Running Job 1 of 1 6-31+G_d/CBD_eom_sf_ccsd_6_31G_d.inp qchem 6-31+G_d/CBD_eom_sf_ccsd_6_31G_d.inp_24673.0 /mnt/beegfs/tmpdir/qchem24673/ 0 /share/apps/common/q-chem/5.2.1/exe/qcprog.exe_s 6-31+G_d/CBD_eom_sf_ccsd_6_31G_d.inp_24673.0 /mnt/beegfs/tmpdir/qchem24673/ Welcome to Q-Chem A Quantum Leap Into The Future Of Chemistry Q-Chem 5.2, Q-Chem, Inc., Pleasanton, CA (2019) Yihan Shao, Zhengting Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, Jia Deng, Xintian Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, T. Kus, A. Landau, Jie Liu, E. I. Proynov, R. M. Richard, R. P. Steele, E. J. Sundstrom, H. L. Woodcock III, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, S. A. Baeppler, D. Barton, Z. Benda, Y. A. Bernard, E. J. Berquist, K. B. Bravaya, H. Burton, D. Casanova, Chun-Min Chang, Yunqing Chen, A. Chien, K. D. Closser, M. P. Coons, S. Coriani, S. Dasgupta, A. L. Dempwolff, M. Diedenhofen, Hainam Do, R. G. Edgar, Po-Tung Fang, S. Faraji, S. Fatehi, Qingguo Feng, K. D. Fenk, J. Fosso-Tande, J. Gayvert, Qinghui Ge, A. Ghysels, G. Gidofalvi, J. Gomes, J. Gonthier, A. Gunina, D. Hait, M. W. D. Hanson-Heine, P. H. P. Harbach, A. W. Hauser, M. F. Herbst, J. E. Herr, E. G. Hohenstein, Z. C. Holden, Kerwin Hui, B. C. Huynh, T.-C. Jagau, Hyunjun Ji, B. Kaduk, K. Khistyaev, Jaehoon Kim, P. Klunzinger, K. Koh, D. Kosenkov, L. Koulias, T. Kowalczyk, C. M. Krauter, A. Kunitsa, Ka Un Lao, A. Laurent, K. V. Lawler, Joonho Lee, D. Lefrancois, S. Lehtola, D. S. Levine, Yi-Pei Li, You-Sheng Lin, Fenglai Liu, E. Livshits, A. Luenser, P. Manohar, E. Mansoor, S. F. Manzer, Shan-Ping Mao, Yuezhi Mao, N. Mardirossian, A. V. Marenich, T. Markovich, L. A. Martinez-Martinez, S. A. Maurer, N. J. Mayhall, S. C. McKenzie, J.-M. Mewes, P. Morgante, A. F. Morrison, J. W. Mullinax, K. Nanda, T. S. Nguyen-Beck, R. Olivares-Amaya, J. A. Parkhill, Zheng Pei, T. M. Perrine, F. Plasser, P. Pokhilko, S. Prager, A. Prociuk, E. Ramos, D. R. Rehn, F. Rob, M. Scheurer, M. Schneider, N. Sergueev, S. M. Sharada, S. Sharma, D. W. Small, T. Stauch, T. Stein, Yu-Chuan Su, A. J. W. Thom, A. Tkatchenko, T. Tsuchimochi, N. M. Tubman, L. Vogt, M. L. Vidal, O. Vydrov, M. A. Watson, J. Wenzel, M. de Wergifosse, T. A. Wesolowski, A. White, J. Witte, A. Yamada, Jun Yang, K. Yao, S. Yeganeh, S. R. Yost, Zhi-Qiang You, A. Zech, Igor Ying Zhang, Xing Zhang, Yan Zhao, Ying Zhu, B. R. Brooks, G. K. L. Chan, C. J. Cramer, M. S. Gordon, W. J. Hehre, A. Klamt, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, Jeng-Da Chai, A. E. DePrince, III, R. A. DiStasio Jr., A. Dreuw, B. D. Dunietz, T. R. Furlani, Chao-Ping Hsu, Yousung Jung, Jing Kong, D. S. Lambrecht, WanZhen Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov, P. M. W. Gill, M. Head-Gordon Contributors to earlier versions of Q-Chem not listed above: R. D. Adamson, B. Austin, J. Baker, G. J. O. Beran, K. Brandhorst, S. T. Brown, E. F. C. Byrd, A. K. Chakraborty, C.-L. Cheng, Siu Hung Chien, D. M. Chipman, D. L. Crittenden, H. Dachsel, R. J. Doerksen, A. D. Dutoi, L. Fusti-Molnar, W. A. Goddard III, A. Golubeva-Zadorozhnaya, S. R. Gwaltney, G. Hawkins, A. Heyden, S. Hirata, G. Kedziora, F. J. Keil, C. Kelley, Jihan Kim, R. A. King, R. Z. Khaliullin, P. P. Korambath, W. Kurlancheek, A. M. Lee, M. S. Lee, S. V. Levchenko, Ching Yeh Lin, D. Liotard, R. C. Lochan, I. Lotan, P. E. Maslen, N. Nair, D. P. O'Neill, D. Neuhauser, E. Neuscamman, C. M. Oana, R. Olson, B. Peters, R. Peverati, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, M. A. Rohrdanz, E. Rosta, N. J. Russ, H. F. Schaefer III, N. E. Schultz, N. Shenvi, A. C. Simmonett, A. Sodt, D. Stuck, K. S. Thanthiriwatte, V. Vanovschi, Tao Wang, A. Warshel, C. F. Williams, Q. Wu, X. Xu, W. Zhang Please