 kcal/mol, respectively, for the double- and
triple-zeta basis sets. The barrier heights obtained by the
SS-MRCCSDT-1a+d with CASSCF orbitals are also sim-
ilar for the calculations with the M parametric 2-RDM
method [59].

From the above discussion, it is found that the SS-
MRCCSDT-1a+d method provides a balanced descrip-
tion of both single- andMR correlations in the rotational
barrier between cis and trans 1,2-diazene.

... Ozone (O)
For years, various investigations [12,64–76] on the accu-
rate description of optimised geometry of ozonemolecule
by well-established advanced theoretical methods have
indicated that an accurate estimation of its optimised geo-
metrical parameters in the ground state needs a correct
and balanced description of both static and dynamic cor-
relations by the use of anMR and excitations beyond dou-
bles in the cluster operator. The ground state of O3 has
significant MR character (a prototype singlet with appre-
ciable biradical character) even in its equilibriumdescrip-
tion. A very good assemble of the methods used to study
the ozone can be found in a recent paper by Hino et al.
[77]. It has also been illustrated that ground state of ozone
poses a challenge for the well-established equation of
motion (EOMCC) approach [73]. Note that the ground as
well as excited states of ozone can be properly addressed
byMRCImethods [78]. Bartlett and co-workers [67] have

demonstrated that theCCSD[T]model fails to yield accu-
rate results for O3. Pabst et al. [79] have also illustrated
the failure of the CC2 method for optimisation of the
ground-state geometry of ozone as the CC2 method pre-
dicts a barrierless, exothermic and symmetric dissocia-
tion of O3 to three oxygen atoms. Ozone is an extreme
example for the collapse of CC2-like methods, although
CC2 is a very usefulmodel. Pabst et al. [79] also argue that
the SRCC calculation with either iterative or perturbative
triple excitations including terms up to fifth order leads to
accurate results. It should be noted that reasonable accu-
racy can be achieved via the tailored CCSD method by
exploiting a large active space consisting of 12 electrons
in nine active orbitals [77]. Therefore, caution must be
paid whenever SRCC models are applied to systems with
strong biradical character. Hence, O3 serves as a valuable
benchmark for the performance of the MRCC methods.
All these facts provide a strong motivation to study this
system with our recently developed SS-MRCCSDT-1a+d
code.

We choose a CAS(2,2) (consisting of
[core���]4b226a121a22 and [core���]4b226a122b21 configu-
rations) for assessing the performance of our present
calculations. In order to judge results of our method in
comparison to those obtained by the advanced methods,
we performed our calculations with the often-used DZP
basis set. Bartlett and co-workers [67] observed that the
effect of basis sets on bond angle is negligibly small in
the context of the CCSDT model. The three 1s orbitals
of oxygen have been kept frozen in our correlation
treatment. The calculated optimised bond lengths and
bond angles are given in Table 3 along with the results of
various advanced theoretical methods and experiment
[80]. The table highlights the importance of consider-
ing the MR model to treat the ground-state optimised
structure of ozone. We found that SS-MRCCSD and
Mk-MRCCSD [21,23] greatly improve the O–O bond
length and the�O–O–O in ozone with respect to CCSD.
Table 3 clearly indicates that SS-MRCC/cc-pVDZ with
different truncations geometrical parameters are in good
agreement with the Mk-MRCCSD(T)/cc-pVTZ values.
For cc-pVDZ, all of the calculated properties using
SS-MRCCSDT-1a+d (and SS-MRCCSD) are reasonably
closer to the CCSDTQ and ic-MRCCSDT D [75] values
with deviations of 0.011 for RO-O and 0.2 for �O–O–O.
The agreement of our SS-MRCC results with the values
provided by ic-MRCCSDt D calculations [75] using cc-
pVDZ basis is also noticeable. The encouraging results
displayed in Table 3 strengthen our belief that highly
accurate computations of molecular geometry for the
ground-state ozone are possible with numerical gradient
SSMRCC method using a CAS(2,2) in connection with
perturbative triples via SDT-1a+d scheme [38].
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10 D. BANERJEE ET AL.

Table . Results of equilibrium geometries for the ground state
of O molecule, using the methods described in the text. Bond
lengths (Re) and bond angles (�O–O–O) are given in Angstroms
(Å) and degree(°), respectively.

Reference Basis Methods RO-O �O–O-O

Present work DZP SS-MRCCSD . .
SS-MRCCSDT-1a+d . .

cc-pVDZ SS-MRCCSD . .
SS-MRCCSDT-1a+d . .

Ref.  DZP TCSCF CISD . .
CISD[TQ] . .
SRCCSD(T) . .
SRCCSDT . .

R-RMR CCSD . .
R-RMR CCSD . .

Ref.  DZP CCSDT-a . .
CCSDT-b . .
CCSDT-c . .

CC . .
CCSDT- . .
CCSDT- . .
CCSDT . .

CCSD(TQf ) . .
CCSDT-(Qf) . .

Ref.  B-CCD(T) . .
CI-SD[TQ] . .

Ref.  DZP MRCI . .
MR-ACPF . .
MR-AQCC . .
MR-AQCC-v . .

Ref.  DZP TR-BWCCSD . .
cc-pVTZ TR-BWCCSD . .

CCSDT (Qf) . .
Ref. [,] cc-pVTZ Mk-MRCCSD(T) . .

cc-pVZ Mk-MRCCSD(T) . .
Ref.  cc-pCVZ icMR-CISD+QD . .

icMR-AQCC . .
icMR-AQCC+RMVD . .

Ref.  cc-pVDZ ic-MR-CISD/CAS(,) . .
cc-pVZ . .

Ref.  cc-pVQZ ic-MRCCSD . .
cc-pVDZ ic-MRCCSDT D . .
cc-pVDZ ic-MRCCSDt D . .
cc-pVDZ CCSDT . .
cc-pVDZ CCSDTQ . .

Ref.  Experiment . .

TR: Two-reference.

... ã 1A1 and c̃ 1A1 methylene, CH
We now investigate methylene (CH2) in the excited
states, ã 1A1 (11A1) and c̃ 1A1 (21A1), which are said
to have diradical character [19,20,55,81–93] and are
therefore more challenging to calculate. To the best
of our knowledge, although ã state has been care-
fully studied by various experiments [94] and com-
putational methods, the c̃ excited state is not well
addressed. The ã 1A1 and c̃ 1A1 excited states are
closed-shell singlet and may be described by the
admixture two-configuration wave functions (C2v
symmetry): (1) φ1 = (1a1)2(2a1)2(1b2)2(3a1)2(2b1)0,
and (2) φ2 = (1a1)2(2a1)2(1b2)2(3a1)0(2b1)2. The first
excited state, ã 1A1, may be appropriately presented by
C1(1a1)2(2a1)2(1b2)2(3a1)2(2b1)0 + C2(1a1)2(2a1)2×
(1b2)2(3a1)0(2b1)2, and the fourth excited

state, c̃ 1A1, may be correctly presented by
C1(1a1)2(2a1)2(1b2)2(3a1)0(2b1)2 + C2(1a1)2(2a1)2×
(1b2)2(3a1)2(2b1)0. Note that the CI coefficients C1 +
C2 (|C1| > |C2|) for the ã 1A1 state have opposite signs
and the coefficients for the c̃ 1A1 state have the same
sign. The c̃1A1 state can be viewed as a doubly excited
state with respect to the ã1A1 state. In light of this, both
1A1 states of CH2 can serve as benchmarks for our
SSMRCCSDT-1a+d method. Previous studies indicate,
in general, methods such as FCI, MRCI and spin-flip
(SF) or MRCC are all capable of describing the low-lying
excited states of CH2. A more comprehensive review of
previous works in this context can be found in [95].