cite Q-Chem as follows: Y. Shao et al., Mol. Phys. 113, 184-215 (2015) DOI: 10.1080/00268976.2014.952696 Q-Chem 5.2.1 for Intel X86 EM64T Linux Parts of Q-Chem use Armadillo 8.300.2 (Tropical Shenanigans). http://arma.sourceforge.net/ Q-Chem begins on Wed Jan 27 16:50:09 2021 Host: 0 Scratch files written to /mnt/beegfs/tmpdir/qchem24673// Jul1719 |scratch|qcdevops|jenkins|workspace|build_RNUM 6358 Processing $rem in /share/apps/common/q-chem/5.2.1/config/preferences: MEM_TOTAL 5000 NAlpha2: 30 NElect 28 Mult 3 Core orbitals will be frozen Checking the input file for inconsistencies... ...done. -------------------------------------------------------------- User input: -------------------------------------------------------------- $comment EOM-SF-CCSD $end $molecule 0 3 C -0.78248546 -0.67208001 0.00000000 C 0.78248546 -0.67208001 0.00000000 C -0.78248546 0.67208001 0.00000000 C 0.78248546 0.67208001 0.00000000 H -1.54227765 -1.43404123 -0.00000000 H 1.54227765 -1.43404123 0.00000000 H -1.54227765 1.43404123 0.00000000 H 1.54227765 1.43404123 -0.00000000 $end $rem JOBTYPE = sp METHOD = eom-ccsd BASIS = 6-31+G* SCF_CONVERGENCE = 9 SF_STATES = [2,2,1,1,1,1,1,1] PURECART = 1111 UNRESTRICTED = TRUE RPA = FALSE $end -------------------------------------------------------------- ---------------------------------------------------------------- Standard Nuclear Orientation (Angstroms) I Atom X Y Z ---------------------------------------------------------------- 1 C 0.7824854600 0.6720800100 -0.0000000000 2 C -0.7824854600 0.6720800100 0.0000000000 3 C 0.7824854600 -0.6720800100 -0.0000000000 4 C -0.7824854600 -0.6720800100 0.0000000000 5 H 1.5422776500 1.4340412300 -0.0000000000 6 H -1.5422776500 1.4340412300 0.0000000000 7 H 1.5422776500 -1.4340412300 -0.0000000000 8 H -1.5422776500 -1.4340412300 0.0000000000 ---------------------------------------------------------------- Molecular Point Group D2h NOp = 8 Largest Abelian Subgroup D2h NOp = 8 Nuclear Repulsion Energy = 98.83857161 hartrees There are 15 alpha and 13 beta electrons Q-Chem warning in module forms1/BasisType.C, line 1983: You are not using the predefined 5D/6D in this basis set. Requested basis set is 6-31+G(d) There are 28 shells and 80 basis functions Total memory of 5000 MB is distributed as follows: MEM_STATIC is set to 192 MB QALLOC/CCMAN JOB total memory use is 4808 MB Warning: actual memory use might exceed 5000 MB Total QAlloc Memory Limit 5000 MB Mega-Array Size 188 MB MEM_STATIC part 192 MB Distance Matrix (Angstroms) C ( 1) C ( 2) C ( 3) C ( 4) H ( 5) H ( 6) C ( 2) 1.564971 C ( 3) 1.344160 2.062983 C ( 4) 2.062983 1.344160 1.564971 H ( 5) 1.076043 2.446448 2.238980 3.136920 H ( 6) 2.446448 1.076043 3.136920 2.238980 3.084555 H ( 7) 2.238980 3.136920 1.076043 2.446448 2.868082 4.211933 H ( 8) 3.136920 2.238980 2.446448 1.076043 4.211933 2.868082 H ( 7) H ( 8) 3.084555 A cutoff of 1.0D-14 yielded 406 shell pairs There are 3352 function pairs ( 3702 Cartesian) Smallest overlap matrix eigenvalue = 2.41E-05 Scale SEOQF with 1.000000e-01/1.000000e-01/1.000000e-01 Standard Electronic Orientation quadrupole field applied Nucleus-field energy = 0.0000000022 hartrees Guess from superposition of atomic densities Warning: Energy on first SCF cycle will be non-variational SAD guess density has 28.000000 electrons ----------------------------------------------------------------------- General SCF calculation program by Eric Jon Sundstrom, Paul Horn, Yuezhi Mao, Dmitri Zuev, Alec White, David Stuck, Shaama M.S., Shane Yost, Joonho Lee, David Small, Daniel Levine, Susi Lehtola, Hugh Burton, Evgeny Epifanovsky, Bang C. Huynh ----------------------------------------------------------------------- Hartree-Fock A