As in the other cases mentioned above, the two active
orbitals a and b involved in the two model functions
belong to different symmetries. Thus, the model space
CAS(2,2) is complete. CASSCF(2,2) type of reference
wave functions have been used in the present work. For
both ã 1A1 CH2 and c̃ 1A1 CH2, we have used DZP and
TZ2Pbasis sets [96] as full CI calculationswith these basis
sets have already been published [84,95]. We have used
the schemes as used in [84,95] for DZP and TZ2P basis
sets. In the case of ã 1A1 CH2 state, we also consider cc-
pVTZ basis set where only 1s orbital was frozen for which
a comparison with other MRCC treatments such as BW-
MRCCSDT and Mk-MRCCSDT data is available.

Selected optimised geometrical parameters for the
ã 1A1 CH2 are assembled in Table 4. The results of Mk-
MRCC and BW-MRCC as well as of the single-reference
CCmethod are also incorporated for comparison. Table 4
illustrates that SS-MRCCSDT-1a+d values with CAS(2,2)
and different basis sets accord with the equilibrium struc-
ture yielded by the state-of-the-art ab initio calculations.
For DZP basis, the inclusion of connected triples per-
turbatically leads to a decrease of the bond length and
valence angle by 0.0069 Å and 0.07°. For cc-PVTZ basis
set, the table represents a decrease of bond length by
0.0007 Å and an increase of the valence angle by 0.66°
due to inclusion of connected triples. For TZ2P basis,
values assembled in the table represent an increase of
the bond length by 0.0028 Å and of valence angle by
0.36 ° due to inclusion of connected triples. It should be
noted that Pittner and co-workers [19,20] found that the
use of a larger basis set and connected triples generally
leads to a decrease of the bond length and increase of the
valence angle at their MRCC level of calculations. For cc-
PVTZ basis set, overall, a very good agreement has been
found between SS-MRCCSDT-1a+d and the full-blown
BW-MRCCSDT as well as Mk-MRCCSDT values as dif-
ferences between full MR-CCSDT and SS-MRCCSDT-
1a+d method with approximate inclusion of connected
triples are acceptably small. The TZ2P SS-MRCCSDT-
1a+d results appear to be in reasonable agreement with
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Table . Results of equilibrium geometries for the ã1A1 excited state of
CH system. Bond lengths and bond angles are given in Angstroms (Å)
and degrees (°), respectively.

Ref. Basis Methods RC-H � HCH

Present works DZP SS-MRCCSD . .
SS-MRCCSDT-1a+d . .

TZP SS-MRCCSD . .
SS-MRCCSDT-1a+d . .

cc-pVTZ SS-MRCCSD . .
SS-MRCCSDT-1a+d . .

Ref. [,] DZP CCSD(T) . .
CCSDT . .
FCI . .

TZP CCSD(T) . .
CCSDT . .
FCI . .

ANO MRCI . .
est. complete basis CMRCI . .
est. complete basis RCCSD(T) . .

Ref.  cc-pVDZ SRCCSD . .
R-RMR-CCSD . .
R-RMR-CCSD . .

cc-pVTZ SRCCSD . .
R-RMR-CCSD . .
R-RMR-CCSD . .

Ref. [,] -G BW-MRCCSD . .
-G* fzc BW-MRCCSD . .
-G SU-MRCCSD . .

-G* fzc SU-MRCCSD . .
-G FCI . .

-G* fzc FCI . .
Ref. [,] cc-pVTZ Mk-MRCCSDT . .

BWMRCCSDT . .
cc-pVZ BWMRCCSDT- n.c. . .

BWMR CCSDT- a.c. . .
Ref.  aug-cc-pCVZ MRACPF . .

aug-cc-pCVZ MRCI . .
Ref.  aug-cc-pCVQZ IC-MR-ACPF . .
Ref.  aug-cc-pVQZ IC-MRCISD+Q . .
Ref.  Experiment . .

the larger basis set (aug-cc-pCV6Z)MRACPF andMRCI
geometries of Kerkines et al. [90]. Although the basis set
effect is still significant, the closer agreement between
SSMRCCSDT-1a+d (SSMRCCSD) and experiment [94]
is meaningful. It is also noticed that the values provided
by SS-MRCCSDT-1a+d/TZPmethod are very close to the
FCI/TZ2P results [82,84] differing by an order of 10−3

Åfor the bond length and 0.5° for the bond angle. The
predicted SSMRCCSDT-1a+d geometries for ã 1A1 CH2
agree quite well with the IC-MR-ACPF/aug-cc-pCVQZ
level of calculations [91]. The equilibrium CH distance
and the �HCH of the ã 1A1 CH2 state also agree well
with the available IC-MRCI/aug-cc-pVQZ values with
the Davidson correction [92].