unrestricted SCF calculation will be performed using DIIS SCF converges when DIIS error is below 1.0e-09 --------------------------------------- Cycle Energy DIIS error --------------------------------------- 1 -155.0598004125 4.24e-02 2 -153.5721137873 2.95e-03 3 -153.6143304815 7.64e-04 4 -153.6178219349 1.27e-04 5 -153.6179419900 6.30e-05 6 -153.6179732663 2.95e-05 7 -153.6179831400 9.71e-06 8 -153.6179843427 1.88e-06 9 -153.6179843880 4.04e-07 10 -153.6179843900 1.05e-07 11 -153.6179843900 2.38e-08 12 -153.6179843902 3.09e-09 13 -153.6179843903 5.70e-10 Convergence criterion met --------------------------------------- SCF time: CPU 1.07s wall 2.00s = 2.015991460 SCF energy in the final basis set = -153.6179843903 Total energy in the final basis set = -153.6179843903 ------------------------------------------------------------------------------ CCMAN2: suite of methods based on coupled cluster and equation of motion theories. Components: * libvmm-1.3-trunk by Evgeny Epifanovsky, Ilya Kaliman. * libtensor-2.5-trunk by Evgeny Epifanovsky, Michael Wormit, Dmitry Zuev, Sam Manzer, Ilya Kaliman. * libcc-2.5-trunk by Evgeny Epifanovsky, Arik Landau, Tomasz Kus, Kirill Khistyaev, Dmitry Zuev, Prashant Manohar, Xintian Feng, Anna Krylov, Matthew Goldey, Alec White, Thomas Jagau, Kaushik Nanda, Anastasia Gunina, Alexander Kunitsa, Joonho Lee. CCMAN original authors: Anna I. Krylov, C. David Sherrill, Steven R. Gwaltney, Edward F. C. Byrd (2000) Sergey V. Levchenko, Lyudmila V. Slipchenko, Tao Wang, Ana-Maria C. Cristian (2003) Piotr A. Pieniazek, C. Melania Oana, Evgeny Epifanovsky (2007) Prashant Manohar (2009) ------------------------------------------------------------------------------ Allocating and initializing 4808MB of RAM... Calculation will run on 1 core. Alpha MOs, Unrestricted -- Occupied -- -11.257 -11.257 -11.256 -11.255 -1.193 -0.951 -0.856 -0.721 1 Ag 1 B3u 1 B2u 1 B1g 2 Ag 2 B3u 2 B2u 2 B1g -0.709 -0.568 -0.565 -0.552 -0.467 -0.343 -0.241 3 Ag 3 B3u 1 B1u 4 Ag 3 B2u 1 B2g 1 B3g -- Virtual -- 0.082 0.084 0.086 0.101 0.128 0.137 0.139 0.157 4 B3u 4 B2u 5 Ag 3 B1g 2 B1u 1 Au 6 Ag 2 B2g 0.165 0.168 0.172 0.173 0.219 0.243 0.247 0.249 5 B3u 2 B3g 5 B2u 7 Ag 4 B1g 2 Au 6 B3u 6 B2u 0.288 0.318 0.346 0.385 0.405 0.423 0.494 0.516 5 B1g 7 B3u 8 Ag 6 B1g 7 B2u 8 B3u 8 B2u 7 B1g 0.767 0.783 0.887 0.889 0.892 0.893 0.925 0.966 9 Ag 8 B1g 3 B1u 10 Ag 3 B2g 9 B3u 3 B3g 3 Au 1.009 1.045 1.084 1.095 1.158 1.180 1.223 1.247 9 B2u 11 Ag 10 B3u 9 B1g 10 B1g 10 B2u 11 B3u 12 Ag 1.285 1.430 1.492 1.526 1.535 1.601 1.765 1.830 11 B2u 12 B3u 11 B1g 4 B1u 12 B2u 5 B1u 4 B2g 4 B3g 1.878 1.900 2.033 2.194 2.313 2.321 2.380 2.562 12 B1g 13 Ag 14 Ag 13 B2u 5 B2g 13 B3u 15 Ag 4 Au 2.611 2.711 2.753 2.816 2.886 2.967 3.079 3.300 5 B3g 14 B3u 5 Au 14 B2u 15 B3u 13 B1g 15 B2u 14 B1g 3.393 15 B1g Beta MOs, Unrestricted -- Occupied -- -11.246 -11.245 -11.245 -11.244 -1.144 -0.894 -0.807 -0.696 1 Ag 1 B3u 1 B2u 1 B1g 2 Ag 2 B3u 2 B2u 3 Ag -0.694 -0.558 -0.535 -0.455 -0.378 2 B1g 3 B3u 4 Ag 3 B2u 1 B1u -- Virtual -- 0.047 0.083 0.086 0.088 0.095 0.103 0.139 0.141 1 B2g 4 B3u 4 B2u 5 Ag 1 B3g 3 B1g 2 B1u 6 Ag 0.167 0.173 0.173 0.181 0.187 0.219 0.225 0.254 5 B3u 5 B2u 1 Au 7 Ag 2 B2g 4 B1g 2 B3g 6 B3u 0.259 0.293 0.347 0.351 0.376 0.403 0.425 0.429 6 B2u 5 B1g 7 B3u 8 Ag 2 Au 6 B1g 7 B2u 8 B3u 0.506 0.527 0.774 0.819 0.895 0.904 0.945 0.955 8 B2u 7 B1g 9 Ag 8 B1g 10 Ag 9 B3u 3 B1u 3 B2g 0.995 1.027 1.032 1.063 1.103 1.103 1.172 1.190 3 B3g 9 B2u 3 Au 11 Ag 10 B3u 9 B1g 10 B1g 10 B2u 1.238 1.255 1.304 1.444 1.500 1.546 1.582 1.670 11 B3u 12 Ag 11 B2u 12 B3u 11 B1g 12 B2u 4 B1u 5 B1u 1.825 1.884 1.894 1.913 2.050 2.230 2.342 2.360 4 B2g 4 B3g 12 B1g 13 Ag 14 Ag 13 B2u 13 B3u 5 B2g 2.416 2.605 2.655 2.729 2.794 2.825 2.905 3.000 15 Ag 4 Au 5 B3g 14 B3u 5 Au 14 B2u 15 B3u 13 B1g 3.096 3.308 3.402 15 B2u 14 B1g 15 B1g Occupation and symmetry of molecular orbitals Point group: D2h (8 irreducible representations). Ag B1g B2g B3g Au B1u B2u B3u All ------------------------------------------------------------------------ All molecular orbitals: - Alpha 15 15 5 5 5 5 15 15 80 - Beta 15 15 5 5 5 5 15 15 80 ------------------------------------------------------------------------ Alpha orbitals: - Frozen occupied 1 1 0 0 0 0 1 1 4 - Active occupied 3 1 1 1 0 1 2 2 11 - Active virtual 11 13 4 4 5 4 12 12 65 - Frozen virtual 0 0 0 0 0 0 0 0 0 ------------------------------------------------------------------------ Beta orbitals: - Frozen occupied 1 1 0 0 0 0 1 1 4 - Active occupied 3 1 0 0 0 1 2 2 9 - Active virtual 11 13 5 5 5 4 12 12 67 - Frozen virtual 0 0 0 0 0 0 0 0 0 ------------------------------------------------------------------------ Import integrals: CPU 0.00 s wall 0.00 s Import integrals: CPU 4.20 s wall 10.46 s MP2 amplitudes: CPU 0.71 s wall 2.14 s Running a double precision version CCSD T amplitudes will be solved using DIIS. Start Size MaxIter EConv TConv 3 7 100 1.00e-06 1.00e-04 ------------------------------------------------------------------------------ Energy (a.u.) Ediff Tdiff Comment ------------------------------------------------------------------------------ -154.10164164 1 -154.11418896 1.25e-02 7.13e-01 2 -154.12899834 1.48e-02 8.77e-02 3 -154.13105245 2.05e-03 3.22e-02 4 -154.13318721 2.13e-03 1.51e-02 Switched to DIIS steps. 5 -154.13371718 5.30e-04 8.31e-03 6 -154.13372641 9.24e-06 2.56e-03 7 -154.13372573 6.88e-07 5.33e-04 8 -154.13372790 2.17e-06 2.48e-04 9 -154.13372826 3.55e-07 6.79e-05 ------------------------------------------------------------------------------ -154.13372826 CCSD T converged. End of double precision SCF energy = -153.61798439 MP2 energy = -154.10164164 CCSD correlation energy = -0.51574386 CCSD total energy = -154.13372826 CCSD T1^2 = 0.0057 T2^2 = 0.2239 Leading amplitudes: Amplitude Orbitals with energies 0.0375 1 (B1u) B -> 3 (B1u) B -0.3781 0.9455 0.0300 1 (B1u) B -> 2 (B1u) B -0.3781 0.1388 0.0239 1 (B3g) A -> 3 (B3g) A -0.2406 0.9247 0.0141 1 (B2g) A -> 3 (B2g) A -0.3430 0.8920 Amplitude Orbitals with energies -0.0869 1 (B3g) A 1 (B1u) B -> 1 (Au) A 1 (B2g) B -0.2406 -0.3781 0.1368 0.0468 0.0869 1 (B3g) A 1 (B1u) B -> 1 (B2g) B 1 (Au) A -0.2406 -0.3781 0.0468 0.1368 0.0869 1 (B1u) B 1 (B3g) A -> 1 (Au) A 1 (B2g) B -0.3781 -0.2406 0.1368 0.0468 -0.0869 1 (B1u) B 1 (B3g) A -> 1 (B2g) B 1 (Au) A -0.3781 -0.2406 0.0468 0.1368 Computing CCSD intermediates for later calculations in double precision Finished. CCSD calculation: CPU 20.25 s wall 25.42 s Solving for EOMSF-CCSD Ag transitions. Running a double precision version EOMSF-CCSD/MP2 right amplitudes will be solved using Davidson. Amplitudes will be solved using standard algorithm. Hard-coded thresholds: LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02 Roots MaxVec MaxIter Precond Conv Shift 2 120 60 1 1.00e-05 0.00e+00 ------------------------------------------------------------------------------ Iter ConvRoots NVecs ResNorm Current eigenvalues (eV) ------------------------------------------------------------------------------ 0 0 4 1.93e-01 2.8118 5.0009 1 0 6 4.57e-02 0.7711 2.6373 2 0 8 3.13e-03 0.1077 1.9251 3 0 10 4.31e-04 0.0290 1.8729 4 0 12 5.38e-05 0.0215 1.8721 5 2 14 5.92e-06 0.0185* 1.8709* Davidson procedure converged EOMSF transition 1/Ag Total energy = -154.13304878 a.u. Excitation energy = 0.0185 eV. R1^2 = 0.9403 R2^2 = 0.0597 Res^2 = 6.64e-06 Conv-d = yes Amplitude Transitions between orbitals 0.6339 1 (B2g) A -> 1 (B2g) B 0.5664 1 (B3g) A -> 1 (B3g) B 0.3793 1 (B3g) A -> 2 (B3g) B 0.2484 1 (B2g) A -> 2 (B2g) B Summary of significant orbitals: Number Type Irrep Energy 14 Occ Alpha 1 (B2g) -0.3430 15 Occ Alpha 1 (B3g) -0.2406 14 Vir Beta 1 (B2g) 0.0468 26 Vir Beta 2 (B2g) 0.1873 18 Vir Beta 1 (B3g) 0.0946 28 Vir Beta 2 (B3g) 0.2254 EOMSF transition 2/Ag Total energy = -154.06497542 a.u. Excitation energy = 1.8709 eV. R1^2 = 0.9383 R2^2 = 0.0617 Res^2 = 5.21e-06 Conv-d = yes Amplitude Transitions between orbitals -0.6432 1 (B2g) A -> 1 (B2g) B 0.6104 1 (B3g) A -> 1 (B3g) B 0.3161 1 (B3g) A -> 2 (B3g) B -0.2169 1 (B2g) A -> 2 (B2g) B Summary of significant orbitals: Number Type Irrep Energy 14 Occ Alpha 1 (B2g) -0.3430 15 Occ Alpha 1 (B3g) -0.2406 14 Vir Beta 1 (B2g) 0.0468 26 Vir Beta 2 (B2g) 0.1873 18 Vir Beta 1 (B3g) 0.0946 28 Vir Beta 2 (B3g) 0.2254 Solving for EOMSF-CCSD B1g transitions. Running a double precision version EOMSF-CCSD/MP2 right amplitudes will be solved using Davidson. Amplitudes will be solved using standard algorithm. Hard-coded thresholds: LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02 Roots MaxVec MaxIter Precond Conv Shift 2 120 60 1 1.00e-05 0.00e+00 ------------------------------------------------------------------------------ Iter ConvRoots NVecs ResNorm Current eigenvalues (eV) ------------------------------------------------------------------------------ 0 0 4 1.82e-01 1.6682 7.4116 1 0 6 5.55e-02 -0.6670 5.0214 2 0 8 1.37e-02 -1.5477 3.2979 3 0 10 2.30e-03 -1.6380 2.6966 4 0 12 2.67e-04 -1.6425 2.6444 5 1 14 2.79e-05 -1.6444* 2.6333 6 2 15 4.69e-06 -1.6443* 2.6311* Davidson procedure converged EOMSF transition 1/B1g Total energy = -154.19415697 a.u. Excitation energy = -1.6443 eV. R1^2 = 0.9531 R2^2 = 0.0469 Res^2 = 3.19e-06 Conv-d = yes Amplitude Transitions between orbitals -0.8792 1 (B3g) A -> 1 (B2g) B -0.3309 1 (B3g) A -> 2 (B2g) B -0.1663 1 (B2g) A -> 1 (B3g) B -0.1377 1 (B2g) A -> 2 (B3g) B Summary of significant orbitals: Number Type Irrep Energy 14 Occ Alpha 1 (B2g) -0.3430 15 Occ Alpha 1 (B3g) -0.2406 14 Vir Beta 1 (B2g) 0.0468 26 Vir Beta 2 (B2g) 0.1873 18 Vir Beta 1 (B3g) 0.0946 28 Vir Beta 2 (B3g) 0.2254 EOMSF transition 2/B1g Total energy = -154.03703670 a.u. Excitation energy = 2.6311 eV. R1^2 = 0.9085 R2^2 = 0.0915 Res^2 = 6.18e-06 Conv-d = yes Amplitude Transitions between orbitals -0.7749 1 (B2g) A -> 1 (B3g) B -0.4923 1 (B2g) A -> 2 (B3g) B 0.2129 1 (B3g) A -> 1 (B2g) B 0.0909 1 (B2g) A -> 3 (B3g) B Summary of significant orbitals: Number Type Irrep Energy 14 Occ Alpha 1 (B2g) -0.3430 15 Occ Alpha 1 (B3g) -0.2406 14 Vir Beta 1 (B2g) 0.0468 18 Vir Beta 1 (B3g) 0.0946 28 Vir Beta 2 (B3g) 0.2254 46 Vir Beta 3 (B3g) 0.9954 Solving for EOMSF-CCSD B2g transitions. Running a double precision version EOMSF-CCSD/MP2 right amplitudes will be solved using Davidson. Amplitudes will be solved using standard algorithm. Hard-coded thresholds: LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02 Roots MaxVec MaxIter Precond Conv Shift 1 120 60 1 1.00e-05 0.00e+00 ------------------------------------------------------------------------------ Iter ConvRoots NVecs ResNorm Current eigenvalues (eV) ------------------------------------------------------------------------------ 0 0 2 9.32e-02 7.4709 1 0 3 2.19e-02 5.7801 2 0 4 4.20e-03 5.2441 3 0 5 1.03e-03 5.1281 4 0 6 2.36e-04 5.1038 5 0 7 3.89e-05 5.0988 6 0 8 1.35e-05 5.0983 7 1 9 5.65e-06 5.0983* Davidson procedure converged EOMSF transition 1/B2g Total energy = -153.94637063 a.u. Excitation energy = 5.0983 eV. R1^2 = 0.9437 R2^2 = 0.0563 Res^2 = 5.65e-06 Conv-d = yes Amplitude Transitions between orbitals -0.9166 1 (B3g) A -> 3 (B1g) B -0.2061 1 (B3g) A -> 5 (B1g) B 0.1687 1 (B3g) A -> 6 (B1g) B 0.1475 1 (B2g) A -> 5 (Ag) B Summary of significant orbitals: Number Type Irrep Energy 14 Occ Alpha 1 (B2g) -0.3430 15 Occ Alpha 1 (B3g) -0.2406 17 Vir Beta 5 (Ag) 0.0883 19 Vir Beta 3 (B1g) 0.1026 31 Vir Beta 5 (B1g) 0.2930 35 Vir Beta 6 (B1g) 0.4035 Solving for EOMSF-CCSD B3g transitions. Running a double precision version EOMSF-CCSD/MP2 right amplitudes will be solved using Davidson. Amplitudes will be solved using standard algorithm. Hard-coded thresholds: LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02 Roots MaxVec MaxIter Precond Conv Shift 1 120 60 1 1.00e-05 0.00e+00 ------------------------------------------------------------------------------ Iter ConvRoots NVecs ResNorm Current eigenvalues (eV) ------------------------------------------------------------------------------ 0 0 2 9.86e-02 6.4611 1 0 3 2.55e-02 4.7461 2 0 4 3.30e-03 4.2186 3 0 5 6.71e-04 4.1347 4 0 6 1.74e-04 4.1184 5 0 7 6.34e-05 4.1129 6 0 8 3.75e-05 4.1111 7 0 9 1.19e-05 4.1103 8 1 10 2.08e-06 4.1094* Davidson procedure converged EOMSF transition 1/B3g Total energy = -153.98270977 a.u. Excitation energy = 4.1094 eV. R1^2 = 0.9447 R2^2 = 0.0553 Res^2 = 2.08e-06 Conv-d = yes Amplitude Transitions between orbitals -0.9351 1 (B3g) A -> 5 (Ag) B 0.1992 1 (B3g) A -> 7 (Ag) B -0.1457 1 (B3g) A -> 8 (Ag) B 0.0460 1 (B2g) A -> 3 (B1g) B Summary of significant orbitals: Number Type Irrep Energy 14 Occ Alpha 1 (B2g) -0.3430 15 Occ Alpha 1 (B3g) -0.2406 17 Vir Beta 5 (Ag) 0.0883 25 Vir Beta 7 (Ag) 0.1807 33 Vir Beta 8 (Ag) 0.3511 19 Vir Beta 3 (B1g) 0.1026 Solving for EOMSF-CCSD Au transitions. Running a double precision version EOMSF-CCSD/MP2 right amplitudes will be solved using Davidson. Amplitudes will be solved using standard algorithm. Hard-coded thresholds: LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02 Roots MaxVec MaxIter Precond Conv Shift 1 120 60 1 1.00e-05 0.00e+00 ------------------------------------------------------------------------------ Iter ConvRoots NVecs ResNorm Current eigenvalues (eV) ------------------------------------------------------------------------------ 0 0 2 9.66e-02 6.6242 1 0 3 2.41e-02 4.9075 2 0 4 5.02e-03 4.3317 3 0 5 1.41e-03 4.1932 4 0 6 5.51e-04 4.1538 5 0 7 2.05e-04 4.1375 6 0 8 1.03e-04 4.1310 7 0 9 8.20e-05 4.1274 8 0 10 1.30e-04 4.1203 9 0 11 1.39e-04 4.1121 10 0 12 3.65e-05 4.1099 11 1 13 7.69e-06 4.1094* Davidson procedure converged EOMSF transition 1/Au Total energy = -153.98271048 a.u. Excitation energy = 4.1094 eV. R1^2 = 0.9439 R2^2 = 0.0561 Res^2 = 7.69e-06 Conv-d = yes Amplitude Transitions between orbitals -0.8512 1 (B3g) A -> 4 (B3u) B -0.2846 1 (B3g) A -> 7 (B3u) B -0.2481 3 (B2u) A -> 1 (B2g) B 0.1740 1 (B3g) A -> 5 (B3u) B 0.1663 1 (B3g) A -> 6 (B3u) B Summary of significant orbitals: Number Type Irrep Energy 15 Occ Alpha 1 (B3g) -0.2406 13 Occ Alpha 3 (B2u) -0.4667 14 Vir Beta 1 (B2g) 0.0468 15 Vir Beta 4 (B3u) 0.0835 22 Vir Beta 5 (B3u) 0.1666 29 Vir Beta 6 (B3u) 0.2544 32 Vir Beta 7 (B3u) 0.3471 Solving for EOMSF-CCSD B1u transitions. Running a double precision version EOMSF-CCSD/MP2 right amplitudes will be solved using Davidson. Amplitudes will be solved using standard algorithm. Hard-coded thresholds: LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02 Roots MaxVec MaxIter Precond Conv Shift 1 120 60 1 1.00e-05 0.00e+00 ------------------------------------------------------------------------------ Iter ConvRoots NVecs ResNorm Current eigenvalues (eV) ------------------------------------------------------------------------------ 0 0 2 9.37e-02 6.6392 1 0 3 2.21e-02 4.9582 2 0 4 3.40e-03 4.4495 3 0 5 5.92e-04 4.3654 4 0 6 1.01e-04 4.3529 5 0 7 1.34e-05 4.3510 6 1 8 3.48e-06 4.3510* Davidson procedure converged EOMSF transition 