Next, we focus on the c̃ 1A1 CH2 which is theoreti-
cally more challenging than ã as it is the second root of
its spatial and spin symmetry (1A1) and, therefore, more
difficult to describe than the lowest state of a given sym-
metry and earlier calculations show that c̃ state requires a
properMRdescription. Theoretical investigation of states

not the lowest of their symmetry are usually difficult. The
barrier to linearity is so small that one cannot defini-
tively determine if the c̃ state of CH2 is linear or bent and
it might be difficult to establish the shape of the poten-
tial from the experiment. In the near past, Schaefer III-
Sherrill and co-workers have examined the structures and
vibrational frequencies of the four lowest electronic states
of methylene using DZP and TZ2P basis sets and FCI,
alongwith the various approximateCI andCC treatments
[95]. The internally contracted MRCC (IC-MRCI) cal-
culations of Bauschlicher [97] yields very flat bending
energy surface for the c̃ state. As per values reported in
[97], the energy gap between the linear and bent struc-
tures is only about 0.03 kcal/mol at the MRCI level of
theory and they argue in favour of quasi-linear struc-
ture for the c̃ state. Results of Bauschlicher [97] indi-
cate that the changeover from CASSCF to MRCI calcu-
lations indicates the fact that improving the correlation
treatment favours the linear form. Initially, Bauschlicher
and Yarkony [98] argued that the bent structure at the
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12 D. BANERJEE ET AL.

Table  Results of equilibriumgeometries for the (̃c 1A1) excited state of
CH system. Bond lengths and bond angles are given in Angstroms (Å)
and degrees (°), respectively.

Ref. Basis Methods RC-H � HCH

Present works DZP SS-MRCCSD . .
SS-MRCCSDT-1a+d . .

TZP SS-MRCCSD . .
SS-MRCCSDT-1a+d . .

Ref. [,] DZP TCSCF-CISD . .
FCI . .

TZP TCSCF . .
FCI . .

TZP(f,d)+diff TCSCF-CISD . .
Ref.  aug-ccpVZ ICMRCI . .
Ref.  aug-cc-pCVQZ IC-MR-ACPF . .
Ref.  aug-cc-pVQZ IC-MRCISD+Q . .

TCSCF-CISD/DZP level of calculation may be due to
artifactual symmetry breaking of the wave function.
Schaefer III-Sherrill and co-workers [95] encountered
a barrier of 0.07 kcal/mol to linearity of extremely flat
bending potential surface at the FCI/TZ2P level of theory,
which should be free of symmetry-breaking problems.
They argued that improvements in the basis set or in the
treatment of the electron correlation from a TC-SCF cal-
culation to a TCSCF-based CISD/CISDTQ/FCI calcula-
tion tended to decrease the angle. Bunker et al. [83] found
that the c̃ 1A1 CH2 is bent, but the theoretical energy dif-
ference between the linear and bent geometries is only
about 0.03 kcal/mol at the TCSCF-CISD/TZ3P(2f ,2d) +
diff level, and later reported a value of 0.02 kcal/mol. It
may be interesting to note that the question of whether
the c̃ 1A1 state is linear or bent is not addressed here. It
is evident from the current literature of electronic struc-
ture theory that the bent configuration is lower in energy
[82–84,91,92].