1/B1u Total energy = -153.97383051 a.u. Excitation energy = 4.3510 eV. R1^2 = 0.9465 R2^2 = 0.0535 Res^2 = 3.48e-06 Conv-d = yes Amplitude Transitions between orbitals -0.9404 1 (B3g) A -> 4 (B2u) B 0.1782 1 (B3g) A -> 6 (B2u) B -0.1278 1 (B3g) A -> 7 (B2u) B 0.0795 1 (B3g) A -> 5 (B2u) B Summary of significant orbitals: Number Type Irrep Energy 15 Occ Alpha 1 (B3g) -0.2406 16 Vir Beta 4 (B2u) 0.0859 23 Vir Beta 5 (B2u) 0.1727 30 Vir Beta 6 (B2u) 0.2585 36 Vir Beta 7 (B2u) 0.4246 Solving for EOMSF-CCSD B2u transitions. Running a double precision version EOMSF-CCSD/MP2 right amplitudes will be solved using Davidson. Amplitudes will be solved using standard algorithm. Hard-coded thresholds: LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02 Roots MaxVec MaxIter Precond Conv Shift 1 120 60 1 1.00e-05 0.00e+00 ------------------------------------------------------------------------------ Iter ConvRoots NVecs ResNorm Current eigenvalues (eV) ------------------------------------------------------------------------------ 0 0 2 9.76e-02 7.0821 1 0 3 2.51e-02 5.5037 2 0 4 1.97e-03 5.0551 3 0 5 3.37e-04 5.0118 4 0 6 9.77e-05 5.0046 5 0 7 1.03e-04 4.9995 6 0 8 7.04e-05 4.9988 7 0 9 4.08e-05 4.9990 8 0 10 1.47e-05 4.9981 9 1 11 3.11e-06 4.9978* Davidson procedure converged EOMSF transition 1/B2u Total energy = -153.95006181 a.u. Excitation energy = 4.9978 eV. R1^2 = 0.9495 R2^2 = 0.0505 Res^2 = 3.11e-06 Conv-d = yes Amplitude Transitions between orbitals 0.9571 1 (B3g) A -> 2 (B1u) B -0.1018 1 (B2g) A -> 2 (Au) B -0.0924 1 (B1u) A -> 2 (B3g) B 0.0774 1 (B3g) A -> 3 (B1u) B Summary of significant orbitals: Number Type Irrep Energy 14 Occ Alpha 1 (B2g) -0.3430 15 Occ Alpha 1 (B3g) -0.2406 11 Occ Alpha 1 (B1u) -0.5651 28 Vir Beta 2 (B3g) 0.2254 34 Vir Beta 2 (Au) 0.3760 20 Vir Beta 2 (B1u) 0.1388 44 Vir Beta 3 (B1u) 0.9455 Solving for EOMSF-CCSD B3u transitions. Running a double precision version EOMSF-CCSD/MP2 right amplitudes will be solved using Davidson. Amplitudes will be solved using standard algorithm. Hard-coded thresholds: LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02 Roots MaxVec MaxIter Precond Conv Shift 1 120 60 1 1.00e-05 0.00e+00 ------------------------------------------------------------------------------ Iter ConvRoots NVecs ResNorm Current eigenvalues (eV) ------------------------------------------------------------------------------ 0 0 2 9.25e-02 8.6931 1 0 3 2.42e-02 7.0498 2 0 4 1.91e-02 6.1881 3 0 5 2.73e-02 5.0013 4 0 6 5.30e-03 4.4102 5 0 7 3.72e-03 4.1737 6 0 8 1.38e-03 4.0504 7 0 9 2.51e-04 4.0262 8 0 10 3.40e-05 4.0187 9 1 11 8.69e-06 4.0179* Davidson procedure converged EOMSF transition 1/B3u Total energy = -153.98607162 a.u. Excitation energy = 4.0179 eV. R1^2 = 0.8384 R2^2 = 0.1616 Res^2 = 8.69e-06 Conv-d = yes Amplitude Transitions between orbitals -0.5622 1 (B3g) A -> 2 (Au) B -0.5454 1 (B1u) A -> 1 (B2g) B 0.3950 1 (B3g) A -> 1 (Au) B -0.2168 1 (B1u) A -> 2 (B2g) B -0.1014 1 (B3g) A -> 3 (Au) B Summary of significant orbitals: Number Type Irrep Energy 15 Occ Alpha 1 (B3g) -0.2406 11 Occ Alpha 1 (B1u) -0.5651 14 Vir Beta 1 (B2g) 0.0468 26 Vir Beta 2 (B2g) 0.1873 24 Vir Beta 1 (Au) 0.1730 34 Vir Beta 2 (Au) 0.3760 48 Vir Beta 3 (Au) 1.0325 EOMSF-CCSD calculation: CPU 85.46 s wall 90.77 s Total ccman2 time: CPU 111.71 s wall 130.04 s -------------------------------------------------------------- Orbital Energies (a.u.) and Symmetries -------------------------------------------------------------- Alpha MOs, Unrestricted -- Occupied -- -11.257 -11.257 -11.256 -11.255 -1.193 -0.951 -0.856 -0.721 1 Ag 1 B3u 1 B2u 1 B1g 2 Ag 2 B3u 2 B2u 2 B1g -0.709 -0.568 -0.565 -0.552 -0.467 -0.343 -0.241 3 Ag 3 B3u 1 B1u 4 Ag 3 B2u 1 B2g 1 B3g -- Virtual -- 0.082 0.084 0.086 0.101 0.128 0.137 0.139 0.157 4 B3u 4 B2u 5 Ag 3 B1g 2 B1u 1 Au 6 Ag 2 B2g 0.165 0.168 0.172 0.173 0.219 0.243 0.247 0.249 5 B3u 2 B3g 5 B2u 7 Ag 4 B1g 2 Au 6 B3u 6 B2u 0.288 0.318 0.346 0.385 0.405 0.423 0.494 0.516 5 B1g 7 B3u 8 Ag 6 B1g 7 B2u 8 B3u 8 B2u 7 B1g 0.767 0.783 0.887 0.889 0.892 0.893 0.925 0.966 9 Ag 8 B1g 3 B1u 10 Ag 3 B2g 9 B3u 3 B3g 3 Au 1.009 1.045 1.084 1.095 1.158 1.180 1.223 1.247 9 B2u 11 Ag 10 B3u 9 B1g 10 B1g 10 B2u 11 B3u 12 Ag 1.285 1.430 1.492 1.526 1.535 1.601 1.765 1.830 11 B2u 12 B3u 11 B1g 4 B1u 12 B2u 5 B1u 4 B2g 4 B3g 1.878 1.900 2.033 2.194 2.313 2.321 2.380 2.562 12 B1g 13 Ag 14 Ag 13 B2u 5 B2g 13 B3u 15 Ag 4 Au 2.611 2.711 2.753 2.816 2.886 2.967 3.079 3.300 5 B3g 14 B3u 5 Au 14 B2u 15 B3u 13 B1g 15 B2u 14 B1g 3.393 15 B1g Beta MOs, Unrestricted -- Occupied -- -11.246 -11.245 -11.245 -11.244 -1.144 -0.894 -0.807 -0.696 1 Ag 1 B3u 1 B2u 1 B1g 2 Ag 2 B3u 2 B2u 3 Ag -0.694 -0.558 -0.535 -0.455 -0.378 2 B1g 3 B3u 4 Ag 3 B2u 1 B1u -- Virtual -- 0.047 0.083 0.086 0.088 0.095 0.103 0.139 0.141 1 B2g 4 B3u 4 B2u 5 Ag 1 B3g 3 B1g 2 B1u 6 Ag 0.167 0.173 0.173 0.181 0.187 0.219 0.225 0.254 5 B3u 5 B2u 1 Au 7 Ag 2 B2g 4 B1g 2 B3g 6 B3u 0.259 0.293 0.347 0.351 0.376 0.403 0.425 0.429 6 B2u 5 B1g 7 B3u 8 Ag 2 Au 6 B1g 7 B2u 8 B3u 0.506 0.527 0.774 0.819 0.895 0.904 0.945 0.955 8 B2u 7 B1g 9 Ag 8 B1g 10 Ag 9 B3u 3 B1u 3 B2g 0.995 1.027 1.032 1.063 1.103 1.103 1.172 1.190 3 B3g 9 B2u 3 Au 11 Ag 10 B3u 9 B1g 10 B1g 10 B2u 1.238 1.255 1.304 1.444 1.500 1.546 1.582 1.670 11 B3u 12 Ag 11 B2u 12 B3u 11 B1g 12 B2u 4 B1u 5 B1u 1.825 1.884 1.894 1.913 2.050 2.230 2.342 2.360 4 B2g 4 B3g 12 B1g 13 Ag 14 Ag 13 B2u 13 B3u 5 B2g 2.416 2.605 2.655 2.729 2.794 2.825 2.905 3.000 15 Ag 4 Au 5 B3g 14 B3u 5 Au 14 B2u 15 B3u 13 B1g 3.096 3.308 3.402 15 B2u 14 B1g 15 B1g -------------------------------------------------------------- Ground-State Mulliken Net Atomic Charges Atom Charge (a.u.) Spin (a.u.) -------------------------------------------------------- 1 C -0.243205 0.550599 2 C -0.243205 0.550599 3 C -0.243205 0.550599 4 C -0.243205 0.550599 5 H 0.243205 -0.050599 6 H 0.243205 -0.050599 7 H 0.243205 -0.050599 8 H 0.243205 -0.050599 -------------------------------------------------------- Sum of atomic charges = 0.000000 Sum of spin charges = 2.000000 ----------------------------------------------------------------- Cartesian Multipole Moments ----------------------------------------------------------------- Charge (ESU x 10^10) 0.0000 Dipole Moment (Debye) X 0.0000 Y -0.0000 Z 0.0000 Tot 0.0000 Quadrupole Moments (Debye-Ang) XX -20.8207 XY 0.0000 YY -22.8336 XZ 0.0000 YZ -0.0000 ZZ -28.2679 Octopole Moments (Debye-Ang^2) XXX 0.0000 XXY 0.0000 XYY 0.0000 YYY -0.0000 XXZ 0.0000 XYZ -0.0000 YYZ 0.0000 XZZ 0.0000 YZZ 0.0000 ZZZ 0.0000 Hexadecapole Moments (Debye-Ang^3) XXXX -134.3734 XXXY 0.0000 XXYY -32.7026 XYYY 0.0000 YYYY -117.5540 XXXZ 0.0000 XXYZ -0.0000 XYYZ -0.0000 YYYZ -0.0000 XXZZ -33.7125 XYZZ -0.0000 YYZZ -31.4025 XZZZ 0.0000 YZZZ -0.0000 ZZZZ -38.9819 ----------------------------------------------------------------- Archival summary: 1\1\lcpq-curie.ups-tlse.fr\SP\ProcedureUnspecified\6-31+G*\44(3)\emonino\WedJan2716:52:262021WedJan2716:52:262021\0\\#,ProcedureUnspecified,6-31+G*,\\0,3\C\H,1,1.07604\C,1,1.34416,2,135.082\H,3,1.07604,1,135.082,2,-0,0\C,3,1.56497,1,90,2,180,0\H,5,1.07604,3,134.918,1,180,0\C,5,1.34416,3,90,1,-0,0\H,7,1.07604,5,135.082,3,180,0\\HF=-153.617984\\@ Total job time: 136.87s(wall), 117.42s(cpu) Wed Jan 27 16:52:26 2021 ************************************************************* * * * Thank you very much for using Q-Chem. Have a nice day. * * * *************************************************************