The equilibrium geometries for c̃ 1A1 CH2 obtained
by our SS-MRCC methods are collected in Table 5. At
this point, it is worth noting that there is no experimental
determination of the c̃ state structure. In agreement with
previous works [95], the c̃1A1 state remains bent at the SS-
MRCC level of calculations with both SD and SDT-1a+d
truncations. From the table, one can see that the geo-
metrical parameters in the current SS-MRCCSDT-1a+d
work are in good agreement with FCI results reported
by Schaefer III-Sherrill and co-workers [95]. The SS-
MRCCSDT-1a+d values are in closer agreement to the
FCI values than those of the SS-MRCCSD level of calcu-
lations. For instance, the deviation between FCI and SS-
MRCCSDT-1a+d for bond length (Å) and angle (°) are
0.0066 and 0.14, respectively. The corresponding devia-
tions for the SS-MRCCSD method are 0.0089 and 0.83
respectively. Our SS-MRCCSDT-1a+d calculations also
confirm the prediction of the TCSCF-CISD/TZ3P(2f,2d)

+ 2 diff level of calculation of Yamaguchi et al. [95]. The
predicted equilibrium geometrical parameters for the
c̃ 1A1 state also agree quite well with IC-MRCI study with
aug-ccpV5Z basis [97]. Similarly, SS-MRCCSDT-1a+d
structures of the c̃ 1A1 state are in good agreement with
the IC-MR-ACPF/aug-cc-pCVQZ equilibrium geometry
by Flores and Gdanitz [91]. Our calculated results are
in good agreement with the IC-MRCI+Q/aug-cc-pVQZ
values [92], reflecting the accuracy of our SS-MRCCSDT-
1a+d gradient approach. With the improvements in the
treatment of the electron correlation, the SS-MRCC bond
length and angle of the c̃ 1A1 state increase. The inclusion
of triples clearly leads to improved agreement between
our calculated and observed values for both these states.

It is found in the present study that the two low-
lying states of 1A1 CH2 all have bent structures in accor-
dancewith the previous study [84]. At the SS-MRCCSDT-
1a+d/DZP level of theory, the bond lengths (in Å) of
the two excited singlet states are in the order: ã 1A1
(1.1109 ) > c̃ 1A1 (1.0744) which is consistent with the
FCI/DZP results of Schaefer III-Sherrill and co-workers:
ã 1A1 (1.1199) > c̃ 1A1 (1.0749). Note that with the same
basis set, the bond angles of the two states are in the
reverse order of the bond lengths. The predicted order-
ing of the bond angles (°) for the two closed-shell singlet
obtained by SS-MRCCSDT-1a+d/DZP method [̃a 1A1
(102.05 ) < c̃ 1A1 (169.53)] is also consistent with the
values obtained by FCI/DZP calculations [ã 1A1 (101.44)
< c̃ 1A1 (169.68)]. The same observation has also been
found at the level of SS-MRCC and FCI theories when
the relatively small DZP basis set is replaced by the more
flexible TZ2P basis set [95]. The present SS-MRCC results
in combination with the previous FCI estimates for the
c̃ 1A1 state may be helpful in calibrating methods meant
to describe excited electronic states. Tables 4 and 5 indi-
cate that better agreement between the theoretical treat-
ments, and experiment can be achieved via the complete
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Table . Optimised geometrical parameters of the square (transition structure)
cyclobutadiene in its ground (S, Bg) and first singlet-excited (S, Ag) states. Bond
lengths are given in Å.

State References Basis Method RCC RC–H

Ground state Present work STO-G SS-MRCCSD . .
STO-G SS-MRCCSDT-1a+d . .

Ref.  [spd/ls] MRCCSD . .
Ref. [] cc-pVDZ MRAQCC/SA--CASSCF . .
Ref. [] cc-pVTZ(mixed) EOM-SF-CCSD . .

Excited state Present work STO-G SS-MRCCSD . .
STO-G SS-MRCCSDT-a+d . .

Ref.  [spd/ls] MRCCSD . .
Ref. [] cc-pVDZ MRAQCC/SA--CASSCF . .
Ref. [] cc-pVTZ(mixed) EOM-SF-CCSD . .
Ref. [] -G(d) FORS/MCSCF . .

basis set estimates of the more complete treatments of
electron correlation.

... Transition state geometry of Cyclobutadiene
(Dh symmetric CBD)
We finally consider the first singlet-excited state of
cyclobutadiene (CBD) in its square conformation with
D4h symmetry. We mention this system here to illus-
trate the type of predictive power the SS-MRCCSDT-
1a+D method may have in investigations on reaction
mechanisms involving biradical transition state(s). The
square structure has been recognised as the transition
state in the automerisation ofCBD (Rectangular(CBD)→
Square(CBD)→ Rectangular(CBD) in the ground state).
This prototypical anti-aromatic (due to its four π-
electrons), highly strained and short-lived system has
been a challenge for both experimental [99] and theoret-
ical [20,22,25,36,100–107] chemists since many decades.
Theoretical study of the square CBD (a disjoint biradi-
cal) in the ground and excited states has been of great
interest for over a century due to recurring questions of
its anti-aromatic vs. aromatic character, geometry, elec-
tronic structure and reactivity. The e2g configuration of
the square D4h symmetric CBD yields four states: 3A2g,
1B1g, 1B2g and 1A1g. It should be noted that indepen-
dent of the density functional used, the triplet 3A2g is
the ground state of the square CBD, with the lowest sin-
glet 1B1g excited state being 4 kcal/mol above the ground
state [108]. This state ordering is opposite to the results of
the wave-function-based calculations, which yield a sin-
glet 1B1g ground state [25,101,103]. In fact, the energy
of the lowest triplet state, 3A2g, is fairly close to that of
the ground-state singlet, 1B1g, and their relative ordering
is highly sensitive with respect to the level of treatment
of the correlation energy. It has been argued by Eckert-
Maksić et al. [103] that the rapid interconversion of two
structures 1B1g CBD and 3A2g CBD indicate that the low-
est triplet state might play a vital role in the chemical

reactivity of CBD. Here, we have focused on the ground
(S0) 1B1g and the first singlet (S1) 1A1g states. The chal-
lenges originate in the MR character of the ground (S0)
and excited (S1) electronic states of the D4h symmet-
ric CBD which emerge from the (quasi)degeneracy in
the π system and hence a reliable theoretical descrip-
tion of both states requires MR methods. The degree of
orbital quasi-degeneracy as well as the nature of the low-
lying excited states of CBD depends strongly on nuclear
positions (see Figure 2 in [103]). Thus, the estimation
of optimised geometries of both states along with their
energy gap represents an excellent probing ground for
testing the efficiency of the method designed to handle
quasi-degeneracies like SS-MRCC. Note that the CBD
adopts a rhombic (D2hstructure in its S1 state rather than
square one, D4h) in the full-optimised reaction spaceMR-
AQCC/SA-4-CASSCF [103] andMRCC [25] level of cal-
culations as a result of pseudo-Jahn–Teller distortions
(see Figure 3 in [103]). In S1 state of CBD, the preference
of the rhombic conformation emerges from the energy
lowering of the nuclear electron attractive term of σ -
electrons and the kinetic term of π electrons.

In our calculations, we have used the same model and
basis set as reported by Li and Paldus [104]. In the present
work, the eight 1s carbon electrons have been kept frozen
in the SS-MRCC calculations rather than 16 (1s and 2s
electrons) on carbon atoms [104]. A two-dimensional ref-
erence space, CAS(2,2), is used. The optimised geomet-
rical parameters of the states considered are depicted in
Table 6. It should be noted that the geometry of D4h sym-
metric CBD in its ground state (S0) has already been pub-
lished by Mahapatra and Chattopadhyay [36] using the
same freezing scheme of Li and Paldus. Here, we pri-
marily focus on the excited S1 state and the energy dif-
ference of spectroscopic interest. Our SS-MRCC study
clearly indicates that the predicted CC and CH bond
lengths increase during the excitation from S0 → S1 (with
assumed square structure). However, the CC and CH
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Table . Energy differences (in kcal/mol) between Bg
and Ag states in the square conformation of cyclobu-
tadiene (Dh symmetry).

References Basis Method 	E

Present work STO-G SS-MRCCSDT-1a+d .
Ref. [] cc-pVTZ EOM-SF-CCSD .
Ref. [] cc-pVDZ MRAQCC/SA--CASSCF .

cc-pVTZ MRAQCC/SA--CASSCF .
Ref.  [spd/ls] MRCCSD .

[spd/ls] MRCCSD(T) .

bond distances of the ground sate differ very little from
the excited states in the transition state structure. It is
wroth noting thatMR-AQCC/SS-CASSCF/ccpVDZ level
of theory [103] gives virtually the same structural param-
eters for both these states, differing only at higher deci-
mals and hence neglected. The calculated bond lengths
using our SS-MRCC methods are also in good accord
with the values of FORS/MCSCF/6-31G(d) calculations
[107]. Note that the geometries yielded in the MR-
CCSD and EOM-SF-CCSD/cc-pVTZ (mixed) calcula-
tions reported in the table are very close to the geometries
obtained by our present work.

Table 7 summarises some of the theoretical results
for the excitation energies of D4h CBD at the S0 and S1
equilibrium geometries. Estimation of excitation ener-
gies of CBD has been serving as a useful probing ground
for any method designed to handle quasi-degeneracies.
Note that there is a large scatter of the theoretically pre-
dicted values for the energy gap between 11B1g and 11A1g
in the literature depending on the level of calculations
implemented, implying that the problem is not settled
as yet. The SS-MRCCSDT-1a+d (SS-MRCCSD) energy
difference between the optimised ground and excited
states for the square conformation of CBD is about 49
(48) kcal/mol. This value does not include the zero-point
vibrational energy. Our estimated values are very close to
∼ 53 kcal/mol obtained by Balkova and Bartlett with the
MR-CCSDandMR-CCSD(T)methods in the (3s2p1d/ls)
basis confirming the effectiveness of our present scheme.

From the above analysis, it is evident that the accu-
rate agreement between SS-MRCSDT-1a+d with state-
of-art level of ab initio calculations and FCI whenever
available (and also with the experiment) is not fortu-
itous which strengthens our belief that highly accurate
computations of molecular properties for MR systems
are possible with our present SS-MRCC scheme using
a CAS(2,2) in connection with perturbative triples cor-
rection. It is to be noted that the inclusion of connected
triples approximately via SDT-1a+d [38] scheme at SS-
MRCCSD level does not significantly change the over-
all description. Here, we observe that the SS-MRCCSDT-
1a+d method yields results very close to the full-blown
MR-CCSDT one. However, the satisfactory performance

of our SDT-1a+d scheme to incorporate connected triples
correction within the framework of MRCC model is
promising for further development. To reduce the com-
putational cost, one can employ the SDT-1a+d scheme for
triples equations in a non-iterative manner.

In this work, only a pilot implementation is described,
which is not efficient in general. The gradient for SS-
MRCC can be implemented efficiently by exploiting tech-
niques well known from the standard CC-based gradient
method, whichwill be a subject of the followingwork.We
shouldmention that it would be useful to develop an ana-
lytic approach which would certainly be less expensive
than the numerical gradient procedure since the gradient
method is based on numerical rather than analytical dif-
ferentiation. This fact inspires us to develop the analytical
gradient to make the method truly useful. Work in this
direction is in progress. We will also examine the perfor-
mance of the SS-MRCCmethod with SDT-1a+d approx-
imation to treat open-shell states in the future work.

We conclude this part by addressing the relationship of
the present SS-MRCCSDT-1a+d approach with the CR-
CC method (in which one corrects the standard CCSD
energy for the effects of triply and other higher-than-
doubly excited clusters) of Piecuch et al. [33] which bears
a close kinship with our present approach where they dis-
tinguish between approximation A, which uses Møller–
Plesset denominators only, and approximation D, which
uses the Epstein–Nesbet partitioning which is similar to
what we do, when we switch from CCSDT-1a to CCSDT-
1a+d. They demonstrated that approximationD is always
superior (more accurate) compared to variant A, espe-
cially for an accurate description of single bond break-
ing (i.e. energy surfaces) involving diradicals. In both
CR-CC(2,3) and our CCSDT1-a+d schemes, the correc-
tion is fully size-extensive. Although the CR-CCSD(T)
method improves the asymptotic behaviour of CCSD(T),
the method is not size-extensive. In our CCSDT-1a+d
method, we have used bare Hamiltonian for the correc-
tions whereas CR-CC(2,3) method requires the entire
effective Hamiltonian matrix, which is not as readily
available as the bare Hamiltonian itself. It is important to
note that the CR-CC(2,3) includes the triples, but con-
nected quadruples are neglected in it. In CCSDT-1a+d
method, there is also no quadruple terms. At this junc-
ture, it is worth stressing that owing to their efficiency,
the CR-CC method and related approaches have recently
been implemented in widely used quantum-chemical
packages.

4. Conclusion

The SS-MRCC method belonging to the group of single-
root Hilbert space methods, eliminates the intruder
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state problem. As the SS-MRCCSDT-1a+d equations
have emerged from the fully connected SS-MRCC equa-
tions, the working equations for SS-MRCCSDT-1a+d
are connected and hence SS-MRCCSDT-1a+d provides
size-extensive energy. CCSDT-1a+d is a new perturbative
correction to single-reference CCSD. We found that the
partial inclusion of connected triples to SS-MRCCSD
using CCSDT-1a+d scheme (just by taking certain terms
in the linearised equation for triples) has significant
effect on the correlation treatment. The resulting method
has been abbreviated as SS-MRCCSDT-1a+d. One of the
important features of the resulting SS-MRCCSDT-1a+d
method is that it does not require storage of the triples
amplitudes. Although less rigorous than the full-blown
SS-MRCCSDT, triples correction via SDT-1a+d scheme
(just by considering certain terms in the linearised triples
equation ) is useful due to its lower computational cost
and its applicability to larger systems. SS-MRCCSDT-
1a+d can be viewed as a good compromise between
accuracy and the computational cost.

The efficacy of the SS-MRCCSDT-1a+d method to
yield optimised geometrical parameters has been tested
on the ground state of N2H2 and O3 exhibiting MR
character using numerically oriented static response
approach. In addition to ã 1A1 CH2, we have reported
optimised geometries for the lowest c̃ 1A1 of CH2 which
features a very flat bending potential. Our aim has also
been to verify the applicability of the SS-MRCCSDT-
1a+d gradientmethod for the estimation of the optimised
geometries of ground and excited states of square con-
formation of CBD with D4h symmetry. The computed
results are compared with other advanced ab initiometh-
ods and with experimental data whenever available. The
results obtained for these systems employing CAS(2,2)
in our numerical gradient scheme are very encouraging
as our estimates are in good agreement with the results
obtained with advanced SRCC and MRCC calculations.
Apart from its lack of orbital invariancy, the gradient
scheme for the SS-MRCCSDT-1a+d method offers many
beneficial properties and shows a good numerical accu-
racy for ground-state and excited-state calculations. The
triple correction in the SS-MRCC calculation using SDT-
1a+d scheme is seen to match fairly well with the pre-
dicted FCI values whenever available. The results pre-
sented in the present work reiterate the importance of the
triples effect. As the full-blown SS-MRCCSDT method
is computationally demanding, the SS-MRCCSDT-1a+d
method seems to be a promising tool only for bench-
mark treatment of systems where the intricate interplay
of dynamic correlation and quasi-degeneracy plays an
important role, while the SS-MRCCSDT-1a+d approach
can be employed for application calculations. One will
only be able to convincingly conclude once robust codes

to compute analytical gradients are developed for the SS-
MRCSDT-1a+d, which could tackle molecules of arbi-
trary complexity with extensive basis sets.
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J. Chem. Phys. 110, 10275 (1999); I. Hubač, J. Prittner,
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